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Abstract. Neutron Spin Echo methods (NSE) use Larmor labelling to measure the precession phase of the neutron beam polarization around
well-defined magnetic fields. Scattering by a sample can affect the resulting precession phase providing information on the sample's structure
and dynamics with high accuracy and resolution. A major limitation for the performance of Neutron Spin Echo instruments is the homogeneity
of the precession magnetic fields. Here we investigate the influence of the new “pancake” moderator, which is being built at the European
Spallation Source, on the design of a Neutron Spin Echo spectrometer. The calculations show clear gains when the height to width ratios of
the rectangular beam cross-sections mimic those of the ESS “pancake” moderator beams. In such a case the homogeneity of the magnetic field
integrals could improve by at least 30%. However, the calculations show that will not be possible to preserve a high resolution and at the same
time reduce the length of the instrument. Consequently, NSE spectrometers will perform better at the ESS but they will not be substantially
compacter than at other neutron sources e.g. ILL or FRM2.

Keywords: Neutron Spin Echo Spectroscopy, magnetic field calculations

1. Introduction

Most neutron scattering spectroscopic techniques determine separately the momentum and energy of the in-
cident (�ki , εi) and scattered beams (�ks , εs) in order to deduce the momentum and energy transfer at the sample
( �Q = �ki − �ks , �ε = εi − εs), which are the relevant parameters in neutron scattering. The relative accuracy in
the determination of �ki . εi , �ks and εs also determines the lowest limit for �| �Q|/| �Q| and �ε/ε which can reach
10−3, but with the cost of a high incident beam collimation and monochromatisation, and thus substantial inten-
sity losses. In contrast, neutron spin echo methods use polarised neutrons and the precession of the neutron beam
polarization �P in a magnetic field �B to directly measure the momentum and/or energy transfer at the sample. In
this way, it is possible to decouple the momentum and energy resolution from beam characteristics like monochro-
matisation and collimation and reach the highest resolutions while keeping the high intensity advantage of poorly
monochromatic and collimated beams [6]. For this purpose �P should be non-collinear to �B, in the optimal case
the two vectors should be orthogonal to each other. In this case and in the weak magnetic fields commonly used in
neutron scattering, �P would precess around �B following the classical equation of motion:

d �P/dt = −γ ( �P × �B) = �P × �ωL, (1)
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where γ = 183.2 rad ·MHz ·T−1 is the neutron gyromagnetic ratio and ωL the Larmor angular frequency. We note
that this description is also quantum mechanically correct because �P is an observable [7] and as such it follows the
linear equations of motion of classical mechanics according to the Ehrenfest theorem.

A neutron beam characterised by the wavelength λ and the energy ε, has a velocity of v = h/mλ = √
2ε/m,

with m the neutron mass and h the Planck constant. Thus, over a time lapse t it covers a distance � = vt and, in a
magnetic field perpendicular to its polarization vector, it accumulates a precession angle:

ϕ = |�ωL|t = γB�/v = (γm/h)λ · B · � = γ · B�m/
√

2ε, (2)

where B is the modulus of �B. Therefore ϕ encodes both the energy ε and the trajectory � of the beam. Most
instruments measure the difference in precession angles accumulated before and after scattering, �ϕ = ϕi − ϕs ,
and adopt magnetic field designs that disentangle the energy transfer contribution to �ϕ from the one arising from
the momentum transfer, i.e. from the change of trajectories during the scattering process. SESANS instruments
are designed to optimally encode momentum transfer [5,13], whereas NSE spectrometers should ideally encode
only energy transfer. Thus NSE spectrometers are designed so that the precession phase is the same for all possible
beam trajectories through the spectrometer. The relative precision requirements reach 10−6, which for large beam
cross sections pose stringent conditions on the magnetic field homogeneity. These are the major limiting factor for
extending the NSE resolution beyond the state-of-the-art.

NSE spectrometers [4,9,10,15] measure the intermediate scattering function I ( �Q, τ), where �Q is the momentum
transfer vector and τ the Fourier time given by:

τ = �/
(
mv3) ∫

ωL d� = 1

2π
γ

(
m

h

)2

λ3
∫

B d�. (3)

The challenge in reaching the longest possible τ consists in realising high field integrals J = ∫
B · d� with

the highest possible homogeneity, thus with the smallest possible trajectory-dependence of �ϕ. In the following
we will discuss the influence of some magnetic coil design parameters on the NSE modulation with focus on
the repercussions the compact neutron beams emerging from the “pancake” moderators may have on an NSE
spectrometer at the European Spallation Source. For this purpose we will consider the normalised NSE modulation,
PNSE, after precession in the spectrometer, either before (incoming beam) or after the sample (scattered beam). For
ideally homogeneous magnetic fields PNSE = 1 and magnetic field inhomogeneities obviously reduce PNSE.

A Gauss distribution of magnetic field inhomogeneities will lead to a Gauss distribution of precession angles
and to a decrease of PNSE:

PNSE ∝ 〈
cos(�ϕ)

〉 = cos
(〈�ϕ〉) exp

(−(σ�ϕ)2/2
) = exp

(−(σ�ϕ)2/2
)
, (4)

where σ�ϕ is the standard deviation for the Gaussian distribution of �ϕ, and 〈�ϕ〉 = 0 in spin-echo condition. We
consider here the most general case of diffuse scattering, for which there is no correlation between the trajectories
of the neutron beam before and after the sample.1 In that case the variance of the sum of two normally distributed
variables is the sum of individual variances, i.e. σ 2

�ϕ = σ 2
ϕ1

+ σ 2
ϕ2

. Using J0 = ∫ |B| dl, the variance of the
accumulated precession angle in one arm (either first or second) is

σ 2
ϕ = (mγ/h)2λ2〈(J0 − J )2〉 (5)

where J is the magnetic field integral along a specific trajectory and 〈..〉 stands for the averaging over the neutron
beam.

1The neutron beam trajectories before and after the sample are one-to-one correlated in the case of the direct beam (the part of the beam that
has not been scattered by the sample) and the Bragg peaks. This feature is very important for the design and operation of SESANS [5,13] and
Larmor diffraction [12] instruments.
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The longest Fourier time depends on the minimum acceptable spin-echo signal for an elastic scatterer. The
decrease in the spin-echo signal is given by Eq. (4). As seen from Eq. (5), this decrease depends only on the
wavelength and the field integral inhomogeneity, �J = √〈(J0 − J )2〉, for the first and second arm.

NSE spectrometers typically use longitudinal magnetic fields that are produced by solenoids, a configuration that
reduces the intrinsic magnetic field integral inhomogeneities. Nonetheless, in order to reach Fourier times beyond
several ns, Fresnel correction coils must be used, which reduce the magnetic field inhomogeneities by several order
of magnitude [8]. However, as the performance of NSE spectrometers is pushed towards longer Fourier times, the
Fresnel correction coils (classical circular or Pythagoras design) are often a limiting factor, due to the mechanical
precision with which they can be manufactured and positioned in the instrument as well as due to the limited
current density that can be used without overheating them. It is thus important to opt for a magnetic field design
which reduces the intrinsic field integral inhomogeneities and this has been considered as a primary way to further
optimise the NSE spectrometers and increase the accessible Fourier times.

The upgraded IN15 [3] as well as a proposal of a NSE spectrometer at the ESS [11] use coils with reduced
intrinsic inhomogeneities based on a optimal field shape (OFS) solution suggested by Zeyen [17]. However, for
comparable field integral inhomogeneities, the OFS solution requires the use of longer precession regions than
simple solenoids. Indeed, for parallel neutron trajectories, the intrinsic field integral inhomogeneity for a solenoid
is: [8]

�JSol = r2
0

J0

4RL
(6)

where L and R are the length and radius of a solenoid, and r0 is the radial coordinate. For an OFS solution the
intrinsic field integral inhomogeneity becomes:

�JOFS = r2
0
J0

2

(
π

L

)2

(7)

where L is somewhat larger than the physical length of the coil. Hence, the OFS solution results in a lower in-
homogeneity only for L > 2Rπ2. Thus, for a inner coil bore of 34 cm (as in J-NSE/SNS-NSE), the OFS coil
length should be approx. 3.4 m, which is much longer than a typical main coil length (2 m for J-NSE, IN11,
IN15). A longer instrument generally has lower neutron flux at the sample position. Therefore, for a high flux NSE
spectrometer, a solenoid remains the first choice.

The magnetic field integral inhomogeneities arise from two sources: i) inhomogeneities of the magnetic field
which lead to different precession angles for two parallel trajectories of the same length, and ii) beam divergence,
which leads to trajectories with different lengths and thus with different precession angles even in a ideally ho-
mogeneous magnetic field. The separation of the effects of these two sources was considered by Zeyen [17] and,
recently in more detail, by Pasini et al. [11].

In the following we will consider the separation of those two sources in a more general way and apply the results
to assess the implications of the “pancake” moderator which is currently planned for the European Spallation
Source (ESS) on an NSE instrument design [1,16]. The novelty of this moderator design is that it will produce
high-intensity neutron beams over cross sections that are significantly smaller compared to research reactors. In
other words, for the same intensity, averaged over time and the beam cross section, the neutron beams will have
much smaller dimensions at the ESS than e.g. at the ILL or FRM2. When it comes to the NSE spectrometers
first estimates lead to a beam height that can be as small as 1.5 cm, with a beam width reaching 6 cm. In the
following we investigate the repercussion these smaller beam cross sections might have on the NSE instrument
design. For this purpose, we considered a simple model case, which however catches the main characteristics of a
NSE spectrometer. It turns out that irrespective of the choice of magnetic field layout, the use of a rectangular beam
cross-section with a moderate aspect ratio of 1:4 (or larger), which mimics the dimensions of the ESS “pancake”
moderator beams, reduces the field integral inhomogeneity in comparison to the square cross-sections. However,
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Fig. 1. Schematic representation of a neutron trajectory, in the yz plane, connecting the exit of the guide and the sample. The trajectory is
defined by the point (x0, y0) and the angles θx (not shown) and θy between the z axis and the projections of the neutron trajectory on the xz

and yz planes, respectively.

it will not be possible to preserve a high resolution and at the same time reduce the length of the instrument.
Consequently, NSE spectrometers will perform better at the ESS but they will not be substantially compacter than
at other neutron sources e.g. ILL or FRM2.

2. Separation of contributions due to magnetic layout and due to beam averages

We start by defining a general layout of a precession region generated by solenoids as shown in Fig. 1. In this
case, for a not too large neutron beam (i.e. when Br(z, r)‖Bz(z, r), cf. p. 184 in [8]), the field integral J can be
expressed as [11]:

J =
√

1 + tan2 θ

∫ z2

z1

dz
[
Bz(z) + ∣∣�r(z)∣∣2

β(z)
]

(8)

where Bz(z) is the magnetic field on the z-axis and the function β(z) is given by:

β(z) = 1

8

1

Bz(z)

(
∂Bz(z)

∂z

)2

− 1

4

∂2Bz(z)

∂z2
. (9)

The position of a neutron in the plane perpendicular to z-axis is specified by �r(z):

�r(z) =
(

x0 + z tan θx

y0 + z tan θy

)
, �r0 =

(
x0
y0

)
(10)

Thus, �r(z) defines the trajectory of a neutron and θx and θy that are the angles between the z axis and the projections
of the neutron trajectory on the xz and yz planes, respectively (see Fig. 1). The angle between the trajectory and
the z-axis, θ , is defined by tan2 θ = tan2 θx + tan2 θy . Equations (8), (10) are valid for any shape of a neutron beam
and not only the radial symmetry implicitly assumed in Ref. [11]. Using Eq. (10) and |r0|2 = x2

0 + y2
0 , we obtain:

∣∣�r(z)∣∣2 = (x0 + z tan θx)
2 + (y0 + z tan θy)

2 = |r0|2 + z2 tan2 θ + 2z(x0 tan θx + y0 tan θy) (11)

We use the same notations as Pasini et al. [11] and define the mean field integral:

J0 =
∫ z2

z1

dzBz(z), (12)

the contribution from parallel trajectories:

H =
∫ z2

z1

dzβ(z), (13)
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the contribution due to divergence of the beam:

G = J0

2
+

∫ z2

z1

dz
[
z2β(z)

]
, (14)

and the cross-term:

U =
∫ z2

z1

dzzβ(z). (15)

Using Eq. (8), Eq. (11) and Eqs (12)–(15), the deviation from the field line integral, �J = J −J0, can be written
as

�J = H |r0|2 + G tan2 θ + 2U [x0 tan θx + y0 tan θy] (16)

Thus, the variance of the average over the neutron beam is given by:

〈
�J 2〉 = H 2〈|r0|4

〉 + G2〈tan4 θ
〉 + 2HG

〈|r0|2 tan2 θ
〉 + 4HU

〈|r0|2(x0 tan θx + y0 tan θy)
〉

+ 4GU
〈
tan2 θ(x0 tan θx + y0 tan θy)

〉 + 4U2[〈x2
0 tan2 θx

〉 + 〈
y2

0 tan2 θy

〉
+ 〈2x0y0 tan θx tan θy〉

]
. (17)

Equation (17) shows that it is possible to partially decouple effects of magnetic layout – which manifest them-
selves in the magnitude of H , G, U and effects of beam properties – which manifest themselves in several beam
averages 〈..〉. As a general remark, the minimization of beam averages benefits to all magnetic layouts, solenoids
or OFS.

Equation (16) and Eq. (17) are qualitatively similar to the Eq. (12), and Eq. (26), respectively, provided in the
paper of Pasini et al. [11], with the difference that they are valid for any shape of a neutron beam. The contribution
of one arm to the reduction of spin-echo amplitude is then given by:

R = exp
(−(

(mγ/h)λ
)2〈

�J 2〉/2
)

(18)

From Eq. (18), it is apparent that in order to reach longer Fourier times, one needs to minimize the intrinsic field
integral inhomogeneity. For this purpose one must consider which terms contribute the most in Eq. (17), and how
these can be minimised.

In the special case, where z1 = −z2, the integral U is zero, and Eq. (17) reduces to:

〈
�J 2〉 = H 2〈|r0|4

〉 + G2〈tan4 θ
〉 + 2HG

〈|r0|2 tan2 θ
〉

(19)

From the comparison of Eq. (19) and Eq. (17), one can speculate that the symmetric magnetic layout leads to a
lower field inhomogeneity. However, this is not necessarily the case, because U may be negative, and some of
beam averages that come into the prefactors of 4U2, 4HU , and 4GU may be negative as well. As a consequence,
the sum of U -dependent terms may also be negative, and the net inhomogeneity of an asymmetric magnetic layout
might be lower than that of the symmetric one. Therefore, in the following we will consider both symmetric and
asymmetric magnetic layouts.

In Eq. (19), the prefactors H 2, G2 and 2HG, which depend on the specific magnetic layout, have different
dimensions. In order to compare them with each other, we must thus bring them to the same dimensions, which
we chose to be [length2]. This implies that we should compare F0 = H 2 with F2 = 2HG/L2

tot, and with F4 =
G2/L4

tot. Under these considerations, Eq. (19) can be written as:

〈
�J 2〉 = F0

〈
r4

0

〉 + F2L
2
tot

〈
r2

0 tan2 θ
〉 + F4L

4
tot

〈
tan4 θ

〉
(20)
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Fig. 2. Schematic drawing of the first arm of a NSE spectrometer. The magnetic layout is characterized by the lengths L, a1, a2 and the radius
R. The beam size and divergence can be derived from the lengths L, d1, d2 and the shape and size of the guide exit and sample respectively.

3. Calculation details

The calculation of the field integral inhomogeneity, �JRMS = √〈�J 2〉, from Eq. (17) requires the evaluation
of the magnetic field integrals J0, H , G, U , and various beam averages, which will be addressed below.

3.1. Magnetic field integrals

In order to evaluate the magnetic field integrals, one needs to calculate Bz along the symmetry axis of the setup
as well as its first and second derivatives with respect to z, cf. Eqs (12)–(15), which can be done by programs such
as RADIA [2]. In this work, we assume the simple case of just one solenoid, the center of which is located at z = 0,
as depicted in Fig. 2. In this case, Bz can be written as:

BSOL
z = B̃SOL

[
L/2 + z√

R2 + (L/2 + z)2
+ L/2 − z√

R2 + (L/2 − z)2

]
(21)

where L is the coil length, R is the coil radius, and B̃SOL is given by:

B̃SOL = μ0IN/(2L), (22)

where I is the current and N the number of turns. In this case, the field integral becomes:

J SOL
0 =

∫ z2

z1

BSOL
z dz = B̃SOL

[√
R2 + (L/2 + z2)2 −

√
R2 + (L/2 + z1)2

+
√

R2 + (L/2 − z1)2 −
√

R2 + (L/2 − z2)2
]

(23)

The lower and upper integral boundaries, z1 and z2 repsectively, for the magnetic field integral calculations are:

z1 = −(a1 + L/2) z2 = (a2 + L/2) (24)

Thus, there are four relevant parameters for the setup: the length L, the radius R, and the distances a1, and a2. In
addition, in order to be able to adjust the strength of the magnetic field at the positions of the π/2 and π-flippers,
we considered additional current loops located at zloop = z1, and zloop = z2. The field generated by such a current
loop is given by:

B
loop
z = μ0Iloop

2Rloop

1

[1 + (z − zloop)/Rloop)2]3/2
(25)

where Rloop is the radius of the loop, and Iloop the current in the loop. For simplicity, we assume that the radius
of the loop is the same as that of the solenoid. Consequently, the currents of the loops can be calculated from the
conditions B

loop
z = −BSOL

z and dB
loop
z /dz = −dBSOL

z /dz.
The integrals of Eqs (13)–(15) were calculated using Mathematica®, based on Eq. (21), Eq. (25) and B̃SOL = 1.
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3.2. Beam averages

As it can be seen from the definition of θ in Section 2, the tan θ -averages depend on

tan θ =
√

tan2 θx + tan2 θy, tan θx = xS − xG

d1 + L + d2
, tan θy = yS − yG

d1 + L + d2
(26)

where xG, yG and xS, yS are coordinates that define the start and end of a neutron trajectory. Averages that involve
| �r0| can be calculated using Eq. (10), which leads to:

�r0 =
(

x0
y0

)
=

(
xG + tan θx(d1 + L

2 )

yG + tan θy(d1 + L
2 )

)
. (27)

Here we define the symmetry parameter, s, which is a measure of how symmetrical the start and end of neutron
tajectories are with respect to z = 0 (i.e. with respect to the center of the magnetic layout) and is defined as:

s = (d1 + L/2)/(d1 + L + d2) (28)

Clearly, for d1 = d2, s = 1/2 and using Eqs (26) and (28), Eq. (27) can be expressed as:

�r0 =
(

(1 − s)xG + sxS

(1 − s)yG + syS

)
(29)

Thus, beam averages depend only on the distances d1, and d2, the coil length L, and on the shape and size of the
guide exit and the sample.

4. Results

4.1. Symmetric magnetic layout

We first consider the special case where a1 = a2, i.e. the distance from one coil end to the first π/2-flipper a1
is the same as the distance from the other coil end to the π-flipper. In this symmetric magnetic layout U = 0 and
Eq. (17) reduces to Eq. (19). Thus, there are only three relevant beam averages, 〈|r0|4〉, 〈tan4 θ〉 and 〈|r0|2 tan2 θ〉.

We also consider rectangular and circular cross-sections both for the guide exit and the sample. As can be seen
from the general results provided in the Appendix A, the beam averages depend on the distance from the guide exit
to the sample, and on the position of the main coil with respect to the start and end of neutron trajectories. For this
reason, in the following we will first consider the symmetric setup, where s = 1/2, and then discuss the general
case.

4.1.1. Minimization of beam averages for a symmetric beam setup
The general expressions for the beam averages, 〈r4

0 〉, 〈r2
0 tan2 θ〉, and 〈tan4 θ〉, are provided in the Appendix A,

Eqs (A.1), (A.2), and (A.3) for rectangular cross-sections, and by Eqs (A.5), (A.6), and (A.7) for circular one.
These are valid for any value of the symmetry parameter s. The three relevant beam averages, 〈r4

0 〉, 〈r2
0 tan2 θ〉L2

tot
and 〈tan4 θ〉L4

tot in Eq. (20) for the symmetric beam setup (s = 1/2) are provided in the upper part of Table 1
as a function of the beam cross-section shape and size. First, we consider the case where the sample size is ap-
proximately equal to that of the guide exit, and for simplicity, we assume that the sizes are exactly the same. The
results show that, irrespective of the relative importance of the three terms that contribute to Eq. (20), a rectangular
cross-section with an aspect ratio (height to width ratio) of 1:4 leads to a lower 〈�J 2〉 by a factor at least 2.7 with
respect to the square cross-section.
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Table 1

Beam averages calculated for the symmetric beam setup (s = 1/2) and the two special cases, where the size of the sample is the same as that
of the guide exit, and where the sample size is much smaller than the size of the guide

Averages & conditions Guide shape

Rectangle “pancake” (BG → 0) BG = AG/4 Square (BG = AG) Circle

Sample size is the same as of the
guide exit

AS = AG, BS = BG RS = RG

〈r4
0 〉 6A4

G
+5A2

G
B2

G
+6B4

G
90 0.067 A4

G
0.070 A4

G
0.189 A4

G
0.1042 R4

G

L2
tot〈r2

0 tan2 θ〉 2A4
G

+10A2
G

B2
G

+2B4
G

45 0.044 A4
G

0.058 A4
G

0.311 A4
G

0.1667 R4
G

L4
tot〈tan4 θ〉 8(6A4

G
+5A2

G
B2

G
+6B4

G
)

45 1.07 A4
G

1.13 A4
G

3.02 A4
G

1.67 R4
G

Sample is much smaller than the
guide exit

AS → 0, BS → 0 RS → 0

〈r4
0 〉 9A4

G
+10A2

G
B2

G
+9B4

G
720 0.0125 A4

G
0.0134 A4

G
0.0389 A4

G
0.0208 R4

G

L2
tot〈r2

0 tan2 θ〉 9A4
G

+10A2
G

B2
G

+9B4
G

180 0.05 A4
G

0.054 A4
G

0.156 A4
G

0.0833 R4
G

L4
tot〈tan4 θ〉 9A4

G
+10A2

G
B2

G
+9B4

G
45 0.2 A4

G
0.215 A4

G
0.622 A4

G
0.3333 R4

G

Similar results are obtained in the case where the sample size is much smaller than that of the guide exit, as
shown in the lower part of Table 1. Also in this case, a change of the aspect ratio from 1:1 to 1:4 leads to a decrease
in the beam averages by at least a factor of 3. The trend persists also in the case, where the sample size is much
larger than the size of the guide exit. These results are not shown in Table 1 because they are exactly the same as
for the previous case, provided AG,BG and RG in the lower part of Table 1 are substituted by AS,BS and RS .

4.1.2. Minimization of beam averages for an asymmetric beam setup
If the sample size is the same as that of the guide exit, the minima in 〈r4

0 〉 and 〈r2
0 tan2 θ〉 both occur for s = 1/2,

irrespective of the aspect ratio of the guide exit. However, in general, the optimum s-values are not the same for
〈r4

0 〉 and 〈r2
0 tan2 θ〉, and depend on the relative size of the sample and the guide exit, as illustrated by the example

shown in Fig. 3. Thus, the optimum s-parameter depends on the sample size and this affects the overall optimisation
of the magnetic field integral.

In practice, the geometry of the NSE spectrometers is fixed. Nonetheless, it may be possible to increase s by
increasing d1, e.g. by removing the last section of the guide. However, it is much more difficult to reduce s as this
would require either a decrease of the guide exit – coil distance or an increase of the coil end – sample distance.
The alternative and easier to implement solution would be to decrease the dimensions of the guide exit in order to
match those of smaller samples instead of modifying s. This however, would lead to a substantial reduction of the
neutron flux.

For a specific instrument geometry, the good compromise for the value of the s-parameter may result from the
minimum of 〈r4

0 〉 derived for the specific guide exit cross-section and size, and for the most typical sample size to be
used. That is, from AS,BS,AG,BG, one can calculate s, and then, based on the coil length L, the only remaining
free parameters are the distances from the coil ends to the guide exit and the sample. To illustrate this we consider
the case where instead of matching the sample to the guide dimensions, with AG/BG = 4, AS = AG,BS = BG,
and s = 1/2, one uses a sample with half the guide dimensions (AS = AG/2, BS = BG/2) while keeping other
parameters the same. In this case, the optimum value of s is ≈ 0.85 and for s = 1/2 the average 〈r4

0 〉 is about 2.5
times larger than for the optimum s. Similar differences are found for other AG:BG-ratios.

In the next section, we consider the contributions from the intrinsic magnetic field inhomogeneity and show that
for a solenoid, it is more important to minimize 〈r4

0 〉 than 〈r2
0 tan2 θ〉.

4.1.3. Minimization of intrinsic magnetic field inhomogeneity
In principle, the length of the magnetic layout, which is a1 +L+a2, is slightly different from Ltot = d1 +L+d2.

However, in practice the differences can be neglected. Indeed, the π-flipper is usually located very close to the
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Fig. 3. Optimal s-parameter obtained by minimising the beam averages, 〈r4
0 〉 and 〈r2

0 tan2 θ〉. The aspect ratio of the guide exit is AG/BG, and
is equal to that of the sample, i.e. AS/AG = BS/BG.

sample, which leads to a2 ≈ d2. Furthermore, the first π/2-flipper is also located very close to the guide exit, so
that a1 ≈ d1. Thus, Ltot is approximately the same as the length of the magnetic layout.

The beam averages were discussed in the previous section and in the following we will look at their pre-factors in
Eq. (20). We evaluated F0, F2, and F4 for a1 = a2 = 0.5 m and the results are shown in Fig. 4. In this calculation,
the two compensation current loops were used, which leads to a minor correction with respect to the case where
these loops are omitted.

F2 is about 5 times lower than F0. From Table 1, one can see that for square or circular cross sections,
of comparable dimensions for the sample and the guide exit, L2

tot〈r2
0 tan2 θ〉 ∝ 1.6〈r4

0 〉, which implies that
F2L

2
tot〈r2

0 tan2 θ〉 ≈ 0.3F0〈r4
0 〉. On the other hand, when the sample size is much smaller (or much larger) than the

guide exit size, L2
tot〈r2

0 tan2 θ〉/〈r4
0 〉 ≈ 4 and F2L

2
tot〈r2

0 tan2 θ〉 ≈ 0.8F0〈r4
0 〉.

F4 is approximately two orders of magnitude smaller than F0. As can be seen from Table 1, irrespective of the
relation between the sample size and the guide exit size, L4

tot〈tan4 θ〉/〈r4
0 〉 ≈ 15. Thus, F4L

4
tot〈tan4 θ〉 is only about

15 % of F0〈r4
0 〉.

Thus, for a solenoid, the major contribution to 〈�J 2〉 is always F0〈r4
0 〉, which is due solely to the size of the

beam. However, as can been in Fig. 4a, this term is almost independent of the coil length, although it depends on
the coil radius, and the estimate of 〈�J 2〉 by Eq. (6), for J0 ≈ 2L (assuming a1 = a2, cf. Eq. (23)), leads to:
〈�J 2〉 ∝ 1/(2R).

The other terms reduce slightly the absolute field inhomogeneities for shorter coils. However, as the mean field
integral is proportional to the coil length, the relative field integral inhomogeneity will be lower (i.e. better) for
longer coils.

4.2. Asymmetric magnetic layout

In general, the magnetic layouts of the NSE instruments are not necessarily symmetric. For example, the distance
between the first π/2-flipper and the first main coil may be shorter than the distance between the main coil and
the π-flipper, which is located in front of the sample. The opposite situation is unlikely because of the extra space
around the sample, which is typically reserved for the sample environment. Thus, in general, the contributions to
〈�J 2〉 from 4U2, 4HU , and 4GU (cf. Eq. (19)) may be significant. As mentioned above, in order to compare these
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Fig. 4. Calculated magnetic layout-dependent contributions to 〈�J 2〉: a) F0 = H 2 (due to the beam size), b) F2 = 2HG

L2
tot

(due to the beam size

and divergence), and C) F4 = G2

L4
tot

(due to divergence only).

contributions with each other, we brought them to the same dimensions of [length2]. In the following we therefore
compare F0 = H 2 with F1 = 4HU/Ltot, F3 = 4GU/L3

tot, and FU2 = 4U2/L2
tot. These terms are calculated for

the case of a weak asymmetry, with a1 = 0.3 m, and a2 = 0.5 m and plotted as a function of the coil radius and
length in Fig. 5. The results show that F0 = H 2 is the dominant term. Among the other terms, the most significant
term is F1 = 4HU/Ltot, which however is about 20 times weaker than that of F0.

We note that beam averages of 4U2 are always positive, but beam average of 4HU and 4GU may be positive or
negative, depending on the beam setup symmetry, s, and the relation between the guide exit and sample size (see
Appendix B). Thus, its is possible to find a combination of parameters where the 4HU and 4GU terms lower the
total 〈�J 2〉. However, it is not clear whether this effect would be significant. On addition, when considering more
asymmetric magnetic layouts (with a larger difference between a1, and a2), one can reach more negative 4HU

and 4GU , but it is not clear whether such setups would correspond to a realistic situation. Thus, it appears that
an asymmetric magnetic layout does not bring significant benefits but also no significant drawbacks: the absolute
magnitudes of the U -dependent contributions are probably too small and, as a consequence, they have little effect
on 〈�J 2〉.
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Fig. 5. Calculated magnetic layout-dependent contributions for an asymmetric magnetic layout (a1 = 0.3 m, and a2 = 0.5 m). a) F0 = H 2

(due to the beam size), b) FU2 = 4U2/L2
tot, c) F1 = 4HU/Ltot, and d) F3 = 4GU/L3

tot. In panels c and d, HU and GU are negative for
small H 2-values, but when a1 > a2, their sign is reversed (results not shown).

5. Conclusion

Before moving to the conclusions, it is important to note that our calculations involve only the first arm of an
NSE spectrometer. Nonetheless, all considerations can also be applied for the second arm and the magnetic fields
after the sample. An important difference, however, is that detector size is much larger than that of the sample. This
is analogous to the case of a guide exit much smaller than the size of the sample and the results obtained in this
case can be applied. In this respect we note that all existing instruments have adopted a symmetric configuration
with the same coil geometry before and after the sample. However, if the difference between the guide and detector
dimensions exceeds the present “standard”, as it might be the case at a future NSE instrument at the ESS, one might
consider adopting a non-symmetric setup with a different magnetic field optimisation before and after the sample.
On the other hand, as the layout of the instrument will not be fundamentally affected by the reduced incoming beam
dimensions, one may consider “expanding” the neutron beam cross-section in the vertical direction, by inserting a
“polarising-all-neutrons” device in the beam delivery system [14], and thus partly restore the symmetry between
the two arms of the spectrometer while benefiting from a higher neutron flux.

The semi-analytical magnetic field calculations discussed above show that a circular shape for the sample and
the guide exit leads to lower field integral inhomogeneity in comparison to a square one. However, in practice,
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guides usually have square or rectangular cross-sections and so do the detectors. Using circular beam masks would
lead to a loss of flux. By choosing rectangular cross-sections with a moderate aspect ratio, e.g. 1:4, one can reach
even smaller beam averages than for circular shape.

Consequently, there is a clear gain with the “pancake” moderator beams. Indeed, rectangular beam cross-sections
with a height over width ratio, e.g. 1:4, that mimic the ESS “pancake” moderator beams lead to the best results,
and improve the homogeneity of the magnetic field integrals. On the other hand, because relative inhomogeneities
become worse for shorter coils, in order to reach high resolution, i.e. long Fourier times, the length of the instru-
ments cannot be reduced. NSE spectrometers should perform better at the ESS, but they will not be more compact
than e.g. at the ILL or FRM2.
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Appendix A. Beam averages

For the calculations of beam averages we use the definition of �r0 by Eq. (29) and of tan θ , tan θx , and tan θy

from Eq. (26). We assume a homogeneous incident neutron beam, i.e. the incident intensity does not depend on
the starting point (x, y at the neutron guide exit) and the end point (xS, yS at the sample) of the trajectory. Thus the
intensity does not depend on the beam divergence. The distance between the guide exit and the sample is Ltot.

A.1. A rectangular cross-section

An average is a multiple integral 1
4AGBG4ASBS

∫ AG

−AG
dx

∫ BG

−BG
dy

∫ AS

−AS
dxS

∫ BS

−BS
dyS , normalized to the area of

the guide exit and the sample; for brevity it is denoted as
∫
<>

. The three major beam averages in Eq. (17) are
calculated as:

〈
r4

0

〉 =
∫

<>

[
x2

0 + y2
0

]2 = (
(s − 1)4gG + s4gS + 2(s − 1)2s2gG−S

)
/45 (A.1)

〈
r2

0 tan2 θ
〉 = 1

L2
tot

∫
<>

[
(xS − x)2 + (yS − y)2](x2

0 + y2
0

)

= [
(s − 1)2gG + s2gS + 2(s − 1)sgG−S + 5

(
A2

G + B2
G

)(
A2

S + B2
S

)]
/
(
45L2

tot

)
(A.2)

〈
tan4 θ

〉 = 1

L4
tot

∫
<>

[
(xS − x)2 + (yS − y)2]2 = (gG + gS + 2gG−S)/

(
45L4

tot

)
(A.3)

where gG = 9A4
G + 10A2

GB2
G + 9B4

G, gS = 9A4
S + 10A2

SB2
S + 9B4

S , gG−S = 5A2
G(3A2

S + B2
S) + 5B2

G(A2
S + 3B2

S).
The s-values corresponding to the respective minima can be obtained by imposing the conditions ∂〈r4

0 〉/∂s = 0
and ∂〈r2

0 tan2 θ〉/∂s = 0. Thus, the optimal s-values depend on the relation between the sample and guide exit size.
Specifically, for AS = AG,BS = BG, optimum s is 1/2, for both 〈r4

0 〉 and 〈r2
0 tan2 θ〉.

We do not provide the expressions for the optimum s as a function of AS,BS,AG,BG because they are lengthy,
and they can be easily obtained by a computer algebra systems such as Mathematica, from Eqs (A.1), (A.2) and
the condition of the extremum.
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A.2. A circular cross-section

For an average over a circular guide exit with a radius RG and over a circular-shaped sample with a radius RS ,
the multiple integral is 1

(R2
G/2)πR2

S

∫ RG

0 r dr
∫ RS

0 rS drS
∫ 2π

0 dφ, for brevity denoted as
∫
<>

. In polar coordinates,

Eq. (29) becomes

�r0 =
(

(1 − s)rG + srS cos φ

srS sin φ

)
(A.4)

where rG, rS and φ are variables with integration limits given above. From Eq. (26), using yG = 0, we get
tan θ = √

(rS cos φ − rG)2 + (rS sin φ)2/Ltot.
The results are

〈
r4

0

〉 =
∫

<>

[
x2

0 + y2
0

]2 = (
s4R4

S + 3(s − 1)2s2R2
GR2

S + (s − 1)4R4
G

)
/3 (A.5)

〈
r2

0 tan2 θ
〉 = 1

L2
tot

∫
<>

tan2 θ
(
x2

0 + y2
0

) = s2R4
S + (s − 1)2R4

G

3L2
tot

+ (1 − 2s)2R2
GR2

S

4L2
tot

(A.6)

〈
tan4 θ

〉 = 1

L4
tot

∫
<>

tan4 θ = R4
G + 3R2

GR2
S + R4

S

3L4
tot

(A.7)

Also here, the s-values corresponding to the respective minima can be obtained by imposing the conditions
∂〈r4

0 〉/∂s = 0 and ∂〈r2
0 tan2 θ〉/∂s = 0. For RG = RS , the minimum corresponds to s = 1/2 for both beam

averages.
For s = 1/2, Eq. (A.5) and (A.6) lead to 〈r4

0 〉 = (R4
S + 3R2

GR2
S + R4

G)/48 and in 〈r2
0 tan2 θ〉 = (R2

S +
R2

G)/(12L2
tot). These results are different from those were obtained by [11], while the result for 〈tan4 θ〉 given

above is the same.

Appendix B. Beam averages for calculation of the contributions that involve U

For the calculations of 〈�J 2〉-contributions that depend on U (cf. Eq. (17)), the following averages are calculated
for a rectangular beam cross-section:

〈|r0|2(x0 tan θx + y0 tan θy)
〉 = 1

Ltot

∫
<>

(
x2

0 + y2
0

)[
x0(xS − x) + y0(yS − y)

]

= [
(s − 1)3gG + s3gS + s(2s − 1)(s − 1)gG−S

]
/(45Ltot) (B.1)

〈
tan2 θ(x0 tan θx + y0 tan θy)

〉 = 1

L3
tot

∫
<>

[
(xS − x)2 + (yS − y)2][x0(xS − x) + y0(yS − y)

]

= (
(s − 1)gG + sgS + (2s − 1)gG−S

)
/
(
45L3

tot

)
(B.2)〈

(x0 tan θx + y0 tan θy)
2〉

= 1

L2
tot

∫
<>

[
x2

0(xS − x)2 + y2
0(yS − y)2 + 2x0(xS − x)y0(yS − y)

]

= [
(s − 1)2gG + s2gS + 2s(s − 1)gG−S + 5

(
A2

GA2
S + B2

GB2
S

)]
/
(
45L2

tot

)
(B.3)

where gG, gS , and gG−S are the same as defined after Eq. (A.3). �r0 and its components, x0 and y0, are defined in
Eq. (29). The results are provided in Table 2.
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Table 2

Beam averages calculated from Eqs. (B.1)–(B.3) for a rectangular guide exit and sample shapes and for different values of the s-parameter and
the aspect ratio

s = 1/2 s = 3/8 s = 5/8
BG = AG BG = AG/4 BG = AG BG = AG/4 BG = AG BG = AG/4

Sample and guide exit of the same size, AS = AG, BS = BG

〈|r0|2(x0 tan θx + y0 tan θy)〉Ltot 0 0 −0.067 −0.021 0.067 0.021
〈tan2 θ(x0 tan θx + y0 tan θy)〉L3

tot 0 0 −0.377 −0.141 0.377 0.141
〈(x0 tan θx + y0 tan θy)2〉L2

tot 0.089 0.045 0.136 0.062 0.136 0.062

Sample smaller than the guide exit, AS = 3/4AG, BS = 3/4BG

〈|r0|2(x0 tan θx + y0 tan θy)〉Ltot −0.053 −0.018 −0.112 −0.037 −0.014 −0.006
〈tan2 θ(x0 tan θx + y0 tan θy)〉L3

tot −0.213 −0.073 −0.440 −0.158 0.015 0.011
〈(x0 tan θx + y0 tan θy)2〉L2

tot 0.080 0.035 0.161 0.064 0.055 0.028

Sample larger than the guide exit, AS = 5/4AG, BS = 5/4BG

〈|r0|2(x0 tan θx + y0 tan θy)〉Ltot 0.112 0.039 0.010 0.007 0.257 0.085
〈tan2 θ(x0 tan θx + y0 tan θy)〉L3

tot 0.448 0.154 −0.166 −0.073 1.06 0.38
〈(x0 tan θx + y0 tan θy)2〉L2

tot 0.188 0.087 0.153 0.077 0.377 0.154
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