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Abstract. We give an introduction into the theory of neutron scattering in condensed matter with a strong focus on inelastic scattering. Magnetic
scattering and polarisation will be excluded from the discussion. The scattering of non-relativistic particles in a potential leads to the concepts
of scattering amplitude, partial waves, scattering length, and the Born series. In order to illustrate the formalism with simple examples we allow
ourselves a short detour to diffraction. The Born approximation is then augmented to include inelastic scattering from compounds with internal
degrees of freedom. This leads to the master equation of neutron scattering that establishes a link between the experimental cross sections and
quantum mechanical transition amplitudes. The master equation is reformulated in terms of coherent and incoherent scattering functions, which
in turn are expressed in terms of density correlation functions. The abstract formalism is illustrated by explicitly calculating the cross sections
for some simple model systems. Considerable attention is given to the scattering involving vibrations in harmonic systems. Explicit expressions
are derived that couple inelastic scattering cross sections to the phonon density of states and dispersion relations. We will finish the inelastic
part by discussing the effect of multi-phonons and conclude with some remarks concerning the identification of anharmonic effects. The last
section is devoted to putting the formalism of scattering theory into the context of a statistical description of the particle beam.
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1. Introduction

Before developing the formal framework of non-relativistic scattering1 we would like to make some general
remarks about scattering and in particular scattering with neutrons. We will in particular discuss why neutron
scattering is an extremely relevant experimental method when studying materials. Furthermore, we wish to place
neutron scattering in a more general context. In practice, the discussion should help the reader to compare different
scattering probes, such as neutrons, electrons, X-rays and helium atoms.

1.1. Scattering as an analytical tool for condensed matter

To say that our conception of the microscopic world is largely based on scattering experiments is not an exag-
geration. This point of view is certainly justified in the research on elementary particles. The fact that we today
are convinced that the proton and the neutron have an internal structure is to a large extent the consequence of
scattering experiments conducted at very high energies by particle accelerators. However, the statement also holds
for the determination of structure and dynamics of condensed matter. Our detailed knowledge of atomic positions
and motions is often the fruit of scattering experiments with either electromagnetic waves (light, X-rays or γ-rays)
or with massive particles (electrons, positrons, neutrons or helium atoms).

Clearly, the most intuitive way of understanding a structure is in the first place to look at it, which is the domain of
microscopy. Since transmission electron microscopy is unencumbered by the diffraction limits imposed on optical
microscopes, it was for a long time the favourite technique when it came to studying structures at the atomic level.
With breathtaking recent advances in instrumentation the area is now open for X-ray microscopy and near-field
optical microscopy. These microscopes are equally part of a class of devices which work by scanning the object of
investigation.

1The material presented in this article has been used to teach a one semester graduate course in non-relativistic scattering theory. It is
based on reference [53]. Familiarity with elementary quantum mechanics in both the Schrödinger and Heisenberg picture is a prerequisite. The
reader is equally supposed to possess knowledge in classical electrodynamics and optics, which is used for the purpose of illustration. A sound
basis of solid state physics and, in particular, of the quantum mechanical treatment of phonons is indispensable for the understanding of the
corresponding sections.
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The invention of scanning tunnelling microscopy and atomic force microscopy have radically improved our
capacity to analyse but also to manipulate materials at the atomic level. Compared to these experimental techniques,
scattering is a more indirect technique since it converts information in real space into information in angular space.
In the most simple experiments, like the interference of two spherical waves, the information about the distance
between the two sources is encoded in the angular dependence of the scattering profile. It is necessary to consider
the positions of two successive maxima in order to retrieve this information. In spite of its indirect character,
scattering is still an extremely well used technique in structural studies, in particular when it is important to study
the bulk properties of a material and not only the surface.

The principle of a scattering experiment is simple (see Fig. 1). A probe particle, the initial state of which can be
controlled, is emitted onto a sample.2 In the case of scattering of slow neutrons, the sample can change its internal
configuration, but stays otherwise intact. In particular, no secondary particles will be emitted.3 Therefore, we can
restrict ourselves to the study of the scattering of probe particles. The transition probabilities of going from the
initial state to the final state of the probe particle contain all the relevant information concerning the sample. When
we talk about scattering in this article we will always limit ourselves to this specific case, which is the dominant
one in condensed matter studies.

Since scattering is an interference phenomena it averages all information over the part of the sample that is
illuminated by the beam.4 This beam spot is large compared to the wave length, unlike the structural information
in question, which is of the order of the wave length or even smaller in size. The situation is reversed in case of
microscopy that works well above the diffraction limit imposed by the wave length. Scattering can be associated

Fig. 1. A schematic illustration of a scattering experiment. A source emits particles that pass through a collimator, which defines their direction.
A filter selects an energy band of a certain width. The beam, now monochromatic and collimated, hits the sample. The particles are scattered
in space and energy. They are analysed according to their final state (for example their energy) and finally detected at sufficient distance from
the sample.

2In the case of experiments at very high energies it is costume to use the interaction of two beams of particles. This does not change the
principle.

3It is well known that the collision of two elementary particles can lead to the creation of a bunch of scattered particles at high energies.
Similarly the scattering of a particle may be accompanied by the emission of secondary particles. In the case of the scattering of thermal
neutrons, the energies involved are such that these effects are virtually inexistant. They occur only in the case of absorption, which can be
treated as an extreme case of a scattering experiment. In the case of X-ray scattering, the probe can induce the emission of electrons and
photons, because of its energy lying in the range of electronic excitations. This allows for a variety of methods of X-ray spectroscopy.

4We will be more precise in Section 11 where we introduce the notion of coherence volume.
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with scanning microscopy. It allows us to create contrast in samples that are homogeneous across the illuminated
volume (gauge volume). Using holographic principles we can even obtain three-dimensional images using the
scattering signal as input and this with a resolution that is set by the gauge volume.

The probe particle and its initial state are chosen carefully according to the purpose of the experiment. The
choice should satisfy the following non-exhaustive criteria:

(1) The interaction between the probe and the material should be sufficiently strong in order for the changes to
be observable. Neutrinos that can easily traverse kilometres of condensed matter are the counter example of a
good scattering probe. When studying condensed matter, the probe should interact with the component of the
system that one would like to study. Neutrons interact with the atomic nuclei or with magnetic fields created
by internal magnetic moments. All phenomena having their origin in the electronic behaviour of the system
can, therefore, only be accessed indirectly with neutrons.

(2) The interaction should on the other hand not be too strong for two reasons. First of all, the strength of the
interaction defines the penetration of the probe. As a consequence the choice of probe should be adapted
to whether we are interested in surfaces or bulk investigations. Helium atoms are e.g. scattered purely from
the surface. Electrons have a limited penetration depth, which is strongly dependent on their energy, and,
therefore, probe near-surface phenomena. Thermal neutrons are, as we will see, a perfect probe of the bulk
but may equally give surface information when used for reflectometry. Secondly, a very strong interaction
will make the interpretation of the data more difficult as it unavoidably leads to multiple scattering. Multiple
scattering blurs the relation between the transitions of the sample and those of the probe.

(3) Preferably the particles should be scattered and not absorbed by the sample. Not only does absorption de-
crease the number of detectable scattering events and thus affect the statistics of the measurement. The very
energetic events following absorption can seriously affect the sample, or even destroy it. Radiation damage
is a well known problem in X-ray scattering. It is less of an issue for thermal neutrons.

(4) The wave length of the scattered particle defines the length scale on which the properties of materials can be
studied with ease. As already mentioned above scattering converts in general terms distance into angle. The
wave length of the probe particle is the unique parameter that controls this conversion. The most intuitive
way of presenting this argument is via Young’s double slit experiment, which can be considered as the parent
of all scattering experiments. In its classical version two beams of light emerging from a reasonably coherent
source interfere after their passage through two slits in an otherwise opaque plate. Seen from the perspective
of a structure investigation, the purpose of the experiment is to determine the distance d between the two slits.
The interference pattern observed on a screen at a distance D, which is much larger than the slit separation
d, is given by the expression

I(y) ∝ cos2
(

π
d

D

y

λ

)
, (1.1)

where y is the distance from the centre of the screen to the observation point. The intensity maxima at the
screen are found at distances

Δy = D
λ

d
. (1.2)

If we convert these distances into angles we obtain

Δφ =
Δy
D

=
λ

d
. (1.3)

Given sufficient intensity the distance between the sample and the observation screen can always be made
large. This allows to measure the angle Δφ with the desired precision. If the wave length λ is much smaller
than the distance d that we would like to determine then the angular deviation will be minimal and risks to
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Fig. 2. Illustration of the interference patterns created by two particles (or two slits) that are separated by a distance d. If the illumination is
coherent then the two particles will emit spherical waves with a precise phase relation. The wave fronts correspond to circles drawn around the
two centres. The wave length λ corresponds to the distance between the concentric circles. It is clearly seen that the angle of the first maximum
increases with the wave length. The detection of these maxima is very easy if λ ≈ d. If λ is much smaller than d one can in principle observe a
large number of maxima, hence the measurement can be made very precise. However, the beam defining the phase relation should be very well
defined in these cases. In the lower right corner we show the interference pattern produced by the superposition of three wave fronts incident at
0, 2 and −2 degrees, respectively. The detection of the maxima is practically impossible when d = 8λ.

be hidden by the direct beam or by experimental imperfections in the setup (see Fig. 2). If λ increases, the
maximum moves towards higher angles and becomes observable before finally disappearing when the value
of λ becomes too large. According to (1.3) the measurement will be easiest when λ is of the order of d. X-rays
and thermal neutrons with wave lengths in the order of a few Å are well suited for the study of condensed
matter at an atomic level. For the study of elementary particles it is necessary to work with much smaller
wave length and hence much higher energies.

(5) The total energy of the system consisting of the sample and the probe particle is conserved. The change in
the energy of the probe, therefore, directly reflects a change of energy of the sample. It is relatively easy
to determine the change of a physical quantity if the change is relatively large, that is to say, if it is of the
same order of magnitude as the physical quantity itself. As a consequence, in order to determine excitations
it is preferable to work with probe particles, that have more or less the same energy.5 The energy scale of
occupied excitations in condensed matter is given by the temperature T . In Section 1.3 we will discover that
moderated neutrons can be described as a gas kept at the moderator temperature. As a basic rule, we can

5There can be good reasons not to follow this simple rule. In the last couple of years inelastic X-ray scattering has brought a lot of new
knowledge to the field of excitations in condensed matter despite the fact that the photon energy employed in these experiments is of the order
of a few tens of keV, hence 6 or 7 orders of magnitudes larger than the energy of the excitations under scrutiny. One of the reasons for this
technique being successful is the fact that the momentum transfer accessible by X-rays for a given energy transfer is much smaller than for
neutrons. The experiments require nevertheless that the incident beam is extremely monochromatic, which induces a significant loss in intensity.
This type of experiment is, therefore, only feasible at third generation synchrotrons like the ESRF.
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assume that the excitations in a material at temperature T should be analysed with neutrons moderated at the
same temperature T .

(6) It is in general an advantage to control the type of interaction between the probe and the sample. Where a
selective control exists it is possible to highlight the signal coming from part of the sample with respect to the
rest, creating so-called scattering contrast. In the case of neutrons the control is usually exerted via isotope
substitution. In the case of X-rays one can enhance the signal of one type of atoms by choosing a wave length
close to its absorption threshold.

1.2. The scattering cross section

Within our definition, the only observable in a scattering experiment is the intensity of the scattered particles
registered in the detector (see Fig. 1).

Each detector is oriented in such a way that its detection area ΔA is placed perpendicular to the vector �r =
(r, θ,φ) that defines its position with respect to the origin of the coordinate system coinciding with the sample.
Ideally this surface should be a part of a sphere with radius r. The number of particles that the detector intercepts6

per second is given by the expression

I(t) = ΔA · Jscattered(r, θ,φ, t), (1.4)

where we have introduced the flux (or current) Jscattered(r, θ,φ, t) of scattered particles. At sufficiently large dis-
tance this flux is necessarily radial. It indicates the number of particles that travel through a unitary surface per unit
of time. Hence the coordinates that will be used are the polar spherical coordinates r, θ and φ.

Far from the sample the scattered particles can be considered as free. They are, therefore, fully characterised by
their momentum �p = ��k. For a given detection element the wave vector �kf of the registered neutrons is parallel
to �r (see Fig. 3). In the same way the incident beam is described by the wave vector �ki. In real experiments the
neutron beam is never ideal. It is necessary to deal with a distribution of particles p(�ki) and p(�kf ) centred on their
mean values. The secret behind a well constructed instrument is to adapt these distributions to the need of the
experiment. Poorly defined beams will have a tendency to smear out the signal. Too well defined beams will lower
the flux and thus have a negative effect on statistics. We will treat this point in Section 11.6.

We would like to remark already at this point that scattering correspond to the transition of a particle initially (i.e.
before the impact) in the free state �ki to the final state (after the impact) free state �kf . The mathematical problem
consist of finding the probability of this transition. This probability is closely related to the matrix elements

S�kf ,�ki
= 〈�kf |UI (+∞,−∞)|�ki〉 (1.5)

of the time evolution operator UI (t′, t). This operator describes how a quantum state evolves between the time t
and t′. It depends on the interaction potential acting on the beam. The limits t → +∞ and t → −∞ correspond to
the notions “initial” and “final” in the ideal case. At this point the expression (1.5) is of purely academic value. It
casts the experimental situation into an abstract mathematical language. We are going to expand this formalism as
we move forward.

Since the flux decreases with increasing distance the signal registered in a detector of a given area falls off as
1/r2. We would like to get rid of this trivial r dependence that does not convey any useful information. As we ex-
plained in the introduction scattering experiments encode all information in the scattering angle. As a consequence
we are interested in the scattered intensity as a function of direction, i.e. the particle flux detected within an angular
element dΩ = sin θ dθ dφ. The relation between the area of the detector and the solid angle Ω covered is given as

ΔA = r2ΔΩ. (1.6)

6Here we assume that the detector is ideal, which means that its detection capacity is 100%. In realty this is rarely the case and effects arising
from the detector inefficiency have to be corrected for.



116 H. Schober / An introduction to the theory of nuclear neutron scattering in condensed matter

Fig. 3. Scattering of a beam by the sample. In the classical approach the scattering is described by the double differential cross section
d2σ/dΩ dEf giving the probability that a normalised flux of neutrons of incident wave-vector �ki is scattered into a solid angle element

dΩ perpendicular to the direction k̂f with energies comprised between Ef = �2k2
f /2m and Ef + dEf , that is, between (�2/2m)k2

f and

(�2/2m)(k2
f + 2kf dkf ). If we choose the coordinate system such that k̂f = k̂

f
z then dΩ = dkfx dkfy /k

2
f . In practice the incoming beam

of neutrons has a distribution p(�ki; t) in energy and direction, depending on how the neutrons were moderated and then shaped by the beam
transport. In the same way the neutrons detected will have a distribution p(�kf ; t) arising from the beam shaping during the transport from the

sample to the detector and from the detector efficiency. The beam characteristics described by p(�ki; t) and p(�kf ; t) are responsible for both the
statistics and the resolution of the measurements. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/JNR-140016.)

Concerning the distance r we simply assume that the detectors can be placed at a sufficiently large distance from
the sample to allow resolving the direction of scattering with the desired precision. The quantity that we wish to
determine is finally the ratio between the flux scattered into an angular element dΩ and the initial flux that hits the
sample

dσ :=
flux scattered into dΩ

initial flux onto the sample
= r2 dΩ

Jscattered(r, θ,φ, t)
Jini(t)

. (1.7)

The quantity dσ
dΩ is called the differential scattering cross section. The name is justified by the fact that dσ

dΩ has the
dimensions of area. Integrating over all angles gives the total scattered flux with respect to the initial flux. This
physical quantity is called the total cross section or just the cross section

σt =

∫
dσ
dΩ

dΩ =

∫
dσ. (1.8)

The cross section represent in a simple way the area that the scattering particle opposes to the radiation. For a
classical non-transparent sphere of radius r that scatters a homogeneous flux of particles the total cross section
corresponds to πr2 (see Section 2.4). We will later (Section 3.3) see that quantum mechanics modifies this results.
Cross sections are in general expressed in barns, where

1 barn = 10−24 cm2. (1.9)

In the introduction we have mentioned the possibility of filtering the particles before their detection. In the case of
neutrons, the most common filtering is done with respect to energy. The filter or energy analyser allows identifying
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neutrons that have an energy between Ef and Ef + dEf . This leads us to the concept of the double differential
cross section

d2σ :=
flux scattered into dΩ with an energy between Ef and Ef + dEf

initial flux onto the sample with the energy Ei
dΩ dEf . (1.10)

The quantity

d2σ

dΩ dEf

has the unity of surface per energy. The total cross section can be obtained by integration

σt =

∫∫
d2σ

dΩ dEf
dΩ dEf . (1.11)

1.3. Thermal neutrons as a scattering probe

Before going further into the formalism of scattering we would like to briefly turn our attention to the neutron.
The neutron is an elementary particle discovered by James Chadwick [8,9] in 1932. Its quantum mechanical state
is determined by its momentum |�p〉 (�p = ��k, k = 2π/λ) and its spin |s〉. The neutrons used as probes of condensed
matter are low-energy neutrons and thus can be treated as non-relativistic particles. Their energy as a function of
wave vector is given by

E =
�

2k2

2m
. (1.12)

The mass of the neutron7 is 1.008 atomic mass units. This gives the relation between the energy and the neutron
wave length

E [meV] ≡ 2.0725k2 [Å−1] ≡ 81.8204λ−2 [Å] ≡ 5.227v2 [km/s], (1.13)

or inversely

λ [Å] ≡ 2π

k

[
Å
−1] ≡ 9.045

1√
E

[meV] ≡ 3.956
1
v

[km/s]. (1.14)

The parenthesis give the units used for E,λ, k and v respectively.
The spin of the neutron is 1/2 with a magnetic moment of −1.9132 nuclear magnetons.
The neutrons of the universe are either confined within the nucleus or in neutron stars. In order to extract the

neutrons from the nuclei one needs to use technical processes like fission in a reactor or spallation in a pulsed
source. A description of these methods can be found in [52]. Once produced the free neutrons have a life time of
approximately 886 s.

Both the production and the moderation of neutrons proceed via intermediary random processes (see Fig. 4).
Since the moderated neutrons are at equilibrium with a thermal bath of temperature T (for example D2O, H2 or D2
molecules in the liquid state) their average energy is the same as the average kinetic energy of any material at this

7Here we use the National Institute of Standards and Technology (http://physics.nist.gov/cuu/Constants/) as a reference for physical constants
h = 6.62606896 × 10−34 Js and m = 1.674927211 × 10−27 kg. As e = 1.602176487 × 10−19 C, 1 Joule = 6.24150965 × 1018 eV.
Numerous useful relations relating to neutrons can be found in the Neutron Data Booklet [16].
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Fig. 4. Schematic view of the neutron source at the Institut Laue–Langevin. A compact fuel element is surrounded by a moderator of heavy
water D2O. High energy neutrons (E ≈ 1 MeV) are produced via fission of uranium 235U. Their energy drops quickly within the moderator as
a consequence of the inelastic collisions with the heavy water molecules. When equilibrated the integrated flux has a maximum of 1.5× 1015 n
per cm2 and per second at approximately 40 cm from the centre. Neutron beam tubes with their noses placed as close as possible to the region
of the flux maximum allow for the extraction of neutrons to the instruments. Some of these beam tubes deliver neutrons to a fan of neutron
guides. In order to get an even lower spectrum in terms of energy two cavities filled with boiling D2 are introduced into the region of the
thermal flux maximum [1]. The cold neutron guides extract the neutrons from these cold sources. A block of graphite heated by the intrinsic γ

radiation of the core to 2400 K transposes the spectrum for certain neutron beam tubes to higher energies. These are called hot neutrons.

temperature. In the language of quantum mechanics the energy of the neutrons are comparable to the energy of the
populated excitations at this temperature. This fact reveals one of the major advantages of neutron spectroscopy.
The argument is nevertheless the same for all moderated particles. The particularity of neutrons resides in the fact
that their wave lengths as given by (1.14) are at the same time of the order of interatomic distances. This is a result
of the dispersion relation and thus of the specific mass of the neutron.

Identifying the moderated neutrons with a classical gas in thermal equilibrium we may employ classical ther-
modynamics to calculate the spectrum. It follows statistically a Maxwell–Boltzmann distribution governed by the
temperature T of the bath.8 The probability of finding a neutron in the state |�k〉 is thus given by

p(�k) =
1

k3
T

√
π3

e−k2/k2
T , (1.15)

with the mean neutron momentum and energy defined as

�kT =
√

2mkBT , ET =
1

2m
�

2k2
T = kBT (1.16)

and the Boltzmann constant

kB = 0.08617 meV/K or k−1
B = 11.60 K/meV. (1.17)

8In practice the spectrum will differ from the ideal Maxwell–Boltzmann distribution. This is due to leakage of fast neutrons or incomplete
moderation processes. These corrections become more important in the case of spallation sources.
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The normalisation is such that the integral over the phase space density (see Section 11.1 for definition)

dN = p(�k) d3r d3k =
N

k3
T

√
π3

e−k2/k2
T d3r d3k (1.18)

gives the total neutron density, which is assumed to vary only slowly with �r. From the phase space density we can
calculate the energy distribution as

Φ(E) dE = Φthermal
2√
π

√
E

(kBT )3/2
exp

(
− E

kBT

)
dE, (1.19)

with

Φthermal =
2N√

π
vT =

2N
m
√

π
�kT (1.20)

denoting the thermal flux of the source. Typical spectra are shown in Fig. 5. Both at reactors and spallation sources,
different moderators at different temperatures are used to give optimised flux distributions for the various scientific
applications. At the ILL the thermal spectrum is moderated to lower energies by using boiling D2 sources at 25 K
(see Fig. 4). The up-moderation is achieved via a graphite block heated to 2400 K via the γ-radiation produced by
the nearby reactor core.

Due to the random production process neutron radiation is by nature completely incoherent. The neutron sources
should be compared to incandescent light bulbs and not with lasers. The lack of coherence implies that there is
no interference from the waves coming from different regions of the source. The incoherent nature of the source
allows us to describe the beam as a distribution p(�k) of the wave vector (see Section 11.1).

In Table 1 the general classification used for moderated neutrons is listed. Besides the moderated neutrons the
beam also contains fast and epi-thermal neutrons. Adequate measures are taken in order to avoid that these neutrons
become part of the experimental background.

We are going to get to know the properties of the neutron as we proceed with the formalism.

Fig. 5. Maxwell–Boltzmann distribution for two temperatures, 30 and 300 K, according to (1.19). The 300 K curve has been upscaled by a
factor 10 in order to allow for better comparison. The distributions correspond to typical thermal and cold neutron beam spectra.
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Table 1

Standard classification of neutrons after energy

Name Energy (meV) Wave length (Å) Temperature (K)

Cold 0.1–10 30–3 1–120

Thermal 10–100 3–1 120–1200

Hot 100–500 1–0.4 1200–6000

Note: The indicated values correspond to the cold, thermal and hot spectrum of the ILL.

1.4. Particles described by wave packets

The scattering theory that we are going to develop will be based mainly on stationary wave functions. These
wave functions describe a time-invariant flow of particles. It will, however, occasionally be necessary to include the
particle trajectories into the discussion. Quantum mechanically these trajectories are described by wave packages
that we, therefore, want to introduce briefly.

A very general form of a wave package is given by

ψ(x, t) =
1√
2π

∫
g(k)ei(kx−ω(k)t) dk, (1.21)

where for reasons of simplicity we restrict ourselves to a single dimension. For a massive free particle the dispersion
relation is expressed as

ω(k) =
�

2m
k2. (1.22)

The function g(k) describes the distribution of the stationary waves

ei(kx−ω(k)t), (1.23)

in the basis of which the wave package is developed. It is, therefore, responsible for the shape of the wave package
at t = 0. An appropriate form for this distribution is a Gaussian

g(k) =

(
1

2π(Δk)2
0

)1/4

· exp
[
−i(k − k0)x0

]
· exp

[
− (k − ko)2

4(Δk)2
0

]
, (1.24)

where the factor

exp
[
−i(k − k0)x0

]
(1.25)

assures the correct phase at t = 0 and

(
1

2π(Δk)2
0

)1/4

(1.26)

takes care of the normalisation. x0 and k0 give the central position and wave vector of the package at t = 0. If we
choose a reference frame in which the particle rests at t = 0, i.e.

x0 = 0, k0 = 0 (1.27)
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the notation simplifies considerably. At t = 0 the wave package is a simple Gaussian of width

(Δx)2
0 =

1
4

1

(Δk)2
0

. (1.28)

A Gaussian distribution thus provides a minimum solution of the Heisenberg uncertainty principle

Δx · Δk � 1
2
. (1.29)

The envelop ψ(x, t)ψ(x, t)∗ remains Gaussian as the wave package evolves. The time evolution of its width is given
as

(Δx)2 = (Δx)2
0 +

�
2

4m2(Δx)2
0

t2 = (Δx)2
0 +

(Δp)2
0

m2 t2 = (Δx)2
0 + (Δv)2

0t
2. (1.30)

The wave function thus spreads in space (see Fig. 6) in the same way that a Gaussian ensemble of classical particles
with an uncertainty in the velocity of (Δv)0 would do.

In an arbitrary reference system the centre-of-gravity of the wave package moves according to

xm =

(
∂ω

∂k

)
k0

=
�k0

m
t. (1.31)

This result is well known from wave mechanics. A wave package evolves with the group velocity

�vg =
1
�

(
∂E(�k)

∂�k

)
�k0

=
1
�

(
∂E(�k)
∂kx

,
∂E(�k)
∂ky

,
∂E(�k)
∂kz

)
�k0

. (1.32)

Fig. 6. Wave package. The figure on the left shows a Gaussian distribution g(k). This distribution is invariant as a function of time. The envelop
of the corresponding wave function ψ(x)ψ(x)∗ defined in (1.24) is equally Gaussian. The figure on the right shows the spreading of this wave
function for a particle with the mass of the neutron.
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E(�k) describes the energy as a function of �k. In the case of a free particle vg = �k0/m.
The concept of wave packages is very precious in particular when we are dealing with transport phenomena

between collisions. It allows us to assimilate the particle motion to classical motions. This holds also in external
fields, like electromagnetic or gravitational fields, provided these fields vary slowly at the scale of the extension of
the wave package. In this way non-relativistic particles in an accelerator follow the equations of motion

∂�r

∂t
= �vg(�k) =

1
�

(
∂E(�k)

∂�k

)
(1.33)

and

� ∂�k

∂t
= −e

[
�E(�r, t) +

1
c
�vg × �H(�r, t)

]
. (1.34)

For a neutron of mass m = 1.6749 × 10−27 kg we get

�
2

4m2 = 9.9106 · 10−16 m4s−2. (1.35)

To describe a neutron that at t = 0 occupies a region of about one nanometer in the form of a Gaussian wave
package we need according to (1.29) a distribution of wave vectors of width

(Δk)0 = 0.025 Å
−1

.

If we choose a typical thermal neutron with k0 = 1 Å−1 this corresponds to a wave vector spread of 2.5%, which
is a typical experimental value. This wave package will spread according to (1.30) by about 30 nm within one
nanosecond. After 1 µs it will have attained a width of about 30 µm. During this time it will have traveled about
2 cm. This means that even for sharply defined momenta of the particles, i.e. for (Δk)0 	 k0 the uncertainty in
the position of the particle remains inferior to the dimensions of optical devices and detectors even after having
travelled large distances, e.g. between the target and the detector. This is important in order to be able to perform
scattering experiments in the way we have outlined in Section 1.2.

2. Classical collisions

Before setting out to develop the quantum mechanical framework of scattering theory we will make a very
short excursion into classical mechanics studying the collision of particles. This will help us to put the quantum
mechanical concepts into perspective and to clarify the definition of terms.9

We speak here of the collision of two classical particles when the following requirements are fulfilled:

• The colliding particles do not experience external forces. Under this condition the centre-of-mass motion is
unperturbed and can be decoupled from the relative motion.

• The interaction of the particles is limited to a confined region of space and the relative velocities are such that
the motion is unbound. As a consequence the trajectories of the particles outside this region can be described
by straight motion.10 To describe the system before and after the collision it is, therefore, sufficient to indicate
the respective particle momenta �pi and �pf .11

9A more detailed treatment of classical mechanics can e.g. be found in [64].
10If the interaction potential is proportional to r−1 then this condition is only met asymptotically by adjusting straight lines to the hyperbola

of the motion. Most interaction potentials that we encounter in reality are screened and, therefore, only act in a limited region of space. A typical
example is the electric potential of a nucleus screened by the electrons surrounding the nucleus in an atom.

11We will come back to the internal degrees of freedom of the particles when dealing with inelastic collisions.
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Fig. 7. Schematic motion of two colliding particles. The interaction is assumed to be repulsive. In the laboratory frame the target is at rest.
After the collision both particles are scattered at angles Θ1 and Θ2 defined with respect to the asymptotic direction of the probe particle. If the
scattering is elastic and both particles have the same mass then the scattering angles add up to 90◦ degrees unless one of them remains at rest
after the collision (central collision or avoided collision, respectively). In the centre-of-mass frame the situation becomes symmetric. The two
particles have oppositely equal momenta before and after the scattering process. The collision can, therefore, be described by a single scattering
angle Θs. Apart from the interaction potential the decisive parameter determining Θs is the impact parameter b.

2.1. Frames of reference

To simplify the discussion we will limit the system to two particles (see Fig. 7). In the standard situation en-
countered in the laboratory one of them will be at rest and considered the target. The probe particle will hit this
target with a certain initial velocity �vi1. In the laboratory frame we, therefore, encounter the following situation
before the impact:

�v L
i1 
= 0, �v L

i2 = 0, �V L =
m1

m1 +m2
�v L
i1, (2.1)

where �V L denotes the centre-of-mass motion in the laboratory system. As we are dealing with non-relativistic
velocities the motions in the two frames are related via a Galilean transformation. If we describe the motion in the
centre-of-mass frame we, therefore, obtain

�v c.m.
i1 = �v L

i1 − �V L =
m2

m1 +m2
�v L
i1, (2.2)

�v c.m.
i2 = �v L

i2 − �V L = − m1

m1 +m2
�v L
i1, (2.3)

which using the reduced mass μ = (m1m2)/(m1 + m2) establishes the following relation among the initial
velocities

m1�v
c.m.
i1 = −m2�v

c.m.
i2 = μ�v L

i1. (2.4)

As required the particles move in the centre-of-mass frame with opposite momenta. As there are no external forces
acting on the system the overall momentum is conserved in the collision. The relation (2.4) between the momenta
is, therefore, preserved after the collision

m1�v
c.m.
f1 = −m2�v

c.m.
f2 . (2.5)

This leads to the symmetric situation depicted in Fig. 7.
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2.2. Elastic and inelastic collisions

We can claim that we have acquired full knowledge of the dynamics of interacting particles once their trajectories
as a function of time (�rj(t), j = 1,N ) are determined. This is certainly the ultimate goal when e.g. dealing with
celestial mechanics. In many laboratory collision problems it is, however, sufficient to deal with the kinematical
aspects, i.e. to limit the investigation to the form of the trajectories. In the extreme case where the form of the
trajectories within the interaction region is not accessible experimentally all we have to know is the final momenta
�pfj of the scattered particles.

In the case of a two-body collision the momentum conservation imposes 3 constraints on the six unknown
quantities that determine �pf1 and �pf2. If we work in the centre-of-mass frame then the momenta of target and
probe are oppositely equal both before and after the scattering event. The final trajectories of the particles are,
therefore, determined if we know the change of direction of the probe given by the scattering angle Θs as well as
its final speed vf1 (see Fig. 7).

We call a collision elastic if the sum of the kinetic energies of the colliding partners is a conserved quantity. In an
elastic collision energy conservation adds, therefore, another constraint to the momenta of the outgoing particles.
A collision is termed inelastic if part of the kinetic energy of the probe particle is converted into other forms of
energy like deformation or excitation energy of the colliding particles. If the probe is an elementary particle with
no excitable internal degrees of freedom, like the neutron, and if the target is very massive in comparison then
elastic scattering implies the conservation of the energy of the target.12

2.3. Central potential and impact parameter

It is a well known statement of classical mechanics that the relative motion of two particles A and B is the same
as that of particle A in the field of particle B, which is assumed as fixed, provided that the mass m1 is replaced by
the reduced mass μ.13 Using this formalism the motion of the target drops out of the equation and we are solely
concerned with the trajectory of the probe.

If we are dealing with a central force �F1,2(�r ) = �F1,2(r) then total angular momentum �J is conserved and the
motion is confined to the plane normal to �J . This plane is called the scattering plan.14 The angular momentum is
easily calculated in the laboratory frame placing the target particle at the origin

�J = �p L
i1 × �r L

i1. (2.10)

12Two billiard balls will collide elastically by exchanging speed. A tennis ball hitting a concrete wall will collide elastically only if it
preserves its speed.

13The coordinates �r1 and �r2 of the two particles are replaced by the coordinate �R of the centre-of-mass and the relative coordinate �r =
�r1 − �r2. These coordinates are related via

�r1 = �R+
μ

m1
�r, (2.6)

�r2 = �R+
μ

m2
�r. (2.7)

Given the homogeneity of space the force between two particles only depends on the relative coordinate �r, i.e. �F (�r1,�r2) = �F (�r ). In this case
the centre-of-mass and relative motions of a closed system (no external forces) are decoupled and follow the equations

M �̈R = 0, (2.8)

μ�̈r = �F1,2(�r ). (2.9)

14The problem of motion in three dimensions is thus reduced to that of motion in a plane. A typical example is the motion of the planets in
the gravitational field of the sun.
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Fig. 8. Schematic motion of a particle in an attractive central potential v(r). The angle Ψs of the particle trajectory with respect to the line
joining the centre of the potential to the perihelion is directly related to the scattering angle ΘS.

In the centre-of-mass frame we place the origin at the centre (see Fig. 7) and exploit that the momenta of both
particles are oppositely equal

�J = �p c.m.
i1 × �r c.m.

i1 + �p c.m.
i2 × �r c.m.

i2 = 2�p c.m.
i1 × �r c.m.

i1 . (2.11)

As the centre-of-mass motion does not contribute to the angular momentum both values are as expected identical.
Defining the distance of one of the scattering partners from the asymptote of the trajectory of the other scattering

partner as the impact parameter b (see [64]) we obtain for the modulus of the angular momentum

J = bi
∣∣pc.m.

i1

∣∣ = bi
∣∣pc.m.

i2

∣∣ = bf
∣∣pc.m.

f1

∣∣ = bf
∣∣pc.m.

f2

∣∣. (2.12)

The situation is depicted in Fig. 8.
If we separate off the centre-of-mass motion and denote the potential of interaction by V (r) then the trajectory

of the target as characterised by the angle ΨS can be determined unambiguously from V (r) using momentum and
energy conservation15

ΨS =

∫ ∞

rmin

dr
J

r2
√

2μ[E − V (r)] − J2/r2
. (2.13)

Using the one-to-one relation of the angular momentum J with the impact parameter b as expressed in Eq. (2.12)
this expression can be reformulated as

ΨS =

∫ ∞

rmin

dr
b

r2
√

1 − 2mV (r)/p2 − b2/r2
. (2.14)

The scattering angle ΨS is, therefore, a functional of the potential V (r) with b acting as a parameter that contains
all the relevant information about the incoming trajectory. By inversion of the problem it should, therefore, be
possible to determine the particular form of V (r) from the scattering angle.

2.4. Classical scattering cross section

The discussion so far concerned the deviation of a particle from its trajectory when penetrating the force field of
another particle and the deterministic calculation of such a deviation. This approach is fully justified when dealing

15The reader interested in the proof can consult Chapter 5 of Ref. [64].
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with isolated macroscopic objects as found in celestial mechanics. In the laboratory it is generally impossible to
follow the trajectories of individual particles, i.e. we are obliged to work with the statistical description outlined
in Section 1.2. Therefore, provided all the criteria defining a scattering experiment are fulfilled (see Fig. 1) the
result has to be expressed in the form of a differential cross section as introduced in Section 1.2. If we assume that
each incoming particle is subjected to exactly one collision, i.e. if we exclude multiple scattering events, then the
scattering can be described as a superposition of pair-wise collisions.16 If we assume in addition that the incoming
beam is perfectly well collimated (all incoming particles have identical directions), monochromatic (all incoming
particles have the same energies) and homogeneous (the distribution of incoming particles is uniform) and the
interaction potential is isotropic then the statistical superposition can be described by the impact parameter b. In
other words, for every collision what determines the scattering angle is the minimum distance that the incoming
trajectory of the probe particle makes with the scattering particle. The situation is depicted in Fig. 9. Probe particles
possessing identical b values will experience the same scattering angles Θ. The statistical weight of these particles
corresponds to the areas of the ring

dAincident = b db dΦ.

All these particles will end up in a ring with angular opening sin Θ dΘ with Θ = Θ(b) for a monotonously changing
potential.17 The cross section can, therefore, be written as

dσ
dΩ

=

∣∣∣∣ b db dΦ
sin Θ dΘ dΦ

∣∣∣∣ =
∣∣∣∣ b db
sin Θ dΘ

∣∣∣∣ = b

sin Θ

∣∣∣∣ db
dΘ

∣∣∣∣. (2.15)

Fig. 9. Schematic presentation of classical scattering. All incoming particles with identical impact parameter are scattered under the same
angle Θ. This allows to express the differential cross section via the differential area dAincident = b db dΦ. It is assumed that the interaction po-
tential is isotropic and that the collimated, monochromatic incoming beam is uniformly distributed over the area perpendicular to its trajectory.
For a collision of two hard spheres the maximum impact parameter bmax is given by the sum of radii.

16Multiple scattering will come up again in the quantum mechanical description. The approximation neglecting higher order events will be
termed Born approximation (see Section 3.11).

17We work here in the laboratory frame, which is the natural frame for expressing cross sections as it is in the laboratory that the cross
sections are measured. We postpone the discussion of the cross section in the centre-of-mass frame to Section 3.8.
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From this expression we can calculate directly the total cross section

σt =

∫
dσ
dΩ

dΩ = 2π

∫ π

0
sin Θ dΘ

b

sin Θ

∣∣∣∣ db
dΘ

∣∣∣∣ = 2π

∫ bmax

0
b db = πb2

max, (2.16)

provided that the interaction has a limited range that leads to negligible scattering beyond a certain maximum
impact parameter bmax. For a collision of hard spheres the maximum impact parameter is given as bmax = Rp+Rt,
where R − p and Rt are the radii of the probe and target particles, respectively. If the probe particle is point-like
then the total scattering cross section is in this case identical to the classical cross section of the target sphere

σt = πR2
t . (2.17)

We will see in Section 3.5 that the quantum mechanical treatment gives a different result (see Eq. (3.116)).

3. Quantum mechanical scattering from a static potential

In order to take advantage of neutron experiments we need a quantum mechanical formalism that relates the
measured intensities to the properties of the sample and this in the most direct way possible. Like for the classical
case we start the discussion with the scattering of one particle18 of mass m by a static potential19 V (�r ). Thus
scattering will then necessarily be elastic.

From a quantum mechanical point of view the problem is described by the Schrödinger equation20

i�
∂

∂t
ψ(�r, t) = Hψ(�r, t) =

[
− �

2

2m
Δ + V (�r )

]
ψ(�r, t). (3.1)

Since there is no explicit time dependence of the potential the energy of the system is conserved and the solutions
are stationary. They have the form

ψ(�r, t) = u(�r )e−i(E/�)t, (3.2)

where u(�r ) is an eigenfunction of the Hamiltonian H

[
− �

2

2m
Δ + V (�r )

]
u(�r ) = Eu(�r). (3.3)

Our task can then be described as finding the eigenfunctions u(�r ). The first observations that we can make concerns
the general nature of these states. As the probe particles have to be free before and after the scattering event we are
not concerned with the bound states of the potential V (�r ). Hence, scattering can be considered as the spectroscopy
of the non-bound states.

18As we have seen before this includes both the scattering of a particle beam by a fixed target particle as well as the scattering by a free
particle that takes into account the possibility of recoil. Mathematical this situation demands that we work in the reference system of the centre-
of-mass and replace for the relative motion the neutron mass m by its reduced mass μ. We do not find it necessary to add this complication
to our general discussion, since for the majority of problems in neutron scattering the mass of the target system can anyway be assumed large
compared to that of the probe. We will briefly discuss the difference in scattering by a free and a bound particle in Section 3.8.

19Whether in a particular case the interaction between two particles can be described by a static potential has to be checked. For example, the
interaction with light requires the use of a vector potential �A(�r, t) dependent on time. However, the formalism is still valid with some necessary
adaptations.

20The Schrödinger equation is a non-relativistic equation. All results derived from it are thus only valid for particles with a small velocity
compared to the velocity of light. Despite the similarities existing among all scattering experiments that we have mentioned in the introduction
the non-relativistic approach is evidently not applicable to high energy collision experiments.
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3.1. The wave function in the asymptotic regime

Like in the classical case it is impossible to determine the wave function of the scattered particles in the region of
V (�r ) without knowledge of the potential. We, therefore, turn our interest towards asymptotic solutions to Eq. (3.3),
which means that we are interested in the form of the wave functions in regions far from the location of impact. In
accordance with the requirements for scattering experiments we demand that the potential V (�r ) decreases rapidly
with the distance �r. The most general form of the eigenfunctions is given by

u�k(�r ) −→ 1√
V

(
ei�k·�r + f�k(θ,φ)

eikr

r

)
, r → ∞, (3.4)

with the modulus of the probe particle’s wave vector k before and after the scattering given as a function of the
conserved energy E

k =
1
�

√
2mE. (3.5)

In order to demonstrate this we insert the expression (3.4) into the Schrödinger equation. Remembering that the
Laplace operator in spherical coordinates is written as

Δ =
∂2

∂r2 +
2
r
· ∂

∂r
+

1
r2

(
1

sin θ
· ∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
, (3.6)

which simplifies to

∂2

∂r2 for r → ∞, (3.7)

we find

∂2

∂r2

(
eikr

r

)
+

2mE

�2

(
eikr

r

)
= 0 + O

(
1
r2

)
. (3.8)

The functions (3.4), whose existence are in principle to be proved, are thus asymptotic and stationary solutions to
the Schrödinger equation. The role of the normalisation volume V for free particle states is discussed in all text
books of quantum mechanics [10,41].

At this point we briefly have to discuss the fact that the scattering process is time dependent. An incident particle
is created at t → −∞, propagates freely, experiences the potential of the target at t ≈ 0, is scattered with a certain
probability, propagates again freely, and is finally registered in a detector at t → +∞. One formalism capable
of explicitly taking this time dependence into account are wave packages that can be constructed from stationary
states via superposition

ψ(�r, t) =
1√
V

∫
d3k w(�k)u�k(�r ) exp(−iωkt). (3.9)

The wave packages, as the particles, travel in time and thus allow us to determine the dynamics of the scattering
process. A typical piece of relevant dynamical information is the time delay that a particle experiences when re-
flected from a potential barrier due to the finite penetration of the wave function into the barrier (see Ref. [10]). The
price for the ease of interpretation and dynamical information is a rather heavy formalism. The main information
of the wave package is fortunately contained in the function w(�k) that describes the composition of the package
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in terms of stationary waves. This distribution is in itself time independent. In particular, it is not modified by the
scattering process. In other words, each function u�k(�r ) constitutes a scattering channel or scattering path and the

different channels can be superimposed.21 This is the reason why we can circumvent the wave packages and get a
good kinematic description of the scattering process if we limit ourselves to stationary processes.

The stationary wave functions are interpreted in terms of a probability current. These currents describe the flux
of particles. They allows us to make the link to the cross sections defined previously. The probability density of a
particle is given by the square of the norm of the wave function

ρ(�r, t) = ψ(�r, t)ψ(�r, t)∗ =
∣∣ψ(�r, t)

∣∣2. (3.10)

The probability of finding the particle at time t in the volume d3r around �r is then given by ρ(�r, t) d3r. The integral
of ρ(�r, t) over the entire space is by definition constant, but its local value can vary. These variations give rise to a
probability current �J(�r, t), which can be calculated as

�J(�r, t) =
�

2mi

(
ψ∗�∇ψ − ψ�∇ψ∗) (3.11)

and obeys the continuity equation

∂

∂t
ρ(�r, t) + �∇ · �J(�r, t) = 0. (3.12)

Relations of this type govern the flow of any conserved quantity. They simply states that the probability of finding
a particle in a given region only evolves if it is accompanied by a probability current that crosses the surface of the
region in question. We can always write wave functions in the form

ψ(�r, t) = A(�r, t) exp
(
iΦ(�r, t)

)
. (3.13)

With this notation the probability density is related to the square of the amplitude

ρ(�r, t) = A2(�r, t) (3.14)

and the probability current to the probability density multiplied by the gradient of the phase

�J(�r, t) = ρ�∇
(

�Φ
m

)
(3.15)

of the wave function. Hence the expression �∇(�Φ/m) can be interpreted as the velocity of the probability flow.
For a plane wave

ψ(�r, t) = A exp
(
i(�k · �r − ωt)

)
we find

ρ(�r, t) = |A|2 (3.16)

21Attention, this is not the case if we construct the wave packages from plane waves ψ(�r, t) ∝ exp(i(�k · �r − ωt)). In this case the form of
the wave package is only conserved if the scattering amplitude f�k

(θ,φ) varies sufficiently slowly with �k. This is not always the case. A typical
example is Bragg scattering from a perfect crystal (see Sections 4.6 and 11.5), that can make the scattered wave package much better defined
than the initial wave package.



130 H. Schober / An introduction to the theory of nuclear neutron scattering in condensed matter

Fig. 10. Schematic illustration of the wave function corresponding to a scattering experiment. A source emits particles that pass through a
collimator. This defines the direction and the lateral extension of the wave packet. An appropriate filter selects an energy band, which among
other things affects the extension of the wave packet. The beam now collimated and monochromatic hits the sample, which scatters the particles
in space. The scattered particles propagate and are then analysed (filtered) with respect to their final state (for example their energy) before
being detected. All these processes are described by a spherical wave.

and

�J(�r, t) = |A|2�∇(�Φ/m) = ρ(�r, t)
�p

m
= ρ(�r, t)�vg. (3.17)

vg is the group velocity associated with the momentum ��k. In the case of a plane wave the flow is therefore
stationary. It can be identified with a uniform, continuous beam of non-interacting, identical particles.

The solutions (3.4) to the Shrödinger equation can be interpreted in the following way (see also Fig. 10).

(1) The function

1√
V

ei�k·�r (3.18)

describes a flux of free particles with momentum �p = ��k. If we chose to normalise the wave functions
describing free particle with respect to a unit box of dimensions Lx = Ly = Lz = 1 then the normalisation
volume V becomes

V = (2π)3 (3.19)

and the wave vectors take on the simple values

�k = (kx, ky , kz) = (nx,ny ,nz), nx,ny ,nz = · · · −2,−1, 0, 1, 2, . . . . (3.20)

In this normalisation the associated probability flux is expressed as

�J(�r, t) =
1

(2π)3

�

m
�k. (3.21)

In the formalism of wave packages, it is this part that survives at negative times, i.e. long before the impact.
Formally the extension in the lateral dimension, i.e. the dimension perpendicular to the propagation direction,
is infinite for a plane wave. In practice we require that the beam is sufficiently large, in order to entirely
illuminate the sample. At the same time the beam should be sufficiently narrow in order not to interfere with
the scattered beam at the place of detection.
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(2) The wave function

1√
V
f�k(θ,φ)

eikr

r
(3.22)

is the mathematical expression for a propagating spherical wave with wave vector k = 2π/λ. It is essential
to remark that it is the absolute values r and k that are present in this expression. The propagation direction
is always from the sample (r = 0) towards the detector (r → ∞). The spherical wave describes the scattered
particles. Given that the potential is time independent the scattering is elastic, this means that the moduli of
the wave vectors before and after the scattering are identical. The amplitude of the scattered wave function
decreases as r−1 as is required in order for the norm∫

ρ(�r, t)r2 dr (3.23)

of the probability density

ρ(�r ) =
1
V

1
r2

∣∣f�k(θ,φ)
∣∣2 (3.24)

to be preserved as a function of r. Expressed differently, the probability of finding a scattered particle under
a given angle cannot depend on the distance between the detector and the sample.
The wave package associated with the spherical wave possesses the same group velocity as the initial particle.
Its amplitude evolves in the same way as the transmitted wave package (see Fig. 10). Hence it is not surprising
the flux associated with the scattered wave is given by

Jscatt = Jini
1
r2

∣∣f (θ,φ)
∣∣2, r → ∞. (3.25)

All the information concerning the interaction of particle with the potential that survives in the asymptotic
regime is contained in the function

f�k(θ,φ). (3.26)

f�k(θ,φ) has the dimension of length and is called the scattering amplitude. f�k(θ,φ) modulates the spherical
wave as a function of angles θ and φ. It expresses in a mathematical way the fact that scattering encodes the
interaction potential in the angular dependence of the scattered beam. It is clear that the scattering amplitude
f�k(θ,φ) cannot take on any arbitrary form. In particular it has to be ensured that the probability of scattering
and of transmission in the absence of absorption add up to one.

Using the expressions (3.25) and (1.7) we get the relation between the cross section and the scattering amplitude

dσ
dΩ

= r2 Jscatt(r, θ,φ, t)
Jini(t)

=
∣∣f (θ,φ)

∣∣2. (3.27)

We see that the normalisation volume V is no longer present in this expression.

3.2. Reflection and transmission at a potential barrier as an illustrative example

We will continue with an example that allows us to explicitly calculate the wave functions and thus illustrates
the concepts developed above. The most simple scattering problem we can think of is a potential barrier in one
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dimension. Incoming particles can either pass the barrier or be reflected. The problem is solved when we have
determined the coefficients of transmission and reflection. The scattering potential has the simple form

V (x) = V0 > 0,
a

2
� x � −a

2
,

V (x) = 0, otherwise.

The stationary wave functions in the different regions are determined as

u1(x) = A1eikx +A′
1e−ikx, x < −a

2
, (3.28)

u2(x) = A2eik′x +A′
2e−ik′x,

a

2
� x � −a

2
, (3.29)

u3(x) = A3eikx, x >
a

2
, (3.30)

with

k =

√
2mE

�2 , (3.31)

k′ =

√
2m(E − V0)

�2 . (3.32)

E and k are the energy and wave vector of the incoming particles, respectively. The wave number k′ is real for
particle energies E greater than the barrier height and complex otherwise. A real wave vector corresponds to a
propagating wave while a complex wave vector leads to an exponentially decaying wave function.

In the region x < −a/2 the wave function u1(x) gives rise to two probability currents that are travelling in
opposite direction.

• The current propagating towards the potential barrier is characterised by the density ρin = |A1|2. It is to be
identified with the incoming particle flux.

• The current propagating backwards, away from the potential barrier, is characterised by the density ρref =
|A′

1|2. It is to be identified with the reflected, i.e. scattered particle flux.

In the region x > a/2 the wave function u3(x) gives rise to a single probability current propagating towards
infinity. It is characterised by the density ρtrans = |A3|2. It is to be identified with the transmitted particle flux.

By requiring the overall wave function to be square integrable22 we impose 4 conditions on the five amplitudes,
which allows us to express all of them in terms of the incoming particle density ρin (see [10]). We may in particular
calculate the coefficients of reflection R and transmission T for E > V0

R =
ρref

ρin
=

∣∣∣∣A′
1

A1

∣∣∣∣2 =
(k2 − k′2)2 sin2 k′a

4k2k′2 + (k2 − k′2)2 sin2 k′a
, (3.33)

T =
ρtrans

ρin
=

∣∣∣∣A3

A1

∣∣∣∣2 =
4k2k′2

4k2k′2 + (k2 − k′2)2 sin2 k′a
. (3.34)

As required by particle number conservation the sum of reflected and transmitted current is equal to the incident
current

R+ T = 1.

22This simply implies that both u(x) and du/dx have to be continuous.
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If we express the transmission coefficient as a function of energy we obtain

T =
4E(E − V0)

4E(E − V0) + V 2
0 sin2[

√
2m(E − V0)a/�]

, E � V0, (3.35)

T =
4E(V0 − E)

4E(V0 − E) + V 2
0 sinh2[

√
2m(V0 − E)a/�]

, E < V0. (3.36)

This result is shown in Fig. 11. Contrary to the classical situation there is finite transmission even for energies
smaller than the barrier height due to quantum mechanical tunnelling. Similarly, for energies larger than the barrier
height we find oscillations in the transmission coefficient. Transmission equals one at energies associated with
quantum mechanical resonances characterised by

k′ = n
π

a
. (3.37)

Resonances are, therefore observed when the wave length λ′ fits into the barrier of width a

nλ′ = 2a (3.38)

leading to

T =
4E(E − V0)

4E(E − V0) + V 2
0

. (3.39)

Fig. 11. Schematic presentation of a transmission function for a one-dimensional potential barrier. Contrary to the classical expectation there
is transmission for incoming energies smaller than the barrier height due to quantum tunnelling. Similarly, for energies larger than the barrier
height we find oscillations in the transmission coefficient (for more details see the text).
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3.3. Partial waves

In order to become more familiar with the concepts developed in the previous sections and in particular with the
scattering amplitude we turn our attention towards isotropic potentials, i.e. spherical symmetric potentials where
V (�r ) = V (r).23

We will see that in analogy to the classical treatment of Section 2.3 the scattering can be classified according to
the angular momentum. Given the quantum nature of the angular momentum this leads in the quantum mechanical
case to discrete scattering channels. Each channel is characterised by a wave function equally called partial wave.
In our approach to determine the partial waves we are going to be guided by the quantum mechanical treatment
of the hydrogen atom. It is well known that the wave functions of the electron bound in the Coulomb potential
originating from the proton can be labelled with respect to the angular momentum operator �L. This is just a
particular manifestation of the fact that for an isotropic potential the eigenfunctions u(�r ) of the Hamiltonian can
always be written as

u(�r ) = ulm(r, θ,φ) = Rl(r)Ylm(θ,φ) (3.40)

with r, θ and φ denoting spherical coordinates

x = r sin θ cosφ,

y = r sin θ sinφ, (3.41)

z = r cosφ.

The spherical harmonics Ylm(θ,φ) are the eigenfunctions of the operators L2 and Lz .

L2Ylm(θ,φ) = l(l + 1)�2Ylm(θ,φ) (3.42)

with

L2 = �
2
(

1
sin θ

· ∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ
· ∂2

∂φ2

)
(3.43)

and

LzYlm(θ,φ) = m�Ylm(θ,φ) (3.44)

with

Lz = −i�
∂

∂φ
. (3.45)

Thus, we can separate the angular and radial dependence of the wave functions. The angular dependence is de-
scribed by the well known spherical harmonics that equally describe the electronic orbitals in hydrogen and as
such is independent of the potential. The angular momentum quantum number l acts as a parameter for the radial
wave function and thus indeed will allow us classifying the scattering according to scattering channels. Let us now
turn our attention to the problem that consists in determining the radial wave function for each l value.

23The formalism that we present can from time to time seem tedious. However this mathematical complexity is unavoidable if we wish to
clearly establish important concepts such as the scattering length. The reader only interested in the use of the formalism can proceed directly
to Section 3.9.
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The radial function Rl(r) has to satisfy the equation

(
− �

2

2m

[
d2

dr2 +
2
r

d
dr

− l(l + 1)
r2

]
+ V (r)

)
Rl(r) = ERl(r) (3.46)

with the boundary conditions

Rl(r) ∝ rl+1, for r → 0. (3.47)

We can simplify this differential equation significantly by factoring out Rl(r) into wl(r)/r

(
− �

2

2m

[
d2

dr2 − l(l + 1)
r2

]
+ V (r)

)
wl(r) = Ewl(r). (3.48)

The term

�
2

2m
l(l + 1)

r2 (3.49)

is called the centrifugal barrier in analogy to classical mechanics.
In the absence of a potential the radial equation (3.46) reduces to

[
d2

dρ2 +
2
ρ

d
dρ

+ 1 − l(l + 1)
ρ2

]
Rl(ρ) = 0, (3.50)

which is the defining equation of the spherical Bessel functions24 jl(ρ) and nl(ρ), provided that we express the
distance r in units of λ/2π, which is equivalent to setting ρ = r · k. For the lowest values of l these functions are
given as

j0(ρ) =
sin ρ
ρ

, (3.53)

n0(ρ) =
cos ρ
ρ

, (3.54)

j1(ρ) =
sin ρ
ρ2 − cos ρ

ρ
, (3.55)

n1(ρ) =
cos ρ
ρ2 +

sin ρ
ρ

. (3.56)

24The complete basis of solutions to this equation comprises both the spherical Bessel functions in the proper sense and the spherical von
Neumann functions. These functions are connected to the ordinary Bessel functions J(ρ) through

jl(ρ) =
√

π

2ρ
Jl+1/2(ρ), (3.51)

nl(ρ) = (−1)l
√

π

2ρ
J−(l+1/2)(ρ). (3.52)
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The functions for higher values of l can be obtained by differentiation

jl(ρ) = (−ρ)l
(

1
ρ
· d

dρ

)l sin ρ
ρ

, (3.57)

nl(ρ) = (−ρ)l
(

1
ρ
· d

dρ

)l cos ρ
ρ

. (3.58)

A general solution of the radial part of the Schrödinger equation (3.48) can be expressed by a superposition of
these functions

Rl(ρ) =
∑
l

[
aljl(ρ) + blnl(ρ)

]
, (3.59)

or alternatively, by posing al = Bl cos δl and bl = Bl sin δl in the form

Rl(ρ) =
∑
l

[
Bl(cos δljl(ρ) + sin δlnl(ρ)

]
. (3.60)

The usefulness of representing the coefficients of expansion in terms of an amplitude and phase is not clear at this
stage of the discussion but will be justified later.

The functions jl(ρ) are shown for l � 5 in Fig. 12. The maxima for l > 0 are close to the value

rk ≈
√
l(l + 1)

that corresponds to the minimum distance between the trajectory of a classical particle with angular momentum

| �J | = |�r × �p| = �

√
l(l + 1)

and the origin, i.e. to its impact parameter as defined in Section 2.3. The quantum mechanical l-channels are,
therefore, the analog of the classical impact parameter channels for scattering. It is obvious that higher l values
will contribute only if the potential is sufficiently long range.

Fig. 12. Spherical Bessel functions. The maxima for l > 0 are close to the value rk ≈
√
l(l + 1) that corresponds to the minimum distance

between the trajectory of a classical particle with angular momentum | �J | = |�r × �p| = �
√
l(l + 1) and the origin. The case l = 0 has to be

assimilated with a scattering channel centred on the target particle. For targets that interact with the probe at distances very much shorter than
the wave length λ only this so-called s-type scattering channel survives.
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Fig. 13. Stationary spherical waves for l = 4 with and without phase shift.

It can be clearly seen that for distances r 	 λ the function with l = 0 (called s-type) dominates all the others.
Mathematically we find in the limit ρ → 0

jl(ρ) =
1

1 · 2 · 3 · · · · · (2l + 1)
ρl, (3.61)

nl(ρ) =
1 · 2 · 3 · · · · · (2l + 1)

(2l + 1)
1

ρl+1
. (3.62)

Having developed expressions for the general form of the wave function (3.60) we now turn our attention to the
asymptotic regime. For ρ 
 l(l + 1) the Bessel functions simplify to

jl(ρ) =
sin(ρ− lπ/2)

ρ
, (3.63)

nl(ρ) =
cos(ρ− lπ/2)

ρ
. (3.64)

We are dealing with simple stationary spherical waves25 (see Fig. 13). The stationary character of the solution is
not a surprise. It reflects the fact that a quantum mechanical state with a fixed angular momentum cannot propagate
in space.

We can use the approximation (3.63) and (3.64) in order to reformulate the expansion (3.60) of the radial function
in the case of large distances as

Rl(ρ) ≈
∑
l

Bl
sin(ρ− lπ/2 + δl)

ρ
. (3.65)

If we restrict ourselves to the scattering of non-polarised particles, it is clear that the result of the experiment
cannot depend on the angle φ. In other words, the intrinsic symmetry of the problem imposes that the scattering
probability possesses cylindrical symmetry around the direction of the incident beam.26 In this case it suffices to

25The adjective “stationary” is here employed in the sense of stationary waves and not in the sense of quantum mechanics.
26If the incoming particles possess a fixed polarisation with a component perpendicular to the trajectory the cylindrical symmetry about the

incoming direction is broken. This will be reflected in the scattering if it is spin dependent.
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keep the functions ul0 in the expansion (3.40) as they are the only ones independent of φ. Far from the sample we
can then, using expressions (3.65) and (3.40), express the wave function as

u(�r ) =
∞∑
l=0

Bl
sin(ρ− lπ/2 + δl)

ρ
Yl0(θ). (3.66)

Therefore, far away from the interaction region the wave function of a particle interacting with an isotropic po-
tential can be described by a superposition of spherical waves. The amplitude and phase of each spherical wave
is characterised by the angular momentum quantum number l. The angular dependence is fully contained in the
respective spherical harmonics.

Everything we did so far was to find the most general form of the wave function of a particle in an isotropic
potential. The scattering geometry, however, imposes additional constraints on the wave function. These constraints
will allow us determining the functional dependence of the amplitudes Bl with respect to the phase shift δl. Having
done so we will be in a position to express the scattering amplitude f (θ) purely as a function of the set of phase
shifts {δl}.

The scattering amplitude had been defined in general terms by expression (3.4). This expression describes the
incoming free particle flux as a plane wave. To connect it with the partial wave formalism that we have developed
here we must briefly revisit the free Schrödinger equation, however, imposing the requirement that the solutions
posses well-defined angular momenta l (with respect to a given reference point, which we identify with the origin
of the coordinate system). This exercise will allow us to relate the wave function of the incident particle to that of
the scattered particle in the same basis.

The functions nl(ρ) diverge at the origin. Hence they cannot contribute to the expansion of Rl(ρ) at the origin,
and in particular not to the expansion of the wave function of a free particle in this basis. The basis for all possible
states of a free particle is thus given by the functions

ulm(r, θ,φ) = k

√
2
π
jl(kr)Ylm(θ,φ). (3.67)

In particular, the wave function of a particle with its momentum parallel to the direction ẑ is expressed as

1√
V

eikz =
1√
V

eikr cos θ

=

√
4π

V

∞∑
l=0

√
2l + 1iljl(kr)Yl0(θ). (3.68)

Using the connection

Yl0(θ) =

√
2l + 1

4π
Pl(cos θ) (3.69)

between the spherical harmonics and the Legendre polynomials this expression can be put to the equivalent form

1√
V

eikz =
1√
V

∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ). (3.70)

The form of u(�r ) found here for an isotropic potential in terms of spherical waves has to be consistent with
the expression (3.4) that was derived for the general case in terms of the scattering amplitude (repeated here for
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convenience)

u�k(�r ) −→ 1√
V

(
ei�k·�r + f�k(θ,φ)

eikr

r

)
, r → ∞. (3.71)

Using the identity (3.68) this expression translates into

u�k(�r ) −→
√

1
V

{[ ∞∑
l=0

√
4π(2l + 1)iljl(kr)Yl0(θ)

]
+

[
f�k(θ,φ)

eikr

r

]}
. (3.72)

As we are working in the asymptotic regime we may apply the approximation (3.63), which leads us to

u�k(�r ) −→
√

1
V

{[ ∞∑
l=0

√
4π(2l + 1)il

sin(kr − lπ/2)
kr

Yl0(θ)

]
+

[
f�k(θ)

eikr

r

]}
. (3.73)

Expressing the sinus function with the help of exponentials this expression can be reformulated as

u�k(�r ) −→ 1
2i

√
1
V

{[ ∞∑
l=0

√
4π(2l + 1)ile−ilπ/2Yl0(θ)

]
+ 2ikf�k(θ)

}
eikr

kr
(3.74)

− 1
2i

√
1
V

[ ∞∑
l=0

√
4π(2l + 1)ileilπ/2Yl0(θ)

]
e−ikr

kr
. (3.75)

Expression (3.66) can be brought into a similar form

u(�r ) =
1
2i

[ ∞∑
l=0

Ble
−ilπ/2eiδlYl0(θ)

]
eikr

kr
− 1

2i

[ ∞∑
l=0

Ble
ilπ/2e−iδlYl0(θ)

]
e−ikr

kr
. (3.76)

Comparing the two expressions for u(�r ) allows us to determine the coefficients Bl from the term proportional to
e−ikr

kr as

Bl =
1√
V

ileiδl
√

4π(2l + 1) =
1√
V

eilπ/2+iδl
√

4π(2l + 1). (3.77)

Bl being determined the scattering amplitude can be obtained from comparing the terms proportional to e−ikr

kr

f (θ) =
1

2ik

∞∑
l=0

√
4π(2l + 1)

(
e2iδl − 1

)
Yl0(θ)

=
1

2ik

∞∑
l=0

(2l + 1)
(
e2iδl − 1

)
Pl(cos θ)

=
1
k

∞∑
l=0

(2l + 1)
(
eiδl sin δl

)
Pl(cos θ)

=
∞∑
l=0

(2l + 1)flPl(cos θ), (3.78)



140 H. Schober / An introduction to the theory of nuclear neutron scattering in condensed matter

where all information concerning physics is contained in the intrinsically complex numbers

fl ≡
e2iδl − 1

2ik
. (3.79)

We have thus succeeded in expanding the scattering amplitude in the basis of the functions Yl0(θ), which are also
called partial waves. The expansion coefficients are expressed as a function of the phases δl. This is an important
result, that shows us, that the scattering process can be described by a discrete parameter set that can be determined
experimentally without any precise knowledge of the interaction potential. The phase shifts δl(k) depend explicitly
on the modulus of the wave vector k. In this context, the abbreviation

Sl(k) = e2iδl(k) (3.80)

is often used. Sl(k) is called matrix element of the partial wave l. We state without proving it that we are actually
dealing with the matrix elements already encountered in Section 1.2 (see expression (1.5)).27

In order to clarify the role of the phase shift in a scattering process we will now compare (in the partial wave
basis) the wave function u(�r ) (3.66) with a plane wave. Inserting the expression (3.77) for Bl into the expression
(3.76) the wave function in the asymptotic regime can be found to be of the alternate form

u(�r ) =
1√
V

i
2k

∞∑
l=0

(2l + 1)Pl(cos θ)

[
(−1)l

e−ikr

r
− Sl(k)

eikr

r

]
. (3.81)

The radial part of the terms in this sum is the superposition of an outgoing spherical wave

uout(r) ∝ eikr

r
(3.82)

and an incoming spherical wave

uin(r) ∝ e−ikr

r
. (3.83)

This superposition is controlled by the factor Sl. For V (r) = 0 no scattering takes place. Hence, the wave function
should correspond to a plane wave. A plane wave can in full analogy to expression (3.81) be written in a basis of
spherical waves as

u(�r ) =
1√
V

i
2k

∞∑
l=0

(2l + 1)Pl(cos θ)

[
(−1)l

e−ikr

r
− eikr

r

]
. (3.84)

It is again a superposition of an incoming and an outgoing spherical wave. Comparing (3.81) with (3.84) we can
see that the difference introduced by the potential is the multiplication of the outgoing wave with the unitary
complex factor Sl(k). As a consequence, the potential produces a phase shift in the outgoing wave with respect

27The scattering matrix (or S-matrix) is a concept of fundamental importance in physics. Expressed in its most general form the S-matrix
relates the initial state and the final state of a physical system undergoing a scattering process. It was historically introduced by John Archibald
Wheeler in the article “On the mathematical description of light nuclei by the method of resonating group structure” that was published in
1937. From its definition it follows that the elements of the S-matrix, which are called scattering amplitudes, are closely related to the quantum
mechanical transition probability amplitudes. Poles of the S-matrix in the complex-energy plane are identified with bound states, virtual states
or resonances. From a historical point of view S-matrix theory, which was further developed by Werner Heisenberg, can be considered the
cradle of modern string theory.



H. Schober / An introduction to the theory of nuclear neutron scattering in condensed matter 141

to the incoming wave. The interference between the phase shifted waves creates a spherical stationary wave in
the same way that two phonons can produce a plane stationary wave. It is this stationary wave that describes the
scattering. Without any potential and hence without any phase shift the superpositions of partial waves results in a
cancellation of the outgoing spherical wave.

Integrating the differential cross section (expression (3.27)) over the solid angle we can calculate the total cross
section

σt = 2π

∫ π

0

∣∣f (θ)
∣∣2 sin θ dθ. (3.85)

The Legendre polynomials are orthogonal. This facilitates the calculation considerably. In the square of expression
(3.78) only the diagonal terms in l survive. These can easily be integrated. With the help of the relation

∫ π

0
P 2
l (cos θ) sin θ dθ =

2
2l + 1

(3.86)

we find

σt =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl = 4π

∞∑
l=0

(2l + 1)|fl|2 =
∞∑
l=0

σt(l). (3.87)

The total cross section is thus the sum of the partial cross sections

σt(l) =
4π

k2 (2l + 1) sin2 δl = 4π(2l + 1)|fl|2. (3.88)

In other words, each value of l contributes a distinct scattering channel. This is not surprising since the angular
momentum is a conserved quantity for an isotropic potential.

The phases δl are real. This implies that |Sl| = 1. In expression (3.81) the amplitude associated with the
incoming wave is then identical to the amplitude associated with the outgoing wave. This is the necessary condition
for getting a stationary wave. The unitarity of Sl(k) reflects the physical situation that we describe: The number
of particles before and after the scattering is identical. If we had a sample capable of absorbing probe particles we
would have |Sl| < 1 for at least some values of l. This would imply that δl was complex.

The fact that the δl are real imposes an upper limit on the associated total cross sections

σt(l) = 4π(2l + 1)|fl|2 =
4π

k2 (2l + 1) sin2 δl � 4π

k2 (2l + 1). (3.89)

These conditions are called the unitarity conditions of the partial cross sections. Within this unitarity limit the
maximum values of the cross sections are obtained for

δl = ±π

2
.

3.4. The optical theorem

The scattering amplitude

f (θ) =
1
k

∞∑
l=0

(2l + 1)
(
eiδl sin δl

)
Pl(cos θ) (3.90)



142 H. Schober / An introduction to the theory of nuclear neutron scattering in condensed matter

is an intrinsically complex function. It can thus be decomposed into its real and imaginary part

f (θ) = �
(
f (θ)

)
+ i�

(
f (θ)

)
(3.91)

with

�
(
f (θ)

)
=

1
k

∞∑
l=0

(2l + 1)(cos δl sin δl)Pl(cos θ) (3.92)

and

�
(
f (θ)

)
=

1
k

∞∑
l=0

(2l + 1)
(
sin2 δl

)
Pl(cos θ). (3.93)

With the known property of the associated Legendre polynomials

Pl(0) = 1 (3.94)

we obtain

�
(
f (0)

)
=

1
k

∞∑
l=0

(2l + 1)
(
sin2 δl

)
. (3.95)

Comparing this with expression (3.88) we arrive at

σt(l) =
4π

k
�
(
f (0)

)
. (3.96)

This result is know as the optical theorem. It states that the amount of particles scattered under all angles is
equivalent to the imaginary part of the scattering amplitude in the forward direction. The scattering, therefore,
creates a shadow of the incident beam. This is a very general result given that it can be derived from the pure
preservation of quantum mechanical probabilities.

3.5. The scattering length

The cut-off lmax – up to which partial waves have to be included in the expansion of the scattering amplitude
f (θ) – scales with the range of the interaction potential. In this context the relevant length scale is given by the wave
length of the probe particle. In fact, as we have seen in detail, the functions jl(rk) do not contribute significantly
in the region of the potential (r < r0) unless

√
l(l + 1) < kr0 = 2π r0

λ . The partial waves that possess negligible
presence in the interaction region of the potential can clearly not be strongly modified by the scattering process
and as a consequence are of little importance in the expansion of f (θ).

The above statement can be cast into a rigorous mathematical form. It can be shown [41] that in all generality

δl(k) ∝ k(2l+1), for k → 0, (3.97)

and this independent of the shape of the potential. Hence we can without any ambiguity define

b = − lim
k→0

δ0(k)
k

. (3.98)
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The quantity b is called the scattering length. It is real when there is no absorption in the scattering process. When
there is absorption the scattering length becomes complex and k dependent. Hence the scattering length has to be
specified for each k.

We would like to stress that the definition of the scattering length given here relies on working in the centre-of-
mass frame. We will treat the cross section of free particles in Section 3.8.

As a consequence of the scaling expressed in (3.97) only the phase shift δ0 survives in the expression for the
scattering amplitude if k goes to 0

f (θ)l=0
�k→0

=
1

2ik

√
4π
(
e2iδ0 − 1

)
Y00(θ) (3.99)

=
1

2ik

√
4πY00(θ)

(
2iδ0 + O

(
k2)) (3.100)

=
−1
2ik

√
4π2ibk

1√
4π

+ O(k) (3.101)

= −b+ O(k), (3.102)

where we have used

Y00 =
1√
4π

. (3.103)

The scattering length can, therefore, equally be defined as

b = − lim
k→0

f (θ) (3.104)

with

f (θ) =
e2iδ0 − 1

2ik
=

1
k

eiδ0 sin δ0. (3.105)

f (θ) is in particular independent of the scattering angle and thus isotropic for k 	 r. This result confirms that the
structure of a sample can only be studied at length scales longer than the wave length of the probe particle.

In arguments involving the imaginary part of the scattering amplitude we cannot limit ourselves to terms of
leading order. E.g. expression (3.93) becomes in the limit k → 0

�
(
f (0)

)l=0
�k→0 =

1
k

(
b2k2) = kb2. (3.106)

This is what we expect according to the optical theorem. As the total cross section for k → 0 is given by

σl=0
t = 4πb2 (3.107)

the optical theorem implies

�
(
f (0)

)l=0
=

k

4π
σl=0
t = kb2 for k → 0. (3.108)

In Fig. 14 we give the scattering length for neutrons. They are generally of the order of a few femtometre (10−15 m)
leading to cross sections of a few barns. From the scattering length we can calculate the associated phase shift
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Fig. 14. Nuclear neutron scattering length as a function of isotope (red points). The units are femtometre leading to cross sections of a few
barn (1 barn is equivalent to 10−24 cm2). The line denoted RX gives the scattering length for X-rays when scattered by the electronic
cloud of the corresponding atoms. (Picture courtesy of Laboratoire Léon Brillouin.) (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/JNR-140016.)

according to expression (3.104). For thermal neutrons the length of the k-vector is close to one Å−1. This leads to
phase shifts of the order of

|δ0| ≈ 10−6–10−4.

The phase shifts associated with neutron scattering are, therefore, really tiny.

3.6. Model potentials

We now will explicitly calculate the phase shift for simple isotropic model potentials. The most extreme case is
hard sphere scattering. The potential is described via

V (r) =

{
∞, r � r0,
0, r > r0.

(3.109)

With the potential barrier being infinitely high the wave function cannot penetrate into the interior of the sphere. If
we assume that the wave length has been chosen such that λ 
 r0 we may restrict ourselves to the s-type wave.
We are, therefore looking for the radial solution

R(r) = w0(r)/r

of the Schrödinger equation (expression (3.48))

(
− �

2

2m
d2

dr2 + V (r)

)
w0(r) = Ew0(r), (3.110)
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Fig. 15. A hard sphere expels the wave function of the probe particle from its interior. Here we show the radial part R(r) = sin(kr + δ)/(kr)
for a finite phase shift compared to a zero phase shift.

which becomes

r > r0:

(
d2

dr2 + k2
)
w0(r) = 0,

(3.111)
r � r0: w0(r) = 0.

The solutions to this equation is clearly of the form (see Fig. 15)

r > r0: w0(r) = C sin(kr + δ0),
(3.112)

r < r0: w0(r) = 0.

From the continuity condition at the boundary of the potential we derive that

kr0 + δ0 = nπ. (3.113)

For sufficiently small k this implies a linear phase shift in k

δ0 = −kr0, (3.114)

in agreement with the general expression (3.97). For the case of the hard sphere we find for the scattering length

b = r0. (3.115)

The scattering length is thus defined by convention in such a way that it is positive for a hard sphere.
For the total cross section we obtain

σt = 4πb2 = 4πr2
0. (3.116)

This cross section is four times larger than the geometric section of the sphere that we had found to represent the
classical scattering cross section in Section 2.4. A quantum mechanical treatment is, therefore, essential even in
this very simple case.
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In the case of the hard sphere, the scattering length is completely defined by the characteristic length of the
potential r0. This is no longer the case when we add a bit more complexity by going to the soft sphere

V (r) =

{
V0, r � r0,
0, r > r0.

(3.117)

We can easily determine the radial functions that satisfy the Schrödinger equation of this problem if we limit
ourselves to either being at the interior or at the exterior of the sphere. Demanding that the total function should be
continuous and differentiable at the surface of the sphere we can fix the phase δ0 for the s-type waves. From this
phase we can determine the scattering length in the limit where k → 0. The result can be expressed as

b = r0

(
1 +

tanh(k0r0)
k0r0

)
(3.118)

with

k0 =

√
2mV0

�2 . (3.119)

The hyperbolic tangent

tanhx =
ex + e−x

ex − e−x

is always smaller than one. Hence, the scattering length is positive and always smaller than the characteristic length
of the potential, as seen in Fig. 16.

The situation changes for spherical potential wells

V (r) =

{
−V0, r � r0,
0, r > r0.

(3.120)

The scattering length can again be easily calculated from the continuity conditions

b = r0

(
1 +

tan k0r0

k0r0

)
. (3.121)

We state without prove that the scattering length is always positive in the case of a repulsive potential. In the case
of an attractive potential, which is normally the case for neutron scattering by a nucleus, the sign of the scattering
length depends on the details (length, depth) of the potential. This variation of the scattering length plays a very
important role for neutron scattering (see Fig. 14). We would like to remark as well that the scattering length
diverges for

√
2mV0/�2r0 ≈ π/2 + nπ.

This is an effect called resonant scattering. It happens each time when – by raising either V0 or r0 – the system
accepts another bound state.
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Fig. 16. The scattering length b in the case of a potential wall of depth V0 and radius r0. b/r0 is shown as a function of

x = k0r0 =
√

2mV0/�2r0. It is seen that in contrast to a repulsive potential, the attractive potential is compatible with all scattering
lengths. The sign of b depends in a crucial manner on the parameters V0 and r0. Negative and very large values of b indicate the imminent
appearance of a bound state.

3.7. The effective potential

We have seen that in the case where the energy of the probe particle is so low that the scattering is purely of the
s-type it is entirely described by the scattering length b. In many practical cases the exact form of the potential is in
this limit without importance. Hence, it is useful to create a potential that gives the right phase shift for the s-wave
and that is otherwise as simple as possible. In other words, we seek a potential without any internal structure. The
obvious choice is a point.

Veff(r)ψ(r) =
2π�

2

m
bδ(�r )

d
dr

∣∣∣
r=0

(
rψ(r)

)
(3.122)

is an effective potential that fulfills the required criteria. In fact, the s-wave function

ψ(r) =
sin(kr + δ0)

kr
(3.123)

is an eigenfunction of the Schrödinger equation

�
2

2m

[
Δ + Veff(r)

]
ψ(r) =

�
2k2

2m
ψ(r), (3.124)

provided that

k tan−1 δ0(k) = −1
b
. (3.125)
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The proof of this statement is not trivial. The identity

Δf (r) =
1
r

d2

dr2

(
rf (r)

)
(3.126)

only holds if f (r) is not singular at r = 0. We can construct such a regular function by posing

f (r) := ψ(r) − ψ(0) =
sin(kr + δ0)

kr
− sin δ0

kr
. (3.127)

In order to calculate the term

sin δ0

k
Δ

1
r

(3.128)

we use the equation

Δ
1
r
= −4πδ(�r ), (3.129)

which is well known from electrostatics.
In the limit k → 0 condition (3.125) reduces to

lim
k→0

δ0

k
= −b, (3.130)

which corresponds to the correct definition of the scattering length b.
The effective potential only depends on one parameter

g =
2π�

2

m
b, (3.131)

which determines the scattering power without need for knowing the range or depth of the potential. It is called the
coupling constant between probe and target.

3.8. The cross section of free particles

If the scatterer is found in a free state we have to take into consideration the two-particle character of the motion.
The concepts of partial waves and in particular the scattering length have been developed for scattering by a static
potential. To apply these concepts to the two-particle problem we have to work in the centre-of-mass frame (see
also footnote 18 at the beginning of Section 3).28

The cross section is generally measured in the laboratory frame (see Sections 1.2 and 2.4). Since s-wave scat-
tering is isotropic in the centre-of-mass frame it is generally no longer isotropic in the laboratory frame. In order
to go beyond this qualitative statement and to retrieve the specific form of the cross section in the laboratory frame
we have to go into the details of the relation between the two reference systems. The scattering angles θ and φ are
defined by the direction of the outgoing wave vector �kf with respect to the incoming wave vector �ki. As both wave
vectors depend on the reference frame so do a priori the scattering angles. We start by determining how the angles
θL and φL in the laboratory frame change under the Galilean transformation into the centre-of-mass frame.

28In addition, we have to be aware that whenever the mass of the particle, which is considered the probe, appears in the formalism describing
the motion in the potential it has to be replaced by the reduced mass

μ =

(
1

mp
+

1

mt

)−1
. (3.132)
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Fig. 17. Transformation of scattering from the laboratory frame to the centre-of-mass frame. Due to the symmetry around φ the scattering plane
may be chosen as the x–z plane without loss of generality. �V L is the velocity of the centre-of-mass system in the laboratory frame. The target
particle is assumed initially at rest in the laboratory frame. �v c.m.

p and �v L
p denote the velocities of the probe particle after the scattering in the

centre-of-mass and laboratory frame, respectively. The scattering angles θc.m. and θL are determined unambiguously by these velocities.

The angle φL defines the orientation of the scattering plane. As the transformation to the centre-of-mass frame
leaves the scattering plane invariant we deduce

φ := φL = φc.m..

To determine the transformation properties of θ we may, without loss of generality, place the scattering plane into
the x–z plane of the reference system (see Fig. 17). We recall that the origin of the laboratory frame coincides with
the position of the target before the scattering, this means that the target is at rest in this reference system. From
the addition of velocities (see Section 2.1) and basic geometric considerations we obtain for elastic scattering29

cos θL =
vc.m.
p

vL
p

(
cos θc.m. +

V L

vc.m.
p

)
,

(3.133)

sin θL =
vc.m.
p

vL
p

sin θc.m.,

with �v c.m.
p and �v L

p the velocities of the probe particle after the scattering in the centre-of-mass and laboratory

frame, respectively. �V L denotes as before the velocity of the centre-of-mass motion.
From these identities we obtain

tan θL =
sin θc.m.

cos θc.m. + V L/vc.m.
p

=
sin θc.m.

cos θc.m. + γ
(3.134)

or equivalently

cos θL =
γ + cos θc.m.√

1 + 2γ cos θc.m. + γ2
(3.135)

29We assume that neither probe nor target have internal degrees of freedom. This does not mean that the probe preserves its energy in the
laboratory frame. To the contrary, in the laboratory frame energy and momentum conservation lead necessarily to a change of energy of the
probe apart from the special case of infinitely massive targets, for which laboratory and centre-of-mass frames coincide.
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with

γ :=
V L

vc.m.
p

=
mp

mt

the ratio between the mass of the probe mp and the mass of the target particle mt.
Therefore, the elastic cross section for the collision in the laboratory frame is related to the cross section in the

centre-of-mass frame via [33,41]

(
dσ
dΩ

)
lab

(
θL(θc.m.)) = ( dσ

sin θL dθL dφL

)
lab

(
θL(θc.m.))

=

(
dσ

d cos θL dφL

)
lab

(
θL(θc.m.))

=

∣∣∣∣d cos θc.m.

d cos θL

∣∣∣∣
(

dσ
dΩ

)
c.m.

(
θc.m.)

=
(1 + γ2 + 2γ cos θc.m.)3/2

|1 + γ cos θc.m.|

(
dσ
dΩ

)
c.m.

. (3.136)

Therefore, the transformation is uniquely determined by the parameter γ. If we take the case of a neutron being
scattered by a free proton then γ ≈ 1. Thus

cos θL =
1√
2

√
1 + cos θc.m. (3.137)

and (
dσ
dΩ

)
lab

(
θL) = 2

√
2
√(

1 + cos θc.m.
)( dσ

dΩ

)
c.m.

(
θc.m.). (3.138)

If we restrict ourselves to s-wave scattering then we get in the centre-of-mass frame isotropic scattering of the form

(
dσ
dΩ

)
c.m.

(
θc.m.) = |b|2, (3.139)

where we have taken into consideration that for the proton there are two scattering channels due to the spin states.
|b|2 is the mean squared scattering length derived from these two states (see Section 6.3 for further discussion).
This leads to the following form of scattering in the laboratory frame

(
dσ
dΩ

)free

lab

(
θL) = |b|2 cos θL; θL � π

2
,

= 0; θL >
π

2
. (3.140)

In the laboratory frame the scattering is, therefore, limited to the forward half-sphere. It evolves from its maximum
value in the forward direction proportional to the cosine of the scattering angle. For the extreme case of θL = π/2
we obtain in the centre-of-mass frame θc.m. = π. The neutron experiences back-scattering in the centre-of-mass
frame. Its velocity in the centre-of-mass frame is not impacted by the scattering. It, therefore corresponds to half
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the velocity of the incoming neutrons in the laboratory frame. In consequence the neutron necessarily stops in the
laboratory frame by transferring all its energy to the proton.30

By integrating equation (3.140) over dΩ we obtain the total cross section

σfree = π|b|2. (3.141)

We now can fix the proton in position by hypothetically letting its mass tend to infinity. In that case γ will tend to
zero and as expected the centre-of-mass cross section is identical to the cross section in the laboratory frame

(
dσ
dΩ

)bound

lab

(
θL) = |b|2. (3.142)

We obtain by integration for the total cross section

σbound = 4π|b|2 = 4σfree. (3.143)

The total cross section measured in the laboratory for a neutron hitting a free proton is thus only a quarter of the
total cross section of a neutron hitting a bound proton.

In the remainder of the article we will work predominantly with bound particles. The possibility of recoil is
automatically taken into account in the formalism that deals with inelastic effects (see Section 8.10).

3.9. The integral equation for scattering

All information about the sample is contained in the scattering amplitude f�k(θ,φ). In order to take advantage of
the experimental results we need to find a method that allows us to relate the measured scattered amplitude to the
microscopic properties of the sample. Analytic solutions only exist for simple potentials of the kind that we have
encountered in the previous section. For potentials of real practical value we need to perform numerical calculations
or use perturbation theory. In the two cases it is desirable to establish a direct link between the scattering amplitude
and the interaction potential of the form

f�k(θ,φ) = L�k
V (3.144)

with an operator L that preferentially does not contain a differential operator but sums and integrals. Relations of
this type exist almost everywhere in physics. A well known example is the calculation of an electric field from a
given charge distribution.

We would now like to establish such a relation for the scattering of neutrons. To keep the formalism reasonably
simple we retain for the moment the static character of the potential, which means that we are as in the previous
sections looking for stationary solutions to the Schrödinger equation

[
− �

2

2m
Δ + V (�r )

]
u(�r ) = Eu(�r). (3.145)

In order to find approximate solutions to this equation we turn to perturbation theory. This requires that the non-
perturbed system can be solved. In the case of scattering the unperturbed system corresponds to the free particles.
In other words, it is the specificity of scattering that all potentials constitute a perturbation. Due to this, scattering is

30There is no classical analog for s-wave scattering from a point-like potential. Only a head-on collision with an impact parameter equal to
zero would lead to scattering for a point-like classical target. In this case energy and momentum conservation imply that the probe stops and
that the target continues along the same direction with equal speed. The quantum scenario leads to scattering over the full forward half-sphere.
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an extreme case in terms of perturbation calculations. As a first step towards an approximative solution we isolate
all the terms including the potential in the Schrödinger equation

− �
2

2m

(
Δ + k2)u�k(�r ) = −V (�r )u�k(�r ). (3.146)

Guided by the language of electrostatics and consistent with the mathematical language of differential equations
we introduce the concept of a source31

j�k(�r ) := V (�r )u�k(�r ). (3.149)

The Schrödinger then becomes

Du�k(�r ) = j�k(�r ) (3.150)

with the operator

D := −(H0 − E). (3.151)

The source j�k(�r ) can be considered as the origin of the scattering field that we need to determine.32

Since the Schrödinger equation is linear the solutions are additive. We can exploit this fact in order to formally
integrate (3.150). Still guided by the analogy with electrostatics we start from the principle that all smooth poten-
tials V (�r ) and thus the source j�k(�r ) can be expressed as a superposition of point sources33 (δ-functions or Dirac
distributions)

j�k(�r ) =
∫

d3r′j�k
(
�r ′
)
δ
(
�r − �r ′

)
. (3.153)

We introduce the Green function G0(�r,�r ′) as the solution to the equation

DG0
(
�r,�r ′

)
=

�
2

2m

(
Δ + k2)G0

(
�r,�r ′

)
= δ
(
�r − �r ′

)
. (3.154)

31A typical example of a differential equation that has a source term is the first Maxwell equation. For static systems

�∇ · �E(�r ) =
ρ(�r )

ε0
. (3.147)

The electric charge density ρ(�r ) acts as the source of the electric field �E(�r ). It leads to Poisson’s equation

Δφ(�r ) = −ρ(�r )

ε0
, (3.148)

which allows to determine an electrostatic potential from a given charge distribution.
32As we have included the term (�2/2m)k2u�k

(�r ) on the left-hand side of the equation the scattering field u�k
(�r ) is nevertheless not trivial

even in the absence of a source. For V (�r ) = 0 the source of the scattering field disappears but the Schrödinger equation still contains non-trivial
solutions

H0u
0
�k

(�r ) = − �2

2m
Δu�k(�r ) = Eu0

�k
(�r ). (3.152)

33In the case of the Maxwell equation cited above the charge distribution is expressed as an integral over point charges q. ρ(�r ) = qδ(�r ) is
the mathematical expression for a charge that is found at the origin.



H. Schober / An introduction to the theory of nuclear neutron scattering in condensed matter 153

Hence the Green functions are solutions to the Schrödinger equation for single point sources. If this function is
known the solution u�k(�r ) for any source can be calculated using superposition

u�k(�r ) = C(�r ) +
∫

d3r′G0
(
�r,�r ′

)
j�k

(
�r ′
)
. (3.155)

In fact, as the operator D acts on the variable �r we obtain by permuting derivation and integration, and by using
the defining property of G0(�r,�r ′)

D�r u�k(�r ) = D�r

∫
d3r′G0

(
�r,�r ′

)
j�k

(
�r ′
)

=

∫
d3r′D�rG0

(
�r,�r ′

)
j�k

(
�r ′
)

=

∫
d3r′δ

(
�r − �r ′

)
j�k

(
�r ′
)

= j�k(�r ) (3.156)

under the condition that

D�rC(�r ) =
�

2

2m

(
Δ + k2)C(�r ) = 0. (3.157)

C(�r ) therefore has to correspond to the wave function of the free incident particle

C(�r ) = u0
�k

(�r ). (3.158)

Using the definition (expression (3.149)) for the source j�k(�r ) the final result can be written as

u�k(�r ) = u0
�k

(�r ) +
∫

d3r′G0
(
�r,�r ′

)
V
(
�r ′
)
u�k

(
�r ′
)
. (3.159)

The wave function (the field) that we have to determine is defined by this so-called integral form of the Schrödinger
equation. As the parameter �k samples the full Hilbert space we are dealing with an infinite set of equations. Each
equation pertains to a different free particle state |u0

�k
〉. It determines how this state evolves when switching on the

interaction V (�r ). There is a one-to-one correspondence of the unperturbed state |u0
�k
〉 with the eigenstate |u�k〉 that

develops in the presence of the potential. The set of integral equations in its totality is completely equivalent to the
original set of stationary Schrödinger equations in their differential form.

The advantages of working with the integral form of the equation are not a priori obvious. The wave functions
that we are trying to determine are referred to themselves as they enter on both sides of Eq. (3.159). The solutions,
therefore, have to be developed self-consistently. In consequence we have not achieved our original goal that
consisted in developing a formalism that allows calculating the wave-function in a straightforward manner with
the potential as the only input. The real advantage of the integral equation resides in the fact that it is ideally suited
for iteration and thus constitutes, as we will see, a perfect entry point for a perturbation treatment.

3.10. The Green function

Before embarking on perturbation theory we are going to give the explicit form of the Green function

G0
(
�r,�r ′

)
= − 1

4π
· 2m

�2 · e(ik·|�r−�r ′|)

|�r − �r ′| . (3.160)
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Not surprisingly the Green function corresponds to a spherical wave with the point source as its origin. We could
have intuitively derived this result using the arguments exposed in Section 3.1 for deciding on the asymptotic form
of the wave function.34

A proper mathematical derivation is unfortunately a bit more involved. We start by reformulating Eq. (3.154)

(E − H0)G0
(
�r,�r ′

)
= δ
(
�r − �r ′

)
. (3.161)

In the following it is useful to be very precise with respect to the notation and to clearly indicate the fact that we
work in the real space basis of the Hilbert space. Thus〈

�r
∣∣(E − H0)G0

(
�r,�r ′

)∣∣�r ′〉 = 〈�r |�r ′〉. (3.162)

This result shows that formally35

G0 =
1

(E − H0)
, (3.164)

which means that Green’s operator is the inverse of the operator (E − H0). For the Green function formulated in
real space this implies that

G0
(
�r,�r ′

)
=

〈
�r

∣∣∣∣ 1
(E − H0)

∣∣∣∣�r ′
〉
. (3.165)

The solutions to the Schrödinger equation in absence of a potential are plane waves

〈�r |�k〉 = u0
�k

(�r ) =
1√
V

ei�k·�r (3.166)

with

H0|�k〉 =
�

2k2

2m
|�k〉. (3.167)

Using E = �
2k2/2m and the fact that

(E − H0)
2m

�2(k2 − k′2)

∣∣�k ′〉 = ∣∣�k ′〉 (3.168)

identifies 2m/�
2(k2 − k′2) with the inverse of (E−H0) in the basis of the Hilbert space formed by the momentum

eigenstates {|�k ′〉}. We may, therefore, express Green’s operator in the alternate form

1
(E − H0)

=

∫
d3k′

1
(E − H0)

∣∣�k ′〉〈�k ′∣∣ = 2m
�2

∫
d3k′

1

(k2 − k′2)

∣∣�k ′〉〈�k ′∣∣, (3.169)

34For a point-like potential that has no extension any distance is asymptotically far away.
35Often the Green function for scattering is defined as

G0 = lim
ε→+0

1

(E − H0) + iε
. (3.163)

The term iε in the denominator moves the poles of the Green function away from the real axis and allows for a simplified integration path
in the complex plane when calculating the residues. We will not dwell on these mathematical details as in our opinion they do not add to the
comprehension of the underlying physics.
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which in real space gives us

〈
�r

∣∣∣∣ 1
(E − H0)

∣∣∣∣�r ′
〉

=
1
V

2m
�2

∫
d3k′

ei�k ′·(�r−�r ′)

(k2 − k′2)
. (3.170)

The remaining mathematical difficulty resides in the evaluation of this integral in the presence of poles at the points
k2 = k′2. This is the field of residue calculation. The interested readers is asked to consult specialised books. The
applicable solution to the scattering problem is given by expression (3.160) with a normalisation volume chosen to
be V = (2π)3.

Inserting (3.160) into (3.159) we get the following expression for the wave function

u�k(�r ) = u0
�k

(�r ) +
∫

d3r′G0
(
�r,�r ′

)
V
(
�r ′
)
u�k

(
�r ′
)

= u0
�k

(�r ) − 1
4π

2m
�2

∫
d3r′

exp(ik · |�r − �r ′|)
|�r − �r ′| V

(
�r ′
)
u�k

(
�r ′
)
. (3.171)

3.11. The Born series and the Born approximation

The expression (3.171) has a precise physical interpretation (see Fig. 18). In absence of a potential the incident
particle behaves as a free particle described by the wave function u0

�k
(�r ). The potential is a source of perturbation.

Fig. 18. Schematic representation of the Born series. Without a potential V (�r ′) the incident beam is described by a plane wave with a wave
vector �k. Each point in the interaction region is a potential source of scattering and can thus generate spherical waves. The probability of such
an event depends both on the potential and the wave function itself. In other words, the wave function is coupled to itself by the intermediary of
the potential. The created spherical waves become sources of scattering in their own right. The complete process can be resumed in an infinite
series of scattering processes (see expression (3.175)). This series can be truncated if the interaction is sufficiently weak. Retaining only the
first term means working in the Born approximation (see expression (3.177)). In this case the scattered wave is the sum of all the spherical
waves created by the unperturbed incident wave. It is observed in a direction �r that is defined by the final wave vector �kf . In this approximation
the summation of spherical waves corresponds to a Fourier transformation of the potential (see expression (3.188)).
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Each point �r in space where the potential V (�r ) is non-zero is a potential source of a spherical wave. The amplitude
of this wave is proportional to both the interaction force of perturbation (the potential) and the wave function at
this point. This is plausible if the wave function is considered as the probability of the presence of a particle at this
point. If this probability is high the probability of generating a perturbation is also high. If on the other hand the
probability of presence is zero at a given place then there is no creation of a spherical wave even if the potential
is non-zero. Now we understand why the wave function appears in the expression (3.149) for the source. All the
mathematical problems come from this intricacy: The wave function we are looking for is both the source and the
result of the perturbation.

The integral expression has the advantage over the differential expression that it is amenable to iteration. By
simple substitution we find

u�k(�r ) = u0
�k

(�r ) +
∫

d3r′G0
(
�r,�r ′

)
V
(
�r ′
)
u�k

(
�r ′
)

= u0
�k

(�r ) +
∫

d3r′G0
(
�r,�r ′)V (�r ′)u0

�k

(
�r ′
)

+

∫
d3r′′

∫
d3r′G0

(
�r,�r ′)V (�r ′)G0

(
�r ′,�r ′′)V (�r ′′)u�k(�r ′′). (3.172)

This way of explicitly writing the wave function becomes very fast impractical. By working with Green’s operator
that acts as follows on the wave functions

G0|u�k〉 =
∫

d3r′G0
(
�r,�r ′)u�k(�r ′) (3.173)

we can reformulate expression (3.172) in a more compact way

|u�k〉 =
∣∣u0

�k

〉
+ G0V |u�k〉

=
∣∣u0

�k

〉
+ G0V

∣∣u0
�k

〉
+ G0V G0V |u�k〉. (3.174)

This equation is known as the Lippmann–Schwinger equation. It is of fundamental importance in all perturbation
calculations.

Pushing the iteration to the extreme leads to the Born series.

|u�k〉 =
∞∑
n=0

(G0V )n
∣∣u0

�k

〉
. (3.175)

The operator

Ω :=
∞∑
n=0

(G0V )n, (3.176)

that produces the scattered function |u�k〉 from the unperturbed wave function |u0
�k
〉 is called the wave operator. It

depends on the interaction between probe and target whether and where to truncate this series. If we assume that
the perturbation experienced by the initial wave function in the course of scattering is small then we may use the
unperturbed function to describe the source term in the integral expression. In this case we can limit ourselves to
the lowest order of perturbation

|u�k〉 =
∣∣u0

�k

〉
+ G0V

∣∣u0
�k

〉
. (3.177)
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This is called working in the Born approximation. If the Born approximation is applicable then we have made
a great leap forward. We are capable of calculating the wave function of the scattered particles starting from the
interaction potential.

We will discuss in some detail what small means in Section 3.13 that deals with the conditions of validity of the
Born approximation. We will see that the Born approximation is applicable to most experimental situations where
slow neutrons are scattered from condensed matter. Working in the Born approximation we assume that all the
atoms in the sample see the arriving neutrons as if all the other atoms where not present. In particular the number
of scattered neutrons is so low that in practice there is no attenuation effect on the incident flux over the irradiated
volume.36

3.12. Integral form of the scattering amplitude

In order to make the link with the scattering amplitude we need to determine the asymptotic form of the wave
function. We will start from the general form given by expression (3.171) that we reproduce here for convenience

u�k(�r ) = u0
�k

(�r ) +
∫

d3r′G0
(
�r,�r ′

)
V
(
�r ′
)
u�k

(
�r ′
)

= u0
�k

(�r ) − 1
4π

2m
�2

∫
d3r′

exp(ik · |�r − �r ′|)
|�r − �r ′| V

(
�r ′
)
u�k

(
�r ′
)

and then will introduce the specificities related to the Born approximation along the way. For the positions �r very
far from the sample, this means for the |�r| that are large compared to the length |�r ′| that characterise the potential,37

we can expand the distance |�r − �r ′| as

∣∣�r − �r ′
∣∣ =√r2 + r′2 − 2�r · �r ′ ≈ r

(
1 − �r · �r ′

r2

)
. (3.178)

The denominator |�r − �r ′| of the function

exp(ik · |�r − �r ′|)
|�r − �r ′| (3.179)

varies very slowly with r′. Hence it can be replaced by r to a very good approximation. This is not the case for the
exponential exp(ik · |�r−�r ′|). It varies strongly for distances r′ that are comparable to the wave length λ = 2π/k.38

As a consequence of these fast variations we have to keep the linear term in r′ even for very long distances r . The
wave function then becomes

r → ∞: u�k(�r ) =
1

(2π)3/2
ei�k·�r − 1

4π

2m
�2

eik·r

r

∫
d3r′ exp

(
−ik ·

(
r̂ · �r ′

))
V
(
�r ′
)
u�k

(
�r ′
)
. (3.180)

36There are experimental situations where this is not necessarily the case and this despite a small scattering length. A typical example is the
Bragg scattering of a high-quality crystal. The scattering power is so high for the selective set of �Q values that satisfy Bragg’s law, that the
incident beam is strongly attenuated even after only a few atomic layers. This is called an extinction effect. In this case one should use a more
complex theory which is the dynamic scattering theory (see Section 11.5).

37In optics this condition corresponds to Fraunhofer diffraction (see Section 4.1).
38As we will see later it is these variations that produce the interference phenomena in the scattered beam and thus are at the origin of the

transmission of structural information into the scattering amplitude. These interference phenomena will depend crucially on the wave length,
which, therefore, has to be chosen with great care.
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This is the asymptotic form that we have expected. The comparison to expression (3.4) allows to identify the
scattering amplitude as

f�k(Ω) = −
√

2πm

�2

∫
d3r′ exp

(
−ikr̂ · �r ′

)
V
(
�r ′
)
u�k

(
�r ′
)
. (3.181)

It only depends on the direction r̂ and on the wave vector �k of the sample. At this point it is advantageous to
introduce the vectors

�ki := �k, (3.182)

�kf := kr̂, (3.183)

�Q := �ki − �kf . (3.184)

With this notation and

〈r|�k〉 = 1

(2π)3/2
ei�k·�r

we find

f (�kf ,�ki) = −4π2m

�2

〈
�kf |V |u�ki

〉
= −4π2m

�2

〈
�kf |V Ω|�ki

〉
. (3.185)

This expression allows us to define the transition operator T via

f (�kf ,�ki) = −4π2m

�2

〈
�kf |T|�ki

〉
. (3.186)

In the Born approximation (Ω → 1, T → V ) and, therefore,

f (�kf ,�ki) = −4π2m

�2

〈
�kf |V |�ki

〉
, (3.187)

which we can write as

f �Q(Ω) = − 1
2π

m

�2

∫
d3r′ei �Q·�r ′

V
(
�r ′
)
. (3.188)

This is a remarkable result. The scattering amplitude is simply proportional to the Fourier transform of the inter-
action potential. Therefore, in cases where the Born approximation is applicable we fully reached our goal, which
was to connect the scattering amplitude to an intrinsic property of the sample (see expression (3.144)).

The total wave function is obtained in the asymptotic region r → ∞ as

u�k(�r ) =
1√

(2π)3

(
ei�k·�r + f �Q(Ω)

eikr

r

)

=
1√

(2π)3

(
ei�k·�r − 1

2π

m

�2

eikr

r

∫
d3r′ei �Q·�r ′

V
(
�r ′
))

. (3.189)
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3.13. Validity of the Born approximation for simple potentials

A necessary condition for the applicability of the Born approximation is the rapid convergence of the Born series

〈�r |u�k〉 = 〈�r |
∞∑
n=0

(G0V )n
∣∣u0

�k

〉
. (3.190)

This implies that the first term should be small at all points with respect to the incoming plane wave. Formally,

∣∣〈�r |G0V
∣∣u0

�k

〉∣∣	 ∣∣〈�r |u0
�k

〉∣∣. (3.191)

Writing this expression explicitly as an integral over the Green function this condition reads

∣∣∣∣− 1
4π

2m
�2

∫
d3r′

exp(ik · |�r − �r ′|)
|�r − �r ′| V

(
�r ′
)
u0
�k

(
�r ′
)∣∣∣∣	 ∣∣u0

�k
(�r )
∣∣. (3.192)

The condition has to be fulfilled for all �r lying inside the range of the potential V (�r ) and, therefore, in particular
for �r = 0∣∣∣∣ 1

4π

2m
�2

∫
d3r′

exp(−ik · r′)
r′

V
(
�r ′
)

exp
(
i�k · �r ′

)∣∣∣∣	 1. (3.193)

If the potential is spherically symmetric V (�r ) = V (r) then we can integrate the angular part of this expression

Δ :=

∣∣∣∣ 1
4π

2m
�2

∫
d3r′

exp(−ik · r′)
r′

V
(
r′
)

exp
(
i�k · �r ′

)∣∣∣∣
=

∣∣∣∣ 1
4π

2m
k�2

∫ r0

0
r′2dr′

exp(−ik · r′)
r′

V
(
r′
) ∫ 2π

0
dφ
∫ π

0
sin θ dθ exp

(
ik · r′ cos θ

)∣∣∣∣
=

∣∣∣∣ mk�2

∫ r0

0
r′2dr′

exp(−ik · r′)
r′

V
(
r′
) ∫ π

0
d(cos θ) exp

(
ik · r′ cos θ

)∣∣∣∣
=

∣∣∣∣ mk�2

∫ r0

0
r′2dr′

exp(−ik · r′)
r′

V
(
r′
)[ 1

ik · r′
[
exp
(
−ik · r′

)
− exp

(
ik · r′

)]]∣∣∣∣
=

∣∣∣∣ 2mk�2

∫ r0

0
dr′exp

(
−ik · r′

)
sin
(
k · r′

)
V
(
r′
)∣∣∣∣

=

∣∣∣∣ m

2ik�2

∫ r0

0
dr′
[
exp
(
2ik · r′

)
− 1
]
V
(
r′
)∣∣∣∣, (3.194)

with r0 denoting the range of the potential. If the energy of the probe particle is low, i.e. if kr0 	 1, then

[
exp
(
2ik · r′

)
− 1
]
≈ 2ikr′.

Therefore, Δ 	 1 under the condition that

2m
�2

∫ r0

0
rV (r) dr 	 1. (3.195)
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This is called the low-energy validity condition for the Born approximation. For a square well potential of depth V0
(see definition (3.120)) this condition reduces to

mV0r
2
0

�2 	 1. (3.196)

We recall that the more we confine a particle the stronger become the zero point fluctuations and, therefore, the
higher is the ground state energy.

To get a better feeling for the condition we introduce the energy

E(λ = r0/2π) =
�

2

2mr2
0

of a probe particle that features a wave vector

k =
1
r0

.

Then the low-energy condition becomes

V0

2E
	 1. (3.197)

The condition is fulfilled if the potential is very much deeper than the energy of a probe particle that possess a
wave length of the order of the potential range r0.

For a potential well to be able to host a particle in a bound state the condition

mV0r
2
0

2�2 ≈ π2

8
≈ 1

has to hold. E.g. in the case of a narrow deep potential (V0 → ∞, r0 → 0 with V0 · r0 fixed) we get exactly one
bound state at

E0 ≈ −mV0r
2
0

2�2 V0.

A potential accepting a bound state is, therefore, a very bad candidate for applying the Born approximation in the
low energy limit. This implies in particular that the Born approximation is not suitable for treating the scattering of
low-energy neutrons in the potential of nuclei. The range r0 of the nuclear interaction lies at about 10−15 m. For
neutrons with wave lengths of a few Å

r0 · k < 10−4.

We are, therefore, clearly in the low-energy regime (see Section 5.8). However, typical values for the potential
strength V0 are of the order of the nuclear binding energy, i.e. tens of MeVs and, therefore,

mV0r
2
0

�2 =
V0

2E(k = 1 Å
−1

)
r2

0[Å] ≈ tens of MeV
4 meV

10−10 ≈ 1.

As a consequence multiple scattering is strong within the range of the potential. The problem of a neutron scattered
by a nucleus is, therefore, way better treated within the partial wave method that we have developed in Section 3.3
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and that let to the description of this scattering by a simple scattering length b (see Section 3.5). The result is not
surprising given the fact that the neutron interacts with the nuclei via the strong interaction, however, over a very
short distance on the length scale of the neutron wave length.

This result may surprise given that nearly the totality of all neutron scattering experiments are evaluated under
the Born approximation. This is possible because the scattering from a single nucleus can be described with the
help of the effective potential using the experimentally determined scattering length (see Sections 3.7 and 5.8).
The scattering from an ensemble of nuclei in condensed matter can then be dealt with in the Born approximation
because the distance between the scatterers leads to such a dilution of scattering strength that the perturbation of
the incoming wave front is weak for most experimental situations (see Sections 11.5 and 6.5).

The situation changes when we go to very energetic particles. In this case the function

exp
(
2ik · r′

)
oscillates strongly over regions where V (r) can be assumed to be constant. It thus does not contribute to the
integral. Therefore, for kr 
 1

Δ =

∣∣∣∣ mk�2

∫
dr′V

(
r′
)∣∣∣∣. (3.198)

For a square well potential the condition Δ 	 1 is fulfilled for

mr0V0

k�2 =
r0V0

�v
	 1, (3.199)

with v = �k/m the velocity of the scattered particle, where we have to make sure that we stay in the non-relativistic
regime. This is called the high-energy condition for the validity of the Born approximation. In the high-energy
regime the Born approximation is, therefore valid even for potentials that support bound states.39 If we were trying
to work in this regime with the partial wave approach we would be obliged to include a very large number of terms.
We, therefore, see the interest of developing both techniques even in the case of simple central potentials.

3.14. A word concerning scattering of electro-magnetic radiation

We have repeatedly stressed that the concepts developed here are transposable to the scattering of photons and
in particular X-rays. This may surprise given that everything we have done so far is based on the non-relativistic
Schrödinger equation while electromagnetic radiation is governed by the relativistic Maxwell equations. While it
cannot be the purpose of this article to develop a full scattering theory for electromagnetic radiation we would like
to outline very briefly the principle reason for the similarity of non-relativistic particle and photon scattering from
condensed matter.

We start by writing down the Maxwell equations using the elegant form of the electromagnetic potential given
as the four-vector

Ā(�r, t) =
(
Φ(�r, t), �A(�r, t)

)
, (3.200)

from which we can derive the electric

�E(�r, t) = −�∇Φ(�r, t) − 1
c

∂ �A(�r, t)
∂t

(3.201)

39It should be remembered that when treating the bonding in two particle systems the mass m has to be replaced by the reduced mass μ.
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and magnetic fields

�B(�r, t) = �∇× �A(�r, t). (3.202)

Introducing the four-current density

J̄ =

(
ρ(�r, t),

1
c
�j(�r, t)

)
=

(
ρ(�r, t),

1
c

,�jx(�r, t),�jy(�r, t),�jz(�r, t)

)
, (3.203)

with ρ(�r, t) the electric charge density and �J(�r, t) the electric current density, the Maxwell equations can be written
in the compact form

(
Δ − 1

c2

∂2

∂t2

)
Aμ(�r, t) = −4πJμ(�r, t). (3.204)

We are dealing with four inhomogeneous wave equations. The current densities Jμ constitute the source terms.
The main difference of these equations with respect to the Schrödinger equation is the fact that they are not only
quadratic in the derivatives with respect to space but equally with respect to time, which is a natural consequence
of Lorentz invariance. Without current, i.e. in source-free space the associated wave functions are separable

Aμ(�r, t) = ei�ωtAω
μ(�r) (3.205)

with

E = � · ω = h · ν = h
c

λ
= � · c · k. (3.206)

The stationary wave functions ψω
μ (�r) have to satisfy the equations

ΔAω
μ(�r) + k2Aω

μ(�r) = 0. (3.207)

These equations are known as the Helmholtz equations. They are identical to the Schrödinger equation for free
particles (3.3). The two unperturbed stationary systems are, therefore, described by the same kind of wave function.

The electric and magnetic fields in free space are, therefore, given as

�E = �E0 exp i(�k · �r − ωt), �B = �B0 exp i(�k · �r − ωt). (3.208)

The 6 components of �E and �B are not independent. The Maxwell equations imply that

�∇ · �E0 = i�k · �E0 = 0 (3.209)

and

�∇ · �B0 = i�k · �B0 = 0. (3.210)

The field amplitudes �E0 and �B0 are, therefore, perpendicular to the propagation vector �k. Light has transverse
character. In addition

�∇× �E = −∂t �B (3.211)
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leads to

�k × �E = ω �B. (3.212)

Therefore, �E ⊥ �B. The magnetic field is perpendicular to the electric field. All this is specific to light scattering in
the same way as spin polarisation is specific to non-relativistic fermion scattering.

Let us now come back to the commonalities and check what happens in the case of a perturbation. For this we
need the Green function as defined via

[
Δr + k2]Ge.m.(�r,�r ′

)
= δ
(
�r − �r ′

)
. (3.213)

It is found as

Ge.m.
0

(
�r,�r ′

)
= − 1

4π
· e(ik·|�r−�r ′|)

|�r − �r ′| , (3.214)

which is identical to the Green function for non-relativistic particles of expression (3.214)

G0
(
�r,�r ′

)
= − 1

4π
· 2m

�2 · e(ik·|�r−�r ′|)

|�r − �r ′| , (3.215)

apart from the pre-factor. Knowing the Green function we can solve the inhomogeneous or “source-full” wave
equations by simple integration over space

Φ(�r, t) =
∫
V

ρ(�r ′, t− |�r − �r ′|/c)
|�r − �r ′| d3�r ′, (3.216)

�A(�r, t) =
∫
V

�j(�r ′, t− |�r − �r ′|/c)
|�r − �r ′| d3�r ′, (3.217)

where for time-dependent four-current densities we have taken into account the retardation of the signal when
travelling from �r to �r ′. If instead of external charges and currents we want to calculate the perturbation that
experience stationary electromagnetic fields due to scattering then the source terms Jμ have to be replaced by
V (�r )Aω

μ(�r, t). In this way we recover the expressions for the Born series in complete analogy to the non-relativistic
particle case.

4. Diffraction from simple objects

To demonstrate how expression (3.188) is applied in practice we will embark on a short excursion into the world
of diffraction. By using simple diffracting objects like slits and gratings we will familiarise ourselves with the
principle concepts that underlie structural determination from diffraction patterns. Using expression (3.188) we
could calculate these patterns directly for massive probe particles like neutrons. We will choose a slightly more
indirect route. Exploiting the fact that expression (3.188) is in nearly all aspects equivalent to the Huygens–Fresnel
principle for optical diffraction we will calculate the diffraction patterns for light. We consider this pedagogical
advantageous as most of the readers will be familiar with the diffraction of light. The results obtained are without
modification transferable to X-ray, neutron or electron diffraction. As no new concepts will be developed in Sec-
tions 4.1–4.6 readers already familiar with the application of expression (3.188) to diffraction may directly proceed
to Section 4.7.
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4.1. The Huygens–Fresnel principle

In optics the interpretation of diffraction and refraction is based on the Huygens–Fresnel principle [32,44].
According to this principle, each surface element that the luminous wave front meets acts itself as a light source
emitting spherical wavelets. The amplitude of theses wavelets is proportional to both the intensity of the incoming
light and the surface area of the emitting element. The complex light amplitude produced at any given point by the
ensemble of secondary sources is simply the sum of the complex amplitudes of the wavelets. Without perturbation
the interference among the wavelets is such that it leads to straight propagation. This is the regime of geometric
optics. When the light meets an obstacle the propagation is perturbed. It is the absence of wavelets at the places of
perturbation that produces diffraction effects. According to this principle the wave function40 at a point �r generated
by a monochromatic wave (k = 2π/λ) is found from the wave function over a generating surface S according
to [32,44]

ψ�k(�r ) =
∫
S

Γ(�r ) · ψ0
�k

(�r ) · exp(ik · |�r − �r ′|)
|�r − �r ′| dS. (4.1)

The vectors �r and �r ′ are defined as in Fig. 18 with the only difference that they do not run over a scattering volume
V but over a generating surface S that contains the wave front. The factor Γ takes into account that the surface S
may be inclined at the point �r ′.41 We immediately realise that apart from this particularity the Huygens–Fresnel
principle resembles the integral form of the Schrödinger equation (see (3.171)). The principal difference consist in
the fact that the interference created by scattering is due to the creation of wavelets and not to their omission, as this
is the case in optical diffraction. One of the major consequences of this difference is the absence of higher order
effects in optical diffraction. Since optical diffraction is not the result of the reemission of light by matter there are
by definition no multiple reemission phenomena. Hence we are automatically in the Born approximation.42

In the Fraunhofer approximation the observation plane is placed at infinity (see Fig. 19). In other words, the
distance between the diffracting object and the point of observation is considered to be very large compared to all
the other dimensions of the problem. The light rays that have to be retained when considering images at infinity
must leave the diffracting plane along parallel directions. Hence they are completely characterised by the vector
�kf‖r̂. This corresponds exactly to the scattering conditions in the Frauenhofer picture. In practice, the light rays
can be returned to the observation plane by a lens. In the Fraunhofer approximation the diffracted wave function at
a point �r of the observation plane is given for �ki‖ẑ by

ψ�k(�r ) ∝ Γ
exp(ik · r)

r

∫
S
ψ0
�k

(�r ) exp
(
i�kf · �r ′

)
dS, (4.2)

which we may rewrite in the more general form

ψ�k(�r ) ∝ Γ
exp(ik · r)

r

∫
S
t
(
�r ′
)
ψ0
�k

(�r) exp
(
i�kf · �r ′

)
dS, (4.3)

where we have formally introduced the transmittance t(�r ) of the aperture. It is given by the ratio of the complex
amplitudes just after and before the optical obstacle

t(x, y) =
ψafter

0 (x, y)

ψbefore
0 (x, y)

. (4.4)

40As for neutrons we ignore phenomena associated with polarisation. This allows us describing light with the help of a scalar complex
amplitude, which may correspond to any of the components of the electromagnetic wave field.

41The Huygens–Fresnel principle can be derived rigorously from Kirchhoff’s diffraction formula. The diffraction formula in particular
account for the factor Γ and equally explain why the Huygens–Fresnel principle works only in the forward direction.

42This is strictly speaking only true as long as we stay with two-dimensional generating surfaces over which the light front can be considered
unperturbed.
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Fig. 19. Schematics of an optical set-up creating conditions for Frauenhofer diffraction. A coherent plane wave front is produced over the
aperture via a point source placed in the focal point of a lens. Parallel rays emerging from the aperture are focused onto the observation screen
via a second lens. Interference is created via the optical path length differences that experience parallel rays that have their origin in different
surface elements dS.

Introducing the transmittance allows treating equally cases where the aperture is not ideal, i.e. where it is attenuat-
ing the light amplitude. In the Fraunhofer approximation the image created by the diffracted light, therefore, gives
the square of the modulus of the Fourier transform of the diffracting motive.

This expression is equivalent to the scattered part of the wave function (3.189)

u�k(�r ) −→ − 1
2π

m

�2

exp(ik · r)
r

∫
d3r′ei �Q·�r ′

V
(
�r ′
)

(4.5)

(obtained for scattering in the Born approximation) provided we identify the generating light amplitude

t
(
�r ′
)
ψ0
(
�r ′
)

with the source term (see expression (3.149)) of scattering in the Born approximation43

V
(
�r ′
)
u�k

(
�r ′
)
.

We will illustrate the Huygens–Fresnel formalism with two examples: A simple slit and a grating of slits.

4.2. Diffraction from a single slit

We consider a slit F = 2a × 2b illuminated by a monochromatic, plane light front in normal incidence (�ki =
(2π/λ)ẑ; see Fig. 20). In this case the wave front ψ0, which acts as the source of the diffracted wavelets, can be
identified with the transmittance of the slit in the diffracting plane.

43This makes perfect sense as t(�r ′)ψ0(�r ′) is the source of a spherical light wave in the same way as V (�r ′)u�k(�r ′) is the source of a spherical
scattered particle wave.
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Fig. 20. Diffraction from a single ideal slit. The widths of the diffraction peak are inversely proportional to the widths of the slit. In the case
presented here b = 1.5a. The peak is, therefore, narrower along Qy than along Qx.

In the case of an ideal slit F , i.e. of a slit characterised by a perfect transparency of the aperture, the transmittance
is necessarily binary. It is one for all points within the aperture F and zero otherwise

t(x, y) = rect

(
x

2a

)
rect

(
y

2b

)
=

{
1, −a < x < a and −b < y < b,
0, otherwise.

(4.6)

By defining �Q = �ki − �kf we obtain at normal incidence for the projections of �kf onto the diffracting plane

kfx = −Qx =
2π

λ
sin θx and kfy = −Qy =

2π

λ
sin θy. (4.7)

This notation has the merit of being very close to the notation used for scattering. In addition, formulated in terms
of �Q the expressions possess the additional benefit of being also valid for oblique incidence of the generating light
front.

The Fourier transform of the transmittance of the slit is given by

t̃(Qx,Qy) := F
(
t(x, y)

)
=

∫ a

−a

∫ b

−b
exp
(
i(Qxx+Qyy)

)
dx dy

=

∫ a

−a
exp(iQxx) dx

∫ b

−b
exp(iQyy) dy

= 4ab

[
sin(Qxa)
Qxa

][
sin(Qyb)
Qyb

]
. (4.8)
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The diffraction pattern, i.e. the intensity on the observation screen is obtained as the square of the amplitude

I(Qx,Qy) = 16a2b2
[

sin(Qxa)
Qxa

]2[ sin(Qyb)
Qyb

]2

. (4.9)

This is shown in Fig. 20. The widths of the peaks are inversely proportional to the widths of the slit. In practice,
all of the intensity is concentrated in the central peak, which has a full width at half maximum of 0.89π · a−1 and
0.89π · b−1, respectively. The angular deviations corresponding to these widths can be calculated as

θx = arcsin

(
0.89 · λ

2a

)
and θy = arcsin

(
0.89 · λ

2b

)
. (4.10)

Hence, important diffraction phenomena are only to be expected when the dimensions of the slit do not consider-
ably exceed the wave length of the radiation.

In the following we will assume that b 
 a and b 
 λ as well. Diffraction is then limited to the Qx direction.

4.3. Diffraction from an ensemble of slits with random translation

If we shift the slit a distance Δx along the x̂ direction we introduce, which is easily shown, a phase factor in the
diffraction amplitude

t̃(Qx) = 2a exp(iQxΔx)

[
sin(Qxa)
Qxa

]
. (4.11)

Thus the translation leaves the diffraction pattern unchanged. As we will show now, this is also true for a large
number of slits with random translation along x̂.

The amplitude of the diffracted wave is the sum of the amplitudes conveyed by each individual aperture. Let xm
be the coordinates of the centres of the apertures. The Fourier transform of the transmittance of the ensemble is
given as

t̃(Qx) = 2a

[
sin(Qxa)
Qxa

] N∑
m=1

exp(iQxxm). (4.12)

Taking the square of this expression in order to get the diffraction pattern leads to a double sum

I ∝
N∑

m=1

exp(iQxxm)
N∑
n=1

exp(−iQxxn). (4.13)

For m = n we obtain N terms each contributing to the sum with a value of one. In the terminology, that we will
introduce in order to describe the scattering by complex targets, this is the eigen or self terms. The part that is left
writes as

I ∝ 2 Re

[∑
m 
=n

exp
(
iQx(xm − xn)

)]
. (4.14)

For a large number of slits with random positions this sum will average out to zero. Hence the random multi-
plication of slits increases the intensity proportional to the number of slits. The diffraction figure itself remains
unchanged since the arbitrary superposition of phases does not produce any constructive interference between the
contributions stemming from different slits. We will see later that this phenomenon is found in diffuse neutron
scattering (Section 9.14) and is equally reminiscent of incoherent neutron scattering (Section 6.1).



168 H. Schober / An introduction to the theory of nuclear neutron scattering in condensed matter

Fig. 21. Diffraction patterns as a function of Qx for various gratings.

4.4. Diffraction from a grating

The situation changes completely when we go to an ordered grating. Let us consider a regular arrangement of
N slits of width 2a and distance d (see Fig. 21). The transmittance of the ensemble is the sum of the transmittance
ta of the individual slits

t(x) =
m=n∑
m=−n

ta(x− xm), (4.15)

where N = 2n + 1. xm designates the x-coordinate at the centre of the mth slit. The Fourier transform can be
written as

t̃(Qx) =
∫

t(x) exp(iQxx) dx

=
m=n∑
m=−n

∫
ta(x− xm) exp(iQxx) dx

=

m=n∑
m=−n

exp(iQxxm)
∫

ta(x− xm) exp
(
iQx(x− xm)

)
d(x− xm)

= t̃a(Qx)
m=n∑
m=−n

exp(iQxxm)
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= t̃a(Qx)
m=n∑
m=−n

(
exp(iQxd)

)m

= 2a

[
sin(Qxa)
Qxa

] m=n∑
m=−n

(
exp(iQxd)

)m
. (4.16)

The expression

m=n∑
m=−n

(
exp(iQxd)

)m (4.17)

is a geometrical series

n∑
k=−n

rk =
rn+1 − r−n

r − 1
= r−n 1 − rN

1 − r
. (4.18)

Hence it has the solution

m=n∑
m=−n

(
exp(iQxd)

)m
= exp(inQxd)

1 − exp(iNQxd)
1 − exp(iQxd)

=
sin(NQxd/2)
sin(Qxd/2)

. (4.19)

According to expression (4.16) the result for the diffraction amplitude of the grating can be found as

t̃(Qx) = N2a

[
sin(Qxa)
Qxa

][
sin(NQxd/2)
N sin(Qxd/2)

]
. (4.20)

The intensity I(Qx) is the square of the amplitude

I(Qx) = 4N2a2
[

sin(Qxa)
Qxa

]2[ sin(NQxd/2)
N sin(Qxd/2)

]2

. (4.21)

We show several diffraction patterns in Fig. 21 as a function of Qx and in Fig. 22 as function of θx.
Before interpreting these results we would like to establish an alternative procedure. We introduce the Dirac

comb as a periodic suite of Dirac functions

∞∑
m=−∞

δ(x−m · d). (4.22)

Then we recall that the convolution of two functions g(x) and h(x) is defined as

g(x) � h(x) :=
∫

g
(
x′
)
h
(
x− x′

)
dx′, (4.23)

and that the Fourier transform of two convoluted functions is the product of their individual Fourier transforms

FT
[
g(x) � h(x)

]
= FT

[
g(x)
]
· FT
[
h(x)

]
. (4.24)
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Fig. 22. Diffraction figures as a function of θx for two selected wave lengths. The grating is composed of three slits of width 2a spaced at
d = 6a from each other. For λ = 2a only the central peak of the envelope is observable. The dynamic range of the diffraction experiment is
very limited. When the wave length decreases the dynamic range increases.

The transmittance of the grating can, therefore, be written in the form

t(x) = rect

(
x

L

)
·
[∫ ∞

−∞
dx′rect

(
x′

2a

) ∞∑
m=−∞

δ
(
x′ − (x−m · d)

)]

= rect

(
x

L

)
·
[

rect

(
x

2a

)
�

∞∑
m=−∞

δ(x−m · d)

]
. (4.25)

The Dirac comb corresponding to the centres of the slits is convoluted with the transmittance of the individual
slit and finally multiplied by the transmittance of a rectangle, which takes into account the finite extension of
the grating. The process is a bit like placing tiles onto the floor of a room. The tiles correspond to the slits, the
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Dirac comb indicates the grid onto which the tiles should be placed and the ensemble is delimited by the walls of
the room. The Fourier transform of function (4.25) is the convolution of the diffraction function produced by the
envelope (the room)

FT

[
rect

(
x

L

)]
= L

[
sin(QxL/2)

(QxL/2)

]
(4.26)

with the product of the diffraction functions of the individual slits (the tiles)

FT

[
rect

(
x

2a

)]
= 2a

[
sin(Qxa)
Qxa

]
(4.27)

and the Dirac comb (the grid)

FT[t] = FT

[
rect

(
x

L

)]
�

{
FT

[
rect

(
x

2a

)]
· FT

[ ∞∑
m=−∞

δ(x−m · d)

]}
. (4.28)

The Fourier transform of a Dirac comb is simply a Dirac comb in reciprocal space with a period of 2π/d. Formally

FT

[ ∞∑
m=−∞

δ(x−m · d)

]
=

1
d

∞∑
m=−∞

δ

(
Qx

2π
− m

d

)
. (4.29)

The diffraction patterns is obtained from the square of expression (4.28), which is nothing else but expres-
sion (4.21).

4.5. Structural information content of the diffraction pattern

Already from this very simple one-dimensional examples we can judge that diffraction patterns are rich in
structural information. This is particularly true for ordered structures. This wealth is at the origin of the immense
contribution of modern diffraction-based crystallography in fields ranging from material science to structural biol-
ogy. It is all based on the simple expressions (3.188) that relates the scattering amplitude to the Fourier transform of
the potential. We will later see how by incorporating thermal motion the information content of diffraction patterns
can be pushed even further. We may summarise our findings as follows:

• The diffraction peaks are found at distances 2π/d. Their positions thus give us information about the period-
icity d of the lattice.

• The width of an individual diffraction peak is given by 2π/L, i.e. it is determined by the envelope of the lattice.
The peaks become sharper with either the number of peaks or their spacing increasing. But beware, finally it
is the extension of the lattice and not the number of slits that defines the width of the individual diffraction
peaks. In the limit of a lattice that can be considered infinitely large on the scale of the wave length of the
diffracted radiation we obtain Dirac δ-peaks (simply because the Fourier transform of the envelope becomes
a δ-function in this case). As a consequence the width of the peaks holds information on the extension of the
periodic regions (e.g. the size of microcrystals).

• The intensity of the peaks is modulated by the diffraction figure or form factor (see Section 5.7) of the slit.
If the slit is very narrow the periodicity π/a of this modulation will be very large. For slits described by a
Dirac function, the form factor is a simple constant. In scattering, this is the case for the effective potential of
Section 3.7. For X-rays, the scattering is produced by the electronic cloud. This introduces a form factor that
decreases the intensity for large wave vectors �Q in the same way as finite sized optical apertures.
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Fig. 23. Diffraction pattern of a lattice with a motive. If we neglect the finite extension of the lattice the diffraction pattern is obtained by
multiplying the diffraction pattern of the motive, here a system of 5 Dirac slits a distance d apart, with the diffraction pattern of the periodic
lattice, here a Dirac comb with a spacing of 7d. The diffraction pattern of the infinite periodic lattice is a Dirac comb with a spacing of
2π/7d. The diffraction pattern of the individual motive is a periodic function with periodicity 2π/d. Both function are shown in the upper
picture. Multiplying both patterns results in a modulation of the peak heights. For slits with a finite aperture the thus obtained function should
be multiplied with the diffraction figure of the aperture itself. This diffraction figure is equivalent to the form factor for an atom in X-ray
scattering. It introduces, in particular, a loss in intensity at high Q values. The information on the periodicity of the lattice (the unit cell) is thus
contained in the peak positions. The information on the form of the motive, or in the case of a crystal on the position of the atoms in the unit
cell, is obtained from the intensity of the peaks.

• If we want to go even further we have to check what will happen if we replace a simple slit by a complex
motive. One simple and instructive way of forming such a motive consists in periodically removing slits (see
Figs 23 and 24) from the grating. In this way we create a lattice with a larger periodicity. The individual peaks
now appear at shorter intervals. Again the grating can be considered a convolution of a Dirac comb with the
transmittance of, this time not the slits, but the motive. The total diffraction function is, therefore, obtained
as the product of the diffraction function of the individual motive with the diffraction function of the lattice.
The intensity of the peaks is thus modulated according to the diffraction function of the motive. Hence it is
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Fig. 24. Same as Fig. 23 with the only difference that we have chosen a motive that restores periodicity at a distance d. As required all the
intermediate peaks are made extinct by the multiplication with the form factor of the motive.

possible to determine the form of the motive by studying these intensities.

4.6. Diffraction from a three-dimensional lattice

If we go from a lattice defined on a plane to a three dimensional lattice we get Bragg scattering. The fundamental
relation between the scattering angle 2Θ (see Fig. 25) and the wave length of the diffracted light is given by Bragg’s
law

nλ = 2 · d · sin Θ, (4.30)

where d is the distance between the diffracting planes and n is the order of the Bragg reflection. Bragg’s law
expresses the fact, that in order to have positive interference from the individual lattice planes, the optical paths
must differ by an integer multiple n of the wave length (see Fig. 25). Such three-dimensional lattices are created
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Fig. 25. Bragg scattering. The top figure shows a typical example of a diffraction pattern obtained for a crystalline powder on a high resolution
neutron diffractometer. The bottom figure justifies Bragg’s law from the difference in optical paths Δ between adjacent lattice planes.

by single crystals. These lattices are suitable for X-ray or neutron diffraction since the distance between the atoms
is of the order of a few Å.

4.7. Longitudinal coherence length

Until now we have considered that the incident radiation can be described perfectly by monochromatic waves.
In practice this is never the case. Imperfections originate either from the spacial extension or the spectral distribu-
tion of the primary radiation source. Interference phenomena rely on exact phase relations between the wavelets
originating in the various regions of the diffracting object. The interference patters will be sharp if the generation
of the wavelets at different points is synchronised. This is e.g. the case for a monochromatic wave front produced
by a point source. Any random fluctuation in the wave front will weaken the interference effects. Such fluctuations
cannot be avoided in extended radiation sources where the emittance is random, i.e. unsynchronised. This is e.g.
the case for incandescent light sources such as light bulbs. Lasers on the other hand are coherent sources of radia-
tion. Independent of phase fluctuations the diffraction pattern is also dependent on the wave length. If the primary
radiation source contains a spectrum of frequencies the superposition of diffraction patterns for the various wave
lengths weakens the interference effects.

We first will discuss the effect of the polychromatic nature of the primary radiation source. For a given frequency
ν the phase of the complex amplitude changes by a factor 2π over the distance L = λ = c/ν where c is the
velocity of light (c has to be replaced by the phase velocity vp for other forms of radiation). Two waves that are
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simultaneously generated at the same point in space and that differ in frequency by Δν will be completely out of
phase after they have covered an optical path of length

Lc =
c

Δν
=

λ2

Δλ
. (4.31)

Lc is called the temporal coherence length or the longitudinal coherence length (see Fig. 26). It is a measure of
the spectral purity of the primary radiation source. If the variation in the length of the optical path traveled when
reaching the point P exceeds the coherence length of the primary radiation source then these wavelets no longer
contribute to the construction of interference patterns. To illustrate this phenomenon we use the example of a
grating. The diffraction maxima are found at

Qm = m
2π sin θ

λ
= m

2π

d
. (4.32)

If the uncertainty in wave length is chosen to be Δλ = λ2

d expression (4.31) gives a longitudinal coherence length

Fig. 26. Longitudinal coherence length. The illuminated object is found at a certain distance along x. The polychromatic wave trains will get
out of phase with respect to each other over the distance Lc. It is important to realise that the absolute phase of the wavelets does not matter
since each wave train produces a distinct diffraction pattern of its own. All these individual diffraction patterns can simply be summed up as
there is no interference between wave trains that possess different frequencies. This is due to the fact that such interferences oscillate in time
and, therefore, cancel out when integrating over time. Profiting from the freedom in choosing the absolute phase the point sources have here
been translated along x̂ for the purpose of illustration. This translation allows us to illustrate the de-phasing at a certain distance. The choice of
this distance is arbitrary. It is the superposition of the diffraction patterns that blurs the interferences. The bottom figure illustrates this blurring
effect by superposing three diffraction patterns calculated as a function of diffraction angle θ for a system of 11 slits of width 2a = λ and
spaced at d = 10 ·λ. The Δλ of 10% gives a longitudinal coherence length Lc = 10 ·λ, i.e. just compatible with the spacing of the slits. It can
be seen that the regions between the peaks are successively filled with intensity for large diffraction angles as we add patterns from additional
wave lengths. For small diffraction angles the difference in optical path length of the wavelets constituting the diffraction pattern are sufficiently
small compared to the coherence length for the fringes to remain separated.
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that is equal to the distance between the slits d. For a given diffraction order m the maxima of the diffraction
pattern will, as a function of wave length, sweep the range from Qm(λ) to Qm(λ′) with

λ′ = λ± Δλ
2

= λ± λ2

2d
. (4.33)

For Δλ 	 λ we get

Qm=1
(
λ′
)
=

2π sin θ
λ± λ2/(2d)

≈ Q± 1
2

2π sin θ
d

. (4.34)

For a typical diffraction angle of θ = π/4 we find sin θ = 1/
√

2 and hence Qm=1(λ′) ≈ Q ± π/d. The signal,
therefore, sweeps the complete region between the peaks. The interferences are hardly observable (see Fig. 26).
Simply speaking, the maxima generated with one frequency are superimposed onto the minima generated with an-
other frequency erasing the interference patterns. The coherence length hence defines the resolution of the diffrac-
tion setup in real space.

4.8. Transversal coherence length

Even if the source is monochromatic the resolution of the optical setup will be limited by the lateral extension
of the source. To illustrate this phenomena we will study how the displacement of a point source effects the in-
terference figure observed on the screen (see Fig. 27). Assuming that the displacements are large compared to the
wave length allows us to use wave fronts in our argumentation. To first order, only the lateral displacements con-
tribute to the modification of the optical path lengths. Purely longitudinal displacements, i.e. displacements along
the axis that joins the source to the diffracting object, do not modify the phase relations of the secondary wavelets.
We chose as diffracting object a pair of Young slits, which we have already encountered in the introduction. We

Fig. 27. Lateral coherence length due to the finite extension of the primary source. Both LS and L are assumed large on the scale of LF , and
in addition L � LS . The wave fronts originating from different points of the primary source will be inclined with respect to each other at
the location of the slits. This inclination is characterised by the distance Δ, which translates into a “delay” of emission of the wavelets and,
therefore, into a phase shift. If the distance Δ approaches the wave length λ then the interference fringes become blurred. This defined the
lateral coherence length.
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demand that the distance L between the primary source and the Young slits is large compared to the extension
LS of the source and compared to the distance between the slits LF . The secondary part of the setup remaining
unchanged when replacing the source laterally, any change of optical path lengths has to take place in the primary
part, that is to say between the primary source and the slits. Wave fronts having their origin in different points of
the source will hit the two slits with a spatial displacement Δ of

Δ ≈ LF

L
LS . (4.35)

As soon as this difference in path length corresponds to the wave length the interference effects will disappear. We
define the lateral coherence length as

Lc = λ
L

LS
=

λ

Θ
, (4.36)

where Θ is the angle sustained by the source as seen from the position of the slits (see Fig. 27). The lateral coherence
length increases with the distance between the primary source and the diffracting object. This phenomenon is called
creation of coherence via distance. For example the lateral coherence length of the sun due to its distance is a
remarkable 60 µm. If we use diffraction as an analytic instrument for structural determination then it is impossible
to determine the distance between slits separated by a distance that exceeds Lc.

4.9. Coherence volume

We want now to discuss how the longitudinal and transverse coherence lengths define the resolution of the
experimental set up in real space.44 To start we pick out one of the diffracting objects and denote it by Dm.
In the next step we determine the set of objects Dn that produce scattering amplitudes capable of interfering
constructively with the scattering amplitude produced by Dm. We find these diffraction objects within a perimeter
surrounding Dm given by the coherence lengths of the primary radiation. This corresponding volume is called
the coherence volume. Objects found outside the coherence volume surrounding Dm, i.e. at distances from Dm

exceeding the coherence length, will not contribute to the diffraction pattern. Similar to the random arrangement
of slits in a grating (see Section 4.3) they will, with their own coherence volumes, just add extra intensity to the
scattering.

5. Scattering from a target with internal degrees of freedom

A condensed matter sample is composed of a large number of scatterers (atomic nuclei and magnetic moments
for the neutrons, electrons for the X-rays, etc.). In order to calculate how a given sample scatters an incident beam
we have to solve the Schrödinger equation for the combined system of the target and probe. This will lead us to
a quantum mechanical description of inelastic scattering. The formalism that we will employ is analogous to the
one that we have developed for scattering from a static potential, i.e. we will try to express the problem in the
form of an integral equation using the concept of a Green function, which will allow us to determine the scattering
cross section in the Born approximation. The difficulty resides in the mathematical complexity introduced by the
necessity to carry along the wave functions describing the target states.

44We will return to this point in the discussion on resolution in the case of neutron scattering (see Section 11.6).
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5.1. Wave functions in common Hilbert space

Let us consider the scattering of a probe particle of mass m by a complex target system T, which is assumed to
possess a certain number of internal degrees of freedom. Transitions between the quantum states of the target open
up the possibility of inelastic scattering. We, therefore, have to design a mathematical formalism capable of taking
on board inelastic scattering.

To avoid any complication related to the choice of frames of reference we assume that the mass of the target
system is largely superior to that of the probe particle m. In order not to be bothered by questions of quantum
mechanical exchange we, in addition, require that the probe particle is different from the particles that make up
the target. This is e.g. the case if neutrons interact with compound nuclei. Let us denote the coordinates describing
the target T collectively as {ξ}. The coordinate describing the probe particle is represented as before by �r. Then,
if Ht denotes the Hamiltonian of the target system, the combined system is described by the wave function ψ(�r, ξ)
satisfying the following stationary Schrödinger equation

(
Etot − Ht(ξ) + i

�
2

2m
Δ
)
ψ(�r, ξ) = V (�r, ξ)ψ(�r, ξ), (5.1)

with Etot the total energy of the system and V (�r, ξ) the interaction potential of the probe with the target.
We will aim for a perturbative treatment with the uncoupled systems serving as the unperturbed reference. The

isolated target system be described by the wave functions φν (ξ), which are eigenfunctions to the Hamilton operator
Ht with eigenvalues Eν

Ht(ξ)φν (ξ) = Eνφν (ξ). (5.2)

The index ν collectively denotes all the quantum numbers of the target states.
For the combined system of probe and target the direct product states

∣∣Θν (�k)
〉
= |φν〉 ⊗ |�k〉 (5.3)

form a basis. They are eigenfunctions of the system in the case of vanishing interaction

(
Ht(ξ) + i

�
2

2m
Δ�r

)
Θ
ν,�k

(�r, ξ) =

(
Eν +

�
2k2

2m

)
Θ
ν,�k

(�r, ξ), (5.4)

which we may write in the Dirac notation

H0
∣∣Θν (�k)

〉
= E0

∣∣Θν (�k)
〉
. (5.5)

In a scattering configuration with the action of the potential limited in spacial extent the total energy Etot will be
identical to the energy E0 that the combined system possesses before and after the scattering.

As the wave functions for the free probe particle are explicitly known we get in the real space representation

〈
�r, ξ|Θν (�k)

〉
= Θ

ν,�k
(�r, ξ) =

1
√

2π
3 ei�k·�rφν (ξ). (5.6)

We now state a few useful relations.
Orthogonality of the eigenfunctions is expressed via

〈
Θν′
(
�k′
)
|Θν (�k)

〉
= δν,ν′ · δ

(
�k − �k′

)
. (5.7)



H. Schober / An introduction to the theory of nuclear neutron scattering in condensed matter 179

Completeness leads to the closure relation

∑
ν

∫
d3k
∣∣Θν (�k)

〉〈
Θν (�k)

∣∣ = 1. (5.8)

Normalisation is such that

∑
ν

∫
d3k
〈
�r, ξ|Θν (�k)

〉〈
Θν (�k)|�r ′, ξ′

〉
=
〈
�r, ξ|�r ′, ξ′

〉
= δ
(
ξ − ξ′

)
· δ
(
�r − �r′

)
, (5.9)

which may be expressed in the alternative form

1
(2π)3

∑
ν

∫
φν
(
ξ′
)
φ∗ν (ξ)ei�k·(�r−�r ′)d3k = δ

(
ξ − ξ′

)
· δ
(
�r − �r′

)
. (5.10)

Please note that the quantum states of the target are discrete and bound due to the fact that the particles constituting
the target are confined in space. The orthogonality condition, therefore, employs the sum over these states, while
in the case of the target particle we have to integrate over all free states.

5.2. Green function of the combined system

Following the successful route employed to determine the scattering amplitude for static potentials we will recast
the problem in the integral form using the concept of Green functions. From Eq. (5.1) we derive the source term in
complete analogy with expression (3.149) as

j�k(�r, ξ) := V (�r, ξ)ψ(�r, ξ). (5.11)

This allows expressing the Schrödinger equation as

Dψ(�r, ξ) = j�k(�r, ξ) (5.12)

with the operator

D := −(H0 − E0). (5.13)

The defining equation of the Green function now reads

DG0
(
�r,�r ′|ξ, ξ′

)
= δ
(
�r − �r ′

)
· δ
(
ξ − ξ′

)
. (5.14)

The main difference with respect to the previous expression (3.154) resides in the presence of additional “point
sources” represented by the functions δ(ξ − ξ′). These point sources translate the physical fact that the interaction
potential is no longer a pure function of the probe particle position �r but equally of the simultaneous45 position of
all the reciprocally interacting target particles.

Formally the Green function we are looking for satisfies

(E0 − H0)G0
(
�r,�r ′|ξ, ξ′

)
= δ
(
�r − �r ′

)
· δ
(
ξ − ξ′

)
. (5.15)

45We assume instantaneous interaction and thus do not include retardation effects.
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Therefore,

〈�r, ξ|(E0 − H0)G0
(
�r,�r ′

)∣∣�r ′, ξ′〉 = 〈�r, ξ|�r ′, ξ′
〉
, (5.16)

which leads us again to formally identify Green’s operator with the inverse of (E0 − H0)

G0 =
1

(E0 − H0)
. (5.17)

Using the orthogonally (5.7), closure (5.8) and normalisation (5.10) conditions we may calculate the Green function
as follows

G0
(
�r, ξ|�r ′, ξ′

)
=

〈
�r, ξ

∣∣∣∣ 1
(E0 − H0)

∣∣∣∣�r ′, ξ′
〉

=
∑
νν′

∫∫
d3k d3k′

〈
�r, ξ|Θν (�k)

〉〈
Θν (�k)

∣∣∣∣ 1
(E0 − H0)

∣∣∣∣Θν′
(
�k′
)〉〈

Θν′
(
�k′
)
|�r ′, ξ′

〉

=
∑
νν′

∫∫
d3k d3k′

〈
�r, ξ|Θν (�k)

〉 〈Θν (�k)|Θν′ (�k
′)〉

(E0 − Eν (�k))

〈
Θν′
(
�k′
)
|�r ′, ξ′

〉

=
∑
νν′

∫∫
d3k d3k′

〈
�r, ξ|Θν (�k)

〉δν,ν′ · δ(�k − �k ′)

(E0 − Eν (�k))

〈
Θν′
(
�k′
)
|�r ′, ξ′

〉

=
∑
ν

∫
d3k
〈
�r, ξ|Θν (�k)

〉 1
(E0 − Eν (k))

〈
Θν (�k)|�r ′, ξ′

〉

=
1

(2π)3

∑
ν

∫
d3k

φν (ξ)φ∗ν (ξ′)
(E0 − Eν (k))

ei�k·(�r−�r ′). (5.18)

The energy Eν (k) is given as

Eν (k) = Eν +
�

2k2

2m
. (5.19)

The total energy E0 can be expressed by adding the kinetic energy that the probe particle possesses before the
scattering to the energy of the initial state of the sample

E0 = Eνini +
�

2k2
i

2m
. (5.20)

With this we may reformulate the denominator of the above expression for the Green function as

φν (ξ)φ∗ν (ξ′)
E0 − Eν (k)

=
2m
�2 · φν (ξ)φ∗ν (ξ′)

k2
f − k2

(5.21)

with kf defined as46

k2
f = k2

f (ν) =
2m
�2 (E0 − Eν ) =

2m
�2

(
Eνini − Eν +

�
2k2

i

2m

)
, (5.22)

46We will see later under which conditions kf relates to the wave vector of the probe particle state after the scattering.
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where the notation k2
f (ν) renders the dependence of this quantity on the energy of the target state |φν〉 explicit.

Using the methods of analytical algebra we can integrate the pole47

1
2π3

∫
d3k

ei�k·�r

k2
f − k2

= −eikf ·r

4πr
, (5.23)

which leads to the final form of the Green function

G0
(
�r, ξ|�r ′, ξ′

)
=

1
(2π)3

∑
ν

∫
d3k

φν (ξ)φ∗ν (ξ′)
(E0 − Eν (k))

ei�k·(�r−�r ′)

=
2m

(2π)3�2

∑
ν

∫
d3k

φν (ξ)φ∗ν (ξ′)
k2
f − k2

ei�k·(�r−�r ′)

= − m

2π�2

∑
ν

φν (ξ)φ∗ν
(
ξ′
)eikf ·|�r−�r ′|

|�r − �r ′| . (5.24)

The Green function is a superposition of spherical waves. Each spherical wave is characterised by a wave number
kf (ν) and has to be seen in conjunction with the accompanying target state |φν〉. The relative weight of a spherical
wave in this superposition is given by the norm of the wave function φν (ξ)φ∗ν (ξ′).

It is obvious that the developed Green function can only describe scattering if kf is real and greater zero, which
implies that k2

f > 0. This is the case if

Eν < Eνini +
�

2k2
i

2m
. (5.25)

In other words, the sample states entering into the Green function have to possess an energy that is smaller than
the total initial energy of the combined system. When this is the case the scattering channel associated with |φν〉 is
called an open channel. Also not relevant for our purpose closed channels are important in many collision problems.
They correspond to situations where the probe particle is incorporated (absorbed) into the target depositing not only
all of its kinetic energy but contributing in addition to the internal energy of the target.

Having determined the Green function we can write down the integral form of the Schrödinger equation accord-
ing to expression (3.159). If we choose to express this equation in the basis of the unperturbed states |Θ

μi
�ki
〉 we

obtain the following set of equations

ψ
μi
�ki

(�r, ξ)

= Θ
μi
�ki

(�r, ξ) +
∫∫

d3r′ dξ′G0
(
�r, ξ|�r ′, ξ′

)
V
(
�r ′, ξ′

)
ψ�ki

(
�r ′, ξ′

)
= Θ

μi
�ki

(�r, ξ) +
∫∫

d3r′ dξ′G0
(
�r, ξ|�r ′, ξ′

)
V
(
�r ′, ξ′

)
Θ
μi
�ki

(
�r ′, ξ′

)
+

∫∫
d3r′′ dξ′′

∫∫
d3r′ dξ′G0

(
�r, ξ|�r ′, ξ′

)
V
(
�r ′, ξ′

)
G0
(
�r ′, ξ′|�r ′′ξ′′

)
V
(
�r ′′, ξ′′

)
ψ
μi
�ki

(
�r ′′, ξ′′

)
.

(5.26)

47In a rigorous mathematical treatment we have to make sure that we turn around the pole with the right sense of rotation.
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Θ
μi
�ki

(�r, ξ) denotes any of the wave functions of the unperturbed system. ψ
μi
�ki

(�r, ξ) are the wave functions that
develop from the unperturbed states when we switch on the interaction. The above expression thus constitutes an
operation that maps unperturbed states |Θ

μi
�ki
〉 onto exact stationary solutions |ψ

μi
�ki
〉. The corresponding operator

is an extension of the wave operator introduced in Section 3.11.

5.3. Born approximation for probe and particle states

The perturbation created by the interaction concerns both the probe and target states. They are, therefore, both
evolving away from their unperturbed eigenstates under the influence of the mutual interaction. Like in the case of
elastic scattering the right hand side of the integral equation (5.26) refers back to the wave function 〈�r, ξ|ψ

μi
�ki
〉,

which it is actually supposed to express. As we had seen when treating the case of a static potential this problem
can be circumvented by going to the Born approximation. To do so we make the following substitution

ψ
μi
�ki

(
�r ′, ξ′

)
→ Θ

μi
�ki

(
�r ′, ξ′

)
(5.27)

under the integral, which leads us to

ψ
μi
�ki

(�r, ξ) = Θ
μi
�ki

(�r, ξ)

− m

2π�2

∑
ν

φν (ξ)
∫∫

d3r′ dξ′φ∗ν
(
ξ′
)eikf ·|�r−�r ′|

|�r − �r ′| V
(
�r ′, ξ′

)
Θ
μi
�ki

(
�r ′, ξ′

)
. (5.28)

In Sections 3.11 and 3.13 we had elaborated at length on the conditions that warrant the use of the Born approxi-
mation from the point of view of the probe particle. When dealing with inelastic scattering the Born approximation
is equally employed to the quantum states of the target. These states as we have seen enter directly into the ampli-
tudes of the spherical waves that describe the scattered probe particles. When calculating these amplitudes in the
Born approximation we use the target states of the unperturbed system. In the same way that we assume that the
incoming probe wave can be assumed unperturbed by the scattering upstream we assume that the target states are
left unchanged. We assume that the interaction is so weak that the probe does not influence the states |φν〉 of the
sample. Its role is reduced to inducing transitions between these states. This approach is certainly justified for slow
neutrons far from resonance.

In the Born approximation we now exploit the fact that the initial wave function factorises and that the form of
the probe particle’s wave function is known explicitly. This leads us to

ψ
μi
�ki

(�r, ξ)

= Θ
μ�k

(�r, ξ)

− m

4π2
√

2π�2

∑
ν

φν (ξ)
∫∫

d3r′ dξ′φ∗ν
(
ξ′
)eikf ·|�r−�r ′|

|�r − �r ′| V
(
�r ′, ξ′

)
ei�ki·�r ′

φμi

(
ξ′
)
. (5.29)

Using the approximation (3.178) this expression simplifies in the asymptotic limit of r → ∞ to

ψ
μi
�ki

(�r, ξ)

= Θ
μi
�ki

(�r, ξ)

− m

4π2
√

2π�2

∑
ν

φν (ξ)
eikf ·r

r

∫∫
d3r′ dξ′φ∗ν

(
ξ′
)
eikf ·|r̂·�r ′|V

(
�r ′, ξ′

)
ei�ki·�r ′

φμi

(
ξ′
)
. (5.30)
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Employing the notation introduced in (3.184) this expression can be written as

ψ
μi
�ki

(�r, ξ) = Θ
μi
�ki

(�r, ξ) − m

4π2
√

2π�2

∑
ν

φν (ξ)
eikf ·r

r

∫∫
d3r′ dξ′φ∗ν

(
ξ′
)
ei �Q·�r ′

V
(
�r ′, ξ′

)
φμi

(
ξ′
)

= Θ
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�ki

(�r, ξ) − m

4π2
√

2π�2

∑
ν

φν (ξ)
eikf ·r

r

∫
d3r′ei �Q·�r ′

∫
dξ′φ∗ν

(
ξ′
)
V
(
�r ′, ξ′

)
φμi

(
ξ′
)

= |Θ
μi
�ki
〉 − m

4π2
√

2π�2

∑
ν

|φν〉
eikf ·r

r

∫
d3r′ei �Q·�r ′〈

φν |V |φμi

〉
�r ′ (5.31)

and can be conveniently expressed in Dirac notation as

|ψ
μi
�ki
〉 = |Θ

μi
�ki
〉+
∑
ν

Aνμi |φν〉 (5.32)

with the effective transition amplitude Aνμi defined as

Aνμi = − m

4π2
√

2π�2

eikf ·r

r

∫
d3r′ei �Q·�r ′〈

φν |V |φμi

〉
�r ′

= −m
√

2π

�2

eikf ·r

r

〈
φν ,�kf |V |φμi ,�ki

〉
. (5.33)

5.4. Fermi’s golden rule

The scattering amplitude, the way that we had defined it, is purely defined in terms of the probe particle’s wave
function.48 For elastic scattering from a potential we had obtained

u�k(�r ) −→ 1√
V

(
ei�k·�r + f�k(θ,φ)

eikr

r

)
, r → ∞. (5.34)

The concept has now to be carried over to the case of a target with internal degrees of freedom. Inspecting the wave
functions |ψ

μi
�ki
〉 we realise immediately that they all contain the probe particle in the state |�ki〉 while the target

is present in the state |φμi〉. If we forget for a moment the stationary character of the wave functions then we may
identify these states with the initial states of the probe and target. In the correction term

− m

4π2
√

2π�2

∑
ν

|φν〉
eikf ·r

r

∫
d3r′ei �Q·�r ′〈

φν |V |φμi

〉
�r ′ (5.35)

that is added to the wave function by the perturbation we find the scattered probe particles in the form of outgoing
spherical waves of wave number kf . These spherical waves are accompanied by individual target states |φμf 〉 that
respect the energy conservation law

Eμi − Eμf = −
(

�
2k2

i

2m
−

�
2k2

f

2m

)
. (5.36)

48See Section 5.6 for an in-depth discussion on this point.
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This expression simply states that the energy lost or taken up by the probe particle is transmitted to, or retrieved
from, the target. The wave function 〈ξ|φμf 〉 describes the target at the final stage after the probe has left the region
of interaction.

We may calculate the flux corresponding to the probe particle according to

�J(�r ) =
�

2mi

∫
dξ
(
ψ∗
μi
�ki

(�r, ξ)�∇�rψμi
�ki

(�r, ξ) − ψ
μi
�ki

(�r, ξ)�∇�rψ
∗
μi
�ki

(�r, ξ)
)
. (5.37)

In writing down this expression we have exploited the fact that what we determine experimentally is the flux of the
probe particles at �r independent of where the target particles might be found. This justifies the integration over all
possible target coordinates ξ (see Section 5.6).

We now inspect the probe particle flux arising from the sum of outgoing spherical waves. As the operator �∇�r
does not act on the states |φν〉 the expression for the outgoing flux is of the form

∑
ν′

∑
ν

〈φν′ |φν〉
(
A∗
ν′μi

∇�rAνμi

)
=
∑
ν′

∑
ν

δν′ν ·
(
A∗
ν′μi

∇�rAνμi

)
=
∑
ν

A∗
νμi

∇�rAνμi (5.38)

plus its complex conjugate. There is, therefore, no interference between terms pertaining to different final target
states |φν〉. Each such state thus defines a specific scattering channel and the total scattering is just the sum of the
individual channels.

In order to isolate a specific scattering channel in a rigorous mathematically way we project the total wave
function |ψ

μi
�ki
〉 onto a given final target state |φμf 〉. We formally express this projection onto the subspace of

target wave functions using the projector

Pφμf
= |φμf 〉〈φμf | ⊗ 1�k (5.39)

with

1�k =
∑
�k

|�k〉〈�k| (5.40)

the unit operator in the subspace of the probe particle states. We have to distinguish two cases. If the final target
state coincides with the initial target state, i.e. if μf = μi then

〈
�r, ξ|Pφμf

|ψ
μi
�ki

〉
= 〈�r|�ki〉|φμi〉 −

4π2m
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eiki·r

r
〈ξ|φμi〉

〈
φμi ,�kf |V |φμi ,�ki

〉

=
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ei�ki·�rφμi(ξ) − m

2π�2
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r

∫
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φμi(ξ)
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〉
�r ′ . (5.41)

If the target state changes, i.e. if μf 
= μi then

〈
�r, ξ|Pφμf

|ψ
μi
�ki

〉
= −4π2m

�2

eikf ·r

r
〈ξ|φμf 〉

〈
φμf ,�kf |V |φμi ,�ki

〉

= − m
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eikf ·r
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∫
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φμf (ξ)
〈
φν |V |φμi

〉
�r ′ . (5.42)

The wave function 〈�r, ξ|ψ
μi
�ki
〉 allows us to determine the probability of finding the probe particle at �r and the

target particles at ξ. Following the prescription of expression (5.38) we have to integrate over ξ. This leaves us
with the following wave functions u(�r ) for the probe particle.
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If μf = μi then

〈�r |u�ki→�kf ,μi→μi
〉 = 〈�r |�ki〉 −

4π2m

�2

eiki·r

r
〈φμi ,�kf |V |φμi ,�ki〉

=
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∫
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φν |V |φμi

〉
�r ′ . (5.43)

If μf 
= μi then

〈�r |u�ki→�kf ,μi→μf
〉 = −4π2m
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eikf ·r
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∫
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φν |V |φμi

〉
�r ′ . (5.44)

From these wave functions we now calculate the current associated with the probe particle according to

�J(�r ) =
�

2mi

(
u∗�∇�ru− u�∇�ru

∗). (5.45)

Using for r → ∞ the fact that

�∇
(

eik·r

r
f (θ,φ)

)
= i�k · r̂ eik·r

r
f (θ,φ) + O

(
1
r2

)
(5.46)

we obtain if μf = μi

�J�ki→�kf ,μi→μi
(�r ) =

��ki
2m

+
��kf
2m

m2

r2

(
2π

�

)4∣∣〈φμi ,�kf |V |φμi ,�ki〉
∣∣2 (5.47)

and if μf 
= μi

�J�ki→�kf ,μi→μf
(�r ) =

��kf
2m

m2

r2

(
2π

�

)4∣∣〈φμf ,�kf |V |φμi ,�ki〉
∣∣2. (5.48)

As the incoming neutrons are necessarily associated with the target state |φμi〉 it is not surprising that in this
stationary description there is no incoming flux for μf 
= μi.

The cross section is defined in the stationary regime as

dσ
dΩ

= r2 Jscatt(r, θ,φ)
Jini

(5.49)

which leads us for μf = μi to

(
dσ
dΩ

)
�ki→�kf ,μi→μi

= m2
(

2π

�

)4∣∣〈φμf ,�kf |V |φμi ,�ki〉
∣∣2 (5.50)

and if μf 
= μi(
dσ
dΩ

)
�ki→�kf ,μi→μf

= m2
(

2π

�

)4 kf
ki

∣∣〈φμf ,�kf |V |φμi ,�ki〉
∣∣2. (5.51)
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As clearly indicated by the notation we are dealing with the conditional scattering cross section of the probe
changing its state from |�ki〉 to |�kf 〉 with the target simultaneously passing from the initial state |φμi〉 to the final
state |φμf 〉. We equally see that expression (5.50) is only a special case of the general form (5.51).

From this the scattering amplitude is obtained as

f�ki→�kf ,μi→μf
(Ω) = −4π2m

�2

〈
φμf ,�kf |V |φμi ,�ki

〉
, (5.52)

where the minus sign can be obtained by direct inspection of the wave function u(�r ) as given in expressions (5.43)
and (5.44). The differential cross section can be interpreted as

dσ�ki→�kf ,μi→μf
=

w�ki→�kf ,μi→μf

J�ki
dΩ, (5.53)

where w�ki→�kf ,μi→μf
designates the probability density of a transition from the states |�ki〉 and |φμi〉 to the states

|�kf 〉 and |φμf 〉. Comparing expression (5.51) and (5.53) we identify

w�ki→�kf ,μi→μf
=

2π

�

∣∣〈φμf ,�kf |V |φμi ,�ki
〉∣∣2ρ(Ef ), (5.54)

where we have introduced the density of final states

ρ�k(Ef ) =
mkf
�2 . (5.55)

Expression (5.54) is known as Fermi’s golden rule. It is such an important and general result of perturbation theory
that many textbooks dealing with scattering theory actually start with it. This is perfectly letigimate as long as one
is aware of the approximations that enter into its derivation.

One of the strengths of Fermi’s golden rule is the fact that all its terms lend themselves to a very intuitive
interpretation. The square of the matrix element

∣∣〈φμf ,�kf |V |φμi ,�ki
〉∣∣2 =

∣∣∣∣
∫

d3rei �Q·�r
∫

dξφ∗μf
(ξ)V (�r, ξ)φμi (ξ)

∣∣∣∣2 (5.56)

gives the probability of the transition from the state |φμi ,�ki〉 to the state |φμf ,�kf 〉 in the proper sense of the term.

This transition is induced by the interaction potential V . As the states |�k〉 form a continuum we need to make
sure that all expressions are properly normalised. The continuity of the states |�k〉 implies that the experimentalist
cannot determine them individually. All measurements correspond imperatively to an integration over a set of final
states defined by the experimental conditions. This is the reason why we have chosen to call w�ki→�kf

a transition

probability density and not a transition probability in short. In the case of scattering the integration space is given
by the energy and the solid angle. Formally we demand that the double differential cross section integrated over all
final states gives the total cross section. All functions included in the double differential cross section should then
be defined on the steradian element dΩ and the final energy dEf . In order to go from d3k to dΩ dEf the density

of states |�k〉 are necessary or in other words we need a function that indicates how the states |�k〉 are distributed in
an element dΩ dEf . This function is ρ�k(Ef ). This is illustrated in the Fig. 28.

At this point it may be instructive to reflect a bit on the notion of a transition in a stationary theory, in which
time does not appear explicitly. In particular Fermi’s golden rule (5.54) is a result from a stationary treatment of
the Schrödinger equation. The state |�ki〉 corresponds, therefore, to a continuous flux of particles with momentum
�p = ��ki. This is the particle flux that exists in the absence of any perturbation. Hence it is natural to consider it as
the starting point for the scattering. To it is associated the initial target state |φμi〉. It is from this initial particle flux



H. Schober / An introduction to the theory of nuclear neutron scattering in condensed matter 187

Fig. 28. Illustration of the function ρ�k
(Ef ). This function denotes the density of states |�kf 〉 in the space spanned by (Ω,Ef ). To evaluate this

density, we simply have to count the number of states |�kf 〉 in an element dΩ dEf . This element is shown in the figure on the left in the space

spanned by the eigenstates |�kf 〉. The figure at the right corresponds to a two dimensional cut of this three-dimensional element. The states |�kf 〉
are shown schematically by the points that are uniformly distributed in space. With a constant radial thickness, the volume of dΩ dkf would

increase as the surface of a sphere, which is as k2
f . However, given that the thickness is required to correspond to a constant dEf , dkf must

effectively decrease with kf . With Ef = �
2k2

f /(2m) we can calculate dkf (Ef ) = �
2/(mkf ). This implies that dkf (Ef ) is proportional

to k−1
f

. The density of states (number of points in dΩ dEf ) is, therefore, only linear in kf . This is the result of expression (5.55). The presence

of ρ�k(Ef ) in the expression for the cross section has some important practical consequences. If kf becomes very small, as it is the case for
neutrons that are almost stopped by the scattering process, then there are very few final states available. As a consequence the scattering rate for
a given band of final energy will be very low. The opposite statement can be made for ki. The cross section actually increases if ki decreases,
i.e. if the incoming probe particles slow down. Since the particle flux is proportional to the density multiplied by the velocity (3.15) the density
increases when the velocity decreases at constant flux. There are simply more and more neutrons simultaneous present in the sample when the
velocity is lowered.

that we create the scattered wave |u〉 by introducing the target. We assume that the potential can be switched on
sufficiently slow with respect to the relevant time scales to consider the system at any time quasi-stationary. This
process is equivalent to placing a stick slowly into a stream of running water. Far away from the target the scattered
wave cannot be distinguished from a plane wave |�kf 〉. This is the final state of the scattering. It is associated with
the target state |φμf 〉. In order for the probability fluid to reach a steady state time will have to pass. Hence the
transition that we are talking about formally corresponds to a time evolution of the system from t → −∞ to
t → +∞.

5.5. The master equation

In the preceding section we tried to be as rigorous and precise as possible with the notation. This choice was
motivated by the complexity of the arguments that had to be developed. For the following considerations we judge
a lighter formalism more adequate. In particular we would like to denominate the states of the target as |λ〉 with λ
denoting an element of the complete set of quantum numbers characterising the target. In this notation the initial
and final states of the combined system are expressed by the direct products

|i〉 = |�ki〉 ⊗ |λi〉 = |�kiλi〉, (5.57)

|f〉 = |�kf 〉 ⊗ |λf 〉 = |�kfλf 〉. (5.58)
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The conservation of energy (5.36) is expressed via

δ
(
(Ef − Ei) − (Eλi

− Eλf
)
)

(5.59)

with Ei and Ef denoting the initial and final kinetic energy of the probe particle, respectively.
This allows us to express the cross section

dσ�ki→�kf ,λi→λf

dΩ
= m2

(
2π

�

)4 kf
ki

∣∣〈λf ,�kf |V |λi,�ki
〉∣∣2 (5.60)

in a double differential form

d2σ�ki→�kf ,λi→λf

dΩ dEf
=

kf
ki

(2π)4m2

�4

∣∣〈λf ,�kf |V |λi,�ki
〉∣∣2δ((Ef − Ei) − (Eλi

− Eλf
)
)
. (5.61)

In experiments we do not observe the final states of the sample. The conditional cross sections – the scattering only
takes place if the sample goes from the state |λi〉 to |λf 〉 – are as a consequence inaccessible in a simple scattering
experiment.49 Ignoring the final states we can thus sum50 the corresponding cross sections.

A similar argument holds for the initial states. In a thermodynamic system we only know their statistical distri-
bution p(λi). A concrete example is the occupation of phonons as a function of temperature. In order to obtain the
observable cross section we have to sum over the initial states with their statistical weights p(λi) properly taken
into consideration.

With these considerations we end up with the equation

d2σ�ki→�kf

dΩ dEf
=

kf
ki

(2π)4m2

�4

∑
λi,λf

p(λi)
∣∣〈λf ,�kf |V |λi,�ki

〉∣∣2δ((Ef − Ei) − (Eλi
− Eλf

)
)
. (5.62)

This expression is called the master equation of scattering. We wish to recall that it is based on the Born approxi-
mation and that the pre-factors hold for the functions 〈�r|�k〉 normalised according to (3.19). As we will see, almost
all neutron experiments can be interpreted in the framework of this equation.

5.6. Statistical density operator and quantum state of the probe particle

At this point of the discussion we want to briefly touch upon the nature of the quantum state of the probe particle
after scattering. Starting from the expressions (5.41) and (5.42) we argued that

〈�r |u�ki→�kf ,μi→μi
〉 = 〈�r |�ki〉 −

4π2m

�2

eiki·r

r
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r

∫
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(μf = μi) and

〈�r |u�ki→�kf ,μi→μf
〉 = −4π2m

�2

eikf ·r

r
〈φμf ,�kf |V |φμi ,�ki〉

= − m
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r

∫
d3r′ei �Q·�r ′〈φν |V |φμi〉�r ′

49One could imagine a complex scattering experiment where the final state is identified by a supplementary measurement, for example if it
is accompanied by the emission of another particle such as a photon or an electron.

50We can always assume discrete states. Where this is not the case we can replace the sum by an integral.
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(μf 
= μi) should be considered the wave functions of the scattered probe particles. Our arguments were rewarded
by the fact that these functions lead to the correct currents for the scattered particles.51 While this use of language
is practical we have to be conscious of the fact that it is not rigorously correct52 and can lead to wrong conclusion
if applied without care.

Let us consider in all generality a combined quantum system HAB . HA may in our case represent the probe and
HB the target. Often HA is called the system of observation and HB the environment. The most general quantum
state of HAB can be written as a superposition of direct product stares

|φAB〉 =
∑
k,λ

ck,λ
(
|k〉 ⊗ |λ〉

)
=
∑
k,λ

ck,λ|k ⊗ λ〉. (5.63)

Let us now assume that we measure a physical quantity A of the system HA. This may e.g. be the position,
momentum or spin of the scattered particles. In the combined quantum space this quantity will be represented by
the operator A⊗ IB with

(A⊗ IB)|φAB〉 =
∑
k,λ

ck,λ
(
|Ak ⊗ λ〉

)
. (5.64)

If we calculate the expectation value we obtain

〈φAB |(A⊗ IB)|φAB〉 =
∑
k,λ

∑
k′,λ′

c∗k′,λ′ck,λ
〈
k′ ⊗ λ′|Ak ⊗ λ

〉

=
∑
k,λ

∑
k′,λ′

c∗k′,λ′ck,λ
〈
k′
∣∣A|k〉δλ,λ′

=
∑
k,k′

∑
λ

c∗k′,λck,λ
〈
k′
∣∣A|k〉

=
∑
k,k′

ρk,k′
〈
k′
∣∣A|k〉

= Tr(ρ̂A) (5.65)

with the operator ρ̂

ρk,k′ =
∑
λ

c∗k′,λck,λ (5.66)

acting in the space HA. This operator possesses all the characteristics of a statistical density operator. It is Her-
mitian, i.e. ρ̂ = ρ̂+. It has unit trace, i.e. the sum of its eigenvalues is equal to one, and it is positive, i.e.
〈ψ|ρ̂|ψ〉 � 0 ∀|ψ〉.

In the special case of a pure state of the simple form

|φAB〉 = |k ⊗ λ〉 (5.67)

51Like the wave function the probability current is in itself not a physical observable. It is converted into a measured intensity via the physical
processes taking place at the time of detection.

52We follow strictly the excellent discussion given by Michel Le Bellac [37].
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we get ρ2 = 1 and

〈φAB |(A⊗ IB)|φAB〉 =
〈
k′
∣∣A|k〉. (5.68)

This is the usual form of an expectation value obtained from a well-defined quantum state. In all other cases the
expectation value of the physical quantity cannot be attributed to a quantum state of the probe particle. Therefore,
by ignoring in a measurement the target states we arrive at a statistical description of the probe particle state that
no longer can be represented by a pure quantum state. We get, therefore a description of the quantum system
that strongly resembles the one introduced by statistical disorder, e.g. via the coupling of the quantum system to
a thermal bath. Despite this similarity one should be aware of the fact that the statistical operator obtained by
ignoring quantum coupling and the one obtained from quantum statistical mechanics differ. We speak of improper
and proper mixtures.

We can easily introduce statistical disorder into the above outlined formalism. Let ρ̂AB be the statistical den-
sity operator of the combined system. Then we can obtain the so-called reduced statistical density operator of
subsystem HA via contraction of the HB indices

ρAk,k′ =
∑
λ

ρAB
k′,λ;k,λ (5.69)

or in matrix notation

ρ̂A = TrB ρ̂AB . (5.70)

TrB is called partial trace over the subsystem HB .
Let us for illustration calculate the statistical density operator for a pure state, which as stated above writes in

the most general form as

|ΦAB〉 =
∑
k,λ

ck,λ|k ⊗ λ〉. (5.71)

The statistical density operator of HAB is then given as

|ΦAB〉〈ΦAB | =
∑

k,k′;λ,λ′
ck,λc

∗
k′,λ′ |k ⊗ λ〉

〈
k′ ⊗ λ′

∣∣. (5.72)

We calculate the reduced statistical density operator as

ρA = TrB |ΦAB〉〈ΦAB |

=
∑
λ′′

∑
k,k′;λ,λ′

ck,λc
∗
k′,λ′ |k〉

〈
λ′′|λ

〉〈
k′
∣∣〈λ′|λ′′〉

=
∑
λ′′

∑
k,k′;λ,λ′

ck,λc
∗
k′,λ′ |k〉

〈
k′
∣∣〈λ′|λ′′〉〈λ′′|λ〉

=
∑

k,k′;λ,λ′
ck,λc

∗
k′,λ′ |k〉

〈
k′
∣∣〈λ′|λ〉. (5.73)

If we reorder the terms by attributing to an index m the pairs of indices of k(m) and λ(m) then

|ΦAB〉 =
∑
k,λ

ck(m),λ(m)|km ⊗ λm〉 =
∑
m

cm|km ⊗ λm〉 (5.74)
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and

ρA = TrB |ΦAB〉〈ΦAB | =
∑
m,m′

cmc∗m′ |km〉〈km′ |〈λm′ |λm〉. (5.75)

If the target states |λ〉 are chosen orthonormal then all the off-diagonal elements vanish and

ρA = TrB |ΦAB〉〈ΦAB | =
∑
m

|cm|2|km〉〈km|. (5.76)

Expressions (5.75) and (5.76) give the mathematical justification for deducing the particle wave functions (5.43)
and (5.44) from the combined wave functions (5.41) and (5.42) via integration over the variables ξ of the target,
which is equivalent to calculating 〈λm′ |λm〉 in (5.75). This integration is, therefore, the signature of calculating
the partial trace over the target states.

As the information on the phases of the complex numbers cm is lost the statistical density operator in expression
(5.76) corresponds to a superposition of states without phase coherence. Therefore, if the states of the probe particle
are perfectly correlated with eigenstates of the target then they loose their phase coherence among themselves. This
phenomenon is called decoherence of particle states by interaction with an environment. It has to be stressed that
the phases are preserved and can be retrieved if we keep control of the complete probe plus target system. In other
words decoherence means that information leaks into the target.

Information content may be quantified by the Von Neumann entropy S. Let us remember that the statistical
density operator is positive semi-definite and thus can be spectrally decomposed into eigenvalues

ρ̂ =
∑
i

pi|ψi〉〈ψi| (5.77)

with the |ψi〉 orthonormal, all the eigenvalues pi positive and
∑

i pi = 1. Then the entropy of the mixture is given as

S = −
∑
i

pi ln pi = −Tr ρ̂ ln ρ̂. (5.78)

While the entropy of the combined system of probe and particle is preserved entropy will decrease if we consider
the probe on its own.

In summary, if a pure system HA is coupled to an environment via an interaction described by a Hamiltonian
then it will suffer so-called decoherence. Its time evolution will be non-unitary and thus irreversible. The non-
unitarity will persist for system HA even if the total system HAB evolves in a unitary fashion. This implies that
when a neutron is scattered inelastically from a complex target possessing internal degrees of freedom then we have
to pass from a wave function to a statistical description of the neutron state in terms of a density matrix if we want
to capture the full physics of the scattering process. We will come back to this discussion in Section 11.2 that deals
with the Liouville theorem. We will see how the loss of coherence introduced into the probe particle state allows
bypassing the Liouville theorem. This fact has important consequences for designing neutron instrumentation.

The difference of a statistical with respect to a pure quantum state description is so important that we want to
illustrate it by an example. Let us consider the polarisation of a neutron beam. We may decompose the statistical
density matrix of the spin states in terms of the Pauli spin matrices

ρ̂ =
1
2

[I +�b · �σ], (5.79)

with

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
(5.80)
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and the spin operator defined as

�S =
�

2
�σ. (5.81)

The vector �b is called the Bloch vector. For ρ to fulfil the above outlined requirements of a statistical density
operator (e.g. the sum of the probabilities, i.e. of the eigenvalues of ρ̂, has to be equal to one, etc.) the Bloch vector
has to satisfy

|�b| � 1.

If |�b| = 1 we speak of a fully polarised beam. If |�b| = 0 we speak of a fully unpolarised beam.
If for an unpolarised beam we measure the expectation value of �S, e.g. by an adequate spin separator, which

may be a simple Stern–Gerlach apparatus, then we will always count 50% of the overall intensity in the spin up
and 50% in the spin down channel, and this independent of the direction, i.e. independent of the orientation of our
spin separator.

The situation is completely different for a pure state. Let us describe the beam in the form of a wave function
that superimposes coherently the two spin states of the neutron

|ψ〉± =
1√
2

(
| ↑ 〉z ± | ↓ 〉z

)
, (5.82)

where we have chosen ẑ as the quantisation axis. As long as the �B field of our Stern–Gerlach apparatus is aligned
along ẑ we will get 50% of the neutrons in each channel. However, as we immediately can show by using the Pauli
matrices, |ψ〉+ is now an eigenstate of Sx

Sx|ψ〉+ =
�

2
|ψ〉+. (5.83)

Therefore, all the neutrons will be deviated along the positive x-direction if �B is parallel to x̂. In the same way
|ψ〉− is an eigenstate of Sx with eigenvalue −�/2.53 We are, therefore, dealing with fully polarised states. The
reason is the perfect coherence of the superposition of states that leads to a well-defined phase relation between
the amplitudes of the up and down states. When a fully polarised neutron state couples to an environment we will
witness depolarisation. The Bloch vector will be mapped from the unitary surface towards the interior and finally
towards the origin of the Bloch sphere.

5.7. The form factor of the individual interaction potential

In the discussion so far the potential V (�r, ξ) was not further specified. We will now exploit the fact that the
interactions that we are generally dealing with are of the two-particle form. The scattering potential that the probe
particle experiences from one specific target particle is, therefore, not influenced by the presence of other target
particles. As a consequence we can express the interaction potential as a sum of individual contributions

V (�r ) =
N∑
j=1

Vj(�r − �Rj) =
∫
V

dr′3
N∑
j=1

Vj
(
�r ′
)
δ(�r − �Rj), (5.84)

53The eigenvectors of Sy are given as

|ψ〉± =
1√
2

(
| ↑ 〉z ± i| ↓ 〉z

)
.
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where Vj(�r− �Rj) is the interaction potential of an individual scatterer characterised by its position operator �Rj .54

The second equality underlines the fact that we are dealing with a convolution of the positions with the interaction
potentials.

The first step in the evaluation of the master equation consists in the integration over the variable �r of the matrix
element 〈λf ,�kf |V |λi,�ki〉, which is at the heart of the master equation. Using the above expression for the potential
the matrix element takes on the form

〈
λf ,�kf |V |λi,�ki

〉

=

N∑
j=1

1
(2π)3

∫
d3R1 · · ·

∫
d3RN

∫
d3rφ∗λf

(
e−i�kf ·�rVj(�r − �Rj)ei�ki·�r)φλi

. (5.85)

The eigenfunctions of the target

φλ = 〈r|λ〉 = φλ
(
{�Rj}

)
(5.86)

only depend on the coordinates �Rj .
Given that the integral extends over all space we can for each individual j-term featuring in the sum of expression

(5.85) freely choose the origin of the integration variable pertaining to the probe particle. In particular by defining
(see Fig. 29)

�rj = �r − �Rj (5.87)

we find∫
d3R1 · · ·

∫
d3RN

∫
d3rφ∗λf

(
e−i�kf ·�rVj(�r − �Rj)ei�ki·�r)φλi

=

∫
d3R1 · · ·

∫
d3RN

∫
d3rjφ

∗
λf

(
e−i�kf ·(�rj+�Rj )Vj(�rj)ei�ki·(�rj+�Rj ))φλi

=

∫
d3R1 · · ·

∫
d3RNφ∗λf

ei �Q·�Rjφλi

∫
d3rjei �Q·�rjVj(�rj). (5.88)

With (5.88) the matrix element appearing in the master equation can be written in a more compact manner

〈
λf ,�kf |V |λi,�ki

〉
=

1
(2π)3

N∑
j=1

Vj( �Q)
〈
λf
∣∣ei �Q·�Rj

∣∣λi〉. (5.89)

The function

Vj( �Q) =
∫

d3rei �Q·�rVj(�r ) (5.90)

is the Fourier transform of the interaction potential of the jth scatterer. It reminds us of the expression (3.188) that
we had obtained for the scattering of a particle by a static potential. The function Vj( �Q) can be thought of as a form
factor of the potential Vj(�rj) of the jth scatterer.

54The set of {�Rj} is equivalent to the set of coordinates {ξ} that we have used so far and that was formulated as unspecific as possible in
order not to render the notation too cumbersome.
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Fig. 29. Coordinates used for the calculation of Vj ( �Q) (expression (5.90)) starting from the interaction potential Vj (�Rj ).

This is again a remarkable result in full analogy with what we had found for optical diffraction.55 We have
succeeded in factorising the matrix element into two terms. The first, the form factor of the potential

Vj( �Q)

is a function that characterises the individual scatterers.56 The interaction of a scatterer with the probe particles is
entirely described by its form factor. Therefore the potential is no longer present in the second factor

〈
λf
∣∣ei �Q·�Rj

∣∣λi〉
which is a function that purely depends on the target.

Using the form factors Vj( �Q) of the interaction potential the master equation (5.62) becomes

dσ�ki→�kf

dΩ dEf
=

kf
ki

m2

(2π)2�4

∑
λi,λf

p(λi)

∣∣∣∣∣
N∑
j=1

Vj( �Q)
〈
λf
∣∣ei �Q·�Rj

∣∣λi〉
∣∣∣∣∣
2

δ
(
(Ef − Ei) − (Eλi

− Eλf
)
)
. (5.91)

5.8. The Fermi pseudo-potential

We would now like to evaluate the form factor for extremely short-ranged potentials. This is notably the case for
neutron scattering from a nucleus, which is happening on the nuclear length scale of the femptometre. If we use
the effective potential developed in Section 3.7 we find57

Vj( �Q) =
∫

d3rV (�r )ei �Q·�r =
2π�

2

m
bj

∫
d3rδ(�r )

d
dr

∣∣∣∣
r=0

rei �Q·�r. (5.92)

55We could simply have anticipated this result from the fact that the scattering amplitude in the Born approximation is the Fourier transform
of the scattering potential (see (3.188). For a potential which is, as seen in (5.84), the convolution of two functions, the Fourier transform is the
product of the individual Fourier transforms as discussed in Section 4).

56There is no ambiguity in the definition of the potential if the scattering particle is an elementary particle without any internal degrees of
freedom (we recall that we neglect spin in this discussion). In general, what we call a scatterer is nevertheless itself a composite particle. This is
true both for the nucleus in nuclear scattering and the electron cloud for magnetic scattering. We can only neglect these internal structures under
the condition that they are stable at the level of the scattering. In other words the interaction with the composite object can be described by
an effective potential as long as the neutron does not trigger a transition between different excited states. For the nucleus this is the case when
we are off resonance. For the electronic levels, it is in general the case for the typical thermal neutron scattering experiments, which are below
some 100 meV. At higher energies the transitions between multiplets should be taken into consideration in the formal treatment of scattering
(see [3]).

57We place the scatterer at the origin for convenience.
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We can evaluate this expression by expanding the function e−i �Q·�r in partial waves (see (3.68)) and by remembering
the behaviour of the radial part of the wave function for ρ → 0 (see (3.61)). We obtain

Vj( �Q) =
2π�

2

m
bj . (5.93)

This result is not surprising. The Fourier transform of a point should give a constant. We could have found the
same result by using the simpler potential

Veff(r) =
2π�

2

m
bjδ(�r), (5.94)

which is known as the Fermi pseudo-potential. The conditional cross section (5.91) then takes the form

d2σ�ki→�kf ,λi→λf

dΩ dEf
=

kf
ki

∣∣∣∣∣
N∑
j=1

bj〈λf |ei �Q·�Rj |λi〉
∣∣∣∣∣
2

δ
(
(Eλi

− Eλf
) + �ω

)
, (5.95)

where we have introduced

�ω := Ei − Ef (5.96)

in order to express the energy transferred from the probe particle to the target.
A word of further explanation is in order to better understand the term pseudo-potential. When calculating

the form factor we work strictly in the Born approximation. However, as we have seen in Section 3.13 the Born
approximation is actually not valid when it comes to calculating the scattering of a neutron from a nuclear potential.
For neutrons with wave lengths of a few Å

r0 · k < 10−4,

which means that we are in the low-energy regime. The low-energy condition for validity of the Born approxima-
tion

mV0r
2
0/�

2 	 1

is, however, not fulfilled. If we insist on the Born approximation, we have to apply a mathematical trick. Let us first
see what form factor we obtain with the Born approximation from a short-range spherically symmetric potential.

V ( �Q) =
∫

d3r V (�r )ei �Q·�r =

∫ r0

0
r2 dr V (r), (5.97)

where in order to obtain the last equality we have exploited the fact that | �Q| is small on the scale of 1/r0. The
result can be expressed as a product

V ( �Q) = Vconst =
4π

3
r3

0 · V̄ , (5.98)

with the average potential defined via

V̄ =

∫ 1

0
x2 dxV (x). (5.99)
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As only the product of the volume of the interaction region with the average potential comes into play Fermi pro-
posed [25] to choose an effective potential range reff such that it preserves the form factor, while still remaining in
the low-energy regime but equally fulfilling the validity condition of the Born approximation. All these conditions
are e.g. respected if we choose

reff := 102 · r0

and

V̄eff := 10−6 · V̄ .

In this case

reff · k ≈ 10−2 	 1

and

mV̄effr
2
eff

�2 ≈ 10−2 	 1,

while the form factor Vconst remains unchanged. To free ourselves from the arbitrariness inherent in the choice of
reff we may define a pseudo-potential that gives the correct form factor in the Born approximation while its range
is described by a Dirac function. The result is given in expression (5.94).

5.9. The scattering function S( �Q,ω)

The master equation (5.91) that we have obtained for the partial differential cross section contains a sum, which
depends explicitly on the set of all the final quantum states {|φλ〉} of the target. We certainly would have preferred
an expression that was based on expectation values of the thermodynamic equilibrium state of the target. These
expectation values are of the form

〈A〉 = Tr[ρ̂λA] =
∑
λ

pλ
〈
λ|A|λ

〉
, (5.100)

with the density operator in thermodynamic equilibrium defined as

ρ̂ =
exp(−H/(kBT ))

Tr[exp(−H/(kBT ))]
, (5.101)

which in the basis of eigenvectors of H is diagonal with elements

pλ =
1
Z

exp

(
− Eλ

kBT

)
(5.102)

and the canonical partition function defined as

Z =
∑
λ

exp

(
− Eλ

kBT

)
=
∑
λ

〈λ| exp

(
− H
kBT

)
|λ〉 = Tr

[
exp

(
− H
kBT

)]
. (5.103)



H. Schober / An introduction to the theory of nuclear neutron scattering in condensed matter 197

It would be tempting to invoke the closure relation

∑
λf

|λf 〉〈λf | = Iλ, (5.104)

with Iλ being the identity operator in the target subspace, in order to achieve this. The presence of the δ((Eλi
−

Eλf
)+�ω))-function in the expression (5.62) unfortunately prevents us from doing so.58 To overcome this obstacle

we have to use a trick. We recall that a Dirac function of energy can be expressed as a Fourier transform of a
constant in time

δ(Eλi
− Eλf

+ �ω)

=
1

2π�

∫ ∞

−∞
dt exp

(
− i

�
(Eλi

− Eλf
+ �ω)t

)

=
1

2π�

∫ ∞

−∞
dt exp

(
− i

�
(Eλi

− Eλf
)t

)
· exp(−iωt). (5.105)

The energies Eλ, listed in this expression, are the eigenvalues of the target Hamiltonian

H|λ〉 = Eλ|λ〉. (5.106)

For any function f (H) of this Hamiltonian acting on one of its eigenfunctions we get

f (H)|λ〉 = f (Eλ)|λ〉. (5.107)

In particular,

exp

(
i
�

Ht

)
|λ〉 = exp

(
i
�
Eλt

)
|λ〉. (5.108)

We now return to the master equation (5.95). The central part of this equation is the square of the sum of the matrix
elements. We express this square as a double sum

∣∣∣∣∣
N∑
j=1

bj〈λf |ei �Q·�Rj |λi〉
∣∣∣∣∣
2

=

N∑
j,j′=1

bjb
∗
j′〈λf |ei �Q·�Rj |λi〉〈λi|e−i �Q·�Rj′ |λf 〉. (5.109)

For each term associated with a δ(E)-function, we apply expression (5.105) in the following way

〈λf |ei �Q·�Rj |λi〉〈λi|e−i �Q·�Rj′ |λf 〉δ(Eλi
− Eλf

− �ω)

=
1

2π�

∫ ∞

−∞
dt〈λf |e

i(Eλf
/�)t

ei �Q·�Rj e−i(Eλi
/�)t|λi〉〈λi|e−i �Q·�Rj′ |λf 〉e−iωt. (5.110)

58The closure relation expresses the fact that any target state can be expressed as a linear combination of the states |λ〉. The δ-function in the
expression (5.62) introduces a drastic selection of the states entering the sum. It is no longer possible to constitute a basis from this reduced set
of target sates.
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The energies written here can following (5.108) be replaced by the Hamilton operator. We find

〈λf |ei �Q·�Rj |λi〉〈λi|e−i �Q·�Rj′ |λf 〉δ(Eλi
− Eλf

− �ω)

=
1

2π�

∫ ∞

−∞
dt〈λf |ei(H/�)tei �Q·�Rj e−i(H/�)t|λi〉〈λi|e−i �Q·�Rj′ |λf 〉e−iωt

=
1

2π�

∫ ∞

−∞
dt〈λi|e−i �Q·�Rj′ |λf 〉〈λf |ei(H/�)tei �Q·�Rj e−i(H/�)t|λi〉e−iωt, (5.111)

where we have inverted the order of the matrix elements in the last line. We have thus reached the point where we
can apply the closure relation (5.104)

∑
λf

〈λf |ei �Q·�Rj |λi〉〈λi|e−i �Q·�Rj′ |λf 〉δ(Eλi
− Eλf

− �ω)

=
1

2π�

∫ ∞

−∞
dt〈λi|e−i �Q·�Rj′ ei(H/�)tei �Q·�Rj e−i(H/�)t|λi〉e−iωt. (5.112)

At this point it is important to mention that the order in which the �Rj appear is fixed since the �Rj as operators
do not commute with the Hamiltonian H.59 We have liberated ourselves from the sum over the final states but
at the price of introducing exponential functions of the Hamilton operator in the master equation. The operators
exp(−(i/�)Ht) are nevertheless well known in quantum mechanics. They are the time evolution operators that we
have already mentioned in Section 1.2

U(t, t0) = e−(i/�)H(t−t0). (5.113)

Applied to an operator A

A(t) = U+(t, t0)A(t0)U(t, t0) = e(i/�)H(t−t0)A(t0)e−(i/�)H(t−t0) (5.114)

the operator U describes the time evolution of A.60

Identifying A with �R0
j := �Rj(t = 0) we see that61

ei(H/�)tei �Q·�Rj e−i(H/�)t = ei �Q·�Rj (t). (5.115)

As a consequence the terms in the master equation take the form

∑
λf

〈λf |ei �Q·�Rj |λi〉〈λi|e−i �Q·�Rj′ |λf 〉δ(Eλi
− Eλf

− �ω)

=
1

2π�

∫ ∞

−∞
dt〈λi|e

−i �Q·�R0
j′ ei �Q·�Rj (t)|λi〉e−iωt. (5.116)

59H contains momentum operators �Pj that do not commute with �Rj .
60The reader motivated to know the formal justification for this relation can find the explanation in every book on quantum mechanics.
61In order to lighten the formalism we will in most formulas refrain from explicitly indicating the operator character of �Rj .
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The partial differential cross section becomes

d2σ�ki→�kf

dΩ dEf
=

kf
ki

1
2π�

∑
λi

p(λi)
N∑

j,j′=1

bjb
∗
j′

∫ ∞

−∞
dt〈λi|e

−i �Q·�R0
j′ ei �Q·�Rj (t)|λi〉e−iωt. (5.117)

We can write this result in the more compact form

d2σ�ki→�kf

dΩ dEf
=

kf
ki

S( �Q,ω), (5.118)

where

S( �Q,ω) =
1

2π�

∑
λi

p(λi)
N∑

j,j′=1

bjb
∗
j′

∫ ∞

−∞
dt〈λi|e

−i �Q·�R0
j′ ei �Q·�Rj (t)|λi〉e−iωt. (5.119)

S( �Q,ω) is called the scattering function or the dynamic structure factor.62 As closer inspection shows the scattering
function is expressed in terms of expectation values (see expression (5.100)). We, therefore, have attained our
original goal.

We will briefly comment on this result.

• We recall that the expression (5.119) describes the scattering within the Born approximation.
• The expression (5.118) is valid for very short ranged interaction potentials that are expressed via the scattering

length bj . The generalisation is done by substituting the scattering lengths in (5.91) with the form factors of
the interaction potential (5.90) according to

bj →
m

2π�2Vj( �Q). (5.120)

• The scattering function is an extensive quantity of the sample. In other words, the scattering function is
proportional to the number of scatterers. The explicit dependence on the number of scatterers is mostly an
inconvenience. The scattering function is, therefore, often given in a normalised form. The normalisation is
performed with respect to the number of scatterers either in the chemical unit or in the unit cell (for samples
of crystalline character).

• The proportionality between the scattering function and the number of scatterers clearly shows the limits
of the Born approximation. It is not possible that the number of scattered probe particles increases without
bounds for a given incident flux. There will be a point at which the majority of incident particles have been
scattered. Beyond this point it does not make sense to increase the sample size further. This is called the
extinction effect. In practice extinction is observed mainly for Bragg scattering. When a crystal is of good
quality then the incident neutron flux giving rise to the Bragg scattering will be exhausted after only a few
thousand atomic layers. It is evident that beyond this point the incident beam can no longer be considered to
be homogeneous over the sample volume. This is nevertheless exactly what the Born approximation amounts
to. When dealing with such cases we have to turn to dynamical scattering theory [49,58]. We will come back
to this discussion in Section 11.5. Another example where the Born approximation fails by definition is total
scattering or grazing incident scattering (see Section 9.9). As the probability of scattering approaches 100% it
is no longer possible to consider the scattering a weak perturbation to the incident beam. This case is treated
within the distorted-wave Born approximation [11,60].

62The way we have defined the scattering function it possesses units of [area/energy]. If we stuck to a rigorous notation we would, therefore,
use the energy as a variable and write S( �Q, �ω). Following the main stream of the literature we opt for the shorter S( �Q,ω).
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• The scattering function is a physical quantity that relates to the equilibrium state of the sample. We will exploit
this fact when relating the scattering function to correlation functions and susceptibilities making use of linear
response theory.

• The scattering function does not depend explicitly on the final sates of the sample. At thermodynamic equi-
librium these states are nevertheless present in the factors pλi

. As we have seen these probabilities can be
expressed as

pλ =
1
Z

exp

(
− Eλ

kBT

)
(5.121)

with the canonical partition function Z defined as

Z =
∑
λ

exp

(
− Eλ

kBT

)
. (5.122)

In order to calculate Z we need to know the complete spectrum of excitations.
• If the probe particles have themselves internal degrees of freedom this necessarily adds an extra layer of

complexity to the problem. It equally provides additional means to retrieve valuable information from the
scattering. For the neutron these channels are linked to its two spin states |σ〉 = |±〉. If p(σi) denotes the
probability of finding the neutron in the spin state |σi〉 before the collision and if we do not reveal the final
spin state |σf 〉 before the detection (no spin analysis) then the scattering function becomes

S( �Q,ω) =
1

2π�

∑
λi,σi,σf

p(λi)p(σi)
N∑

j,j′=1

bjb
∗
j′

∫ ∞

−∞
dt〈σf ;λi|e

−i �Q·�R0
j′ ei �Q·�Rj (t)|λi;σi〉e−iωt. (5.123)

6. Specificities of neutron scattering

With the intention of developing a general formalism we have so far avoided, whenever possible, specificities
related to neutron scattering. For this reason the results obtained can be applied with little modification to other
scattering techniques provided that these satisfy the criteria required by the approximations used. In this section
we will deal with aspects that are specific to neutron scattering. Among these features prominently the distinction
of coherent and incoherent neutron scattering.

6.1. Coherent and incoherent scattering

The scattering function (5.119) contains a double sum over the scatterers that formally can be expressed as

S( �Q,ω) =
N∑

j,j′=1

(
bjb

∗
j′
)
Sj,j′ ( �Q,ω) (6.1)

with

Sj,j′ ( �Q,ω) =
1

2π�

∑
λi

p(λi)
∫ ∞

−∞
dt
〈
λi
∣∣e−i �Q·�R0

j′ ei �Q·�Rj (t)
∣∣λi〉e−iωt. (6.2)

While the term bjb
∗
j′ depends on the nuclei the function Sj,j′ ( �Q,ω) depends on the atomic coordinates and elec-

tronic states of the sample and thus generally reflects the chemical state of the sample. It is a particularity of
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Fig. 30. Illustration of the statistical distribution of the scattering lengths. In the top example we imagine a system composed of two identical
atoms (for example a bi-atomic molecule). We assume that the nucleus of the atom has two equally probable isotopes. The two isotopes have
different scattering lengths. Here, one is assumed positive and the other negative. There is no correlation between the position and the isotope
state of the atom. When we do the calculation of the cross section we need to average over all four possible configurations. If we remain
with the picture of a molecule then we do so by adding the cross sections of the ensemble of molecules, which is representative for the isotope
distribution. In the lower figure we treat the case of four atoms with two scattering lengths equally distributed. The sixteen configurations shown
are representative for this distribution. We can imagine that the four atoms correspond to the correlation volume of the sample. By sweeping
this volume over the sample we will perfectly average over the isotope distribution.

neutron scattering that the nuclear scattering potential can vary from one atom to the next for the same chemical
element. These variations are due to the fact that neutrons are sensitive to nuclear isotopes and to the nuclear spin.
The nuclear isotopes as well as the nuclear spins are in general distributed in a statistical manner. The interactions
between the nuclei capable of aligning the spins are very weak due to their indirect nature. In condensed matter
they are mediated by the electrons (hyperfine interactions).63 It is clear that the same argument does not hold for
scattering of X-rays or neutron scattering from the magnetic moments created by the electronic cloud, which both
relate to the chemical elements.

A random distribution of the scattering length on the atomic site �Rj implies that any information on the value

of the scattering length at the site �Rj is of statistical nature. Randomness in particular implies that there is no

statistical correlation between the values of the scattering lengths bj and the sites �Rj . The randomness present in

the nuclear system concerns exclusively the terms (bjb∗j′ ) in expression (6.1) but not Sj,j′ ( �Q,ω).
We would like to illustrate these general statements by a simple example. We consider a sample composed of

two atoms of the same chemical element. The nuclei of these two atoms are present in two isotopic forms, thus we
denote the respective scattering lengths by c1 and c2. The scattering lengths are assumed to be real. We replicate
the system in the four possible isotopic combinations. Each replica corresponds to a sample for which we calculate
the scattering function. From these particular scattering functions we determine the average scattering function.
We will first examine the distinct parts of the sum (6.1). For a given pair j, j′ we are dealing with four individual
cases (see Fig. 30)

j 
= j′: bjbj′ = c1 · c1, bjbj′ = c1 · c2, bjbj′ = c2 · c1, bjbj′ = c2 · c2. (6.3)

63However we would like to emphasise that there exist systems with correlations between the nuclear spins at very low temperatures.
Neutrons are an ideal probe of this nuclear magnetic ordering. For a review see the article by Steiner [63] who pioneered this field.
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Hence we can write

j 
= j′: (bjbj′)Sj,j′ ( �Q,ω) → 1
4

(c1 · c1 + 2c1 · c2 + c2 · c2)Sj,j′ ( �Q,ω) = (c̄)2Sj,j′ ( �Q,ω). (6.4)

The distinct terms of the scattering function are thus proportional to the square of the average scattering length
c̄ = (1/2)(c1 + c2). Similarly for the self terms j = j′ we find

j = j′: bjbj = c1 · c1 (2 times), bjbj = c2 · c2 (2 times), (6.5)

which brings us to

j = j′: (bjbj)Sj,j( �Q,ω) =→ 1
2

(c1 · c1 + c2 · c2)Sj,j( �Q,ω) = c2Sj,j( �Q,ω). (6.6)

The self terms of the scattering function are thus proportional to the average of the square of the scattering length
c2 = (1/2)(c2

1 + c2
2).

We will now generalise this result. We start from a macroscopic system with a large number of scatterers.
This system yields a priori a precisely defined and unique scattering function.64 As we are going to see later
(Section 11.5) we rarely get interference from macroscopic volumes of our sample. The volume fraction of the
sample that gives rise to interference effects, the so-called correlation volume. Hence we can consider that the
macroscopic system is composed of an ensemble of replica of the correlation volume. Given the large number of
replicas we can safely assume that every possible nuclear isotope or spin configuration appears with its correct
statistical weight in this ensemble. As in our previous example we find the scattering function by averaging over
all possible replicas

S( �Q,ω) =
N∑

j,j′=1

(
bjb

∗
j′
)
Sj,j′ ( �Q,ω). (6.7)

Due to the absence of correlation between the scattering lengths and the positions of the atoms

j 
= j′:
(
bjb

∗
j′
)
= bjb

∗
j′ , (6.8)

j = j′:
(
bjb

∗
j

)
= b2

j , (6.9)

with

bj =
∑
i

pij · bij , (6.10)

b2
j =

∑
i

pij ·
(
bij
)2
. (6.11)

The coefficients pij give the probability that the scattering length of the element at position �Rj has the value bij .
Naturally

∑
i

pij = 1, (6.12)

64The interference of all the wave fronts produced in the illuminated sample volume is e.g. exploited in the case of Photon Correlation
Spectroscopy (PCS). It requires that the light front is coherent over this volume (see Section 4.7).
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where the index i runs over all possible isotope or spin states of the corresponding nucleus.
With this result we can calculate the scattering function from the statistical distributions of the scattering lengths

p(bj), which in general are well known,

S( �Q,ω) =
N∑

j 
=j′
bjb

∗
j′Sj,j′( �Q,ω) +

N∑
j=1

b2
jSj,j( �Q,ω) (6.13)

=

N∑
j,j′=1

bjb
∗
j′Sj,j′ ( �Q,ω) +

N∑
j=1

(
b2
j − (b̄j)2)Sj,j( �Q,ω). (6.14)

To obtain the last line we have added the term
∑N

j=1(b̄j)2Sj,j( �Q,ω) to the first sum and subtracted it from the
second.

We define

d2σ

dΩ dEf
=

(
d2σ

dΩ dEf

)
coh

+

(
d2σ

dΩ dEf

)
inc

, (6.15)

where the coherent contribution to the cross section is given by

(
d2σ

dΩ dEf

)
coh

=
kf
ki

1
2π�

∑
λi

p(λi)
N∑

j,j′=1

bjb
∗
j′

∫ ∞

−∞
dt〈λi|e

−i �Q·�R0
j′ ei �Q·�Rj (t)|λi〉e−iωt, (6.16)

while the incoherent contribution is

(
d2σ

dΩ dEf

)
inc

=
kf
ki

1
2π�

∑
λi

p(λi)
N∑
j

(
b2
j − (b̄j)2) ∫ ∞

−∞
dt〈λi|e−i �Q·�R0

j ei �Q·�Rj (t)|λi〉e−iωt. (6.17)

If the system is monatomic we can simplify these expressions by introducing the total coherent and incoherent
cross sections

σcoh = 4π(b̄)2, (6.18)

σinc = 4π
[
b2 − (b̄)2]. (6.19)

The expressions (6.16) and (6.17) then become

(
d2σ

dΩ dEf

)
coh

=
σcoh

4π

kf
ki

1
2π�

∑
λi

p(λi)
N∑

j,j′=1

∫ ∞

−∞
dt〈λi|e

−i �Q·�R0
j′ ei �Q·�Rj (t)|λi〉e−iωt (6.20)

and

(
d2σ

dΩ dEf

)
inc

=
σinc

4π

kf
ki

1
2π�

∑
λi

p(λi)
N∑
j

∫ ∞

−∞
dt〈λi|e−i �Q·�R0

j ei �Q·�Rj (t)|λi〉e−iωt. (6.21)

The coherent scattering is qualitatively very different from the incoherent scattering. We are going to discuss these
differences after having equipped ourselves with the important tool of correlation functions.

We equally want to stress the fundamental difference between incoherent scattering and diffuse scattering that
we are going to discuss in a bit more detail in Section 9.14.
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6.2. The dependence of the scattering lengths on the nuclear spin

The statistical distribution of nuclear scattering lengths can, as mentioned before, originate in the atomic isotopes
but also in the nuclear spin. The distribution of isotopes is a complicated subject in nuclear physics, which we have
no intention to develop further. The distribution of scattering channels due to nuclear spin is on the other hand a
consequence of the angular momentum decomposition that falls within the basics of ordinary quantum mechanics
[10,37]. We, therefore, are capable of deriving explicit expressions for b̄ and b2 for a given isotope with the nuclear
spin I .

As already mentioned in the context of partial waves the angular momentum is a conserved quantity in systems
with isotropic symmetry. When both the probe particle and the target possess spin their total angular momentum �J
is conserved. For s-type scattering there is no orbital contribution to the scattering. The total angular momentum
operator is then simply the sum of the spin �S of the probe particle and of the spin�I of the target

�J =�I + �S. (6.22)

The neutron has a spin of S = 1/2 and the combined system can take the values of

J+ = I + 1/2 and (6.23)

J− = I − 1/2. (6.24)

For each value of J we, in principle, expect a different scattering length. The degeneracy of the �J levels are given
by

nJ = 2J + 1. (6.25)

We find

n+ = 2(I + 1/2) + 1 = 2I + 2, (6.26)

n− = 2(I − 1/2) + 1 = 2I. (6.27)

If the incident beam is not polarised and if the spin states of the sample are distributed in a statistical manner each
of the �J states is equally probable. The conditional probability distribution that indicates the probability for the
scattering to proceed either via the channel (+) or (−) is then expressed as

p+ =
2I + 2
4I + 2

=
I + 1
2I + 1

, (6.28)

p− =
2I

4I + 2
=

I

2I + 1
. (6.29)

This enables us to calculate the statistical mean values

b̄ =
1

2I + 1

(
(I + 1)b+ + Ib−

)
, (6.30)

b2 =
1

2I + 1

(
(I + 1)

(
b+
)2

+ I
(
b−
)2)

. (6.31)
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6.3. Neutron scattering from a proton or a deuteron

As a concrete example of this formalism we will look at the neutron scattering from a proton. Both the neutron
and the proton have a spin of S = 1/2. The Hilbert space of the common system is the tensor product of the two
dimensional space of the two spins. Hence it has four dimensions and a complete basis is given by

| ↑↑ 〉 = | ↑ 〉n ⊗ | ↑ 〉p, (6.32)

| ↓↑ 〉 = | ↓ 〉n ⊗ | ↑ 〉p, (6.33)

| ↑↓ 〉 = | ↑ 〉n ⊗ | ↓ 〉p, (6.34)

| ↓↓ 〉 = | ↓ 〉n ⊗ | ↓ 〉p. (6.35)

The indices n and p refer to the neutron and the proton, respectively. The operator �S2 where �S = �Sn + �Sp is not
diagonal in this basis. Hence this basis is not very useful since it is the total spin that is the conserved quantity
and not the isolated spins of the neutron and the proton. By applying the rules of combining spins we find two
eigenvalues for �S2

S = Sn + Sp = 1 and S = |Sn − Sp| = 0. (6.36)

Each value of S corresponds to a sub-space of eigenvectors of dimension 2S + 1. In the case of two spin 1/2
particles these eigenvectors are give by

S = 1: |1, 1〉 = | ↑↑ 〉 (6.37)

: |1, 0〉 = 1√
2

(
| ↑↓ 〉+ | ↓↑ 〉

)
(6.38)

: |1,−1〉 = | ↓↓ 〉, (6.39)

S = 0: |0, 0〉 = 1√
2

(
| ↑↓ 〉 − | ↓↑ 〉

)
. (6.40)

The functions inside a multiplet can be distinguished by their projection onto Sz

Sz |S,Ms〉 = Ms|S,Ms〉. (6.41)

For the neutron-proton system, we find a triplet and a singlet.
In a system without preferred direction65 the value of Ms cannot influence the scattering. In other words, the

scattering length has to be a function of S only. In the present case the scattering length can, therefore take on two
different values

b+ = b(S = 1)

and

b− = b(S = 0).

65The only direction that breaks isotropic symmetry is the direction of the incident beam. However, this direction has no influence on the
spin system. The situation changes if an external magnetic field is applied.
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These scattering lengths are determined experimentally for bound protons as

b+
(1
H
)
= 1.04 × 10−12 cm = 10.4 fm, p+ =

3
4

, (6.42)

b−
(1
H
)
= −4.74 × 10−12 cm = 47.4 fm, p− =

1
4
. (6.43)

The scattering length of the singlet is appreciable and negative. Following the arguments developed in Section 3.3
we can deduce that the system is close to the formation of a bound state. In the triplet state there exists a true bound
state (n−p) the deuteron, which explains why the corresponding scattering length is very large and positive. From
these scattering lengths we obtain

b̄ =
3
4
b+ +

1
4
b− = −0.38 × 10−12 cm, (6.44)

|b|2 =
3
4

∣∣b+∣∣2 + 1
4

∣∣b−∣∣2 = 6.49 barn. (6.45)

The fact that

b+

b−
≈ −p+

p−
= −1

3
(6.46)

has the consequence that the average scattering length is close to zero. Hence we expect a very weak coherent
scattering. The incoherent scattering is on the other hand appreciable due to the large cross section of the singlet
state.

With (6.18)–(6.19) we numerical can calculate the total coherent and incoherent cross sections

σcoh
(1H
)
= 1.8 barn, (6.47)

σinc
(1H
)
= 79.8 barn, (6.48)

σtot
(1H
)
= 81.7 barn. (6.49)

If we replace the proton by a deuteron the situation changes considerably. The spin of deuterium is I = 1. The
combined states of the neutron and the deuteron possess the spin states S = 3/2 and S = 1/2. Hence, we have a
quadruplet and a doublet. The experimental scattering lengths are

b+
(2H
)
= 0.95 × 10−12 cm, p+ =

4
6

, (6.50)

b−
(2H
)
= 0.10 × 10−12 cm, p− =

2
6
. (6.51)

We can calculate

b̄ =
2
3
b+ +

1
3
b− = 0.67 × 10−12 cm, (6.52)

|b|2 =
2
3

∣∣b+∣∣2 + 1
3

∣∣b−∣∣2 = 0.61 barn (6.53)
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and find the cross sections

σcoh
(2H
)
= 5.6 barn, (6.54)

σinc
(2H
)
= 2.0 barn, (6.55)

σtot
(2H
)
= 7.6 barn. (6.56)

By substituting the proton by a deuteron we can, therefore, change the scattering characteristics of a sample con-
siderably without influencing its chemical and physical properties significantly. This possibility is frequently used
in practice, for example in order to change the contrast between different parts of the sample or simply to play with
the ratio between coherent and incoherent scattering (see Section 8.4).

The different isotopes of hydrogen also have different absorption levels. The absorption is very weak for the
deuteron but it is no longer negligible for the proton (σabs ≈ 0.33 barn for neutrons of 2200 m/s). This is one of
the reasons why research reactors are moderated with heavy water instead of light water.

Another very important element in neutron scattering is Vanadium. Its cross section of

σtot(Vanadium) ≡ σinc(Vanadium) = 4.95 barn

is nearly purely incoherent. As a consequence the scattering of a Vanadium sample at low temperatures is purely
isotropic and, therefore, constitutes a perfect standard for calibrating spectrometers.

6.4. The scattering triangle and the dynamic range

The scattering function (5.119) does a priori no longer depend on the intrinsic properties of the neutron (or the
probe particle in general). Forgetting the spin the properties of the neutron are summed up in the wave vector �k.
The scattering function does nevertheless still include the interaction potential between the target and the probe,
which means the nuclear scattering lengths bj . We can only get rid of this dependence if the interaction is identical
for all the scatterers involved (see expression (6.20) and (6.21) for the example of a monatomic sample). Apart
from this formal complication the scattering function is a function of the sample only, i.e. it depends solely on the
positions and motions of the scatterers.

We will now discuss some practical aspects of this rather abstract discussion. We begin with some definitions.
We have already introduced the scattering vector

�Q = �ki − �kf , (6.57)

Q2 = k2
i + k2

f − 2kikf cos 2Θ, (6.58)

as well as the energy transfer

�ω = Ei − Ef =
�

2

2m

(
k2
i − k2

f

)
. (6.59)

The scattering function is defined in the space of ( �Q,ω). This four dimensional space is also called reciprocal space.
One often just uses the expression ( �Q,ω) space to denote it. ( �Q,ω) space is infinite. From a purely mathematical
point of view the function S( �Q,ω) is defined everywhere in ( �Q,ω). However, we have to remember that the
scattering function has been derived under the condition that the Born approximation is applicable. When basing
the calculation of the differential cross section on the scattering function we have to make sure that these conditions
are satisfied. This translates into a “region of validity” for S( �Q,ω) in ( �Q,ω) space specific to the experimental set
up (sample size, wave length used etc.).

The triplet of vectors ( �Q,�ki,�kf ) form a triangle lying within the scattering plane (see Fig. 31). In an experiment

the true variables are the initial wave vector �ki and the final wave vector �kf . In general, there exists an infinite
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Fig. 31. The dynamic range of a neutron scattering experiment. For a given ki there will always be points in ( �Q, �ω) space for which the
scattering triangle (shown at the top of the figure) will not close, i.e. where the kinematic conditions cannot be satisfied. Left figure: The
maximum energy transfer as a function of Q = | �Q| for a ki of 3 Å−1. Right figure: Energy transfer corresponding to a specific Q value for
various scattering angles 2Θ (2Θ increases from 0 to 180◦ in steps of 20◦). The solid lines correspond to (Q, �ω) trajectories where ki and the
angle 2Θ are fixed. All regions outside the lines for Θ = 0 and Θ = 180◦ are not accessible. Hence these lines define the field of view for the
measurement.

number of combinations of (�ki,�kf ) that give access to the same ( �Q,ω) point in reciprocal space. For example one

can fix the direction and energy of the incident beam and reach a ( �Q, �ω) point by detecting the final energy

Ef =
�

2

2m
k2
f = Ei − �ω (6.60)

at a scattering angle

cos 2Θ =
k2
i + k2

f −Q2

2kikf
. (6.61)

This is called an experimental configuration with �ki fixed. In perfect analogy one can work with �kf fixed.
For a given ki or kf only a restricted region in reciprocal space is accessible experimentally. This restriction is

due to the fact that the kinematic constraints (6.60) and (6.61) cannot always be satisfied. One simple example is
elastic scattering. For �ω = 0 we see from (6.60) that ki = kf . The largest Q = | �Q| value that can be reached
according to (6.61) is equal to 2ki in backscattering (Θ = 90◦). The physical explanation is simple. The neutron
can at maximum transfer twice its initial momentum. In the same way the neutron cannot loose more than its total
energy in an inelastic experiment.

6.5. The total scattering rate

With the formalism that we have developed it is possible to calculate the total scattering rate, i.e. the percentage
of neutrons that are effectively scattered. This is a very important number for the preparation of an experiment.
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It e.g. constitutes a coarse indicator for the importance of multiple scattering and thus the validity of the Born
approximation.

Let ni(t) denote the number of neutrons hitting the sample during the period Δt.

ni(t) = A ·
∫ t+Δt

t
dt′φi

(
t′
)
= A · Δt · φi, (6.62)

where the last equality holds for stationary conditions and A is the geometrical cross section of the sample. The
scattering rate can then be obtained from the cross section

d2σ

dΩ dEf
=

kf
ki

S( �Q,ω), (6.63)

which gives the probability per unity of time and per unity of incident flux of scattering a neutron �ki into dΩ dEf .
Therefore the number of scattered neutrons ns(t) over the period Δt is equal to

ns(t) = Δt · Φi ·
∫

d2σ =
kf
ki

· Δt · Φi ·
∫

dΩ dEfS( �Q,ω). (6.64)

The rate is obtained as

ξscatt(�ki) =
ns
ni

=
1
A

kf
ki

∫
dΩ dEfS( �Q,ω)

=
1
A

�

mki

∫
d3kfS( �Q,ω), (6.65)

where we have used

d3kf = k2
f dkf dΩ =

mkf
�

dΩ dEf . (6.66)

The last integration runs over all kf and the expression is valid in the Born approximation. The scattering rate is
thus expressed as the ratio of two areas: the total scattering cross section and the total area of the sample illuminated
by the beam.

Since the scattering function is the result expected from the experiment it is generally not know up front. An
approximate knowledge is, however, sufficient for estimating the scattering rates, which in turn allow deducing the
optimum experimental conditions concerning data statistics. This is why we want to introduce a simple approxi-
mative method for the estimation of the scattering rate.

We will see later that elastic scattering is the dominant contribution for the vast majority of experimental condi-
tions (liquids are a noticeable exception). Elastic scattering is related to the correlations between particle positions
that persist for t → ∞ (see Section 8.9). An approximate way of describing these correlations consists in assum-
ing that the positions of the scatterers are fixed in time. In this case, the expressions for the cross sections simplify
significantly. The operator �Rj at t = 0 acts on the wave functions like a simple multiplying number. In particular
we get

〈
λi
∣∣ei �Q·(�Rj (t=0)−�R0

j′ )∣∣λi〉→ ei �Q·(�Rj−�Rj′ )〈λi|λi〉 = ei �Q·(�Rj−�Rj′ ). (6.67)
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We recall that∑
λi

p(λi) = 1 (6.68)

and that

1
2π�

∫ ∞

−∞
dte−iωt = δ(�ω). (6.69)

By limiting ourselves to a monatomic system these three relations allow us to reformulate the partial differential
cross sections (6.20) and (6.21). We get

(
dσ

dΩ dEf

)
coh

=
σcoh

4π

kf
ki

N∑
j,j′=1

ei �Q·(�Rj−�Rj′ )δ(�ω) (6.70)

and

(
dσ

dΩ dEf

)
inc

=
σinc

4π

kf
ki

N∑
j

ei �Q·(�Rj−�Rj′ )δ(�ω) = N
σinc

4π

kf
ki

δ(�ω). (6.71)

Effectuating the trivial integral over the energy leads to the differential cross sections

(
dσ
dΩ

)
coh

=
σcoh

4π

N∑
j,j′=1

ei �Q·(�Rj−�Rj′ ) (6.72)

=
σcoh

4π

∣∣∣∣∣
N∑
j=1

ei �Q·�Rj

∣∣∣∣∣
2

(6.73)

and (
dσ
dΩ

)
inc

= N
σinc

4π
. (6.74)

Hence the coherent scattering is given by the static structure factor

Fstat( �Q) :=

∣∣∣∣∣
N∑
j=1

ei �Q·�Rj

∣∣∣∣∣
2

. (6.75)

For a monatomic crystal (see Section 9.8)

F ( �Q) := N
(2π)3

Vunit cell

∑
�G

δ( �Q− �G). (6.76)

Vunit cell is the volume of the unit cell and �G corresponds to a reciprocal lattice vector.



H. Schober / An introduction to the theory of nuclear neutron scattering in condensed matter 211

Introducing the concept of a scattering length density

ρb(�r ) =
1
V

N∑
j=1

b̄j · δ(�r − �Rj) (6.77)

we may express the coherent cross section in terms of the Fourier transform of ρb(�r )

(
dσ
dΩ

)
coh

=

∣∣∣∣∣
N∑
j=1

b̄j · ei �Q·�Rj

∣∣∣∣∣
2

=

∣∣∣∣
∫
V

d3rρb(�r ) · ei �Q·�r
∣∣∣∣2. (6.78)

This expression is often used in small angle scattering where atomic details do not matter and where the scattering
length density for that reason becomes the more appropriate concept for describing the system.

In order to make the cross sections more intuitive we propose to estimate the scattering rate (see also Fig. 32)
simply from the one-particle properties. If we ignore the structure factor then we have to limit our consideration
from a formal point of view rigorously to incoherent scattering. In practice it is often possible to obtain good
estimates even for coherent systems with the formula that we are going to develop. For this we simply have to
replace the incoherent cross section σinc by the total cross section σtot.66 If we remain in the one-particle picture
then the correlation volume can be condensed to the space occupied by a single scatterer and the neutron can be
considered to collide with individual atoms.

Let our samples be characterised by

(1) the molar mass mmol,
(2) the mass density ρm,
(3) the incoherent cross section σinc.

Fig. 32. Schematic illustration of individual cross sections. Each scatterer is indicated by a sphere. The section of that sphere is meant to repre-
sent the cross section. A neutron intercepted by this section is assumed to be scattered while the others will pass. The ratio between the scattering
cross section and the section of a sphere that corresponds to the volume occupied by an individual atom is typically of the order of 107–109.
Hence it takes about 1 billion atomic layers in order to make a sample “opaque” to neutrons. This corresponds to a macroscopic dimension
ranging from a fraction of a mm to a few cm. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/JNR-140016.)

66Attention, this implies that the wave length is sufficiently small. When the wave length becomes very long elastic scattering in the form
of Bragg peaks cannot be produced even in back scattering. This is called working below the Bragg threshold. A purely coherent sample will
appear almost transparent below this threshold.
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The microscopic volume corresponding to an individual scatterer is given by

Vind =
mmol

NA · ρm
, (6.79)

where Avogadro’s constant is NA = 6.022 · 1023. We can assume that Vind is cubic without hampering the result.
The individual surface areas of this volume are given by

aind = V
2/3

ind . (6.80)

The scattering rate ξind for a single target particle is determined according to expression (6.65) by the ratio between
the cross section σinc and the area aind that the particle opposes to the neutron flux

ξind =
σinc

aind
. (6.81)

We would like to study the situation where a large number of scatterers are aligned along the direction of the
incident neutron beam that we choose parallel to ẑ. If we assume that scattering is weak then we can neglect the
fact that the incident flux decreases as a function of penetration (Born approximation). In order to obtain at certain
scattering rate ξ it is necessary to fill the surface aind with

n = ξ
aind

σinc
(6.82)

individual “tiles” each corresponding in area to the cross section σinc. This condition yields a penetration length

l = n · √aind = ξ

√
aindaind

σinc
=

Vind

σinc
. (6.83)

This is the mean free path of the neutron that we will meet again in a more general form in expression (11.34).
In the context of multiple scattering the expression (6.83) is a very simple formula for the calculation of the
appropriate thickness of the sample.

We will now treat two concrete examples that are particularly important for neutron scattering: water and vana-
dium.

(1) Water (H2O) is a universal solvent in chemistry and an indispensable component in biological matter. It is
characterised by the parameters:

1. mmol = 16 g,
2. ρm = 1 g/cm3,
3. σinc ≈ 165 barn = 165 × 10−10 nm2,
4. VH2O = 3 × 10−2 nm3,
5. 33 H2O molecules in a nm3.

We obtain

VH2O

σinc
= 1.875 mm.

In order to get 10% of scattering and thus 90% of transmission the thickness should not exceed around
0.2 mm along the trajectory of the incident neutron. Water is one of the strongest scatterers. We see that even
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in this extreme case neutrons possess great penetration power. This penetration power constitutes one of the
major advantages of neutron scattering.67

(2) Vanadium is as already mentioned a completely incoherent scatterer. It is very often used to calibrate spec-
trometers.

1. mmol = 51 g,
2. ρm = 6.1 g/cm3,
3. σinc = 5.08 barn = 5.08 × 10−10 nm2,
4. VV = 1.4 × 10−2 nm3,
5. 71 Vanadium atoms in a nm3.

Hence we obtain

VV

σinc
= 28 mm.

In order to get 10% of scattering we need a slice of vanadium with a thickness of about 2.8 mm along the
trajectory. We would like to emphasise that the shape of the sample besides its dimensions matters a lot for
multiple scattering (see [57]).

6.6. Example: Production rate of ultra cold neutrons

We would now like to illustrate the usefulness of the scattering function S( �Q,ω) with a concrete example. Doing
so we wish to emphasise the fundamentally different character of the scattering function and the partial differential
cross section. This difference may surprise given the simple relation that exists between the two quantities.

• The cross section gives the scattering rate in barns for a concrete experimental set-up. This rate can be calcu-
lated with the help of the scattering function.

• The scattering function can be determined under an infinite variety of experimental conditions. The only
requirement for its transferability from one condition to another resides in the validity of the Born approxi-
mation.

The example chosen is the production of ultra cold neutrons (UCNs) starting from a cold or thermal beam of
neutrons. UCNs have a great importance in fundamental physics and the improvement in the production rate is a
problem of great relevance [27]. The quantity of interest is the total number of neutrons converted to ultra cold
neutrons, i.e. to neutrons with an energy below Emax

u ≈ 300 neV, starting from a cold or thermal neutron beam.
This threshold is chosen since neutrons below around 300 neV no longer penetrate most materials and thus can be
trapped easily, e.g. in order to measure their life time.

We set the initial energy of the neutrons to Ei. The cross section of the production of ultra cold neutrons – this
means the number of neutrons produced per second and per unity of incident flux – is given by

σprod(Ei) =
∫ Emax

u

0

kf
ki

S(Q,ω) dEf dΩ

= 4π

∫ Emax
u

0

kf
ki

S(Q,ω) dEf , (6.84)

67Attention, the total cross section that we have used is the one for bound atoms. This is logical given that our starting point consisted in
assuming that the atoms are fixed. If we work with a very short wave length or very light atoms like hydrogen then the static approximation is
poor. It becomes necessary to take the fact into account that the cross sections decrease (see Section 3.8) in order to calculate the right sample
thickness. Thanks to Bruno Dorner for raising my attention to this point.



214 H. Schober / An introduction to the theory of nuclear neutron scattering in condensed matter

where we have taken into account that the production process covers the full solid angle of 4π and that the scattering
is isotropic in a liquid or in a powder.

With respect to the energy Ei of the incident neutrons (a few meV) the energy Eu of the ultra cold neutrons (a few
neV) is extremely low. The scattering function – in addition convoluted with the resolution (see Section 11.6) –
only varies little over this energy range. Hence we can assume

Q ≈ ki,
(6.85)

�ω ≈ �
2k2

i

2m
.

The Q and ω values that interest us correspond to the parabola �ω = �
2Q2/2m of free neutrons. Thus

σprod(E0) = 4π

∫ Emax
u

0

kf
ki

S

(
ki,

�
2k2

i

2m

)
dE

= 4π
1
ki
S

(
ki,

�
2k2

i

2m

)∫ Emax
u

0

k2
f�

2

m
dkf

= 4π
1
ki
S

(
ki,

�
2k2

i

2m

)
2
3
kmax

u Emax
u . (6.86)

This expression is the product of three factors. The first factor

8π

3
kmax

u Emax
u (6.87)

measures the phase space volume of the final states. This volume is strongly dependent on the wave vector of the
converted neutrons. Since the final energy is so low this volume is correspondingly small for ultra cold neutrons.
The second factor

1
ki

(6.88)

measures the incident flux. When calculating the absolute production rate the cross section will be multiplied with
the spectrum of the incident flux and this factor will disappear. The last factor

S

(
ki,

�
2k2

i

2m

)
(6.89)

is the scattering function evaluated along the parabola of the free neutron. It gives the probability of producing an
ultra cold neutron from a cold neutron of energy Ei. The scattering function can be extracted from any scattering
experiment provided that the energy used exceeds Ei and that the experiment satisfies the Born approximation
criteria.

A very promising UCN converter is solid deuterium [27]. In Fig. 33 we show the scattering function S(Q,ω)
determined from the partial differential cross section. The sample is a powder of solid D2 with a 33% content of
para-deuterium. The incident energy is 17.4 meV. The total cross section is determined as σtot(Ei = 17.4 meV) ≈
23 barn. Naturally this value depends on the incident energy. The scattering function allows us to calculate the
partial differential cross sections for any energy, including the ones necessary for the production of ultra cold
neutrons. For example in order to calculate how many neutrons we can get from cold neutrons with an incident
energy of 5 meV it is necessary to know S(Q = 1.55 Å−1, �ω = 5 meV). This value is extracted from the
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Fig. 33. S(Q,ω) for a sample of D2 powder measured with a incident energy of Ei = 17.288 meV ≡ ki = 2.888 Å−1 at the IN4 instrument
at ILL [27]. The deuterium content of para-deuterium is 33%. We only present the side of the spectrum that corresponds to an energy loss of
the neutron. The probability of a neutron loosing all its energy �ω is proportional to the scattering function S(Q,ω) along the parabola of the
free neutron. Starting from the measurement we can thus predict the scattering rate for all energies below ∼15 meV.

measured partial differential cross section by considering the transition of thermal neutrons from 17.4 to 12.4 meV
and with |�ki − �kf | = 1.55 Å−1.

The situation changes when we look at the inverse process, i.e. the loss of ultra cold neutrons in an inelastic
process. In this case the phase space of potential final states is very large. In order to limit the loss the scattering
function should tend to zero on the energy gain side. This is the case at low temperature due to the principle of
detailed balance (see Section 8.7).

7. Partial summary

We will now briefly summarise the formalism that we have developed so far.
The quantity characterising a scattering process is the differential cross section. It is defined by (1.7)

dσ :=
scattered flux into dΩ

initial flux onto the sample
= r2 dΩ

Jscattered(r, θ,φ, t)
Jini(t)

.

For a static potential the scattering is elastic. The wave function that describes the scattered neutrons has to satisfy
the stationary Schrödinger equation (3.3)

[
− �

2

2m
Δ + V (�r )

]
u�k(�r) = E(k)u�k(�r ).
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In the asymptotic regime it takes the form (3.4)

u�k(�r ) −→ 1√
V

(
ei�k·�r + f�k(θ,φ)

eikr

r

)
, r → ∞,

with f�k(θ,φ) the scattering amplitude. This amplitude is directly linked to the cross section via (3.27)

dσ
dΩ

= r2 Jscattered(r, θ,φ, t)
Jini(t)

=
∣∣f (θ,φ)

∣∣2.
For static and isotropic potentials the scattering amplitude is expressed in terms of spherical harmonics (or partial
waves) as (3.78)

f (θ) =
1

2ik

∞∑
l=0

√
4π(2l + 1)

(
e2iδl − 1

)
Yl0(θ).

For wave lengths that are much smaller than the extension of the potential it is sufficient to keep the s-type partial
wave. The scattering amplitude can then be expressed as a function of the phase shift of this wave (3.105)

f (θ) =
e2iδ0 − 1

2ik
=

1
k

eiδ0 sin δ0.

The scattering length is defined as the limit of the ratio between the phase shift and the wave vector (3.98)

b = − lim
k→0

f (θ) = − lim
k→0

δ0(k)
k

. (7.1)

For a hard sphere this is identical to the radius (3.115)

b = r0. (7.2)

In general the scattering length can take both positive and negative values. Absorption away from resonance is
taken into account by a complex scattering length.

In order to allow for a perturbation treatment the Schrödinger equation that defines the wave function of the
scattering process is transformed into its integral form (3.159)

u�k(�r ) = u0
�k

(�r ) +
∫

d3r′G0
(
�r,�r ′

)
V
(
�r ′
)
u�k

(
�r ′
)
,

with the Green function (3.160)

G0
(
�r,�r ′

)
= − 1

4π
· 2m

�2 · e(ik·|�r−�r ′|)

|�r − �r ′| .

Replacing u�k(�r ) by the non-perturbed wave u0
�k

(�r ) in the integral

u�k(�r ) = u0
�k

(�r ) − 1
4π

2m
�2

∫
d3r′

exp(ik · |�r − �r ′|)
|�r − �r ′| V

(
�r ′
)
u0
�k

(
�r ′
)
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is equivalent to working in the Born approximation. In this approximation the scattering amplitude can be calcu-
lated as the Fourier transform of the potential (3.188)

f �Q(Ω) = − 1
2π

m

�2

∫
d3r′ei �Q·�r ′

V
(
�r ′
)
.

Composite samples with internal dynamics allow for inelastic scattering. This scattering is accompanied by transi-
tions within the sample states. Fermi’s golden rule (5.54)

w�ki→�kf ,λi→λf
=

2π

�

∣∣〈λ,�kf |V |λi,�ki〉
∣∣2ρ(Ef ), (7.3)

establishes a link between these transitions and the partial differential cross section. In the Born approximation
this link is given by (5.62)

d2σ�ki→�kf

dΩ dEf
=

kf
ki

(2π)4m2

�4

∑
λi,λf

p(λi)
∣∣〈λf ,�kf |V |λi,�ki〉

∣∣2δ((Ef − Ei) − (Eλi
− Eλf

)
)
.

This expression is called the master equation of scattering. The interaction potential between the probe and the
target is in general a sum of individual contributions. In that case the master equation becomes (5.91)

dσ�ki→�kf

dΩ dEf
=

kf
ki

m2

(2π)2�4

∑
λi,λf

p(λi)

∣∣∣∣∣
N∑
j=1

Vj( �Q)〈λf |ei �Q·�Rj |λi〉
∣∣∣∣∣
2

δ
(
(Ef − Ei) − (Eλi

− Eλf
)
)
,

with the scattering form factors defined in terms of their Fourier transforms (5.90)

Vj( �Q) =
∫

d3rjei �Q·�rjVj(�rj).

For nuclear scattering the adapted potential is called the Fermi pseudo-potential (5.94)

Veff(r)ψ(r) =
2π�

2

m
bjδ(�r ).

The form factor then reduces to a simple constant

Vj( �Q) =
2π�

2

m
bj .

The sum over the final states in the master equation can be eliminated introducing a Fourier transform in time. For
the partial differential cross section we find (5.118)

d2σ�ki→�kf

dΩ dEf
=

kf
ki

S( �Q,ω)

with (5.119)

S( �Q,ω) =
1

2π�

∑
λi

p(λi)
N∑

j,j′=1

bjb
∗
j′

∫ ∞

−∞
dt〈λi|e

−i �Q·�R0
j′ ei �Q·�Rj (t)|λi〉e−iωt.



218 H. Schober / An introduction to the theory of nuclear neutron scattering in condensed matter

S( �Q,ω) is called the scattering function.
The nuclear scattering of neutrons depends on the composition of isotopes and spin states of the nucleus. It is

necessary to distinguish between the coherent scattering and the incoherent scattering. The coherent scattering
depends on the average scattering length of a scatterer (6.16)

(
d2σ

dΩ dEf

)
coh

=
kf
ki

1
2π�

∑
λi

p(λi)
N∑

j,j′=1

bjb
∗
j′

∫ ∞

−∞
dt〈λi|e

−i �Q·�R0
j′ ei �Q·�Rj (t)|λi〉e−iωt.

The incoherent scattering is determined by the deviation from the average of the scattering length (6.17)

(
d2σ

dΩ dEf

)
inc

=
kf
ki

1
2π�

∑
λi

p(λi)
N∑
j

(
b2
j − (b̄j)2) ∫ ∞

−∞
dt〈λi|e−i �Q·�R0

j ei �Q·�Rj (t)|λi〉e−iωt.

8. Correlation functions

During the discussion of coherent and incoherent scattering we had already hinted at an important connection
between the scattering function and quantum statistical correlation functions. We will in the following establish a
precise mathematical formulation of this connection. In our derivation we will closely follow the route proposed
by Van Hove [68].

Our starting point is expression (5.119) for the scattering function S( �Q,ω)

S( �Q,ω) =
1

2π�

∑
λi

p(λi)
N∑

j,j′=1

Vj( �Q)V ∗
j′ (

�Q)
∫ ∞

−∞
dt〈λi|e

−i �Q·�R0
j′ ei �Q·�Rj (t)|λi〉e−iωt. (8.1)

We will lighten the notation by exploiting the fact that the quantum statistical average of a physical quantity A is
defined by

〈A〉 =
∑

pn〈ψn|A|ψn〉. (8.2)

As the states |λi〉 constitute a complete basis set of the target system we may write

∑
λi

p(λi)〈λi|e
−i �Q·�R0

j′ ei �Q·�Rj (t)|λi〉 =
〈
e
−i �Q·�R0

j′ ei �Q·�Rj (t)〉. (8.3)

Hence the scattering function becomes

S( �Q,ω) =
∑
j,j′

(
Vj( �Q)V ∗

j′(
�Q)
)
Sj,j′ ( �Q,ω) (8.4)

with

Sj,j′ ( �Q,ω) =
1

2π�

N∑
j,j′=1

∫ ∞

−∞
dt
〈
e
−i �Q·�R0

j′ ei �Q·�Rj (t)〉e−iωt. (8.5)
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The total scattering function is, therefore, a superposition of functions that involve pairs (j, j′) of scatterers. In
general the number of distinct interaction potentials Vj is quite limited. In the case of a monatomic system we
are even dealing with only a single type of scatterer. This fact brings us to a natural classification scheme of the
terms (j, j′). We distinguish between the different types of scatterers using the index κ. Each of the Nκ scatterers
belonging to the same type κ are labeled jκ. The sum over the scatterers in this way becomes

∑
j

=
∑
κ

∑
jκ

:=
∑
κ

∑
j∈{jκ}

. (8.6)

We now reformulate the scattering function (8.4) as

S( �Q,ω) =
∑
κ,κ′

(
Vκ( �Q)V ∗

κ′ ( �Q)
)
Sκ,κ′ ( �Q,ω) (8.7)

with the partial scattering functions defined as

Sκ,κ′ ( �Q,ω) =
1

2π�

∑
j∈{jκ},j′∈{jκ′}

∫ ∞

−∞
dt
〈
e
−i �Q·�R0

j′ ei �Q·�Rj (t)〉e−iωt. (8.8)

In the same way we define the the partial self scattering functions

Ss
κ( �Q,ω) =

1
2π�

∑
j∈{jκ}

∫ ∞

−∞
dt
〈
e−i �Q·�R0

j ei �Q·�Rj (t)〉e−iωt. (8.9)

The later functions are particularly useful in the context of incoherent scattering.
We could simplify our notation immensely if we restricted ourselves to monatomic systems, which for peda-

gogical reasons could be an advantage. We nevertheless have to refrain from doing so as real systems are rarely
monatomic. In order for the developed formula to be widely applicable we need to take into account the diversity
of scatterers.

8.1. The autocorrelation function of the atomic density G(�r, t)

We will show that the partial scattering functions Sκ,κ′ ( �Q,ω) can be expressed in terms of two-point auto-
correlation functions.

Ignoring the spin the scattering particle is fully characterised by its position operator in space �Rj . It is, therefore,
natural to have a closer look at correlation functions based on these operators. The autocorrelation function68 of a

68In statistics the autocorrelation of a process Xt, which may be discrete or continuous in time with t an integer or real number, respectively,
is defined as the normalised correlation function of the fluctuation, i.e. the deviation from average

Xt − 〈X〉

taken at time t with the same deviation taken at time t′. Formally

R(t) :=
〈(Xt′ − 〈X〉)(Xt′+t − 〈X〉)〉

〈(Xt′ − 〈X〉)2〉
. (8.10)

The autocorrelation function, therefore, gives a measure of the similarity of the process as a laps of time and thus is ideally suited to detect
patterns of periodicity in the process X(t). Without the normalisation to the variance

σ2 = 〈(Xt′ − 〈X〉)2〉
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physical quantity A is defined as the crossed correlation of A with itself. Formally this function is equivalent to a
convolution in time and space of A∗(−�r,−t) with A(�r, t)

A � A = A(�r, t) ∗A∗(−�r,−t) (8.12)

or written in explicit form

ΓA,A(�r, t) = A � A = lim
T→∞

1
2T

1
V

∫ T

−T
dt′
∫

d3r′
〈
A(�r ′, t′)A∗(�r ′ − �r, t′ − t)

〉
, (8.13)

where we assume that the system is ergodic in order to assure that the limit limT→∞ exists. The autocorrelation
function is a powerful tool to detect regularities in signals such as its fundamental oscillations.

For a stationary system the origin of time can be chosen arbitrarily. Hence the expression〈
A
(
�r ′, t′

)
A∗(�r ′ − �r, t′ − t

)〉
does not depend on t′. As a consequence the average over t′ is trivial and the autocorrelation function simplifies to

ΓA,A(�r, t) =
1
V

∫
d3r′
〈
A
(
�r ′, t = 0

)
A∗(�r ′ − �r, t

)〉
=

1
V

∫
d3r′
〈
A
(
�r ′, t
)
A∗(�r ′ − �r, t = 0

)〉
. (8.14)

The exact physical quantity that determines the correlations in the scattering function remain to be identified. We
start with the case of a single particle. Following the postulates of quantum mechanics the probability density of a
particle at position �R at time t in the quantum state |λ〉 is given by

ψ∗
λ

(
�R(t)
)
ψλ

(
�R(t)
)
=

∫
d3r

∫
d3r′δ

(
�r − �R(t)

)
δ
(
�r ′ − �R(t)

)
ψ∗
λ(�r)ψλ

(
�r ′
)

=

∫
d3rδ

(
�r − �R(t)

)
ψ∗
λ(�r)ψλ(�r)

= 〈λ|ρ̂(�r, t)|λ〉 (8.15)

one usually uses the term auto-covariance. Two statistical variables are considered uncorrelated if

〈X · Y 〉 = 〈X〉〈Y 〉. (8.11)

This implies that correlation functions are strictly zero if and only if they are formulated in terms of deviations from mean values, like this is
the case for expression (8.10). One should be aware that the van Hove type correlation functions used in the theory of scattering do in general
not satisfy this criterium.

The notion of statistical independence, which is directly connected to the notion of correlation of two random variables, is not always intuitive.
The reader is invited to consult the book by Konstantin Protassov [47] on this subject. The reader may particularly enjoy the telling example of
the ‘king of hearts’ that we will briefly outline here. In a deck of 52 cards the event ‘king’ and the event ‘heart’ are statistically independent.
Formally this independence is expressed by the fact that the probability of drawing a ‘king of hearts’ is the product of the probability of drawing
a ‘king’ multiplied by the probability of drawing the colour ‘heart’.

P (‘king of hearts’) = P (‘king’) · P (‘heart’) =
4

52
· 13

52
=

1

52
.

This relation is violated if we add a joker to the game

P (‘king of hearts’) =
1

53
> P (‘king’) · P (‘heart’) =

4

53
· 13

53
=

52

53

1

53
.

The joker, therefore, modifies the statistical independence of two events in which he has a priori no part. This correlation may be explained by
the fact that when drawing cards we eliminate immediately the possibility that we are dealing with a joker from the moment we know that the
card has a colour. This exclusion raises the probability of having drawn a king.
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with

ρ̂(�r, t) = δ
(
�r − �R(t)

)
. (8.16)

ρ̂(�r, t) is called the number density operator. It is not to be confused with the statistical density operator (see
Section 5.6). The matrix elements of ρ̂(�r, t) give the probability of the particle to be found in the volume element
d3r around �r.

This concept can be generalised to a system with several particles by introducing the operator

ρ̂κ(�r, t) =
∑

j∈{jκ}

δ
(
�r − �Rj(t)

)
. (8.17)

{jκ} denotes the ensemble of indices that characterise scatterers of type κ. The operator ρ̂κ(�r, t) extracts the
probability of finding a scatterer of type κ in the volume element d3r around �r.

The spatial Fourier transform of ρ̂κ(�r, t) is given by

ρ̂κ( �Q, t) =
∫
V

d3r exp(−i �Q · �r )ρ̂κ(�r, t) =
∑

j∈{jκ}

exp
(
−i �Q · �Rj(t)

)
. (8.18)

This is exactly the type of expression that we find in the expectation values that constitute the scattering function
(see (8.8)).

We can now define the correlation functions of the number density operator

Gκ,κ′ (�r, t) =
∫

d3�r ′
〈
ρ̂κ(�r ′ − �r)ρ̂κ′ (�r ′, t)

〉
=

∑
j∈{jκ},j′∈{jκ′}

∫
d3�r ′

〈
δ
(
�r ′ − �r − �Rj(t = 0)

)
δ
(
�r ′ − �Rj′ (t)

)〉
. (8.19)

The function Gκ,κ′ (�r, t) relates the probability of finding a scatterer of type κ at time t = 0 at �r ′−�r to the presence
of a scatterer of type κ′ at time t at �r ′.

Before establishing the link between the correlation functions and the scattering functions some supplementary
concepts have to be introduced

• It will be useful to define a function that only takes the correlation of a scatterer with itself into account

Gs
κ(�r, t) :=

∑
j∈{jκ}

∫
d3�r ′

〈
δ
(
�r ′ − �r − �Rj(t = 0)

)
δ
(
�r ′ − �Rj(t)

)〉
. (8.20)

Gs
κ(�r, t) is called the partial self pair correlation function. It is a function that relates the probability of finding

a scatterer of type κ at time t = 0 at �r ′ − �r to that of finding the same scatterer at t at �r ′.
• When the number density operator ρ̂ was introduced we have without explicitly mentioning it used the Heisen-

berg representation for the position operators [10,37]. The Heisenberg operators �Rj(t) are particularly well-
adapted when describing correlation functions in space and time. In the Heisenberg representation the system
is described by stationary wave functions and it is the operators that, in the same way as the classical trajectory,
trace the evolution of particles in time.

• We are not obliged to place the operator �Rj(t = 0) at the left of �Rj′(t) when defining G(�r, t). This choice can,
therefore, be considered arbitrary. The two options are related by

G(�r, t) = G(−�r,−t), (8.21)

which can be shown using basic quantum mechanical calculus.
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• One might be astonished of the complicated form that take the correlation functions (8.19) and (8.20) when it
is well-known that∫

d3�r ′δ
(
�r ′ − �r

)
δ
(
�r ′
)
= δ(�r ). (8.22)

It is the operator character of Rj(t) that prevents us from using this relation when carrying out the integration
in the expressions (8.19) and (8.20). The two δ functions will in general not commute with each other at
different times. This is easily seen when looking at their Fourier transforms (8.18). If we remove this constraint
imposed by quantum mechanics we obtain the classical correlation functions

clGκ,κ′ (�r, t) =
∑

j∈{jκ},j′∈{jκ′}

〈
δ
(
�r + �Rj(t = 0) − �Rj′ (t)

)〉
, (8.23)

clGs
κ(�r, t) =

∑
j∈{jκ}

〈
δ
(
�r + �Rj(t = 0) − �Rj(t)

)〉
. (8.24)

The interpretation of the classical correlation functions is considerably simpler. Apart from a factor that takes
the number of scatterers of type κ into account this function simply states the probability of finding at time t
a scatterer of type κ at �r given that a scatterer of type κ′ was at the origin at time t = 0.

8.2. Connection between Sκ,κ′ ( �Q,ω) and Gκ,κ′ (�r, t)

In the same way as we had expressed δ(Ei − Ef − �ω) as an integral over time ρ̂(�r, t) can be expressed as an

integral over �Q, i.e. in terms of its Fourier transforms

δ
(
�r ′ − �r − �Rj(t)

)
=

1
(2π)3

∫
d3Q exp

(
i �Q ·

(
�r ′ − �r − �Rj(t)

))
. (8.25)

This allows us to reformulate the correlation function G(�r, t) in the following way

Gκ,κ′ (�r, t) =
∫

d3r′
〈
ρ̂κ
(
�r ′ − �r

)
ρ̂κ′
(
�r ′, t
)〉

=
∑

j∈{jκ},j′∈{jκ′}

∫
d3r′
〈
δ
(
�r ′ − �r − �Rj

)
δ
(
�r ′ − �Rj′(t)

)〉

=
∑

j∈{jκ},j′∈{jκ′}

∫
d3r′
〈

1
(2π)3

∫
d3Q exp

(
i �Q ·

(
�r ′ − �r − �Rj

))
δ
(
�r ′ − �Rj′ (t)

)〉

=
1

(2π)3

∫
d3Q exp(−i �Q · �r)

×
∑

j∈{jκ},j′∈{jκ′}

∫
d3r′
〈
exp
(
i �Q · �r ′ − i �Q · �Rj

)
δ
(
�r ′ − �Rj′(t)

)〉

=
1

(2π)3

∫
d3Q exp(−i �Q · �r)

×
∑

j∈{jκ},j′∈{jκ′}

〈
exp(−i �Q · �Rj)

∫
d3r′ exp

(
i �Q · �r ′

)
δ
(
�r ′ − �Rj′ (t)

)〉

=
1

(2π)3

∫
d3Q exp(−i �Q · �r)

∑
j∈{jκ},j′∈{jκ′}

〈
exp(−i �Q · �Rj) exp

(
i �Q · �Rj′ (t)

)〉
. (8.26)
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We have been very careful in keeping the correct time ordering of expressions involving �Rj(t) for the reason that
they do not commute at different times t as stated earlier.

Comparing the expression found for G(�r, t) with the expression (8.8) for Sκ,κ′ ( �Q,ω) and using the properties of
Fourier transforms, we arrive at

Gκ,κ′ (�r, t) =
�

(2π)3

∫
VQ

d3Q

∫ ∞

−∞
dω e−i( �Q·�r−ωt)Sκ,κ′ ( �Q,ω). (8.27)

Thus Gκ,κ′ (�r, t) turns out to be the double Fourier transform of Sκ,κ′ ( �Q,ω).

Using the inverse Fourier transform the roles of the scattering function Sκ,κ′ ( �Q,ω) and of the correlation func-
tion Gκ,κ′ (�r, t) can be reversed

Sκ,κ′ ( �Q,ω) =
1

2π�

∫
V

d3r

∫ ∞

−∞
dt ei( �Q·�r−ωt)Gκ,κ′ (�r, t). (8.28)

We have thus reached our goal. The scattering function is identified as a double Fourier transform in space and
time of the autocorrelation function of the atomic number density. Thus scattering experiments give us a Fourier
analysis of correlations in space and time. This is an extremely important result for data analysis.

8.3. The relation between the correlation function and the differential cross section

The differential cross section can be expressed using the scattering function S( �Q,ω)

d2σ�ki→�kf

dΩ dEf
=

kf
ki

S( �Q,ω), (8.29)

with

S( �Q,ω) =
∑
κ,κ′

(
Vκ( �Q)V ∗

κ′ ( �Q)
)
Sκ,κ′ ( �Q,ω) (8.30)

and

Sκ,κ′ ( �Q,ω) =
1

2π�

∑
j∈{jκ},j′∈{jκ′}

∫ ∞

−∞
dt〈λi|e

−i �Q·�R0
j′ ei �Q·�Rj (t)|λi〉e−iωt. (8.31)

With (8.28) it is possible to establish a link between the cross sections and the correlation functions

d2σ�ki→�kf

dΩ dEf
=

kf
ki

1
2π�

∑
κ,κ′

[(
Vκ( �Q)V ∗

κ′ ( �Q)
) ∫

V
d3r

∫ ∞

−∞
dtei( �Q·�r−ωt)Gκ,κ′ (�r, t)

]
. (8.32)

If we know the correlation functions, e.g. from a calculation or a theoretical model, we are thus capable of deter-
mining the cross section and hence predicting the results of a scattering experiment. Expression (8.32), therefore,
plays a very important role in data analysis.

Unfortunately this is in general a one-way street. The expression (8.32) cannot be inverted, which means that
the measurement of a cross section does not allow us to determine the correlation functions Gκ,κ′ (�r, t) unambigu-
ously. The information needed is lost in the superposition of contributions coming from different types of scat-
terers (chemical elements) in (8.32). The severity of this problem varys a lot with the kind of scientific question
investigated. Due to the constraints imposed by translational symmetry the information contained in the coherent
diffraction signal is in most cases sufficient in order to determine with high precision the positions of atoms in a
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crystal. This is no longer the case for liquids and amorphous materials. The loss of translational symmetry leads to
a smearing of the measured signal over the entire reciprocal space. The extraction of correlation functions in order
to describe the structure of a disordered system is, therefore, a very complex task that does not possess a unique
solution.

The situation changes obviously when we deal with a monatomic system. In this case it is the scattering function
itself that is related to the correlation function through a Fourier transform. Hence the correlation function can be
directly determined from the measurements. The total scattering cross section is then

d2σ�ki→�kf

dΩ dEf
=

σ

4π

kf
ki

1
2π�

∫
V

d3r

∫ ∞

−∞
dtei( �Q·�r−ωt)G(�r, t). (8.33)

The coherent (6.20) and the incoherent (6.21) contributions are given by

(d2σ�ki→�kf

dΩ dEf

)
coh

=
σcoh

4π

kf
ki

1
2π�

∫
V

d3r

∫ ∞

−∞
dtei( �Q·�r−ωt)G(�r, t) (8.34)

and

(d2σ�ki→�kf

dΩ dEf

)
inc

=
σinc

4π

kf
ki

1
2π�

∫
V

d3r

∫ ∞

−∞
dtei( �Q·�r−ωt)Gs(�r, t). (8.35)

Coherent scattering thus gives us information about the correlations that exist between all the scatterers. Incoher-
ent scattering is much more restricted in its information content. It is related to the self correlation function and
therefore only contains information on the correlation of a particle with itself. For an immobile particle this infor-
mation reduces to a proof of existence without further interest. However, when the position of particles evolves
with time then the incoherent scattering is a precise and unencumbered measure of the dynamics of the individual
particles.

8.4. Contrast variation as a means of determining partial correlation functions

The only way to overcome the difficulties associated with partial correlation functions is contrast variation, i.e.
the possibility of changing the visibility of different types of scatterers. In an ideal world it would be possible to
smoothly turn on the scattering power of each chemical element one by one. This process would allow us to isolate
the different contributions to (8.32) (see Fig. 34). With neutrons there is two ways of doing this. (i) We can play
with the isotopic composition or (ii) we can use the dependence of the scattering length on the nuclear spin. Doing
so we do not interfere with the chemical composition of the sample. The change in contrast, therefore does not alter
the physical quantities that the experiment is supposed to expose.69 Variation of contrast turns out to be essential
in all systems composed of hydrogen (soft matter, organic chemistry, biology and bio-materials). The subject of
contrast variation can in the details be quite sophisticated. We are, therefore, not going further into the discussion.

8.5. Higher order correlation functions

We would like to conclude with a remark on higher order correlation functions. Until now we have only looked
at two-point functions, i.e. functions that only depend on the distance �r. Nothing prevents us from defining more
complex correlation functions, e.g. G(�r,�r ′, t). These functions have the undebatable advantage of taking the in-
fluence of the environment on pair correlations into account. They, therefore, have a elevated information content,
admittedly with the unavoidable down-side of increased complexity. They are thus of great interest when trying
to understand the structure of liquids and molecules. They can e.g. inform us about the orientation of a molecule

69As the isotope variation has an influence on the atomic mass it does actually influence the motion of the particles. This can be an issue for
very light elements like hydrogen and has to be properly taken into account.
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Fig. 34. Contrast matching for biological samples in solution. Exploiting the difference in scattering length of hydrogen and deuterium (see
Section 6.3) it is possible to match the scattering length density of the water solvent to that of the dissolved macromolecules. The scattering
length density of the dissolved molecules will depend strongly on their hydrogen and deuterium content, which due to exchange with the water
solvent will depend itself on the D2O concentration. At the points where the lines of the macromolecules cross the water line we get perfect
contrast matching. These points are, therefore, called match-points. The match points for proteins lie in the range of 40–50% of D2O. At the
match point the macromolecules become invisible in a small angle neutron experiment. The figure is based on data from reference [70].

with respect to its neighbours. In the Born approximation the higher order correlation functions are not accessible.
It is possible to show that they come into play when higher order terms are added to the Born series (3.175) [26].
To access them it would be necessary to work with very large coherence volumes (see Section 11.6) leading to
very challenging experiments. Even if one met the necessary conditions required to observe second order terms
in the Born series the advantage would in practice be of limited value. The second order contribution would be
superimposed on the first order contributions. Separating the two would amount to a problem similar in complexity
to the extraction of two-point correlation functions in a system with several types of atoms. And even if it was pos-
sible to overcome this obstacle there exists no simple relation between the higher order effects and the multi-point
correlation functions that we seek. It appears that this information will remain experimentally inaccessible.70

8.6. The intermediate scattering functions Iκ,κ′ ( �Q, t) and Isκ( �Q, t)

If we perform a spacial Fourier transform on G(�r, t) we obtain what is called the intermediate scattering function
Iκ,κ′ ( �Q, t) [48].71 Each of the following expressions can serve as its definition

Iκ,κ′ ( �Q, t) =
∑

j∈{jκ},j′∈{jκ′}

〈
exp(−i �Q · �Rj) exp

(
i �Q · �Rj′ (t)

)〉
=
〈
ρ̂κ( �Q, t = 0)ρ̂κ′ (− �Q, t)

〉
, (8.36)

70One possible way of progress on this issue is the direct manipulation of wave packets as proposed by H. Rauch. This could permit,
in analogy to spin-echo for the two point correlation function, to measure the higher order correlation functions directly. A more indirect
way consists in exploiting quantum statistical relations between three-point correlation functions and the derivative of two-point correlation
functions, e.g. as a function of temperature.

71In same way as for G(�r, t) we try to remain as general as possible and, therefore, define partial intermediate scattering functions. Logically,
these functions are not normalised to the number of scatterers. This common characteristic of the partial functions Sκ,κ′ (�r, t), Iκ,κ′ (�r, t) and
Gκ,κ′ (�r, t) has to be taken into account if one compares them with the total scattering functions (S(�r, t), I(�r, t) and G(�r, t)) found in literature,
which in general are normalised to the number of scatterers N .
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Iκ,κ′ ( �Q, t) =
∫
V

d3re−i �Q·�rGκ,κ′ (�r, t), (8.37)

Iκ,κ′ ( �Q, t) = �

∫ ∞

−∞
dωeiωtSκ,κ′ ( �Q,ω). (8.38)

The first one is the most appealing since it defines the correlation function directly in terms of Fourier transforms
of the density operator. We recall that the correlation function is a convolution (see (8.19)) of ρκ(�r, t = 0) with
ρκ′ (−�r, t) in space. The Fourier transform of this convolution is then the product of the individual Fourier trans-
forms (see (4.23) and (4.24)).

Inverting the last equation the scattering function is expressed in terms of the intermediate scattering function

Sκ,κ′ ( �Q,ω) =
1

2π�

∫ ∞

−∞
dtIκ,κ′ ( �Q, t)e−iωt

=
1

2π�

∫ ∞

−∞
dt
〈
ρ̂κ( �Q, t = 0)ρ̂κ′ (− �Q, t)

〉
e−iωt. (8.39)

To total scattering function can thus be written as

S( �Q,ω) =
∑
κ,κ′

(
Vκ( �Q)V ∗

κ′ ( �Q)
)
Sκ,κ′ ( �Q,ω)

=
1

2π�

∑
κ,κ′

(
Vκ( �Q)V ∗

κ′ ( �Q)
) ∫ ∞

−∞
dtIκ,κ′ ( �Q, t)e−iωt

=
1

2π�

∫ ∞

−∞
dtI( �Q, t)e−iωt, (8.40)

with the total intermediate scattering function defined as

I( �Q, t) :=
∑
κ,κ′

(
Vκ( �Q)V ∗

κ′ ( �Q)
)
Iκ,κ′ ( �Q, t). (8.41)

In the same way we can introduce the intermediate self scattering function.

Isκ( �Q, t) =
∑

j∈{jκ}

〈
exp(−i �Q · �Rj) exp

(
i �Q · �Rj(t)

)〉
, (8.42)

Isκ( �Q, t) =
∫
V

d3re−i �Q·�rGS
κ (�r, t). (8.43)

Starting from its definition in terms of correlation function we can derive some relevant relations for the interme-
diate scattering functions.

• We begin with

Iκ,κ′ ( �Q, t) = I∗κ′,κ( �Q,−t). (8.44)

This relation follows from the fact that for every pair of operators

〈AB〉 =
∑
λ

pλ〈λ|AB|λ〉 =
∑
λ

pλ
〈
λ|B+A+|λ〉∗ =

〈
B+A+〉∗. (8.45)
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With

ρ̂+κ ( �Q, t) =
1

(2π)3

∑
jκ

exp
(
i �Q · �Rj(t)

)
= ρ̂κ(− �Q, t) (8.46)

we obtain

Iκ,κ′ ( �Q, t) =
〈
ρ̂κ( �Q, t = 0)ρ̂κ′ (− �Q, t)

〉
=
〈
ρ̂+κ′ (− �Q, t)ρ̂+κ ( �Q, t = 0)

〉∗
=
〈
ρ̂κ′ ( �Q, t)ρ̂κ(− �Q, t = 0)

〉∗
=
〈
ρ̂κ′ ( �Q, t = 0)ρ̂κ(− �Q,−t)

〉∗
= I∗κ′,κ( �Q,−t), (8.47)

where when going from the third to the fourth line we invoke the homogeneity of the system in time. In other
words, the origin of time can be chosen arbitrarily. The only relevant time is the delay between the events
when calculating the matrix elements

〈λ|A(t)B
(
t′
)
|λ〉 = 〈λ|A(t = 0)B

(
t′ − t

)
|λ〉. (8.48)

The relation (8.44) teaches us that it is sufficient to know the intermediate scattering functions along the
positive time axis.

• Until now the intermediate scattering function has been defined on the real time axis. This definition can be
reformulated using the time evolution operator

U(t) = exp(−iHt/�). (8.49)

We arrive at

Iκ,κ′ ( �Q, t) =
〈
ρ̂κ( �Q, t = 0)ρ̂κ′ (− �Q, t)

〉
(8.50)

=
∑
λ

pλ〈λ|ρ̂κ( �Q, 0)ρ̂κ′ (− �Q, t)|λ〉

=
∑
λ

pλ〈λ|ρ̂κ( �Q)U+(t)ρ̂κ′ (− �Q)U(t))|λ〉. (8.51)

This definition allows us extend the function in a natural way to the complex plane. We postulate

Iκ,κ′ ( �Q, t+ iτ ) =
∑
λ

pλ〈λ|ρ̂κ( �Q)U+(t+ iτ )ρ̂κ′ (− �Q)U(t+ iτ )|λ〉 (8.52)

=
∑
λ

pλ〈λ|ρ̂κ( �Q) exp
(
iH(t+ iτ )/�

)
ρ̂κ′ (− �Q) exp

(
−iH(t+ iτ )

)
|λ〉. (8.53)

At first glance this extension into the complex plane seems to be of purely academic interest. However the
concept turns out to be very powerful when we identify the complex time with the temperature as

τ := �β =
�

kBT
. (8.54)
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For any expectation value in thermodynamical equilibrium we derive the relation

〈
A(t = 0)B(t)

〉
=
∑
λ

pλ〈λ|A(0)B(t)|λ〉

=
1
Z

∑
λ

exp(−βEλ)〈λ|AU+(t)BU(t)|λ〉

=
1
Z

∑
λ

〈λ|AU+(t)BU(t) exp(−βH)|λ〉

=
1
Z

∑
λ,λ′

〈λ|A|λ′〉
〈
λ′
∣∣(U+(t)BU(t)

)
exp(−βH)|λ〉

=
1
Z

∑
λ,λ′

〈
λ′
∣∣(U+(t)BU(t)

)
exp(−βH)|λ〉〈λ|A

∣∣λ′〉

=
1
Z

∑
λ

〈λ|
(
U+(t)BU(t)

)
exp(−βH)A|λ〉

=
1
Z

∑
λ

exp(−βEλ)〈λ| exp(βH)
(
U+(t)BU(t)

)
exp(−βH)A|λ〉

=
∑
λ

pλ〈λ|
(
U+(t− i�β)BU(t− i�β)

)
A(0)|λ〉

=
∑
λ

pλ〈λ|B(t− i�β)A(0)|λ〉

=
〈
B(t− i�β)A(0)

〉
=
〈
B(t)A(i�β)

〉
. (8.55)

If the system is not in equilibrium then the probability factors pλ are not described by Boltzmann factors and
as a consequence the reasoning that we have used in order to derive relation (8.55) is not applicable.
Applying expression (8.55) to the intermediate scattering function leads to

Iκ,κ′ ( �Q, t) = Iκ′,κ(− �Q,−t+ i�β) (8.56)

and for the total intermediate scattering function to

I( �Q, t) =
∑
κ�κ′

[(
Vκ( �Q)V ∗

κ′ ( �Q)
)
Iκ,κ′ ( �Q, t) +

(
Vκ′ ( �Q)V ∗

κ ( �Q)
)
Iκ′,κ( �Q, t)

]

=
∑
κ�κ′

[(
Vκ( �Q)V ∗

κ′ ( �Q)
)
Iκ′,κ(− �Q,−t+ i�β) +

(
Vκ′ ( �Q)V ∗

κ ( �Q)
)
Iκ,κ′ (− �Q,−t+ i�β)

]

= I(− �Q,−t+ i�β), (8.57)

provided that Vκ( �Q) = V ∗
κ ( �Q),∀κ, which means in the absence of absorption.

Hence there exists an exact relation between the intermediate scattering function on the real time axis and the
one defined on the complex time axis. Knowing one we automatically also know the other.
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We will now use these relations in order to derive an important property of the scattering function.

8.7. Detailed balance

Using (8.39) with (8.56) the following expression is found for the scattering function

Sκ,κ′ ( �Q,ω) =
1

2π�

∫ ∞

−∞
dt Iκ,κ′ ( �Q, t)e−iωt

=
1

2π�

∫ ∞

−∞
dtIκ′,κ(− �Q,−t+ i�β)e−iωt

=
1

2π�

∫ ∞

−∞
dt′Iκ′,κ

(
− �Q, t′

)
e−iω(−t′+i�β)

= e�ωβ 1
2π�

∫ ∞

−∞
dtIκ′,κ(− �Q, t)eiωt

= e�ωβSκ′,κ(− �Q,−ω). (8.58)

If the system is invariant under inversion of the direction of �r and hence also �Q this expression can be simplified to

Sκ,κ′ ( �Q,−ω) = e−�ωβSκ′,κ( �Q,ω). (8.59)

This is especially the case for disordered systems like liquids and glasses and holds also for crystals that possess
an inversion centre.

When applied to the total scattering function, we find

S( �Q,ω) =
∑
κ�κ′

[(
Vκ( �Q)V ∗

κ′ ( �Q)
)
Sκ,κ′ ( �Q,ω) +

(
Vκ′ ( �Q)V ∗

κ ( �Q)
)
Sκ′,κ( �Q,ω)

]

= e�ωβ
∑
κ�κ′

[(
Vκ( �Q)V ∗

κ′ ( �Q)
)
Sκ′,κ(− �Q,−ω) +

(
Vκ′ ( �Q)V ∗

κ ( �Q)
)
Sκ,κ′ (− �Q,−ω)

]

= e�ωβ
∑
κ�κ′

[(
Vκ( �Q)V ∗

κ′ ( �Q)
)
S∗
κ′,κ(− �Q,−ω) +

(
Vκ′ ( �Q)V ∗

κ ( �Q)
)
S∗
κ,κ′ (− �Q,−ω)

]

= e�ωβS∗(− �Q,−ω) = e�ωβS(− �Q,−ω), (8.60)

where we have taken advantage of the fact that the scattering functions are real.
As we can see, the scattering function is asymmetric in terms of the frequency ω. The factor e−�ωβ is always

smaller than one for ω > 0. Therefore the negative side of S( �Q,ω) will always be inferior to the positive side.
In order to get a better understanding of the significance of this result we will return to the partial differential

cross sections (see Fig. 35). Comparing

d2σ�ki→�kf

dΩ dEf
=

kf
ki

S( �Q,ω) (8.61)

with

d2σ�ki→�kf

dΩ dEf
=

kf
ki

m2

(2π)2�4

∑
λi,λf

p(λi)

∣∣∣∣∣
N∑
j=1

Vj( �Q)〈λf |ei �Q·�Rj |λi〉
∣∣∣∣∣
2

δ
(
�ω + (Eλi

− Eλf
)
)

(8.62)
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Fig. 35. Schematic presentation of detailed balance. For temperatures kBT much smaller than the energy transfer the anti-Stokes side of the
scattering goes to zero. There are simply no occupied states at the required energy levels. For kBT ≈ �ω the value of the anti-Stokes side is
about 30% of the Stokes side. At very high temperatures the ratio between the two sides approaches one.

we remind ourselves that the scattering function S( �Q,ω) (apart from the factor kf/ki) gives the probability of a

neutron passing from the state �ki to the state �kf while exchanging the energy �ω = Ef − Ei with the sample.
If �ω < 0 then Ef > Ei and, therefore, the neutron gains energy from the sample. The neutron gets “excited”
whereas the sample gets de-excited by the scattering. Borrowing the vocabulary of optical spectroscopy we find
ourselves on the anti-Stokes side of the spectrum. If on the contrary �ω > 0 then Ef < Ei and the neutron, there-
fore, transfers energy to the sample. This corresponds to the Stokes side of the spectrum. The intrinsic probability
for passing from one state to another is identical for excitation and de-excitation. The difference is due to the occu-
pation of the initial states of the sample.72 This rate is expressed by the factor e−�ωβ . At very low temperature the
sample is in its ground state. No de-excitations are possible and S( �Q,ω) = 0 for ω < 0. At very high temperatures
(T 
 �ω) the factor e−�ωβ ≈ 1 and the spectrum becomes more and more symmetric.

8.8. Symmetrised correlation functions

The scattering function S( �Q,ω) is as we have shown asymmetric in the variable ω. We can derive a symmetric
function [48] via

Ssym( �Q,ω) := exp

(
−1

2
�ωβ

)
S( �Q,ω). (8.63)

In fact

Ssym( �Q,ω) = Ssym(− �Q,−ω). (8.64)

In the same way we define

I
sym
κ,κ′ ( �Q, t) := Iκ,κ′

(
�Q, t+

1
2

�ωβ

)
, (8.65)

72The neutron is always a very weak perturbation even at very high flux. It will not change the thermodynamic properties of the sample.
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which gives a function

Isym( �Q, t) = Isym(− �Q,−t)
(
= Isym∗( �Q,−t)

)
, (8.66)

that is symmetric in t and real for systems with inversion symmetry.
The practical value of these functions becomes manifest when we have to compare scattering data to calculations

or to theoretical predictions. Knowledge of the wave functions of the sample, which are necessary in order to
calculate the expectation values in the expressions for S( �Q,ω) is more the exception than the rule. In most cases
the measurement has to be compared to classical calculations, e.g. obtained from molecular dynamics simulations
or stochastic models (diffusion models). These calculations provide the classical correlation functions clG(�r, t)
(8.23) and (8.24). Often these functions are real and even in time, which implies that S( �Q,ω) will be symmetric
in ω, in contradiction to the principle of detailed balance. One possibility for reestablishing the correct balance is
to compare the classical predictions to the symmetrised scattering functions. This procedure was first proposed by
Schofield [56].

8.9. Asymptotic behaviour

It is often very instructive to study the behaviour of a function for extreme values of its argument. In this way
we can hope to identify useful relations that are independent of the exact form of the functions.

Let us consider the intermediate scattering function Iκ,κ′ ( �Q, t). For very long times the correlations will have to

become necessarily independent of time. Formally this implies that the limit Iκ,κ′ ( �Q, t → ±∞) exists.73

Let us define

I ′κ,κ′ ( �Q, t) := Iκ,κ′ ( �Q, t) − Iκ,κ′ ( �Q,∞). (8.67)

The scattering function is found by Fourier transformation of the intermediate function

Sκ,κ′ ( �Q,ω) =
1

2π�

∫ ∞

−∞
dtIκ,κ′ ( �Q, t)e−iωt

=
1

2π�

∫ ∞

−∞
dt
[
I ′κ,κ′ ( �Q, t) + Iκ,κ′ ( �Q,∞)

]
e−iωt

= Iκ,κ′ ( �Q,∞)δ(�ω) +
∫ ∞

−∞
dtI ′κ,κ′ ( �Q, t)e−iωt. (8.68)

From (8.29) we deduce that the partial differential coherent cross section contains an elastic component, i.e. a
component proportional to δ(�ω), which is given by

(
d2σ

dΩ dEf

)coh

el
=
∑
κ,κ′

bκbκ′Iκ,κ′ ( �Q,∞)δ(�ω). (8.69)

73In theory one can construct situations where this is not the case. E.g. in a system described by a harmonic excitation the intermediate
scattering function will oscillate for all t around its mean value. This is by the way the reason why the dynamical response of such a system is
described by Dirac δ-functions in energy (see Sections 9.10 and 9.12). In reality physical systems are normally immersed in a thermal bath and
the oscillations are damped, which guaranties the existence of a limiting value that the intermediate scattering functions decay to.
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The difference between the partial differential cross section and the elastic cross section corresponds to the inelastic
cross section. Attention, the inelastic cross section is not necessarily zero when �ω = 0. One speaks of quasi-elastic
intensity.74 Quasi-elastic scattering can be clearly distinguished from elastic scattering since

∫ ε

−ε
d(�ω)

(
d2σ

dΩ dEf

)
el
=
∑
κ,κ′

bκb
∗
κ′Iκ,κ′ ( �Q,∞) (8.70)

is independent of the choice of ε while

∫ ε

−ε
d(�ω)

(
d2σ

dΩ dEf

)
quasi-el

→ 0 (8.71)

for ε → 0. In practice this difference manifests itself in the observation that the intensity of elastic scattering is
independent of the experimental resolution (see Section 11.6).

Let us look a bit more into the details of the function Iκ,κ′ ( �Q,∞), defined by (8.38) as

Iκ,κ′ ( �Q,∞) =
∑

j∈{jκ},j′∈{jκ′}

〈
exp(−i �Q · �Rj) exp

(
i �Q · �Rj′ (∞)

)〉

=
〈
ρ̂κ( �Q, t = 0)ρ̂κ′ (− �Q,∞)

〉
=

∫
V

d3re−i �Q·�r
∫

d3�r ′
〈
ρ̂κ
(
�r ′ − �r

)
ρ̂κ′
(
�r ′,∞

)〉
. (8.72)

If the limit Iκ,κ′ ( �Q,∞) exists then the correlation between �Rj and �Rj′ (t) has to become independent of t when

t → ∞. In other words, �Rj and �Rj′ (t) should de-correlate as t → ∞. Formally

∫
d3�r ′

〈
ρ̂κ
(
�r ′ − �r

)
ρ̂κ′
(
�r ′,∞

)〉
=

∫
d3�r ′

〈
ρ̂κ
(
�r ′ − �r

)〉
〈ρ̂κ′
(
�r ′
)
〉, (8.73)

where we have exploited the fact that 〈ρ̂κ(�r ′ − �r)〉 is independent of t.
In a liquid the density ρ = N/V is homogeneous, which is the same as saying that it is independent of position.

Hence∫
d3�r ′

〈
ρ̂κ
(
�r ′ − �r

)〉
〈ρ̂κ′
(
�r ′
)
〉 =
∫

d3�r ′ρ2 = V ρ2 = Nρ. (8.74)

The Fourier transform of this expression gives the intermediate scattering function

Iκ,κ′ ( �Q,∞) ∝ δ( �Q). (8.75)

A constant density in space does, therefore, not give rise to scattering. The same result is found for incoherent
scattering. Hence a liquid or a gas does not produce elastic scattering. When the liquid crystallises or vitrifies
the atoms become trapped in their equilibrium positions, which are stable on the time scale of the experimental
observation. This stability gives rise to a finite value of Iκ,κ′ ( �Q,∞) and hence produces elastic scattering (see
Fig. 36).

74It seems that the expression has been introduced by [48].
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Fig. 36. In this figure the scattering of trans-Decalin in the liquid and glassy state are compared. The molecules C10H18 consist of two fused
cyclohexane rings and is an excellent glass former. The quasi-elastic signal characterising the liquid state disappears in favour of an elastic
peak in the glass state, where the width of the signal is given by the instrument resolution as measured with a Vanadium standard. Contrary to
a liquid the atoms keep their equilibrium positions in a glass.

8.10. Example: Ensemble of Boltzmann particles

We follow Squires [62] and Lovesey [39] and illustrate the correlation functions that we have just defined using
the ideal gas as an example. In an ideal gas there is no interaction between the particles. Hence the wave functions
correspond to the wave functions of an ensemble of free particles. In the Heisenberg description

|λ〉 =
∣∣�P (1), . . . , �P (N )

〉
=
∣∣�P (1)

〉
· · · · ·

∣∣�P (N )
〉

(8.76)

with75

∣∣�P (j)
〉
=

1√
V

exp
(
i�q(j) · �Rj

)
, �q(j) =

�P (j)
�

. (8.77)

The ensemble of particles is coupled to a thermal bath. We assume that all the particles can be distinguished. As a
consequence the probability that a particle j is found in a state �Pj is given by the Boltzmann distribution

f�p d3p = f (px, py , pz) dpx dpy dpz =

√(
1

2πmkBT

)3

exp

(
−
p2
x + p2

y + p2
z

2mkBT

)
d3p. (8.78)

If we proceed via a direct calculation of the partial differential cross section from the master equation then we need
to evaluate

d2σ�ki→�kf

dΩ dEf
=

kf
ki

∑
λi,λf

p(λi)

∣∣∣∣∣
N∑
j=1

bj
〈(

�P (1), . . . , �P (N )
)
f

∣∣ei �Q·�Rj
∣∣(�P (1), . . . , �P (N )

)
i

〉∣∣∣∣∣
2

× δ
(
(Eλi

− Eλf
) + �ω

)
. (8.79)

75In order to avoid confusion between the wave vectors of the neutron and the wave vectors of the scattering particles we denote the later
by �q.
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The matrix elements in this expression can be calculated with (8.77) as

〈(
�P (1), . . . , �P (N )

)
f

∣∣ei �Q·�Rj
∣∣(�P (1), . . . , �P (N )

)
i

〉
=
〈
�Pf (1)|�Pi(1)

〉
· · · · ·

〈
�Pf (j)

∣∣ei �Q·�Rj
∣∣�Pi(j)

〉
· · · · ·

〈
�Pf (N )|�Pi(N )

〉
=

1

V N

∫
V

d3R1 exp
(
i
(
�qi(1) − �qf (1)

)
· �R1
)
· · ·
∫
V

d3Rj exp
(
i
(
�Q+ �qi(j) − �qf (j)

)
· �Rj
)
· · ·

×
∫
V

d3RN exp
(
i
(
�qi(N ) − �qf (N )

)
· �RN

)
= δ
(
�qi(1) − �qf (1)

)
· · · · · δ

(
�Q+ �qi(j) − �qf (j)

)
· · · · · δ

(
�qi(N ) − �qf (N )

)
. (8.80)

This is the expression for the conservation of momentum in a collision that only involves single particles. Thus, if
the initial wave function and the final wave function differ in more than one quantum number the contribution to
the cross section is zero. In all the other cases the matrix element is equal to one provided that

�ω = −(Eλi
− Eλf

) = − �
2

2mj

(
q2
i − q2

f

)
=

�
2

2m

(
Q2 + 2 �Q · �qi(j)

)
. (8.81)

Replacing (8.80) and (8.81) in (8.79) we find

d2σ�ki→�kf

dΩ dEf
=

kf
ki

N∑
j=1

bjb
∗
j

∑
�qi(j)

p
(
�qi(j)

)
δ

(
�ω − �

2

2mj

(
Q2 + 2 �Q · �qi(j)

))

=
kf
ki

N∑
j=1

bjb
∗
j

∫
d3qi(j)p

(
�qi(j)

)
δ

(
�ω − �

2

2mj

(
Q2 + 2 �Q · �qi(j)

))
. (8.82)

The integral here can be expressed in terms of the Boltzmann probability (8.78) as∫
d3qp(�q)δ

(
�ω − �

2

2mj

(
Q2 + 2 �Q · �q

))

= �
3

√(
1

2πmjkBT

)3 ∫
d3q exp

(
− �

2q2

2mjkBT

)
δ

(
�ω − �

2

2mj

(
Q2 + 2 �Q · �q

))
. (8.83)

This integral can be evaluated using a Cartesian reference system with its axis aligned in the �Q direction.76 We find

d2σ�ki→�kf

dΩ dEf
=

kf
ki

N∑
j=1

bjb
∗
j

1√
2πσj

exp

(
− (�ω − Er(j))2

2σ2
j

)
(8.87)

76We choose ẑ‖ �Q. The Dirac function is written as

δ

(
�ω − �2

2mj

(
Q2 + 2 �Q · �q

))
= δ

(
�ω − �2

2mj

(
Q2 + 2Q · qz

))

= δ

(
�ω − Er(j) − 2

Er(j)

Q
· qz
)

=
Q

2Er(j)
δ

((
�ωQ

2Er(j)
− Q

2

)
− qz

)
. (8.84)
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with the recoil energy of the particle j

Er(j) :=
�

2Q2

2mj
(8.88)

and the standard deviation

σj :=
√

2kBTEr(j). (8.89)

The recoil energy is calculated with (1.13) as

Er(j)[meV] =

(
mn

mj

)
2.0725 ·Q2[Å−1]

, (8.90)

where mn is the mass of the neutron. Hence the partial differential cross section is the sum of N Gaussians. Each
Gaussian is centred on the recoil energy of the particle in question. The width of the Gaussians is proportional
to the square root of the temperature and the square root of the recoil energy as well. The dynamic response of a
heavy particle will always be more centred than the response of a light particle. With

δ(x) = lim
σ→0

1√
2πσ

exp

(
− x2

2σ

)
(8.91)

in the limit T → 0 we find

d2σ�ki→�kf

dΩ dEf
=

kf
ki

N∑
j=1

bjb
∗
jδ
(
�ω − Er(j)

)
. (8.92)

This is the zero temperature response of an ensemble of Boltzmann particles.
We see that there is no interference terms between the contributions from the different particles. This is not

surprising. We are dealing with plane waves and hence each particle is distributed homogeneously over the gas
volume. The lack of interaction including exchange interactions has the consequence that a given particle is not

Integration over qx and qy gives us twice the factor

�

√
1

2πmjkBT
. (8.85)

This is a direct consequence of the normalisation of probabilities. The integration over qz is done using the Dirac function. We find

�

√
1

2πmjkBT

∫
dqz exp

(
− �2q2

z

2mjkBT

)
Q

2Er(j)
δ

((
�ωQ

2Er(j)
− Q

2

)
− qz

)

= �

√
1

2πmjkBT

Q

2Er(j)
exp

(
− �

2

2mjkBT

(
�ωQ

2Er(j)
− Q

2

)2)

=

√
1

4πEr(j)kBT
exp

(
(�ω − Er(j))2

4Er(j)kBT

)
. (8.86)
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aware of the existence of other particles, which means that there are no correlations between the particles. Thus
the coherent scattering from an ensemble of Boltzmann particles without interactions is indistinguishable from its
incoherent scattering. One often says that the response of the system is incoherent, even though the correct term
would be un- or de-correlated.

We should nevertheless be aware of the fact that at very low temperatures the level of occupation is very low.
Which means that the Boltzmann distribution is no longer a good approximation. We can no longer ignore the
correlations introduced by the exchange interactions between undistinguishable particles. These forces are espe-
cially pronounced for fermions. In this case the Boltzmann gas should be replaced by a Fermi liquid. A particle
in a Fermi liquid is aware of the presence of other particles due to the Pauli exclusion principle. This principle
introduces correlations of occupation levels.

Despite of its limitations we will in this section stay with the concept of Boltzmann particles. In the limit where
mj → ∞ we can derive that

d2σ�ki→�kf

dΩ dEf
=

kf
ki

N∑
j=1

bjb
∗
jδ(�ω). (8.93)

We obtain the known result for elastic scattering from fixed particles.
We would now like to derive the correlation functions for the Boltzmann gas. Instead of proceeding via a direct

calculation we pass via the cross section (8.87) from which we can identify the partial self scattering functions as

Ss
κ( �Q,ω) =

Nκ√
2πσκ

exp

(
− (�ω − Er(κ))2

2σ2
κ

)
. (8.94)

They are shown in Fig. 37. The Ss
κ( �Q,ω) satisfy detailed balance. The fact that we have used the Boltzmann

distribution in our calculations, which a priori is only valid for classical distinguishable particles, changes nothing
about this fact. This can be understood if one considers that we would have obtained the same expression for an

Fig. 37. Scattering function for Boltzmann particle for different recoil energies Er . The natural unit of the energy is (kBT ).
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Fig. 38. Comparison between the scattering function and the symmetrised scattering function for two distinct recoil energies Er .

isolated particle or for an ensemble of completely different particles. The symmetrised function is calculated as

S
sym
κ ( �Q,ω) = exp

(
−1

2
�ωβ

)
S2
κ( �Q,ω)

=
Nκ√
2πσκ

exp

(
− �ω

2kBT

)
exp

(
− (�ω − Er(κ))2

2σ2
κ

)

=
Nκ√
2πσκ

exp

(
−2Er(κ)�ω − (�ω − Er(κ))2

2σ2
κ

)

=
Nκ√
2πσκ

exp

(
−�

2ω2 + Er(κ)2

2σ2
κ

)
. (8.95)

Attention, these functions are no longer normalised (see Fig. 38). The intermediate scattering functions are obtained
by Fourier transforming the partial scattering functions. Since∫ ∞

−∞
dx exp

(
−ax2 + bx

)
=

√
π

a
exp

(
b2

4a

)
, (8.96)

they become

Isκ( �Q, t) = �

∫ ∞

−∞
dω exp(−iωt)Ss

κ( �Q,ω) = exp

(
−1

2
Q2σκ(t)2

)
(8.97)

with

σκ(t)2 =
kBT

mκ
· t
(
t− i

�

kBT

)
. (8.98)

We could have found the same result by evaluating

Isκ( �Q, t) =
∑

j∈{jκ}

〈
exp(−i �Q · �Rj) exp

(
i �Q · �Rj(t)

)〉
(8.99)
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with the methods of quantum mechanical calculus [39]. The intermediate scattering function is thus an intrinsically
complex function. The symmetrised form can be calculated as

I
sym
κ ( �Q, t) := Isκ

(
�Q, t+

1
2

�ωβ

)
= exp

(
−1

2
Q2σ2

sym(κ)

)
(8.100)

with

σ2
sym(κ) =

kBT

mκ

(
t2 +

�
2

4(kBT )2

)
, (8.101)

which is a real and even function.
Finally the pair correlation function Gs

κ(�r, t) can be calculated from the intermediate scattering function by a
Fourier transformation in space

Gs
κ(�r, t) =

1
(2π)3

∫
d3Q e−i �Q·�rIsκ( �Q, t) =

1√
(2πσκ(t)2)3

exp

(
− r2

2σκ(t)2

)
. (8.102)

This is a normalised Gaussian where the width is complex and increases with time. The symmetrised version of
Gs
κ(�r, t) is found as

G
sym
κ (�r, t) =

1√
(2πσ

sym
κ (t)2)3

exp

(
− r2

2σsym
κ (t)2

)
. (8.103)

The interpretation of a complex correlation function is not easy. Therefore, we turn our attention to classical
systems. For an ideal gas the pair correlation function has the same form as (8.102). It is determined by

Gcl
κ (�r, t) =

1√
(2πσcl

κ (t)2)3
exp

(
− r2

2σcl
κ (t)2

)
. (8.104)

The standard deviation is calculated as

σcl
κ (t) =

√
kBT

mκ
t. (8.105)

The two functions Gs
κ(�r, t) and Gcl

κ (r, t) are connected by substitution of variables.

Gs
κ(�r, t) = Gcl

κ

(
r,
√

t(t+ iβ�)
)
. (8.106)

This substitution is an alternative approach to the method of Schofield of creating a scattering function that respects
the detail balance principle starting from a classical calculation. It was proposed by Egelstaff [20]. Its validity is
discussed in [21].

The function Gcl
κ (�r, t) constitutes the classical limit of Gs

κ(�r, t). One can easily verify this with (8.98) by letting
� → 0 or β → 0 (T → ∞). The significance of the function Gcl

κ (r, t) is simple (see Fig. 39).

4πr2Gcl
κ (�r, t) dr



H. Schober / An introduction to the theory of nuclear neutron scattering in condensed matter 239

Fig. 39. The function Gcl
κ(�r, t) for different times. The units are chosen in such a way so the velocity

√
kBT/mκ = 1.

gives the probability of finding a particle of type κ at time t at a position between r and r+ dr, if the same particle
was at time t = 0 at the origin. In the ballistic regime this probability is directly related to the probability p(v) dv
that the particle possesses a velocity between v and v+ dv with v = r/t. p(v) is given by the Maxwell distribution

p(v) ∝ v2 exp

(
−mκv

2

2kBT

)
. (8.107)

The width of Gcl
κ (�r, t) increases with v, which is equivalent to a specific r at a given time t.

Systems of Boltzmann particles may be of pedagogical value but their scientific interest is limited. If we do not
want to handle the interaction between particles at the atomic level one way of taking their existence into account is
to introduce diffusion. We have already mentioned that the dynamics of a fluid is governed by a continuity equation
(3.12)

∂

∂t
n(�r, t) + �∇ · �J(�r, t) = 0, (8.108)

which relates the changes in the atomic density n(r, t) to a current �J(�r, t). The first of Fick’s laws states that this
current is proportional to the gradient of the concentration

�J(�r, t) = �∇n(�r, t). (8.109)

It is evident that this law can only by applied to a system in the steady state. At very short times we remain necessary
in a ballistic regime. Deviations become important as time goes on. If we combine the continuity equation with
Fick’s first law we get the diffusion equation or Fick’s second law

∂n(�r, t)
∂t

= D�∇ · �∇n(�r, t) = DΔn(�r, t). (8.110)
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D is the diffusion coefficient. This equation resembles in its form very much the Schrödinger equation for a
free particle. The solution are nevertheless very different. If we only keep the isotropic solutions77 the classical
correlation functions corresponding to the diffusion equation are found to be

Gcl
κ (�r, t) =

1√
4πD|t|3

exp

(
− r2

4D|t|

)
. (8.118)

We would like to emphasise that Gcl
κ (�r, t) describes the correlation of a particle with itself. The correlation function

is, as in the case of the Boltzmann particles, a Gaussian. However, we see that the width of this Gaussian does only
increase with

√
t. The classical intermediate self scattering function can be determined by Fourier transformation

Icl
s (�r, t) =

∫
d3r exp(i �Q · �r)Gcl

κ (�r, t)

= exp

(
−1

2
Q2σ2(t)

)

= exp
(
−Q2D|t|

)
. (8.119)

77The ∇2 operator is well known from the Schrödinger equation. The isotropic solutions of the Fick law are of s-type (see Section 3.3). In
this case we can set (see (3.46))

Δ =

[
∂2

∂r2
+

2

r

∂

∂r

]
. (8.111)

Using the Ansatz

n(�r, t) =
1√

(2π)3

1

σ(t)3
exp

(
− r2

2σ(t)2

)
(8.112)

we verify that

[
∂2

∂r2
+

2

r

∂

∂r

]
n(r, t) =

[
− 3

σ(t)2
− r2

σ(t)4

]
n(�r, t) (8.113)

together with

∂

∂t
n(r, t) =

[
−3 dσ(t)/dt

σ(t)
− r2 dσ(t)/dt

σ(t)3

]
n(�r, t). (8.114)

Hence we find a solution to the diffusion equation (8.110) provided that

σ(t)
dσ(t)

dt
= D. (8.115)

This is the case if

d

dt
σ(t)2 = 2D (8.116)

or

σ(t) = 2D|t|+ C. (8.117)

For t large, which here is of interest, we can neglect the constant C. The pair correlation function is found from n(�r, t) with the boundary
condition n(0, t) = n0δ(�r ).
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Fig. 40. The function Scl
κ (Q,ω) defined in (8.120) for different Q values. The diffusion constant is chosen to be 2.5 ·10−5 cm2/s corresponding

to 0.25 Å2/ps. This is close to the diffusion constant of water at 25 degrees Celsius. One can compare the shape of these curves to the ones
measured in Fig. 36 for liquid Decalin.

The Fourier transform of this function, and as a consequence the scattering function, is a Lorentzian

Scl
s (�r, t) =

1
2π�

∫ ∞

−∞
Icl
s (�r, t) exp(−iωt) dt

=
1

2π�

{∫ ∞

0
exp
(
−
(
Q2D + iω

)
t
)

dt+
∫ 0

−∞
exp
((
Q2D − iω

)
t
)

dt

}

=
1

π�

DQ2

(DQ2)2 + ω2 . (8.120)

The function (see Fig. 40) is centred on ω = 0 and has a width (FWHM) of

�Δω = 2�DQ2. (8.121)

Thus we can clearly distinguish between the ballistic regime and the diffusive regime just from the shape of the
dynamic response.

If we identify Scl
s (�r, t) with the self scattering function Ss(�r, t) this function will be symmetric and hence violate

the principle of detailed balance. One solution to this problem is to identify Scl
s (�r, t) with the symmetrised self

scattering function S
sym
s (�r, t) and to derive from there the self scattering function.

We will finally turn to the total cross section of an ensemble of Boltzmann particles. We need to calculate

σtot = 4π
kf
ki

∫ ∞

−∞
d(�ω)

∑
κ

|bκ|2Sκ(Q,ω). (8.122)

The presence of the factor kf/ki makes the calculation quite tedious. For the reader who is keen to go through this
in detail we refer to Lovesey [39]. Here we continue by stating the result in the limit of sufficiently large incident
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energy

Ei 

mκ

mn
(kBT ).

In this case we find

σtot ≈ 4π
∑
κ

Nκ|bκ|2
(

1 +
mn

mκ

)−2

. (8.123)

For protons this cross section is a quarter of the bound cross section. This is the result that we expected. For
very high energies the motion of the particles can be neglected. We, therefore, recognise the free particle case
from Section 3.8. The expression (8.123) confirms the fact that in the developed formalism scattering lengths are
“bound” scattering lengths.

8.11. Response functions and susceptibility

Linear response theory describes how a physical system reacts if perturbed weakly. Since most scattering probes
are rather gentle we can hope that this theory will be useful when describing scattering processes. As the name
indicates the theory is based on the assumption that the change in an observable is linear in the perturbation.78

For t → −∞, hence way before the interaction with the probe particle takes place, the system is described by
the unperturbed Hamiltonian Ĥ0.79 The perturbation is supposed to be switched on in an adiabatic way, which
means that it builds up sufficiently slowly for the system to remain permanently in its equilibrium state.80 The
perturbation adds the term Ĥp = −B̂F (t) to the Hamiltonian

Ĥ = Ĥ0 − B̂F (t).

B̂ is a time independent operator that characterises the perturbation. The externally imposed time evolution of the
perturbation is fully contained within the function F (t). The changes induced in the system by the perturbation will
be monitored via an observable Â. The expectation value of Â can be determined with the help of the statistical
density operator. Without perturbation

〈Â〉 = Tr{ρ0Â}, (8.124)

ρ0 =
1
Z

exp

(
− Ĥ0

kBT

)
, Z = Tr exp

(
− Ĥ0

kBT

)
, (8.125)

〈Â〉 is independent of time. When we switch on the perturbation the statistical density operator will change and so
will the expectation value of Â

〈
Â(t)

〉
= Tr

{
ρ(t)Â

}
, (8.126)

ρ(t) =
1
Z

exp

(
− Ĥ

kBT

)
, Z = Tr exp

(
− Ĥ

kBT

)
. (8.127)

78The subject is very well described in the book by Jensen and Mackintosh [34].
79We use in this section the Â notation to designate quantum mechanical observables.
80We have already encountered this problem when we described scattering in terms of stationary states. These states correspond to a station-

ary, i.e. time invariant flux of particles. The question we had to answer was, therefore, how to initiate this flux in the first place. The solution
we had proposed was to employ an adiabatic process.
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This evolution can be described in terms of a response function ΦA,B(t− t′). Formally

Δ
〈
Â(�r, t)

〉
=
〈
Â(�r, t)

〉
−
〈
Â(�r )

〉
=

∫ t

−∞
dt′
∫

d3�r ′ΦA,B
(
�r − �r ′; t− t′

)
F
(
�r ′, t′

)
. (8.128)

The response function

ΦA,B
(
�r − �r ′; t− t′

)
describes the reaction of the observable Â at the position �r and at time t to a perturbation B̂F induced at the
position �r ′ at time t′. The response is in general neither local in space nor local in time given that a perturbation
at �r ′ may in principle produce an instantaneous or a delayed reaction at any other position �r. The only stringent
condition that we have to impose onto the response function is the respect of causality. Reaction cannot precede
perturbation. We impose causality via the limits used for the integration in time. To render the notation digestible
we will in the following refrain from explicitly mentioning the dependence of the observables on �r.

With the Kubo formula the response function can be calculated as81

ΦA,B
(
t− t′

)
=

i
�

〈[
Â(t), B̂

(
t′
)]〉

Θ
(
t− t′

)
, (8.129)

with the special case

ΦA,B(t) =
i
�

〈[
Â(t), B̂

]〉
Θ(t). (8.130)

The presence of Θ(t) assures as mentioned above causality. These response functions are, therefore, called causal
response functions. For the calculations that follow it is helpful to define also the more general response functions

KA,B(t) =
i
�

〈[
Â(t), B̂

]〉
. (8.131)

We verify that

KA,B(t) =

{
KA,B(t) for t > 0,
−KB,A(−t) for t < 0. (8.132)

In the case of nuclear neutron scattering the perturbation of the target system is created via the interaction of the
neutron wave with the Fermi potential (5.94). This interaction involves the atomic density operator ρ̂κ(�r, t) (8.17).
Seen from the point of view of the system the perturbation is caused within the density. Preferring to work in
reciprocal space we, therefore, identify

B(t) ≡ ρ̂κ( �Q, t).

The perturbation induced in the atomic density will propagate throughout the system. We, therefore, decide to
monitor the response to the disturbance equally in terms of the atomic number density.82 The conjugate of the
operator ρ̂κ( �Q, t) is ρ̂+κ ( �Q, t) = ρ̂κ(− �Q, t). As consequence

A(t) ≡ B̂+(t) = ρ̂κ(− �Q, t),

81The Heaviside step function is defined by Θ(t) = 1, t > 0, and 0 otherwise. The Kubo formula can be derived with quantum statistical
methods.

82For example via the creation or absorption of a phonon.
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where we implicitly allow the index κ to vary between A = B+ and B, which means that we include the response
of the atoms of the sub-system of type κ to a perturbation within the sub-system of type κ′.

In this notation the partial scattering functions can be written as

Sκ,κ′ ( �Q,ω) =
1

2π�

∫ ∞

−∞
dt exp(−iωt)Iκ,κ′ ( �Q, t)

=
1

2π�

∫ ∞

−∞
dt exp(−iωt)

〈
B̂, B̂+(t)

〉
. (8.133)

To establish a relation between the scattering function and the response function ΦB+B(t) we evaluate the Fourier
transform of KB+B(t).

1
2π

∫ ∞

−∞
dt exp(−iωt)KB+B(t) =

i
2π�

∫ ∞

−∞
dt exp(−iωt)

〈
B̂+(t)B̂ − B̂B̂+(t)

〉

= −iSκ,κ′ ( �Q,ω) +
i

2π�

∫ ∞

−∞
dt exp(−iωt)

〈
B̂+(t)B̂

〉
. (8.134)

With the help of expression (8.55) we can reverse the order of the operators. We find

〈
B̂+(t)B̂

〉
=

〈
B̂B̂+

(
t+ i�

�ω

kBT

)〉
(8.135)

and as a consequence

1
2π�

∫ ∞

−∞
dt exp(−iωt)

〈
B̂+(t)B̂

〉
=

1
2π�

∫ ∞

−∞
dt exp(−iωt)

〈
B̂B̂+

(
t+ i

�

kBT

)〉

=
1

2π�
exp

(
− �ω

kBT

)∫ ∞

−∞
dt exp(−iωt)

〈
B̂B̂+(t)

〉

=
1

2π�
exp

(
− �ω

kBT

)
Sκ,κ′ ( �Q,ω). (8.136)

Combining the expressions (8.134) and (8.136) we arrive at the expression

Sκ,κ′ ( �Q,ω) =
(
1 + n(ω)

) i
2π

∫ ∞

−∞
dt exp(−iωt)KB+B(t). (8.137)

We have in an explicit manner derived a version of the fluctuation–dissipation theorem for neutrons. This expres-
sion has the advantage of being formulated in terms of a regular Fourier transform. This is possible at the price of
working with response functions that are not causal.

To arrive at the usual version of the fluctuation–dissipation theorem we remind ourselves that the general sus-
ceptibility is defined in terms of a Laplace transform83 of the causality respecting response function

χB+B[ω] = lim
ε→0+

χB+B[ip = ω + iε] = lim
ε→0+

∫ ∞

0
dtΦB+B(t) exp(pt). (8.139)

83The Laplace transform of a function f (t) of a real and positive variable t is the function F (p) of the complex variable p defined by

F (p) :=
∫ ∞

0
dtf (t) exp(−pt). (8.138)
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The notation [ω] emphasises the fact that we are dealing with a Laplace transform and not with a Fourier transform.
The susceptibility relates the Fourier transform of the observable Â

A(ω) =
〈
Â(ω)

〉
= lim

ε→0+

∫ ∞

−∞
dteiωte−εt(〈Â(t)

〉
−
〈
Â(t → −∞)

〉)
, (8.140)

to the Fourier transform of the perturbation F (ω) via

A(ω) = χ[ω]F (ω). (8.141)

In the definition of A(ω) we have made sure that the perturbation is switched on adiabatically. For a periodic
perturbation this can only be done by ramping up the amplitude. The ramp is provided by the factor exp(−εt).

The susceptibility is composed of two parts

χB+B[p] = χ′
B+B[p] + iχ′′

B+B[p]. (8.142)

The first part

χ′
B+B[p] :=

1
2

(
χB+B[p] + χBB+

[
−p∗

])
(8.143)

is reactive and the second part

χ′′
B+B[p] :=

1
2i

(
χB+B[p] − χBB+

[
−p∗

])
(8.144)

is dissipative. The two parts are related by the Kramers–Kronig relation

χ′[ω] = P

∫ ∞

−∞
dω′ 1

π

χ′′[ω′]
ω′ − ω

, (8.145)

with P denoting the Cauchy principle value.
To see why it is justified to call the real part reactive and the imaginary part dissipative we consider the dynamic

response to a periodic perturbation. If we choose for the time evolution a simple oscillatory form

F (t) = F0 cos(ω0t) (8.146)

then the Fourier transform

F (ω) =
∫ ∞

−∞
F (t)eiωt dt (8.147)

is given by

F (ω) =
F0

2

(
δ(ω − ω0) + δ(ω + ω0)

)
. (8.148)

The spectral response is obtained via

A(ω) = χ[ω]
F0

2

(
δ(ω − ω0) + δ(ω + ω0)

)
. (8.149)
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Inverse Fourier transformation brings us back into the time domain

δ
〈
Â(t)

〉
=

1
2π

∫ ∞

−∞
dωe−iωtA(ω)

=
1

2π

∫ ∞

−∞
dωe−iωtχ[ω]F (ω)

=
F0

4π

[
χ[ω0]e−iω0t + χ[−ω0]eiω0t

]
=

F0

4π

[
cosω0t

{
χ[ω0] + χ[−ω0]

}
+ i sinω0t

{
χ[ω0] − χ[−ω0]

}]
=

F0

2π

[
χ′[ω0] cosω0t+ χ′′[−ω0] sinω0t

]
, (8.150)

where we have used (see (8.143) and (8.144))

χ′[p] :=
1
2

(
χ[p] + χ

[
−p∗

])
(8.151)

and

χ′′[p] :=
1
2i

(
χ[p] − χ

[
−p∗

])
. (8.152)

These properties can be rigorously demonstrated starting from the definition (8.139) of the susceptibility. We see
that the real part of the susceptibility χ′ describes a response that is in phase (reactive) with the perturbation while
the imaginary part gives a response in anti-phase with the perturbation (dissipative).84

The Fourier transform of the function KB+B(t) found in the expression (8.137) is closely related to the suscep-
tibility. It is

∫ ∞

−∞
dt exp(−iωt)KB+B(t)

= lim
ε→0+

∫ ∞

−∞
dt exp

(
−iωt− ε|t|

)
KB+B(t)

= lim
ε→0+

{∫ ∞

0
dt exp(−iωt− εt)KB+B(t) +

∫ 0

−∞
dt exp(−iωt+ εt)KB+B(t)

}

= lim
ε→0+

{∫ ∞

0
dt exp(−iωt− εt)KB+B(t) −

∫ ∞

0
dt exp(+iωt− εt)KBB+(t)

}
= χB+B[ω] − χBB+[−ω]

= 2iχ′′
B+B[ω], (8.153)

where we have used the identity

KB+B(−t) = −KBB+ (t), (8.154)

84If the response is in phase with the driving force then the driving force does not do work. For an electrical motor to do work the rotor has
to be phase delayed with respect to the driving magnetic field of the stator.
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which can be verified easily on the basis of Eq. (8.132).
Inserting (8.153) into (8.137) we find

Sκ,κ′ ( �Q,ω) =
(
1 + n(ω)

)
· 1
π

· χ′′
�Q

[ω]. (8.155)

This is the commonly known form of the fluctuation–dissipation theorem.
We would like to illustrate the general formalism with a simple example. Let us look at a damped harmonic

oscillator under the influence of an external force. The equation of motion for the expectation value 〈x〉 that we
formulate as a classical equation of motion85 reads

m
〈
ẍ(t)
〉
+mγ

〈
ẋ(t)
〉
+mω2

0

〈
x(t)
〉
= f (t), (8.156)

where we have introduced a frictional damping that is proportional to the velocity. Its strength is given by the
damping constant γ. The quantity

mω2
0 = K

is the force constant. Going into Fourier space the equation of motion becomes

(
−ω2 + ω2

0 + iγω
)
x(ω) =

f (ω)
m

. (8.157)

This leads us to identify the susceptibility according to expression (8.141) as

χ[ω] =
1
m

1

ω2
0 − ω2 + iγω

. (8.158)

The imaginary part that describes dissipation is given by

χ′′[ω] =
1
m

γω

(ω2
0 − ω2)2 + (γω)2

(8.159)

and the real part describing reaction as

χ′[ω] =
1
m

(ω2
0 − ω2)

(ω2
0 − ω2)2 + (γω)2

. (8.160)

χ′′[ω] is an odd function of ω that for large ω0 and small damping can be assimilated to the sum of two Lorentzian
functions (see expression (10.108)). Their half width at half maximum width is given by the damping constant (see
Fig. 41). It is confirmed that the susceptibility of a harmonic oscillator is strictly independent of temperature.

The validity of the Kramers–Kronig relation (8.145) is easily verified for the static part χ′[0]

∫ ∞

−∞
dω

χ′′[ω]
ω

=
π

mω2
0

=
π

K
= πχ′[0]. (8.161)

85The Ehrenfest theorem [10] stipulates that the expectation values of position and momentum operators 〈Qi〉 and 〈Pi〉 satisfy the same
equations as the classical variables provided that the operators Qi and Pi appear only to first and second order in the Hamiltonian, which is the
case for a harmonic system. But attention, the quantum theory of the damped harmonic oscillator is a subject of current research. Quantisation
encounters an obstacle in the dissipation of energy introduced by the damping term.
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Fig. 41. Susceptibility of a damped harmonic oscillator. To the left the real and imaginary parts of χ[ω]. To the right the function χ′′/ω. The
surface below this function is χ′[0] = K−1 and thus temperature independent.

The force constant K is expressed in units of Nm−1. K−1 gives the change in position 〈x〉 per unit of applied
force, which is the static response of the system.

Knowing the susceptibility the fluctuation–dissipation theorem (8.155) gives immediately access to the fluctua-
tions of the variable x

Sxx(ω) =
(
1 + n(ω)

)
· 1
πm

· γω

(ω2 − ω2
0)2 + γ2ω2

. (8.162)

When the damping tends to zero then the Lorentzian functions become Dirac functions

Sxx(ω) =
1

2mω0

[(
1 + n(ω)

)
δ(ω − ω0) + n(ω)δ(ω + ω0)

]
, (8.163)

where we have used

1 + n(ω) + n(−ω) = 0. (8.164)

This concept will be generalised in Section 10.7.

8.12. Moments and sum rules for the scattering function

For a function f (x), continuous on an interval I (that is not reduced to a point), we define (under the assumption
of existence) the nth moment of f as

mn(f ) :=
∫
I
xnf (x) dx (8.165)

where n is a natural number. For the partial scattering function the moments with respect to the energy are written
as

Sn
κ,κ′ ( �Q,ω) :=

∫ ∞

−∞
Sκ,κ′ ( �Q,ω)(�ω)n d(�ω). (8.166)
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Using the definition (8.38) the zeroth moment is directly related to the intermediate scattering function

Sκ,κ′ ( �Q) := S0
κ,κ′ ( �Q,ω)

=

∫ ∞

−∞
Sκ,κ′ ( �Q,ω) d(�ω)

=

∫ ∞

−∞
dtIκ,κ′ ( �Q, t)

1
2π�

∫ ∞

∞
d(�ω)e−iωt

=

∫ ∞

−∞
dtIκ,κ′ ( �Q, t)δ(t)

= Iκ,κ′ ( �Q, t = 0). (8.167)

In Fig. 42 we show an example of an intermediate scattering function I(Q, t). This function is the result of a
classical molecular dynamics simulation. For t = 0 we obtain the structure factor S(q).
Sκ,κ′ ( �Q) is the static partial structure factor or in the case of an monatomic system the (static) structure factor

in short. It is of great importance when studying structures. In the case of diffraction the final energy is not analysed
and hence the measurement corresponds to an integration of the signal over the energy.86 Furthermore the cross
section contains the factor kf/ki. Such a measurement yields the structure factor only in the case where kf ≈

Fig. 42. The intermediate scattering function of deuterated cis-Decalin (C10D18) in its liquid state normalised to the number of scatterers.
Time is given in units of picoseconds. The scattering vector Q covers the range from 1 to 25 Å−1. For t = 0 the intermediate scattering
function corresponds to the structure factor S(Q). With time the correlations decay. The relaxation time is visibly longest for Q values that
correspond to maxima of the static structure factor S(Q). For large Q values the static structure factor oscillates around the value of one and
this with continuously diminishing amplitude as we increase Q. In addition S(Q,ω) decreases fast with time. The expected value for the
incoherent scattering is equally one (see (8.171)) in this normalisation. From this fact we can conclude that no correlations persist at very short
distances. We only observe the average density at high Q (image courtesy of S. Eibl). (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/JNR-140016.)

86Attention, it is an integration made with a fixed scattering angle.
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ki over the whole excitation spectrum.87 This is certainly the case for X-rays. For neutrons this condition can
be assumed valid for large ki. But even in this case inelastic corrections should be taken into account. These
corrections are known as Placzek corrections [4].

We would like to emphasise that the integration over the final energy in diffraction experiments corresponds to
the superposition of the cliches obtained via a representative series of snapshots of the structure. The exposure
time for each snapshot is defined by the integration interval in energy. The larger the energy interval covered the
shorter the exposure time. The limit of purely elastic intensity corresponds to infinite exposure times.

The expressions for the moments of the scattering function have the advantage of not involving time-ordering of
operators. As a consequence we find

Iκ,κ′ ( �Q, t = 0) =
∑

j∈{jκ},j′∈{jκ′}

〈
exp(−i �Q · �Rj) exp(i �Q · �Rj′)

〉

=
∑

j∈{jκ},j′∈{jκ′}

〈
exp
(
−i �Q · (�Rj − �Rj′ )

)〉

=

∫
V

d3r exp(−i �Q · �r)Gκ,κ′ (�r, t = 0)

=

∫
V

d3r exp(−i �Q · �r)clGκ,κ′ (�r, t = 0), (8.168)

with the classical version of the density correlation function Gκ,κ′ (�r, t) defined in (8.23). If the system under
investigation is monatomic this result can be expressed in terms of the static pair distribution function g(�r )

I( �Q, t = 0)
N

= 1 +

∫
V

d3r exp(−i �Q · �r)g(�r ), (8.169)

with

clG(�r, t = 0) = δ(�r ) + g(�r ) = δ(�r ) +
∑
j 
=0

〈
δ
(
�r − (�Rj − �Rj=0)

)〉
. (8.170)

g(�r ) provides the average atomic number density as a function of position.
The moment of the self scattering function is

Ss
κ( �Q) :=

∫ ∞

∞
Ss
κ( �Q,ω) d(�ω)

= Isκ,κ′ ( �Q, t = 0)

=

∫
V

d3r exp(−i �Q · �r))Gs
κ(�r, t = 0)

= Nκ. (8.171)

The integral over energy of the incoherent scattering function, normalised to the number of scatterers, is therefore
equal to unity. The signal that is lost in the elastic channel has to show up imperatively in the inelastic channel at
the same �Q value. Attention, this does not mean that the integrated intensity for a specific scattering angle should

87Often this factor is implicitly corrected for by the efficiency of the detectors, which diminishes in proportion to the velocity of the neutrons.
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be constant. Apart from the fact that the integration is not done for a constant �Q only part of the inelastic signal is
covered by the measurement due to kinematic constraints.

With the rules of calculation for Fourier transforms we can relate the higher order moments of the scattering
functions to the derivatives of the intermediate scattering functions at t = 0 [14]

Sn
κ,κ′ ( �Q,ω) =

(
�

i

)n[ ∂n
∂tn

Iκ,κ′ ( �Q, t)

]
t=0

. (8.172)

These moments are of great practical use. They permit both to test the quality of the experimental data and at the
same time of the models used to interpret them.

Of the higher order moments the first moment is of particular interest. It is related to the first derivative of the
intermediate scattering function

∂

∂t
Iκ,κ′ ( �Q, t) =

〈
ρ̂κ( �Q)

∂

∂t
ρ̂κ′ (− �Q, t)

〉

= − i
�

〈
ρ̂κ( �Q)

[
ρ̂κ′ (− �Q), Ĥ

]〉
, (8.173)

where, in order to arrive at the last line, we have applied the usual formula that expresses the derivative of a
Heisenberg operator in terms of its commutator with the Hamiltonian.

To calculate this moment we prefer nevertheless to use the non-causal response function

K
ρ̂κ(− �Q)ρ̂κ′ ( �Q)

(t) =
i
�

〈[
ρ̂κ(− �Q, t), ρ̂κ′ ( �Q)

]〉
,

that we have introduced in Section 8.11, and not the intermediate scattering function. By using an inverse Fourier
transformation we obtain from the fluctuation dissipation theorem (8.137) an expression for Kκ,κ′ ( �Q, t) in terms
of the scattering function

−i
∫ ∞

−∞
dω exp(iωt)

(
1 + n(ω)

)−1
Sκ,κ′ ( �Q,ω) = Kκ,κ′ ( �Q, t) (8.174)

and as a consequence

∫ ∞

−∞
dωω

(
1 + n(ω)

)−1
Sκ,κ′ ( �Q,ω) =

∂

∂t
Kκ,κ′ ( �Q, t)

∣∣∣
t=0

. (8.175)

With the detailed balance principle (8.59) we are able to show that

∫ ∞

−∞
dωω

(
1 + n(ω)

)−1
Sκ,κ′ ( �Q,ω) = 2

∫ ∞

−∞
dωωSκ,κ′( �Q,ω) (8.176)

under the condition that Sκ,κ′ ( �Q,ω) = Sκ,κ′ (− �Q,ω). Hence we get a direct relationship between the derivative of
the response function and the first moment of the scattering function

∫ ∞

−∞
dωωSκ,κ′( �Q,ω) =

1
2

∂

∂t
Kκ,κ′ ( �Q, t)

∣∣∣
t=0

. (8.177)
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We calculate the derivative with respect to time from the commutator with the Hamiltonian

∂

∂t
Kκ,κ′ ( �Q, t) =

i
�

〈[
∂

∂t
ρ̂κ′ (− �Q, t), ρ̂κ( �Q)

]〉

=
1
�2

〈[[
ρ̂κ′ (− �Q), Ĥ

]
, ρ̂κ( �Q)

]〉
. (8.178)

In many cases we can safely assume that the interaction between atoms is independent of the moments �Pj of the
atoms. In this case the Hamiltonian takes the form

Ĥ =
∑
κ

∑
j∈{jκ}

(�Pj)2

2mκ
+ V

(
{�Rj}

)
. (8.179)

The commutator of the number density operator and the Hamiltonian is defined as

[
ρ̂κ′ (− �Q), Ĥ

]
=
∑
κ

∑
j′∈{jκ}

[
exp(i �Q · �Rj′), Ĥ

]
. (8.180)

In this expression all the operators are operators in the Schrödinger picture, i.e. not dependent on time. As a
consequence[

exp(i �Q · �Rj′ ),V
(
{�Rj}

)]
= 0 ∀�Rj (8.181)

and hence

[
ρ̂κ′ (− �Q), Ĥ

]
=
∑
κ

∑
j∈{jκ},j′∈{jκ′}

1
2mκ

[
exp(i �Q · �Rj′ ), (�Pj)2]

=
∑

j∈{jκ′}

1
2mκ′

[
exp(i �Q · �Rj), (�Pj)2]

=
∑

j∈{jκ′}

1
2mκ′

{[
exp(i �Q · �Rj), �Pj

]
�Pj + �Pj

[
exp(i �Q · �Rj), �Pj

]}
, (8.182)

where we have used the identity[
A,B2] = [A,B]B −B[B,A] = [A,B]B +B[A,B]. (8.183)

Knowing that the commutator of a function F (�Rj) with �Pj gives the gradient of this function according to

[
f (�Rj), �Pj

]
= i��∇�Rj

f (�Rj) (8.184)

the commutator can be calculated as

[
ρ̂κ′ (− �Q), Ĥ

]
=
∑

j∈{jκ′}

1
2mκ′

{
−� �Q · exp(i �Q · �Rj)�Pj − � �Q · �Pj exp(i �Q · �Rj)

}

= −
∑

j∈{jκ′}

1
2mκ′

exp(i �Q · �Rj)
(
2� �Q · �Pj + �

2Q2). (8.185)
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Inserting (8.185) into (8.173) gives

[[
ρ̂κ′ (− �Q), Ĥ

]
, ρ̂κ( �Q)

]
= −

[
ρ̂κ( �Q),

[
ρ̂κ′ (− �Q), Ĥ

]]
=
∑

j∈{jκ}

∑
j′∈{jκ′}

1
2mκ′

exp(i �Q · �Rj′ )
(
2� �Q ·

[
exp(−i �Q · �Rj), �Pj′

])

=
∑

j∈{jκ}

∑
j′∈{jκ′}

�
2Q2

mκ′
δj,j′ exp(i �Q · �Rj′ ) exp(−i �Q · �Rj)

=
∑

j∈{jκ}

δκ,κ′
1

mκ′
�

2Q2 = δκ,κ′Nκ
�

2Q2

mκ
, (8.186)

where we have used identity (8.184) a second time. We are finally in a position to express the first moment.
According to (8.177)

∫ ∞

−∞
d�ω�ωSκ,κ′ ( �Q,ω) =

�
2

2
∂

∂t
Kκ,κ′ ( �Q, t)

∣∣∣
t=0

= δκ,κ′Nκ
�

2Q2

2mκ
= δκ,κ′NκE

r
κ(Q) (8.187)

with

Er
κ(Q) :=

�
2Q2

2mκ
(8.188)

the recoil energy of atoms of type κ. The recoil energy is the average energy exchanged under a collision with
momentum transfer � �Q. We would like to emphasise once more that this result has been obtained under the sole
condition that the interactions are independent of �Pj . It is, therefore, of very general nature. It holds in particular for
non-interacting particles, i.e. the ideal gas. As a consequence coherence effects do not enter into the first moment.
The expression (8.187) is widely known as the f -sum rule. It is of special importance in fluid mechanics. E.g. the
f -sum rule allows us to conclude that the dispersion of the excitations in 4He has to have a minimum, the roton
mode, where the structure factor has its maximum [28].

The first moment is strictly zero for symmetric functions. As a consequence it constitutes a measure of the
asymmetry of the scattering function. The expression (8.187) shows us that this asymmetry is independent of
temperature. In particular, the first moment can always be evaluated at T = 0. In this case S( �Q,ω) = 0 for ω < 0.
ST=0( �Q,ω) constitutes the base, upon which the signal at higher temperatures builds on in a symmetric manner.
With the fluctuation–dissipation theorem (8.155) a sum-rule for the susceptibility can be derived

∫ ∞

0
d�ω�ωSκ,κ′ ( �Q,ω;T = 0) =

1
π

∫ ∞

0
d�ω�ωχ′′

�Q
[ω;T = 0] = δκ,κ′NκE

r
κ. (8.189)

Expressions for the higher order moments can be found in [14,46,48]. One should nevertheless carefully distinguish
the moments of the classical scattering functions from those obtained with the quantum mechanical expressions.
As we already have mentioned the classical Scl( �Q,ω) is in general an even function of ω. As a consequence all
the moments for odd n are necessarily zero. The classical moment that comes closest to the quantum mechanical
f -sum rule is the second order moment. Under the assumption that the velocity of the different atoms are not
correlated, which is a good approximation for liquids, it is given by [14]

∫ ∞

−∞
dωω2Scl( �Q,ω) = N

Q2kBT

m
. (8.190)
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Pierre Gilles de Gennes has used this sum rule in order to derive the slowing-down of the structural relaxation in
liquids for Q values that correspond to the maxima of the structure factor (de Gennes narrowing) [14] (see Fig. 42).

8.13. Partial summary

We will again briefly pause and repeat the main concepts introduced in this section.
Nuclear scattering gives access to the auto correlation function of the atomic number density (8.19)

Gκ,κ′ (�r, t) =
∫

d3�r ′
〈
ρ̂κ
(
�r ′ − �r

)
ρ̂κ′
(
�r ′, t
)〉
.

This correlation function is related to the intermediate scattering function (8.38)

Iκ,κ′ ( �Q, t) =
〈
ρ̂κ( �Q, t = 0)ρ̂κ′ (− �Q, t)

〉
by a Fourier transformation in space

Iκ,κ′ ( �Q, t) =
∫
V

d3re−i �Q·�rGκ,κ′ (�r, t).

The scattering function is obtained by Fourier transforming the intermediate scattering function (8.39) in time

Sκ,κ′ ( �Q,ω) =
1

2π�

∫ ∞

−∞
dtIκ,κ′ ( �Q, t)e−iωt.

Hence the scattering function is a double Fourier transform of the auto correlation function of the atomic number
density (8.28)

Sκ,κ′ ( �Q,ω) =
1

2π�

∫
V

d3r

∫ ∞

−∞
dt ei( �Q·�r−ωt)Gκ,κ′ (�r, t). (8.191)

This relation allows us to express the coherent partial differential cross sections in terms of the auto correlation
function of the atomic number density (8.32)

d2σ

dΩ dEf
=

kf
ki

1
2π�

∑
κ,κ′

[(
Vκ( �Q)V ∗

κ′ ( �Q)
) ∫

V
d3r

∫ ∞

−∞
dt ei( �Q·�r−ωt)Gκ,κ′ (�r, t)

]
.

The auto correlation function of the atomic number density is the double Fourier transform in time and space of
the scattering function (8.27)

Gκ,κ′ (�r, t) =
�

(2π)3

∫
VQ

d3Q

∫ ∞

−∞
dω e−i( �Q·�r−ωt)Sκ,κ′ ( �Q,ω).

When dealing with incoherent scattering the distinct correlation functions are replaced by the self correlation
functions.

The analytic properties of the scattering function impose the principle of detailed balance (8.58)

Sκ,κ′ ( �Q,ω) = e�ωβSκ′,κ(− �Q,−ω).
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The correlation functions are tightly connected to linear response functions. In statistical mechanics the response
functions describe the reaction of a system to a perturbation in the linear regime. We define the general response
function as

Kρ̂+
κ′ ,ρ̂κ

(t) =
i
�

〈[
ρ̂κ′ (− �Q, t), ρ̂κ( �Q, t = 0)

]〉
.

This function is related to the scattering function by (8.137)

Sκ,κ′ ( �Q,ω) =
(
1 + n(ω)

) i
2π

∫ ∞

−∞
dt exp(−iωt)Kρ̂+

κ′ ,ρ̂κ
(t).

Causality is guarantied by limiting the response to positive times (8.130)

Φρ̂+
κ′ ,ρ̂κ

(t) =
i
�

〈[
ρ̂κ′ (− �Q, t), ρ̂κ( �Q, t = 0)

]〉
Θ(t).

The transition to the frequency regime is done by a Laplace transform (8.139)

χρ̂+
κ′ ,ρ̂κ

[ω] = lim
ε→0+

χρ̂+
κ′ ,ρ̂κ

[ip = ω + iε] = lim
ε→0+

∫ ∞

0
dtΦρ̂+

κ′ ,ρ̂κ
(t) exp(pt).

The generalised susceptibility χρ̂+
κ′ ,ρ̂κ

[ω] is connected to the scattering function via the fluctuation–dissipation

theorem (8.155)

Sκ,κ′ ( �Q,ω) =
(
1 + n(ω)

) 1
π
χ′′
ρ̂+
κ′ ,ρ̂κ

[ω].

9. Vibrational spectroscopy

We will now apply the developed formalism to the scattering of neutrons involving vibrations. In order to do so
we have to express the operators �Rj(t) that enter the dynamical structure factor in terms of vibrational creation and
annihilation operators. It can certainly not be the purpose of this article to give a full introduction into the subject
of structural excitations. We will, therefore, be as concise as possible. The reader interested in the details is referred
to the abundant literature that exists in this field.88

To make atoms vibrate we have to fix them in equilibrium positions at least on the time scale of the vibrational
period. This condition is fulfilled for crystals and amorphous systems in the glassy state. We will consider in the
following only systems for which the structural correlations do not decay in time, i.e. for which the structural
relaxation is complete. Diffusional motions can always be added as a perturbation provided that they are slow on
the time scale of the vibrational period.

9.1. Adiabatic approximation

To fix the equilibrium positions of the atoms we have to place them into the minima of a potential. If we include
zero-point vibrations then the nuclei fluctuate about these minima at all temperatures. The Coulomb potential not
being capable of providing stable atomic configurations on its own the potentials necessarily include electronic

88An introduction to vibrations in crystals can be found in the books of Kittel [35] and Ashcroft and Mermin [2]. A complete discussion of
the subject is given in reference [40].
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contributions. This is not surprising given the fact that the atomic structure is the result of chemical bonding,
which in turn is provided by the overlap of electronic orbitals. Any vibrational study is, therefore, above all an
investigation of the electronic system. Despite the intimate connection of electrons and ions89 it is possible to
decouple the two systems via the adiabatic approximation that we are going to comment briefly.

The Hamilton operator H contains both the ionic {�RI} and the electronic degrees {�ri} of freedom. The
Schrödinger equation reads

i�
∂

∂t
Ψ
(
{�RI}, {�ri}; t

)
= HΨ

(
{�RI}, {�ri}; t

)
(9.1)

with the Hamilton operator90

H =
∑
i

�
2

2me

�∇2
i +
∑
I

�
2

2mI

�∇2
I +
∑
i�j

e2

|�ri − �rj |
+
∑
I�J

ZIZJe
2

|�RI − �RJ |
+
∑
i,I

ZIe
2

|�ri − �RI |
(9.2)

= Ti + TI + Vi,j + VI ,J + Vi,I . (9.3)

• Ti represents the kinetic energy of the electrons,
• TI represents the kinetic energy of the ions,
• Vi,j the electron–electron interaction,
• VI ,J the ion–ion interaction, and
• Vi,I the electron–ion interaction.

The stationary wave functions of the coupled system are given by the eigenfunctions of H

HΨn
(
{�RI}, {�ri}; t

)
= EnΨn

(
{�RI}, {�ri}; t

)
. (9.4)

The En are the excitation energies of the coupled system. Even if the nuclei were frozen in position resolving only
the electronic part of the problem amounts to a formidable challenge. Directly solving equation (9.4) is, therefore,
an impossible endeavour. Fortunately an exact solution is not necessary to capture the physics of condensed matter
systems. This holds in particular for the description of the ionic motion. The vastly smaller electronic mass implies
that the dynamics of the electrons is in general very much faster than that of the ions. The electrons, therefore,
adapt nearly instantaneously to any change in the ionic positions. This allows us to separate the ionic from the
electronic variables. The wave function becomes a direct product of the form

Ψ
(
{�RI}, {�ri}; t

)
= ψ
(
{�ri}, t; {�RI}

)
· Φ
(
{�RI}; t

)
(9.5)

with the electronic part defined by the wave equation

(Ti + Vi,j + Vi,I )ψ
(
{�ri}, t; {�RI}

)
= Eel

(
{�RI}

)
· ψ
(
{�ri}, t; {�RI}

)
, (9.6)

which contains the ionic variables only as parameters but not as dynamic variables. For the ionic part we obtain
the equation(

TI + Eel
(
{�RI}

)
+ VI ,J

)
Φ
(
{�RI}, t

)
= E · Φ

(
{�RI}, t

)
, (9.7)

89We denote as ions the nuclei surrounded by their core electrons.
90Whenever there can be an ambiguity we will use capital letters to designate ions and small characters to designate electrons. ZI and MI

denote the ionic charge and mass, respectively.
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in which the electronic energy Eel({�RI}) acts as an external potential. In general this adiabatic approximation
works well in most materials (see e.g. [2]). It should, however, not be taken for granted. From a quantum mechan-
ical point of view there is a priori no reason why electronic excitations should not couple to ionic excitations, i.e.
form resonances, unless the energy scales of both systems are vastly different. This condition is generally fulfilled
in insulators with a large electronic gap of a few eV, which is to be compared to vibrational energies of at most
several hundred meV. The separation of energy scale argument can, however, not be used for metals. Close to the
Fermi surface electronic excitations of arbitrarily small energies can be created. Nothing prevents a priori these
excitations to resonate with lattice excitations. In practice, this is normally not happening and most metallic states
can be well described by the adiabatic approximation. Exceptions exist and phonon mediated superconductivity is
one of them.

9.2. Harmonic approximation

Now that we have separated off the electronic degrees of freedom we can turn our attention to calculating the
ionic excitation spectrum.

We denote the potential governing the ionic wave equation (9.7) by

U (�R1, . . . , �RN ) = Eel
(
{�RI}

)
+ VI ,J . (9.8)

While the ionic positions �Rn (n = 1, . . . ,N ) are time dependent the corresponding equilibrium positions �R0
n

(n = 1, . . . ,N ) are stationary. We introduce the displacements

�u(n|t) = �Rn − �R0
n, n = 1, . . . ,N (9.9)

with respect to the equilibrium positions R0
n. The potential U (�R1, . . . , �RN ) can then be expanded in terms of these

displacements

�u(n|t) = �Rn − �R0
n, n = 1, . . . ,N. (9.10)

For small displacements we can limit ourselves to terms of second order

U (�R1, . . . , �RN ) = U0 +

3,N∑
α,n=1

∂U

∂uα(n)

∣∣∣
0
uα(n) +

1
2

3,N∑
α,n=1

3,N∑
β,n′=1

∂2U

∂uα(n) ∂uβ(n′)

∣∣∣
0
uα(n)uβ

(
n′
)
, (9.11)

with α = 1, 2 or 3 denoting the three space directions. The derivatives have to be taken with respect to the
equilibrium positions, which do not always coincide with the potental minima. This holds even for T → 0 due to
quantum fluctuations. The first term in Eq. (9.11) is a constant. The second term involves the first derivatives of the
potential, i.e. the forces acting on the ions. These forces have to cancel in equilibrium. The first non-trivial term is,
therefore, of second order. If we treat the problem up to second order in the ionic displacements then we work in
the so-called harmonic approximation. This approximation holds if the displacements are small.91 What “small”
means depends a lot on the system studied.

91We would like to point out that for the harmonic approximation to hold it is the relative displacements of the ions that have to be small. The
potential experienced by the ions depends only on the distances between them and not on their absolute positions. The absolute displacements
can, therefore, be quite considerable. For an acoustic wave the condition of small relative displacements is generally fulfilled if the wave length
is considerably larger than the range of the inter-ionic potentials. The vibrations of a piano cord are an excellent example to illustrate this point.
These vibrations are harmonic despite the fact that the atoms along the cord move by several mm, which is immense on the atomic scale. This
is possible because the wave length is equally of a few cm, which is again enormous on the atomic scale.
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9.3. The dynamical matrix

To determine the vibrations within the harmonic approximation we have to calculate the eigenfunctions

ψI (�R1, . . . , �RN ) (9.12)

of the Hamiltonian

H =
∑
i

�
2

2mi

�∇2
i + U (�R1, . . . , �RN ) (9.13)

with the potential given as

U (�R1, . . . , �RN ) = U0 +

3,N∑
α,n=1

∂U

∂uα(n)

∣∣∣
0
uα(n) +

1
2

3,N∑
α,n=1

3,N∑
β,n′=1

∂2U

∂uα(n) ∂uβ(n′)

∣∣∣
0
uα(n)uβ

(
n′
)
. (9.14)

We will determine these eigenfunctions by separating the variables in analogy to the quantum mechanical harmonic
oscillator. We will do so by carrying out the quantisation in the space of the classical eigenfunctions. The first step
in this direction consists in determining these eigenmodes by diagonalising the classical equations of motion.

This diagonalisation is best done working with matrices. The second derivatives

Φαβ

(
n,n′

)
= − ∂2U

∂uα(n) ∂uβ(n′)

∣∣∣
0

(9.15)

are the so-called force constants of the material. They determine the restoring force that acts on the ion n along the
direction �aα when the ion n′ is displaced along �aβ (see Fig. 43). The force constants form a matrix F̃ of dimension

Fig. 43. Schematic presentation of the force constants for a crystal with two atoms (κ = 1, 2) in the primitive cell. When the atom κ′ of cell

l′ is displaced by �u(κ′, �l ′) a force acts on atom κ of cell l. This force can be calculated with the help of the force constants Φα,β (d, l, d′, l′)
according to the formula given in the figure.
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(3N × 3N )92

Φ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Φx,x(1, 1), Φx,y(1, 1), Φx,z(1, 1), . . . Φx,x(1,N ), Φx,y(1,N ), Φx,z(1,N )
Φy,x(1, 1), Φy,y(1, 1), Φy,z(1, 1), . . . Φy,x(1,N ), Φy,y(1,N ), Φy,z(1,N )
Φz,x(1, 1), Φz,y(1, 1), Φz,z(1, 1), . . . Φz,x(1,N ), Φz,y(1,N ), Φz,z(1,N )

. . . . . . . . . . . . . . . . . . . . .
Φx,x(N , 1), Φx,y(N , 1), Φx,z(N , 1), . . . Φx,x(N ,N ), Φx,y(N ,N ), Φx,z(N ,N )
Φy,x(N , 1), Φy,y(N , 1), Φy,z(N , 1), . . . Φy,x(N ,N ), Φy,y(N ,N ), Φy,z(N ,N )
Φz,x(N , 1), Φz,y(N , 1), Φz,z(N , 1), . . . Φz,x(N ,N ), Φz,y(N ,N ), Φz,z(N ,N )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(9.16)

Particular attention has to be given to the so-called self-terms Φαβ(n,n). They often have to be evaluated indirectly
invoking Newton’s third law of action equalling reaction

Φαβ(n,n) = −
∑
n′ 
=n

Φαβ

(
n,n′

)
. (9.17)

Details can be found in [40]. We define the dynamical matrix in terms of the force constant matrix via

Dαβ

(
n,n′

)
=

1
√
mn ·mn′

∂2U

∂uα(n) ∂uβ(n′)

∣∣∣
0
= −

Φαβ(n,n′)
√
mn ·mn′

. (9.18)

mn denotes the mass of the ion n.
In matrix notation

D̃ = −M̃−1/2F̃ M̃−1/2 with M̃
−1/2
α,β

(
n,n′

)
=

1√
mn

δα,βδn,n′ . (9.19)

We introduce the displacement vector

�̄u3N =
(√

m1�u(1),
√
m2�u(2), . . . ,

√
mN�u(N )

)
. (9.20)

The 3N components of �̄u3N are weighted by the square root of the mass of the ions.
In the basis of these vectors the classical equations of motion

miüα(n|t) =
3,N∑

β,n′=1

Φαβ

(
n,n′

)
uβ
(
n′|t
)

(9.21)

become

¨̄uα(n|t) = −
N ,3∑

n′=1,β=1

Dαβ

(
n,n′

)
ūβ
(
n′|t
)
. (9.22)

We are looking for oscillatory solutions characterised by a frequency ω and a phase φ and, therefore, pose

ūα(n|t) ∝ cos(ωt+ φ), ∀n = 1, . . . N , ∀α = 1, 2, 3. (9.23)

92We will here denote matrices by a tilde.
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Plucked into the classical equations of motions we get

ω2�̄u3N = D̃�̄u3N . (9.24)

D̃ being a real symmetric matrix

D̃ = D̃T

it can be diagonalised. Its 3N eigenvalues ω2
j are real. If they are in addition positive then we end up with 3N

positive frequencies ωj . Negative eigenvalues ω2
j produce imaginary ωj and, therefore, describe relaxation. They

are forbidden by the stability of the equilibrium positions. The 3N eigenvectors of the dynamical matrix �ej describe
the pattern of the displacements corresponding to a particular mode. A very simple example is given in Fig. 44.
The 3N eigenvectors �ej form a complete real basis that can be chosen orthonormal [40]

�ej · �ej′ =
3,N∑

α,n=1

ej(α,n)ej′ (α,n) = δj,j′ , (9.25)

3N∑
j=1

ej(α,n)ej
(
β,n′

)
= δα,βδn,n′ . (9.26)

Therefore, the motion of the atoms can be expressed in this basis

ūα(n|t) =
3N∑
j=1

Qj · ej(α,n) · cos(ωjt+ φj), n = 1, . . . ,N , α = 1, 2, 3 (9.27)

with Qj and φj the expansion coefficients, which are determined by the initial conditions. We have, therefore,
performed a transformation into the coordinate space of eigenmodes each characterised by its eigenfrequency. The

Fig. 44. Normal modes for a CO2 and a water molecule. The vibrations ν1 are symmetric modes that stretch the chemical bonds. The vibrations
ν2 are asymmetric modes that bend the bond angles. The vibrations ν3 are asymmetric modes that stretch the chemical bonds. All these modes
are internal, i.e. they leave the centre of gravity invariant.
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classical problem can be considered solved once the dynamical matrix is diagonalised. For this we have to find the
roots of the characteristic polynomial

P
(
ω2) = ∣∣(D̃ − ω2Ĩ3N

)∣∣ (9.28)

with Ĩ3N the unit matrix of dimension (3N × 3N ). The obtained result does not require translational symmetry
and, therefore, applies to crystals as well as to amorphous systems.

9.4. Vibrational excitations

To make the transition back to quantum mechanics we rewrite the Hamiltonian (9.13) in matrix form

H =
1
2
�p3N · �p3N + �̄u3N D̃�̄u3N , (9.29)

with the 3N -dimensional vectorial position and momentum operators

�̄u3N =
(√

m1�u(1),
√
m2�u(2), . . . ,

√
mN�u(N )

)
, (9.30)

�̄p3N =
(
(1/

√
m1)�p(1), (1/

√
m2)�p(2), . . . , (1/

√
mN )�p(N )

)
. (9.31)

Performing a coordinate transformation into the eigenmodes of the dynamical matrix D̃ we obtain

H =
1
2

(
3N∑
j=1

Pj · Pj + ω2
j (Qj · Qj)

)
, (9.32)

with Qj and Pj the transformed 3N -dimensional position and momentum operators in eigenmode space.93 For-
mally

Qj =

3,N∑
α,n

ej(α,n) · ūα(n) (9.33)

or in matrix notation

�Q3N = S̃�̄u3N , (9.34)

�P3N = S̃�̄p3N (9.35)

with

S̃ =

(
e1(x, 1) e1(y, 1) e1(z, 1) . . . e1(x,N ) e1(y,N ) e1(z,N )

. . .
e3N (x, 1) e3N (y, 1) e3N (z, 1) . . . e3N (x,N ) e3N (y,N ) e3N (z,N )

)
(9.36)

the orthogonal matrix governing the coordinate transformation. S̃ is a matrix of dimension 3N × 3N , the rows of
which are given by the eigenvectors.

93The components of Qj are linear combinations of the position operators �u3N and the components of Pj are linear combinations of the
momentum operators �p3N , respectively.
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The Hamiltonian (9.32) describes a sum of 3N uncoupled harmonic oscillators. We may, therefore, diagonalise
it in complete analogy to the simple harmonic oscillator treated in every text book of quantum mechanics. Formally
we introduce creation a+j and annihilation aj operators for each mode j:

a+j =
1√
2

(ξ̂j − iπ̂j), j = 1, . . . , 3N ,

aj =
1√
2

(ξ̂j + iπ̂j), j = 1, . . . , 3N (9.37)

with

ξ̂j = αjQj ,

π̂j =
1

αj�
Pj , (9.38)

and

αj =

√
ωj
�
. (9.39)

It is at this point that we realise the usefulness of working with displacements that are weighted by the square root
of the mass.

In terms of the creation and annihilation operators the Hamiltonian becomes

H =

3N∑
j=1

�ωj

(
a+j aj +

1
2

)
. (9.40)

As expected it describes a sum of decoupled quantum mechanical harmonic oscillators. The excited states are
obtained from the ground state by applying the 3N creation operators

|ψn1,...,n3N 〉 ≡ |n1, . . . ,n3N 〉 =
3N∏
j=1

(a+j )nj√
nj!

|0, . . . , 0〉. (9.41)

The function

|n1, . . . ,n3N 〉

specifies for each of the 3N normal modes of vibration the occupation level. The energy of a stationary mode is
calculated as

E = 〈n1, . . . ,n3N |H|n1, . . . ,n3N 〉 =
3N∑
j=1

(
nj +

1
2

)
�ω. (9.42)

Knowing the transformation matrix S̃ we may invert expression (9.37) using the fact that the inverse of an
orthogonal matrix S̃ is given by its transpose

S̃−1 = S̃t. (9.43)
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The displacement operator uα(n) of the nth ion along the direction α is related to the components of the eigenvec-
tors �ej via94

uα(n) =
∑
j

√
�

2mnωj

[
ej(α,n)aj + e∗j (α,n)a+j

]
. (9.44)

As we can show using expressions (9.37) and (9.38) this relation corresponds to

√
mnuα(n) =

∑
j

ej(α,n)Qj (9.45)

and is, therefore, the quantum analog of (9.27).
In similar fashion we obtain for the momentum operators

pα(n) = −i
∑
j

√
�ωjmn

2

[
ej(α,n)a+j − e∗j (α,n)aj

]
. (9.46)

As vibrational excitations satisfy Bose–Einstein statistics the occupation of the modes in thermal equilibrium at
temperature T is given as

〈
a+j aj

〉
= n(ωj) =

1

e�ωj/(kBT ) − 1
. (9.47)

9.5. Lattice modes

In crystals the translational symmetry puts additional constraints on the wave functions of elementary excita-
tions. This holds both for electrons and ions. To determine the consequences of these constraints we return to the
classical equations of motion. The position of an atom in a crystal is given as

�R(n) = �R(d,�l) = �l + �r(d). (9.48)

The vector �l indicates the origin of the primitive cell and �rd the position of the atom within this cell (see Fig. 43).
The index d ranges from 1 to r with r the number of atoms in the primitive cell. We denote the displacement of
atom �R(d,�l) with respect to its equilibrium position �R0(d,�l) by �u(d,�l). Looking again for stationary oscillatory
solutions we try the Ansatz

�u(d,�l|t) = �u(d|�k)ei(�q·�l−ωt). (9.49)

The vectors �u(d|�k) depend only on the primitive cell and the vector �q is chosen within the first Brillouin zone.
The second derivatives

Φαβ

(
�l �l ′

d d′

)
=

∂2U

∂uα(d,�l) ∂uβ(d′, �l ′)

∣∣∣
0

(9.50)

94To keep the expressions as general as possible we formulate them for complex eigenvectors knowing that the eigenvectors of the dynamical
matrix in real space are real.
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are the force constants in the notation adapted to the translational symmetry of the crystal. In analogy to the general
case we define weighted displacements

�̄u(d,�l|t) = √
md�u(d,�l|t) = √

md�u(d|�k)ei(�q·�l−ωt) = �̄u(d|�k)ei(�q·�l−ωt). (9.51)

In this basis the classical equations of motion

mdüα(d,�l|t) =
∑

β,d′,�l ′

Φαβ

(
�l �l ′

d d′

)
uβ
(
d′, �l ′|t

)
(9.52)

read

¨̄uα(d,�l|t) = −
∑

β,d′,�l ′

Dαβ

(
�l �l ′

d d′

)
ūβ
(
d′, �l ′|t

)
(9.53)

with, in analogy to Eq. (9.18),

Dαβ

(
�l �l ′

κ κ′

)
=

Φαβ

( �l
κ

�l ′
κ′
)

√
mκmκ′

. (9.54)

Using the Ansatz (9.49) for �u(κ,�l|t) these equations become

ω2ūα(d|�q) =
∑
d′,β

Dαβ

(
d, d′|�q

)
· ūβ
(
d′|�q
)
, (9.55)

with the dynamical matrix D̃(�q) in reciprocal space defined for every �q of the first Brillouin zone as

Dαβ

(
d, d′|�q

)
=
∑
�l−�l ′

Dαβ

(
�l �l ′

d d′

)
exp
(
i�q ·
(
�l ′ −�l

))
. (9.56)

D̃(�q) can be considered the Fourier transform of the force constant matrix.
The problem has finally taken the form

ω2
j (�q) · �ej(�q) = D̃(�q) · �ej(�q). (9.57)

It is solved once we have determined for every �q the 3r eigenvalues ω2
j (�q) of the dynamical matrix which then will

also give the corresponding eigenvectors �ej(�q).
The dynamical matrix D̃(�q) being by definition Hermitian

Dαβ

(
d, d′|�q

)
= D∗

βα

(
d, d′|�q

)
(9.58)

the eigenvalues ω2
j exist and are real. As D̃(�q) is in general not symmetric the eigenvectors are complex. They form

a basis that can be chosen orthonormal

�e∗j (�q) · �ej′(�q) =
3,r∑

α,d=1

e∗j (α, d|�q)ej′ (α, d|�q) = δj,j′ . (9.59)

In a crystal with N atoms respecting the usual Born–von Karman boundary conditions there exist N/r distinct
values �q in the Brillouin zone. For each value of �q we obtain 3r eigenmodes. These eigenmodes are termed phonons.
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Fig. 45. Dispersion relations for the super-ionic conductor CaF2 [51]. The points connected by thin lines were measured by inelastic neutron
scattering (see Fig. 52). The measurements are compared to predictions from ab-initio density-functional calculations (full lines). Calcium
fluoride (CaF2) crystallises in the fluorite fcc structure with three atoms in the primitive cell (the lower right picture shows a cube containing 4
primitive units). The crystal volume can be viewed as being composed of tetrahedra and octahedra with the Ca ions at the corners and the F ions
at the centres of the tetrahedra. The 3 atoms in the primitive cell lead to 9 dispersion branches. For high-symmetry directions these branches
can be classified using the irreducible representations of the primitive cell (denoted by capital Greek letters according to the high-symmetry
directions) (images courtesy K. Schmalzl). (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/JNR-140016.)

The functions ωj(�q) are called the phonon dispersion relations of the system. Every j defines one out of 3r so-
called phonon branches. An example of a phonon dispersion is shown in Fig. 45 for the super-ionic conductor
CaF2. There are 3N phonon modes in total. This is the number of eigenmodes that we would have obtained
by diagonalising directly D̃ ignoring the translational symmetry. Despite this formal equivalence the practical
advantage of diagonalising N/r matrices D̃(�q) of dimension 3r×3r instead of one matrix D̃ of dimension 3N×3N
is enormous.

We can now express the displacements in the new basis

ūα(d,�l|t) =
√

r

N

3r∑
j=1

BZ∑
�q

Qj(�q)ej(α, d|�q)e−i(�q·�l−ωj (�q)t). (9.60)

The 3N expansion coefficients Qj(�k) are complex numbers with amplitude and phase determined by the initial
conditions. They are called the normal coordinates.

We make the transition to quantum mechanics in the new basis by defining the operators

Qj(�q) =

√
r

N

3,r∑
α,d

e∗j (α, d|�q)
∑
l

e−i�q·�lūα(d,�l)

=

√
r

N

3,r∑
α,d

√
mde

∗
j (α, d|�q)

∑
l

e−i�q·�luα(d,�l), (9.61)
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Pj(�q) =

√
r

N

3,r∑
α,d

e∗j (α, d|�q)
∑
l

e−i�q·�lp̄α(d,�l)

=

√
r

N

3,r∑
α,d

e∗j (α, d|�q)
√
md

∑
l

e−i�q·�lpα(d,�l). (9.62)

The normal coordinate operators, i.e. the position operators in the basis of the eigenvectors of the dynamical ma-
trices D̃(�q) are the Fourier transforms of the weighted atomic displacements. The same holds for their conjugated
moment operators.

From the normal coordinates we can construct the ladder operators using the expressions (9.37). For the creation
operators

a+j (�q) =

√
r

N

∑
α,d,�l

ei�q·�lej(α, d|�q) ·
[√

mdωj(�q)

2�
uα(d,�l) − i

√
1

2�mdωj(�q)
pα(d,�l)

]
(9.63)

and for the annihilation operator

aj(�q) =

√
r

N

∑
α,d,�l

e−i�q·�le∗j (α, d|�q) ·
[√

mdωj(�q)

2�
uα(d,�l) + i

√
1

2�mdωj(�q)
pα(d,�l)

]
. (9.64)

These operators are in a certain manner the Fourier transforms of the local creation and annihilation operators
a+(d,�l) and a(d,�l).

Inverting these relations we express the position and momentum operators in terms of the creation and annihila-
tion operators.

uα(�l, d) =

√
r

N

∑
j,�q

√
�

2mdωj(�q)
·
[
ej(α, d|�q)ei�q·�l · aj(�q) + e∗j (α, d|�q)e−i�q·�l · a+j (�q)

]

=

√
r

N

∑
j,�q

√
�

2mdωj(�q)
· ej(α, d|�q) ·

(
aj(�q) + a+j (−�q)

)
ei�q·�l (9.65)

and

pα(�l, d) = −i

√
r

N

∑
j,�q

√
�ωj(�q)md

2
·
[
ej(α, d|�q)ei�q·�l · aj(�q) − e∗j (α, d|�q)e−i�q·�l · a+j (�q)

]

= −i

√
r

N

∑
j,�k

√
�ωj(�q)md

2
· ej(α, d|�k) ·

(
aj(�q) − a+j (−�q)]

)
ei�q·�l. (9.66)

The second equalities rely on �ej(�q) = �ej(−�q). They are only valid for crystals with inversion symmetry.
Replacing the expressions (9.65) in the Hamiltonian (9.13) we obtain in perfect analogy to expression (9.40)

H =
∑
�q

3r∑
j=1

�ωj(�q)

(
a+j (�q)aj(�q) +

1
2

)
, (9.67)
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the Hamiltonian is thus diagonalised.
We are left with identifying the eigenfunctions. For a wave vector �q these eigenfunctions are characterised by

the occupation of the various phonon branches. Formally

|ψn1(�q),...,n3r(�q)〉 ≡
∣∣n1(�q), . . . ,n3r(�q)

〉
=

3r∏
j=1

(â+j )nj (�q)√
nj(�q)!

|0, . . . , 0〉. (9.68)

The integer

nj(�q) =
〈
a+j (�q)aj(�q)

〉
(9.69)

indicates for each oscillator characterised by the wave vector �q and the branch index j the level of excitation.
A complete basis is obtained by the direct products of the functions∣∣n1(�q), . . . ,nj(�q)

〉
taken over all wave vectors �q. The energy of the system in a superposition of stationary states is given as

E =

Bz∑
�q

3r∑
j=1

�ωj

(
nj(�q) +

1
2

)
. (9.70)

Language becomes very heavy when being obliged to speak about the occupation level nj(�q) of oscillators. For this
reason and in perfect analogy with other field theories the excitations are considered quasi-particles. Each oscillator
is a reservoir of these particles called phonons. We will often use the word phonon in a slightly sloppy way, i.e.
indiscriminate of whether the system has lattice periodicity or not. Creating a phonon of type (j, �q) corresponds to
increasing n(j, �q) by one. Annihilating a phonon of type (j, �q) amounts to decreasing n(j, �q) by one. One should,
however, not forget that each excited state has its own personality described by the wave functions of a harmonic
oscillator expressed in the normal coordinates Qj . E.g. creating a phonon from the ground state does not at all
produce the same changes as creating a phonon from an already excited state. To bring this message home we
remind the reader about the form of the wave functions un(x) of a simple one-dimensional harmonic quantum
oscillator. They are written as

un(x) =

(
α

2nn!
√

π

)
e−(αx)2/2Hn(αx) (9.71)

with Hn(ξ) Hermite functions

H0(ξ) = 1,

H1(ξ) = 2ξ,

H2(ξ) = 4ξ2 − 2,

H3(ξ) = 8ξ3 − 12ξ,

. . .

and

α =

√
mω

�
. (9.72)
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Fig. 46. Harmonic oscillator wave functions as well as their norm. The residence probability moves from the centre to the borders as the
excitation level n increases. The narrower the potential the more confined are the wave functions. The intrinsic confinement length can be
calculated as lconf = 2

√
2ln(2)α−1 = 2

√
2ln(2)

√
(�/mω).

These functions are depicted in Fig. 46. For phonons the coordinate x has to be replaced by the normal coordi-
nates Q.

9.6. Dynamic structure factor

We now have all the necessary tools at our disposition to calculate the dynamical structure factor S( �Q,ω) for a
harmonic system. Our starting point is expression (8.7), which we repeat here for convenience

S( �Q,ω) =
∑
κ,κ′

bκb
∗
κ′Sκ,κ′ ( �Q,ω) (9.73)

with the partial scattering functions defined as

Sκ,κ′ ( �Q,ω) =
1

2π�

∑
j∈{jκ},j′∈{jκ′}

∫ ∞

−∞
dt〈e−i �Q·�Rj′ (t=0)ei �Q·�Rj (t)〉e−iωt. (9.74)

Since the system is harmonic the movements of the ions can be described as vibrations around their equilibrium
positions �R0

j , j = 1, . . . ,N . Attention, here we introduce an important change in notation. From now on �R0
j

designates the equilibrium position and is no longer an abbreviation for �Rj(t = 0). In general the equilibrium

positions do not coincide with the positions of the ions at t = 0, which means that �R0
j 
= �Rj(t = 0). The

displacement of the ions are expressed as relative displacements

�uj(t) = �Rj(t) − �R0
j , j = 1, . . . ,N. (9.75)

Thus

〈
e−i �Q·�Rj′ (t=0)ei �Q·�Rj (t)〉 = 〈e−i �Q·(�R0

j′+�uj′ (t=0))
ei �Q·(�R0

j+�uj (t))〉. (9.76)
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At this point of the calculation we profit from the fact that the equilibrium positions are simple vectors and,
therefore, commute with all the operators. Hence

〈
e
−i �Q·(�R0

j′+�uj′ (t=0))
ei �Q·(�R0

j+�uj (t))〉 = e
−i �Q·(�R0

j′−�R0
j )〈

e−i �Q·�uj′ (t=0)ei �Q·�uj (t)〉. (9.77)

In order to ease our notation, we want �uj to signify �uj(t = 0) as long as time is not explicitly mentioned.
The harmonic approximation is based on the assumption that the displacements are small compared to the inter-

atomic distances. It is, therefore, logical to expand expression (9.77) in terms of the displacements. To perform this
expansion, without being obliged to give attention to the time ordering of non-commuting variables, it is desirable
to turn the expression into a simple exponential of an expectation value. In a first step we convert the product of
exponentials into a single exponential. We achieve this by using a general relation of operator algebra

exp A · exp B = exp(A + B + C) (9.78)

with

C =
1
2

[A, B] +
1
12

[
[A, B], B

]
+

1
12

[
[B, A], A

]
+ · · · . (9.79)

In order to apply this relation to our case we set

A := −i �Q · �uj′ , (9.80)

B := i �Q · �uj(t). (9.81)

In Section 9.4 we have learned that the ionic displacement can be expressed in terms of creation and annihilation
operators (see expression (9.44))

u(α, j) =
∑
i

√
�

2mjωi

[
ei(α, j)ai + e∗i (α, j)a+i

]
(9.82)

with ωi the frequencies and ei(α, j) (α = x, y, z, j = 1, . . . ,N ) the eigenvectors of the 3N vibrations. All the
operators in this expression are formulated in the Schrödinger picture, i.e. they are time independent.

The expectation value

〈
e
−i �Q·(�R0

j′+�uj′ (t=0))
ei �Q·(�R0

j+�uj (t))〉
is formulated in terms of the Heisenberg operators �uj(t). In order to evaluate this expression in the basis of the
vibrational eigenstates we must express the annihilation and creation operators of the vibrations equally as Heisen-
berg operators. Formally this is achieved via

ai(t) = exp

(
iH

t

�

)
ai exp

(
−iH

t

�

)
, (9.83)

a+i (t) = exp

(
iH

t

�

)
a+i exp

(
−iH

t

�

)
. (9.84)

The Heisenberg operators satisfy the relation (see references [10,37])

∂

∂t
A(t) =

i
�

[
H, A(t)

]
. (9.85)
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In the case of vibrations the Hamiltonian is written as (expression (9.40))

H =

3N∑
i=1

�ωi

(
a+i ai +

1
2

)
. (9.86)

Using the commutation relation

[
ai, a+i′

]
= δi,i′ (9.87)

we find

∂

∂t
ai(t) =

i
�

[
H, ai(t)

]
= −iωi · ai(t), (9.88)

∂

∂t
a+i (t) =

i
�

[
H, a+i (t)

]
= iωi · a+i (t), (9.89)

and hence

ai(t) = ai(t = 0) exp(−iωit) = ai · exp(−iωit), (9.90)

ai(t)
+ = a+i (t = 0) exp(iωit) = a+i · exp(iωit). (9.91)

This leads to

uα(j; t) =
∑
i

√
�

2mjωi

[
ei(α, j)ai exp(−iωit) + e∗i (α, j)a+i exp(iωit)

]
. (9.92)

The operators �u(t) for any time t remain a linear combination of the creation and annihilation operators. The
commutators of these operators at different times are, therefore, simple numbers. Hence the series of commutators
in (9.79) is truncated after the first term leaving us with

exp A · exp B = exp

(
A + B +

1
2

[A, B]

)
= exp

(
1
2

[A, B]

)
exp(A + B). (9.93)

Thus we have successfully rewritten the correlation functions of the expression (9.77) in an exponential form.
In order to expand this expression, we need to do a little more. It is necessary to turn the expectation value of
the exponential function into an exponential function of an expectation value. In other words, the 〈 〉 should be
transferred to the exponent. This operation is possible using the Bloch identity.

Let L be any linear combination of phonon annihilation a and creation a+ operators.

L =
∑
j

ajaj + bja+j . (9.94)

The Bloch identity teaches us that

〈
exp(L)

〉
= exp

(
1
2

〈
L2〉). (9.95)

The reader anxious to find the prove of this identity can consult the books by Squires [62] or Lovesey [39].
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As �u(j; t) is expressed (see (9.92)) as a linear combination of the form (9.94) the Bloch identity is clearly
applicable to expression (9.77). We find

〈exp A · exp B〉 =
〈

exp

(
A + B +

1
2

[A, B]

)〉

= exp

(
1
2

[A, B]

)〈
exp(A + B)

〉

= exp

(
1
2

[A, B]

)
exp

(
1
2

〈
(A + B)2〉)

= exp

(
1
2

〈
(A + B)2 + [A, B]

〉)

= exp

(
1
2

〈
A2 + B2 + AB + BA + AB − BA

〉)

= exp

(
1
2

〈
A2 + B2 + 2AB

〉)
, (9.96)

or in an explicit manner

〈
exp(−i �Q · �uj′ ) exp

(
i �Q · �uj(t)

)〉
= exp

(
1
2

〈
−( �Q · �uj′)2 −

(
�Q · �uj(t)

)2
+ 2( �Q · �uj′ )

(
�Q · �uj(t)

)〉)

= exp

(
−1

2

〈
( �Q · �uj′)2〉) exp

(
−1

2

〈(
�Q · �uj(t)

)2〉) exp
(〈

( �Q · �uj′ )
(
�Q · �uj(t)

)〉)
. (9.97)

We would like to emphasise that this result is only valid in the harmonic approximation due to the fact that we
have invoked the Bloch identity. As we have done for the operators �Rj(t) we will denote the displacements �uj(t)
without explicitly indicating their operator character unless we intend to explicitly emphasis this character.

9.7. Debye–Waller factor

The quantity

Wj( �Q) :=
1
2

〈
( �Q · �uj)2〉 (9.98)

is proportional to the square of the projection of the average displacement of the ion j along the direction �Q.
We call Wj( �Q) the Debye–Waller function of the particle j and

exp
(
−Wj( �Q)

)
= exp

(
−1

2

〈
( �Q · �uj)2〉) (9.99)

its Debye–Waller factor [15,69]. We make this explicit distinction between the Debye–Waller function and the
Debye–Waller factor in order to facilitate later discussions.
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With this definition the partial scattering functions (9.74) become

Sκ,κ′ ( �Q,ω) =
1

2π�

∑
j∈{jκ},j′∈{jκ′}

∫ ∞

−∞
dt
〈
e−i �Q·�Rj′ (t=0)ei �Q·�Rj (t)〉e−iωt

=
1

2π�

∑
j∈{jκ},j′∈{jκ′}

∫ ∞

−∞
dte

−i �Q·(�R0
j′−�R0

j )〈
e−i �Q·�uj′ (t=0)ei �Q·�uj (t)〉

=
1

2π�

∑
j∈{jκ},j′∈{jκ′}

∫ ∞

−∞
dte

−i �Q·(�R0
j′−�R0

j )
e−Wj′ ( �Q)e−Wj ( �Q)e〈(

�Q·�uj′ )( �Q·�uj (t))〉. (9.100)

Using expressions (9.44) and (9.47) and respecting the commutation relations for ladder operators95 the mean
square amplitude of particle j in the direction α is calculated as

u(α, j)2 =
〈
u(α, j)u(α, j)+

〉
=

3N∑
i=1

|ei(α, j)|2�

2mjωi

〈
aia

+
i + a+i ai

〉

=

3N∑
i=1

|ei(α, j)|2�

2mjωi

(
1 + 2

〈
a+i ai

〉)

=

3N∑
i=1

|ei(α, j)|2�

2mjωi

(
2n(ωi) + 1

)
(9.101)

with

2n(ωi) + 1 = 2
1

exp(�ωi/(kBT )) − 1
+ 1 = coth

(
1
2

�ωi
kBT

)
. (9.102)

We can immediately use this result to determine the Debye–Waller function in terms of the vibrational eigenvectors
and eigenfrequencies

2Wj( �Q) =
〈
( �Q · �uj)2〉 = ∑

α=x,y,z

3N∑
j=1

|Qα · ei(α, j)|2�

2mjωi
coth

(
1
2

�ω

kBT

)
. (9.103)

95The commutator of ladder operators is given as[
aj , a+

j′
]
= δj,j′ .

For the expectation values we retain the general rule that

〈ajaj′ 〉 =
〈

a+j a+
j′
〉
= 0

for any value of j and j′ while〈
aja+

j′
〉
=
〈

a+j aj′
〉
= 0

for j 
= j′.
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It is clear that this average does not depend on time. Thus the expectation value (9.97) simplifies to

〈
e−i �Q·�uj′ ei �Q·�uj (t)〉 = e−Wj′ ( �Q)e−Wj ( �Q)e〈(

�Q·�uj′ )( �Q·�uj (t))〉. (9.104)

The Debye–Waller function is in general specific to an atomic site j and depends in addition on the direction of �Q.
The symmetry of the site can restrain the form of the Debye–Waller function. In the extreme case it becomes
isotropic.

If we group the ions into symmetrically equivalent classes {κ} then the mean square displacement can be ex-
pressed elegantly by introducing the concept of partial densities of states

Fκ(ω) =
1

3Nκ

3N∑
j=1

∑
n∈{κ}

3∑
α=1

∣∣ej(α,n)
∣∣2δ(ω − ωj) =

1
3Nκ

3N∑
j=1

∑
n∈{κ}

∣∣�ej(n)
∣∣2δ(ω − ωj). (9.105)

The sum over the atoms includes the totality of ions within an equivalence class {κ}. Normalisation has been
chosen such that∫ ∞

0
Fκ(ω) dω = 1. (9.106)

In analogy

g(ω) =
1

3N

3N∑
j=1

δ(ω − ωj) (9.107)

is the total density-of-states with

∫ ∞

0
g(ω) dω = 1. (9.108)

Replacing expression (9.105) in expression (9.101) we get

u
(
α, j ∈ {κ}

)2
=

�

2mκ

∫ ∞

0

Fκ(ω)
ω

(
2n(ω) + 1

)
dω. (9.109)

In particular, for a monatomic cubic system the Debye–Waller function can be expressed as a function of the total
density of states

2W = u2 =
�Q2

2m

∫ ∞

0

g(ω)
ω

(
2n(ω) + 1

)
dω. (9.110)

The physical significance of the Debye–Waller function becomes obvious when we look at the probability f (�u · Q̂)
of finding an ion in the direction of Q̂ with a displacement lying between �u·Q̂ and �u·Q̂+d(�u·Q̂). If the dynamics is
harmonic this probability can be calculated from the wave functions of the harmonic oscillator. Bloch [62] showed
that the function f (�u · Q̂) is a Gaussian

f (�u · Q̂) = C exp

(
− (�u · Q̂)2

2σ(Q̂)2

)
(9.111)
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Fig. 47. Above: residence probability along the direction �Q for different values of σ2 = (�u · Q̂)2. Below: Corresponding form factors.

with σ(Q̂)2 = (�u · Q̂)2 the mean square displacement along the Q̂ direction and C a normalisation constant.
The Fourier transform of the function f (�u · Q̂) is found to be

∫ ∞

−∞
exp

(
− (�u · Q̂)2

2σ2

)
exp(−i �Q · �u) d(�u · Q̂) =

√
2πσ2 exp

(
−1

2
( �Q · �u)2

)
. (9.112)

Hence the expression

exp

(
−1

2
( �Q · �u)2

)

corresponds to the form factor of the ionic wave function. If the ion is strongly de-localised, which means that the
vibrational amplitudes are large, then the form factor will decrease quickly with | �Q|. If to the contrary the ion is
strongly localised then the form factor will tend to a constant (see Fig. 47).

9.8. Coherent elastic scattering

The exponential

exp
(〈

( �Q · �uj′)
(
�Q · �uj(t)

)〉)
(9.113)
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can now be expanded as a function of the expectation value96

ℵj′,j( �Q, t) :=
〈
( �Q · �uj′ )

(
�Q · �uj(t)

)〉
. (9.114)

The first term is independent of time and thus persist at t = ∞. It will give rise to elastic scattering (see Section 8.9).
Starting from expression (9.74) for the partial dynamic structure factors and using∫ ∞

−∞
exp(iωt) dt = 2π�δ(�ω) (9.115)

we find

Sel
κ,κ′ ( �Q,ω) =

∑
j∈{jκ},j′∈{jκ′}

exp
(
−Wj′ ( �Q) −Wj( �Q)

)
exp
(
−i �Q ·

(
�R0
j′ − �R0

j

))
δ(�ω). (9.116)

When the diffracting system is a crystal, the equilibrium positions are defined with respect to a primitive cell (see
Section 9.5)

�R0
j =

�R0
d(�l) = �l + �d. (9.117)

For elastic scattering ki = kf . The coherent partial differential cross section becomes

(
d2σ

dΩ dEf

)el

coh

= Scoh( �Q, �ω = 0)

=
∑
κ,κ′

b̄κb̄
∗
κ′Sκ,κ′ ( �Q, �ω = 0)

=
∑
�l,�l ′

exp
(
i �Q ·

(
�l −�l ′

))∑
d,d′

b̄db̄
∗
d′ exp

(
−Wd( �Q)

)
exp
(
−Wd′ ( �Q)

)
exp(i �Q · �d) exp

(
−i �Q · �d ′)δ(�ω)

=
N

r

∑
�l

exp(i �Q ·�l)
∑
d,d′

b̄db̄
∗
d′ exp

(
−Wd( �Q)

)
exp
(
−Wd′ ( �Q)

)
exp(i �Q · �d) exp

(
−i �Q · �d ′)δ(�ω)

=
N

r

∑
�l

exp(i �Q ·�l)
∣∣∣∣∑

d

b̄d exp
(
−Wd( �Q)

)
exp(i �Q · �d)

∣∣∣∣2δ(�ω), (9.118)

where we have used∑
�l

exp
(
i �Q ·

(
�l −�l ′

))
=
∑
�l

exp(i �Q ·�l) (9.119)

exploiting the translation symmetry of the system.97 The expression

F ( �Q) :=
∑
d

b̄d · exp
(
−Wd( �Q)

)
· exp(i �Q · �d) (9.120)

96This expectation value is of such importance for our discussion that we introduce a specific symbol (the aleph ℵ) to denote it.
97In a crystal all primitive cells are equivalent. The choice of origin should not influence a function that only depends on the distance between

the primitive cells.
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is called the the (nuclear) form factor of the primitive cell. The analog quantity in the diffraction from a grating is
the Fourier transform of the motif multiplied with the Fourier transform of the individual slits (see Section 4.5).

If we introduce an explicit basis of primitive translations

�l = l1�a1 + l2�a2 + l3�a3 (9.121)

we can define a basis of the reciprocal lattice via

�b1 = 2π
�a2 × �a3

�a1 · (�a2 × �a3)
, (9.122)

�b2 = 2π
�a3 × �a1

�a1 · (�a2 × �a3)
, (9.123)

�b3 = 2π
�a1 × �a2

�a1 · (�a2 × �a3)
. (9.124)

This reciprocal lattice is composed of Brillouin zones that are centred on the reciprocal lattice vectors

�G = h�b1 + k�b2 + l�b3. (9.125)

By definition

�l · �G = 2πn, n integer. (9.126)

Expressing �Q as a vector in reciprocal space the sum over the lattice vectors �l can be written in the form

∑
�l

exp(i �Q ·�l) = (2π)3

Vunit cell

∑
�G

δ( �Q− �G). (9.127)

We arrive at the final result for elastic scattering

(
d2σ

dΩ dEf

)el

coh
= Nunit cell

(2π)3

Vunit cell

∣∣F ( �Q)
∣∣2∑

�G

δ( �Q− �G) · δ(�ω). (9.128)

Nunit cell = N/r is the number of primitive cells in the crystal.
Hence we obtain Bragg peaks for scattering directions �Q that correspond to reciprocal lattice vectors �G. The in-

tensity of the peaks is modulated by the form factor F ( �Q). The situation is identical to the case of three-dimensional
optical gratings that we have discussed in Section 4.6. The result coincides with what we had found for a crystal
where the positions of the atoms had been held fixed (see Section 6.5)

(
d2σ

dΩ dEf

)el

coh
=

∣∣∣∣∑
d

b̄dei �Q·�d
∣∣∣∣2δ(�ω) (9.129)

apart from the presence of the Debye–Waller factors. This is not surprising as when the positions are fixed (Dirac
δ-functions) the form factors turn into constants. Fixed atoms are nevertheless unphysical. Quantum fluctuations
will smear out the wave function even for the lowest temperatures.
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9.9. Refractive index and coherent reflection

Before treating the next higher order of perturbation we will make a short but important detour. The expression
(9.128) limits coherent elastic scattering in a periodic lattice strictly to Bragg scattering. The situation will not be
altered by the higher order terms as these will systematically lead to inelastic contributions. This cannot be the
full truth. We know very well from optics that light is not only diffracted but equally refracted. Given that the
matter wave equation is in the stationary picture identical to the Helmholtz equation (see Section 3.14) refraction
phenomena have to exist equally for particle waves. This is confirmed by experiment.

To capture refraction in a theoretical framework we will go back to the original Schrödinger equation98

[
− �

2

2m
Δ + V (�r )

]
φ(�r ) = Eφ(�r ) (9.130)

and try to solve the equation directly for a periodic suite of Fermi potentials

V (�r ) =
2π�

2

m

〈
ρ̂b(�r, t)

〉
=

2π�
2

m

〈∑
d

∑
�l

b̄d · δ
(
�r − �Rd(�l; t)

)〉
(9.131)

with ρ̂b the scattering length density operator [62]. The expectation value is to be taken with respect to the phonon
eigenstates. Expressing the δ-function via its Fourier transform (see (8.25))

δ
(
�r − �Rd(�l; t)

)
=

1
(2π)3

∫
d3Q exp

(
i �Q ·

(
�r − �Rd(�l; t)

))
(9.132)

we obtain

V (�r ) =
�

2

4mπ2

∑
d

∑
�l

b̄d

∫
d3Q
〈
exp(i �Q ·

(
�r − �Rd(�l; t)

)〉
. (9.133)

Using the displacement operators

�ud(l; t) = Rd(�l; t) −R0
d(�l) = Rd(�l; t) −�l − �d (9.134)

the potential V (�r ) becomes

�
2

4mπ2

∑
d

∑
�l

b̄d

∫
d3Q
〈
exp
(
i �Q · (�r −

(
�ud(�l; t) + �R0

d(�l)
))〉

=
�

2

4mπ2

∑
d

∑
�l

b̄d

∫
d3Q · exp(i �Q · �r) · exp

(
−i �Q · �R0

d(�l)
)
·
〈
exp
(
−i �Q · �ud(�l; t)

)〉

=
�

2

4mπ2

∑
d

∑
�l

b̄d

∫
d3Q · exp(i �Q · �r) · exp(−i �Q ·�l) · exp(−i �Q · �d) ·

〈
exp
(
−i �Q · �ud(�l; t)

)〉

=
�

2

4mπ2

∫
d3Q · exp(i �Q · �r) ·

∑
�l

exp(−i �Q ·�l) ·
∑
d

b̄d exp(−i �Q · �d) ·
〈
exp
(
−i �Q · �ud(�l; t)

)〉
. (9.135)

98To avoid confusion with the displacement operators we opt for a change of notation with respect to Section 3.1 and call the wave function
φ(�r ).
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To evaluate the expectation value we use the Bloch identity. This leads us to

〈
exp
(
−i �Q · �ud(�l; t)

)〉
= exp

(
−1

2
Q2 ·

〈
ud(�l; t)2〉) = exp

(
−Wd( �Q)

)
. (9.136)

As the expectation value does no longer depend on the lattice vector �l we may execute the sum over the lattice
vector using (9.127)

∑
�l

exp(−i �Q ·�l) = (2π)3

Vunit cell

∑
�G

δ( �Q− �G). (9.137)

The potential becomes

V (�r ) =
2π�

2

mVunit cell

∑
�G

∫
d3Q exp(i �Q · �r) · δ( �Q− �G) ·

∑
d

b̄d exp(−i �Q · �d) · exp
(
−Wd( �Q)

)

=
2π�

2

mVunit cell

∑
�G

exp(i �G · �r) ·
∑
d

b̄d exp(−i �G · �d) · exp
(
−Wd(�G)

)

=
2π�

2

m

1
Vunit cell

∑
�G

exp(i �G · �r) · F (�G), (9.138)

with the nuclear form factor of the primitive cell F ( �Q) defined via (9.120). This is the result that we would have
intuitively expected. The potential is periodic with the thermal smearing of the positions described by the Debye–
Waller factors. We are now looking for the solutions of the Schrödinger equation for this potential

Δφ(�r ) + k2
0φ(�r ) =

∑
�G

exp(i �G · �r) · F̃ �G
(9.139)

with the renormalised form factors

F̃ �G
:=

4π

Vunit cell
F (�G). (9.140)

k0 is the wave vector of the neutron outside the sample

�
2

2m
k2

0 = E. (9.141)

We know from general symmetry considerations that the one-particle solutions to a periodic potential have the
Bloch form, i.e. they can be written as

φ(�r ) = ξ(�r) · ei�k·�r (9.142)

with ξ(�r ) possessing the lattice periodicity

ξ(�r ) = ξ(�r +�l), ∀�l. (9.143)
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A lattice periodic function can be expanded in exponentials of reciprocal lattice vectors

ξ(�r ) =
∑
�G

a �G
· exp(−i �G · �r). (9.144)

The wave function, therefore, takes the general form

φ(�r ) =
∑
�G

a �G
· exp

(
i(�k − �G) · �r

)
. (9.145)

Solving the Schrödinger equation amounts to determining the wave vector �k inside the sample together with the
set of expansion coefficients a �G

(�k) (which are, as explicitly indicated here, a function of �k). Substituting (9.145)

into (9.130) leads us to the defining equations of a �G
(�k)

∑
�G

a �G

[
k2

0 − (�k − �G)2] · exp
(
i(�k − �G) · �r

)

=
∑
�G′

F̃ �G′ exp
(
−i �G′ · �r

)∑
�G

a �G
· exp

(
i(�k − �G) · �r

)

=
∑
�G′

F̃ �G′

∑
�G

a �G
· exp

(
i
(
�k −

(
�G− �G′)) · �r)

=
∑
�G

∑
�G′

F̃ �G′ · a �G+ �G′ · exp
(
i(�k − �G) · �r

)
. (9.146)

Equating terms proportional to

exp
(
i(�k − �G) · �r

)
yields

a �G

[
k2

0 − (�k − �G)2] =∑
�G′

F̃ �G′a �G+ �G′ . (9.147)

The expansion coefficients a �G
(�k) are, therefore, all coupled. The system of coupled equations is difficult to solve

for an arbitrary scattering direction �k. The cases of interest fortunately arise when �k is close to �k0 or close to a
reciprocal lattice vector �G.

Let us consider the first case where �k ≈ �k0. In this case the expression (9.147) reads for �G = 0

a0 =
1

[k2
0 − k2]

∑
�G′

F̃ �G′a �G′ . (9.148)

As k2
0 − k2 will be a very small number the coefficient a0 will dominate all the others. Neglecting those we get

a0 =
1

[k2
0 − k2]

F̃0a0. (9.149)
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This allows defining the refractive index in the usual way as the ratio of the k vectors outside and inside the material

n :=
k

k0
=

√
1 − F̃0

k2
0

. (9.150)

We may exploit the fact that k is very close to k0 to approximate the square root expression via
√

1 − x ≈ 1 − 1
2x

for small x. This leads to

n ≈ F̃0

2k2
0

. (9.151)

For �Q = 0 the renormalised form factor F̃0 is given as

F̃0 =
4π

Vunit cell

∑
b̄d = 4π · ρ · b̄. (9.152)

Therefore,

n = 1 − 1
2π

ρλ2b̄. (9.153)

The scattering length in this expression is averaged over the entire unit cell. The neutron refractive index is, there-
fore, a concept related to coherent scattering. As the size of the primitive cell does not enter into the final expres-
sions the result does not depend on periodicity and holds thus for arbitrary structures.

The quantity

ρb̄ =
1
V

∑
i∈V

b̄i

is called the scattering length density (SLD) of the material. Values of b are typically in the range of 10−15 m and
N ≈ 1029 per m3. For λ = 1 Å we can estimate the order of magnitude of the expression

λ2ρb̄ ≈ 10−6.

The index of refraction of thermal and even cold neutrons is, therefore, extremely close to one in particular if
compared to the refractive index of ordinary light. This smallness reflects the weak interaction of neutrons with
matter.

The refractive index is responsible for neutron reflection at a surface. The mathematical framework for de-
scribing reflection can be transposed one-to-one from light optics. Thus total reflection is observed if the angle
subtended by the beam satisfies the condition

cos Θc = n (9.154)

with Θ defined in Fig. 48. Total reflection thus occurs if n < 1. This is the case if

1 − (sin Θc)2 =

(
1 − λ2

2π
ρ · b̄
)2

≈ 1 − λ2

π
ρ · b̄ (9.155)
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Fig. 48. Neutron reflection. The reflectivity is one below the critical momentum transfer qc and drops off rapidly with larger q (that is, with
larger reflection angles). Natural Ni is the reference coating material for standard neutron guides. Super-mirror guides are guides featuring a
multi-layer coating that pushes the critical angle to higher values.

and thus

sin Θc =

√
ρ · b̄
π

λ. (9.156)

Θc is called the critical angle of the material. Total external reflection (n < 1 for neutrons in a material that
possesses positive scattering length like Ni) inside a channel is used to transport neutrons over large distances.
Nickel, due to its large coherent scattering cross section and thus rather large critical angle of Θc = 0.1◦/Å, is
a material of choice for these neutron guide applications. The transport is the more efficient the longer the wave
length as due to the increased critical angle at longer wave length larger divergences can be tolerated.

The reflectivity R is given as the ratio of the reflected to the incoming intensity. Its dependence on the refraction
angle Φi is given by the Fresnel equations

R =

∣∣∣∣n1 cos Φi − n2 cos Φt

n1 cos Φi + n2 cos Φt

∣∣∣∣2 =

∣∣∣∣n1 cos Φi − n2
√

1 − (n1/n2 sin Φi)2

n1 cos Φi + n2
√

1 − (n1/n2 sin Φi)2

∣∣∣∣2. (9.157)

It can be directly derived from the fact that for specular reflection (i) Φi = Φt and (ii)

sin Φi

sin Φt
=

n2

n1
. (9.158)

This is Snell’s law that derives directly from the continuity of the wave function at the interface. Please note that
the refraction angles Φ are defined with respect to the surface normal while the scattering angles Θ are defined
with respect to the surface (see Fig. 48).
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If the medium on the reflection side is vacuum then n1 = 1 and n2 = n. The Fresnel equations can be expressed
conveniently as a function of the length of the scattering vector

q =
4π

λ
sin Θ. (9.159)

We obtain

R =

[
q −
√

q2 − q2
c

q +
√

q2 − q2
c

]2

(9.160)

with the length of the critical scattering vector given by

qc =
4π

λ
sin Θc. (9.161)

For q 
 qc this expression simplifies to

R = 16
π2

q4 (ρ · b̄)2. (9.162)

This so-called Fresnel decay is a property of a planar surface. We could have obtained this result calculating the
scattering amplitude in the Born approximation as the Fourier transform of the scattering length density ρ

R ∝ 1
q2

∣∣∣∣
∫ −∞

0
dzρeiqz

∣∣∣∣2 ∝ 1
q4 , (9.163)

where we have transformed the original 3-dimensional integration into an integration along the direction normal
to the surface. At angles close to the critical angle, i.e. when the scattering becomes important, this result diverges
from the actual form given by the Fresnel expression (9.160). This is not surprising as the Born approximation
breaks down close to total reflection. A technique known as the distorted-wave Born approximation (DWBA) is
required to treat the problem [11,60].

The intensity at small angles is often observed to scale as

I(q) ∝ 1
q4 . (9.164)

This is known as Porod’s law. Its origin can be traced back to scattering from surfaces or interfaces in inhomoge-
neous materials [60]. Porod’s law is, therefore, directly related to the Fresnel formula (9.160). For Porod’s law to
be applicable the objects that create the interfaces have to be large with respect to q−1. Porod scattering allows in
principle to extract the ratio of surface area S over volume V of these objects.

Let us finish the discussion with a few words concerning transmission into a denser medium. For q < qc the total
incident intensity is reflected. There is, therefore, no energy flow across the surface. Despite this fact the neutron
wave function inside the medium is not vanishing but of the form

φt(�r ) ∝ ei(�kt·�r−ω·t). (9.165)

The wave function inside the medium is thus defined by the wave vector �kt. If we choose the geometry such that
the scattering takes place in the x–z plane and if we place the surface normal parallel to ẑ then the phase factor of
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the wave function reads

�kt · �r = kt · x · sin Φt − kt · z · cos Φt = ktx sin Φt − iktz

√
sin2 Φi

n2 − 1, (9.166)

where for Φ > Φc we have used Snell’s law in the form

cos Φt =

√
1 − sin2 Φi

n2 = i

√
sin2 Φi

n2 − 1. (9.167)

The fact that the phase has a finite imaginary component implies that the wave function decays exponentially into
the medium. This wave is called evanescent. The penetration depth is given by

lp =
λt
2π

(
sin2 Φi

n2 − 1

)−1/2

, (9.168)

which can be expressed as a function of qc

lp =
2√

q2
c − q2

. (9.169)

In the case of Θ < Θc we speak of grazing incidence scattering. The volume probed is defined by the penetration
of the evanescent wave

φe(z) ∝ e−1/2
√

q2
c−q2·z , q < qc. (9.170)

On a perfect silicon surface this penetration is e.g. about 100 Å at q = 0. The penetration depth diverges at q = qc.
If the wave vector �k comes to lie close to a reciprocal lattice vector �G then the associated expansion coefficient

a �G
becomes comparable to a0 and we get Bragg scattering. The formalism of this so-called dynamical scattering

theory is quite powerful and allows exact predictions of the width and intensity of Bragg scattering that cannot be
obtained within the Born approximation. E.g. finite penetration is responsible for the finite wavelength acceptance
[12] of Bragg scattering from a perfect crystal (Δd → 0) even for an ideally collimated beam (ΔΘ → 0). If we
perform a rocking curve about the Bragg angle Θ �G

then we get total reflection over a plateau. The reflectivity curve

is described by the Ewald function99 (shown in Fig. 49) [38]

R(y) =

⎧⎪⎨
⎪⎩

1, |y| � 1,

1 −

√
y2 − 1
y2 , |y| > 1

(9.171)

with

y =
E − E0

E0

πVunit cell

λ2|F �G
| . (9.172)

99The reflectivity depends on the exact diffraction configuration and in particular on how the crystal is cut with respect to the lattice planes. If
the crystal is e.g. cut such that the incident beam is grazing the surface then total surface reflection has to be taken into account, which modifies
the Ewald function. For details see [71].
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Fig. 49. Ewald function describing the total reflection region around a Bragg peak. The variable y is defined in the text. The width Δy = 4/
√

3
of the curve is called the Darwin width.

E0 denotes the neutron energy at the centre of the Bragg reflection. The FWHM of the Ewald function is given by

yD =
ΔE
E0

=
4√
3

λ2|F �G
|

πVunit cell
. (9.173)

This width is called the Darwin width. This effect cannot be described by the Bragg equation as the Bragg equation
is derived on the assumption of an infinitely large homogeneously illuminated scattering volume. In the case of
silicon the Darwin width amounts to a few seconds of arc. We will discuss further effects related to dynamical
theory in Section 11. The discussion will always stay qualitative. For an in-depth formal treatment of dynamical
scattering theory, which was pioneered by Goldberger and Seitz [30], the reader is referred to the literature.

9.10. Coherent scattering from vibrations

After this short detour into the world of dynamical scattering theory we come back to the expansion of the
scattering function in terms of phonon displacement operators. The next term in the expansion of

exp
(〈

( �Q · �uj′)
(
�Q · �uj(t)

)〉)
is proportional to

ℵj′,j( �Q, t) =
〈
( �Q · �uj′ )

(
�Q · �uj(t)

)〉
. (9.174)

It involves the motion of the ions and will, therefore, produce inelastic scattering. We can calculate ℵj′,j( �Q, t)
using expression (9.92) for �uj(t).

〈
( �Q · �uj′)

(
�Q · �uj(t)

)〉
=
∑
α,β

QαQβ

〈
uα
(
j′; t = 0

)
uβ(j; t)

〉
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=
�

2

∑
α,β

QαQβ√
mjmj′

∑
i,i′

√
1

ωiωi′

×
〈[
ei
(
α, j′

)
ai + e∗i

(
α, j′

)
a+i
][
ei′ (β, j)ai′ exp(−iωi′t) + e∗i′(β, j)a+i′ exp(iωi′t)

]〉
. (9.175)

This expression can be simplified considerably if we exploit the rules for calculating expectation values of products
involving creation and annihilation operators

〈aiai′〉 = 0, (9.176)〈
a+i a+i′

〉
= 0, (9.177)〈

a+i ai′
〉
= n(ωi)δi,i′ , (9.178)〈

aia
+
i′
〉
=
(
1 + n(ωi)

)
δi,i′ , (9.179)

with n(ωi) the Bose–Einstein occupation factor of the oscillator with frequency ωi. Thus

〈
( �Q · �uj′)

(
�Q · �uj(t)

)〉

=
�

2

∑
α,β

QαQβ√
mjmj′

∑
i,i′

√
1

ωiωi′
× δi,i′

×
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ei
(
α, j′

)
e∗i′ (β, j)

〈
aia

+
i′
〉

exp(iωi′t)
]
+
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e∗i
(
α, j′

)
ei′ (β, j)

〈
a+i ai′

〉
exp(−iωi′t)

]}
=

�

2

∑
α,β

QαQβ√
mjmj′

∑
i

1
ωi

×
{[

ei
(
α, j′

)
e∗i (β, j)

(
1 + n(ωi)

)
exp(iωit)

]
+
[
e∗i
(
α, j′

)
ei(β, j)n(ωi) exp(−iωit)

]}
=

�

2

∑
i

{[
Ai( �Q; j′, j)

ωi

(
1 + n(ωi)

)
exp(iωit)

]
+

[
Ai( �Q; j, j′)

ωi
n(ωi) exp(−iωit)

]}
(9.180)

with

Ai
(
�Q; j′, j

)
:=

( �Q · �ei(j′)) · ( �Q · �ei(j))∗
√
mj′mj

. (9.181)

Inserting this in the expression (9.100) the partial scattering functions are found.

S
1−ph
κ,κ′ ( �Q,ω)

=
1

2π�

∑
j∈{jκ},j′∈{jκ′}

e
−i �Q·(�R0

j′−�R0
j )

e−Wj′ ( �Q)e−Wj ( �Q)
∫ ∞

−∞
dt
〈
( �Q · �uj′)

(
�Q · �uj(t)

)〉

=
1

4π

∑
j∈{jκ},j′∈{jκ′}

e
−i �Q·(�R0

j′−�R0
j )

e−Wj′ ( �Q)e−Wj ( �Q)

×
∫ ∞

−∞
dt
∑
i

{[
Ai( �Q; j′, j)

ωi

(
1 + n(ωi)

)
exp(iωit)

]
+

[
Ai( �Q; j, j′)

ωi
n(ωi) exp(−iωit)

]}
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=
1
2

∑
j∈{jκ},j′∈{jκ′}

e
−i �Q·(�R0

j′−�R0
j )

e−Wj′ ( �Q)e−Wj ( �Q)

×
∑
i

{[
Ai( �Q; j′, j)

ωi

(
1 + n(ωi)

)
δ(ω − ωi)

]
+

[
Ai( �Q; j, j′)

ωi
n(ωi)δ(ω + ωi)

]}
, (9.182)

where we have used again

∫ ∞

−∞
exp(iωt) dt = 2πδ(ω). (9.183)

With this result we can calculate the coherent scattering function

S
1−ph
coh ( �Q,ω)

=
∑
κ,κ′

bκ · b∗κ′S
1−ph
κ,κ′ ( �Q,ω)

=
1
2

∑
κ,κ′

bκ · b∗κ′
∑

j∈{jκ},j′∈{jκ′}

e
−i �Q·(�R0

j′−�R0
j )

e−Wj′ ( �Q)e−Wj ( �Q)

×
∑
i

{[
Ai( �Q; j′, j)

ωi

(
1 + n(ωi)

)
δ(ω − ωi)

]
+

[
Ai( �Q; j, j′)

ωi
n(ωi)δ(ω + ωi)

]}
. (9.184)

An alternative way of writing this expression is

S
1−ph
coh ( �Q,ω) =

1
2

∑
i

|Fi( �Q)|2
ωi

{[(
1 + n(ωi)

)
δ(ω − ωi)

]
+
[
n(ωi)δ(ω + ωi)

]}
(9.185)

with

∣∣Fi( �Q)
∣∣2 :=

∑
κ,κ′

bκ · b∗κ′
√
mκ′mκ

∑
j∈{jκ},j′∈{jκ′}

e
−i �Q·�R0

j′ ei �Q·�R0
j e−Wj′ ( �Q)e−Wj ( �Q)( �Q · �ei

(
j′
))

·
(
�Q · �ei(j)

)∗

=

∣∣∣∣∑
κ

bκ√
mκ

∑
j∈{jκ}

e−i �Q·�R0
je−Wj ( �Q)( �Q · �ei(j)

)∣∣∣∣2. (9.186)

The function Fi( �Q) can be considered the form factor of the vibration (ωi,�ei).
The Dirac functions in energy assure that the scattering of neutrons only takes place when the energy transfer is

±�ω, i.e. when it corresponds to a vibrational frequency. When �ω is positive100 the neutron will loose energy in
the scattering process. As a compensation an excitation is created in the sample. The occupation level of a vibra-
tion is indicated by the factor n(ω) (see Fig. 50). Since the creation of an excitation is proportional to n(ωi) + 1
this down-scattering process is possible101 even at very low temperatures when the system is in its ground state and

100Attention: This convention is not always respected in the literature. It is always useful to add ‘loss’ or ‘gain’ in energy of the neutron.
101Naturally under the condition that the kinematic conditions can be fulfilled (see Section 6.4).
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Fig. 50. Occupation factor n(x) = (1/2)(cosh(x/2) − 1) and n(x) + 1 = (1/2)(cosh(x/2) + 1) with x = (�ω)/(kBT ). We note that
n(x) + 1 = n(−x). In our notation �ω > 0 correspond to an energy loss for the neutron. The “1” in n(x) + 1 is the mathematical expression
for the fact that it is always possible to create an excited state. When �ω < 0 the neutron gains energy and the scattering will not be possible
when �ω � kBT . But attention, this statement is only true when the system is in its equilibrium state. Hydrogen as well as deuterium are
examples of systems well known for taking a long time before equilibrating at low temperatures. The deviation of the balance between signals
on the gain and loss side from the value predicted for thermal equilibrium can serve as a measure of the non-equilibrium character of such
systems [27].

n(ω) is close to zero. For �ω < 0 the neutron gains energy in the scattering process. This process only happens
when the corresponding oscillator is in an excited state.

The scattering intensity depends among other things on the terms

( �Q · �ei(j′)) · ( �Q · �ei(j))∗
√
mj′mj

(
1 + n(ωi)

)
, ω > 0 (9.187)

and

( �Q · �ei(j)) · ( �Q · �ei(j′))∗√
mj′mj

n(ωi), ω < 0. (9.188)

Comparing these expressions to the expectation value of the displacements (9.101)

〈
u(α, j)u(α, j)+

〉
=

3N∑
i=1

|ei(α, j)|2�

2mjωi

(
2n(ωi) + 1

)
(9.189)
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we conclude that the scattering intensity of a vibration is strongly linked to the amplitude (projected onto the
momentum transfer �Q).102 In other words, the neutrons measure the fluctuation amplitudes. Since fluctuations
include zero point motion inelastic scattering is assured even at very low temperatures.

9.11. f sum rule for vibrations

In order to give a concrete application for the f sum rule (expression (8.187) in Section 8.12) we will now
calculate the first moment of the vibrational scattering function. Since the Hamiltonian for a harmonic system only
contains interactions that depend on the position operators the conditions of validity laid out in Section 8.12 are
assured.

Starting from (9.185) we find

∫ ∞

−∞
d(�ω)(�ω)S1−ph

coh ( �Q,ω) =
�

2

2

∑
i

∣∣Fi( �Q)
∣∣2 ∫ ∞

−∞
dω

ω

ωi

{[(
1 + n(ωi)

)
δ(ω − ωi)

]
+
[
n(ωi)δ(ω + ωi)

]}

=
�

2

2

∑
i

∣∣Fi( �Q)
∣∣2{(1 + n(ωi) − n(ωi)

}

=
�

2

2

∑
i

∣∣Fi( �Q)
∣∣2. (9.190)

Hence the first moment is equal to the sum of the vibrational form factors squared. This sum can be calculated
following (9.186) as∑

i

∣∣Fi( �Q)
∣∣2

=
∑
κ,κ′

bκ · b∗κ′
√
mκ′mκ

∑
j∈{jκ},j′∈{jκ′}

e
−i �Q·�R0

j′ ei �Q·�R0
j e−Wj′ ( �Q)e−Wj ( �Q)

∑
i

(
�Q · �ei

(
j′
))

·
(
�Q · �ei(j)

)∗
.

(9.191)

The eigenvectors form a complete basis set, in which all the ionic movements can be expressed. They formally
have to satisfy the completeness relation∑

i

�ei
(
α, j′

)
�ei(β, j)∗ = δα,βδj,j′ . (9.192)

As a consequence∑
i

(
�Q · �ei

(
j′
))

·
(
�Q · �ei(j)

)∗
=
∑
α,β

QαQβ

∑
i

�ei
(
α, j′

)
�ei(β, j)∗

=
∑
α,β

QαQβδα,βδj,j′

= Q2δj,j′ , (9.193)

102According to the expression (9.101) the temperature factors are connected to the mean square amplitudes of a vibration(
n(ωi) + 1

)
+ n(ωi) ∝

〈
u2
i

〉
.
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and hence

∫ ∞

−∞
d(�ω)(�ω)S1−ph

coh ( �Q,ω) =
�

2

2

∑
i

∣∣Fi( �Q)
∣∣2

=
�

2Q2

2

∑
κ

Nκ
bκ · b∗κ
mκ

e−2Wκ( �Q)

=
∑
κ

Nκbκ · b∗κe−2Wκ( �Q)Er
κ(Q) (9.194)

with as before the recoil energy of the ion κ defined as

Er
κ(Q) :=

�
2Q2

2mκ
. (9.195)

This expression for the vibrational part of the first moment can be compared with that obtained for the total first
moment of the partial scattering function (8.187)

∫ ∞

−∞
d(�ω)(�ω)Sκ,κ′ ( �Q,ω) =

�
2

2
∂

∂t
Kκ,κ′ ( �Q, t)

∣∣∣
t=0

= δκ,κ′NκE
r
κ(Q). (9.196)

We note that the difference between the two expressions resides in the presence of the Debye–Waller factor in the
vibrational part of the first moment. The Debye–Waller factor introduces a temperature dependence in

∫ ∞

−∞
d(�ω)(�ω)S1−ph

coh ( �Q,ω).

Due to this dependence the vibrational first moment systematically falls short of the total first moment

∫ ∞

−∞
d(�ω)(�ω)Scoh( �Q,ω).

This short-fall can be explained by the neglect of multi-phonon contributions that we will address in Section 10.
The sum rule teaches us without any further calculation that for any scattering vector �Q all the atoms contribute

to the inelastic signal. The intensity of this contribution depends, apart from the scattering lengths, on the inverse
of the mass and on the inverse of the frequencies of the vibrational modes, in which the atom participates. If we
had wanted, we could have practically derived the form of the vibrational scattering just from the sum rule.

9.12. Coherent scattering of a phonon in a crystal

The expressions obtained up to now are valid for any harmonic system. They may seem complex but they allow
the exact calculation of inelastic scattering based only on a knowledge of the vibrational frequencies and eigen-
vectors. Naturally, the calculation of all frequencies and eigenvectors is a real challenge in an extended amorphous
system. Extracting information on the character of the modes without employing calculations, although not com-
pletely impossible, remains a rather arbitrary process for complex amorphous systems. The best one can hope for
is to identify coarse classes of motion (acoustic, optic, rigid motion of structural units etc.) from the Q dependence
of a given band of frequencies [6,7].
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The situation becomes much more favourable when working with crystals. Due to the translational symmetry
the displacement operators are written as (see expression (9.65))

uα(�l, d) =

√
r

N

∑
i,�q

√
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2mdωi(�q)

[
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=
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√
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2mκωi(�q)
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(
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)
ei�q·�l, (9.197)

where the second line is subject to the condition ej(�q) = ej(−�q). With this expression for the displacement operator
we can calculate

ℵj′,j( �Q, t) = ℵ�l ′,�l,d′,d( �Q, t).

We obtain
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(9.198)

with

Ai,�q
(
�Q; d′, d

)
:=

( �Q · �ei(d′|�q))( �Q · �ei(d|�q)∗)
√
mdmd′

. (9.199)

In the case of a crystal we have a maximum of r different atoms in our system, with r being the number of atoms
in the primitive cell. Without any supplementary information concerning the potential symmetries of the crystal
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we should consider them all as distinct. The partial dynamical structure factors become
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, (9.200)

where we have used the relations (9.119) and (9.127). With this result we can calculate the coherent scattering
function
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The intrinsic structure of this expression becomes clearer when written as
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(9.202)
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with
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d,d′
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∗
d′√

mdmd′
e−Wd( �Q)e−Wd′ ( �Q)( �Q · �ei

(
d′|�q
))(

�Q · �ei(d|�q)
)∗ei �Q·�de−i �Q·�d ′

=

∣∣∣∣∣
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bd√
md

e−Wd( �Q)( �Q · �ei(d|�q)
)
e−i �Q·�d

∣∣∣∣∣. (9.203)

The function Fi( �Q|�q) is called the phonon form factor of the branch i and wave vector �q. The expression found
for the scattering from a phonon does not explicitly depend on the number of scatterers N . This may be surprising
at first glance. An increase in sample volume should in the Born approximation lead to a proportional increase
in scattering. This increase is nevertheless implicit in expression (9.202), which is proportional to the number
of phonons. This number is governed by the density of �q vectors in the first Brillouin zone. Due to the periodic
boundary conditions a larger crystal will have shorter distances between neighbouring �q vectors. The total number
of modes corresponds to 3N where N is the number of atoms in the crystal.

The fundamental laws of physics require the conservation of momentum. The change in momentum of the
neutron (� �Q = ��ki − ��kf ) during the scattering process should then be compensated by an opposite change in
momentum of the sample. This observation also holds for an amorphous system. The Dirac functions

δ
(
�q − ( �Q+ �G)

)
and (9.204)

δ
(
�q + ( �Q+ �G)

)
(9.205)

that we find in the scattering function (9.202) of the crystal imply that the coherent scattering is also subjected to
the conservation of the crystal momentum. In order for the scattering to take place their must exist a reciprocal
lattice vector �G such that103

�Q = �q + �G or (9.206)

�Q = −�q + �G. (9.207)

So clearly, during the scattering process the change in momentum of the neutron

� �Q = ��ki − ��kf

should be absorbed (9.206) or provided (9.207) by the phonon

��q

up to an reciprocal lattice vector ��G (see Fig. 51). One talks about the creation or emission of a phonon as well
as the annihilation or absorption of a phonon. Neutron scattering is in this way identical to the scattering of Bloch
electrons. The conservation of crystal momentum is a constraint imposed on all particle scattering processes in a
periodic lattice potential.

To illustrate the expressions for the coherent scattering we are inspired by Squires [62] and recall that a phonon
represents a propagating wave. In a reference frame that moves along �q with the phase velocity of the phonon
(ωi(�q)/|�q|) the motion of the atoms appear frozen. The structure of the crystal appears to be modulated in a sinu-
soidal manner. It is known (for example in incommensurate systems) that a static modulation introduces satellites

103Going from (9.204), (9.205) to (9.206), (9.207) we use the fact that the reciprocal lattice is a Bravais lattice where there exists for every
vector �G a vector − �G.
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Fig. 51. Schematic representation of the conservation of crystal momentum when absorbing (9.207) or emitting a phonon (9.206).

to the Bragg peaks at positions �G ± �q. This brings us to the expressions (9.206) and (9.207). The intensity of the
satellites are given by the amplitude squared of the modulation. The transformation from the moving reference sys-
tem back to the reference system of the laboratory teaches us that the satellites correspond to an inelastic scattering
process. The corresponding energy transfers are give by the expressions

�

2mn

(
k2
i − k2

f

)
= �ωi(�q), (9.208)

�

2mn

(
k2
f − k2

i

)
= �ωi(�q). (9.209)

The intensity of the scattering is driven by the amplitude of the modulation.
The conservation of crystal momentum has important consequences for the scattering of neutrons. Let us con-

sider an incident beam described by the wave vector �ki and a direction of detection described by k̂f . The inelastic
scattering will be zero except for values of kf corresponding to energy transfers defined in the expressions (9.208)
and (9.209). Given that the phonon spectrum is discrete for a given �q the scattering will also be discrete (see
Fig. 52). Each inelastic peak corresponds to the emission or the absorption of a phonon, where the frequency is
given by the relations (9.206)–(9.209). The only unknown is the branch index. By performing a large number of
measurements sweeping a large area of ( �Q,ω) space it is a priori possible to determine the dispersion relations in
quite complex samples.

The relations (9.206)–(9.209) limit the observation of a phonon mode to the accessible kinematic region as
defined by the experimental configuration. A good example to illustrate these limitations is the measurement of an
acoustic mode in the first Brillouin zone.104 The accessible region for a fixed ki is defined by (see Section 6.4 and
Fig. 53)

�ω(Q) � �

2m

(
k2
i − (Q− ki)

2).
104This is often called Brillouin scattering.
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Fig. 52. Example of phonon peaks obtained with a three axis spectrometer in the super-ionic conductor CaF2. The measurements are done
in such a way that �Q stays constant. We are speaking of a constant Q scan. The respective values of �Q can be found above the figures. The
peaks can be described as damped harmonic oscillators (see Section 10.7). The centres and the widths are indicated to the right of the peaks.
They are also included graphically as horizontal lines in the figures. At 300 K the widths are given by the resolution of the instrument. At
higher temperatures the peaks soften and spread. It is also noticed that the background level increases significantly with temperature due to
multi-phonon scattering (see Section 10.4). A full set of such measurements leads to the dispersion relations shown in Fig. 45 (images courtesy
of K. Schmalzl).

Fig. 53. In order for a phonon to contribute to the cross section the experimental configuration should permit to satisfy both the conservation of
energy and the conservation of crystal momentum. In phonon creation mode (ki > kf ) this corresponds to simultaneously respecting (9.208)
and (9.206). In the first Brillouin zone this is possible if the speed of sound csound is inferior to the speed of the incoming neutron vn. The
situation shown here corresponds to a fixed ki of 3 Å−1 (as in Fig. 31).
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The slope of the envelope of this domaine at Q = 0 is calculated as

(
d(�ω(Q))

dQ

)
Q=0

=
�

m
ki = vn,

where vn is the velocity of the incident neutron. The slope of the phonon dispersion relation that we would like
to measure is given by the speed of sound csound. If csound < vn the mode does not contribute to the scattering
by phonon creation, i.e. for ω > 0. There are a priori no constraints to the scattering by phonon annihilation.
However, the scattering angles become smaller and smaller as csound increases. The signal risks to be drowned in
the background created by the direct beam. In a crystal this problem can be avoided by working in higher Brillouin
zones (see Fig. 53). This possibility does not exist in an amorphous system. The situation is completely different
in the case of X-rays where the speed of sound is always smaller than the speed of light.

The relations (9.206)–(9.209) are necessary but not sufficient conditions for phonon scattering. In order for
scattering to take place it is also necessary that the form factor Fi( �Q|�q) is sufficiently strong for the signal to
become observable. A simple example that illustrates this fact are transverse phonons in the first Brillouin zone.
Transverse phonons are characterised by the fact that all atomic motions are perpendicular to �q. This translates into
the following condition for the eigenvectors

�ei(d|�q) · �q = 0 ∀d.

In the first Brillouin zone �G = 0 and hence �Q = �q.

∣∣Fi( �Q|�q)
∣∣2 =

∣∣∣∣∣
r∑

d=1

bd√
md

e−Wd( �Q)(�q · �ei(d|�q)
)
e−i �Q·�d

∣∣∣∣∣ = 0.

Hence the transverse modes do not contribute to the signal in the first Brillouin zone.
In practice one should be aware of the fact that the character of a mode is in general mixed in complex materials.

However, symmetries can introduce systematic extinction for certain directions in the reciprocal space, and not
only in the first Brillouin zone. Along these so-called high-symmetry directions the form factor may, therefore, be
rigorously zero for some of the phonons. We are not going to pursue the discussion of these selection rules that
can be derived using group theory. The interested reader can consult the literature [19,45,54].

The |Fi( �Q|�q)|2 factor determines the intensity with which a phonon can be observed for a given �Q. Among
other things it is a function of the eigenvectors �ei(d|�q) (d = 1, . . . , r) of the phonon. In general it is very difficult to
obtain the �ei(d|�q) (d = 1, . . . , r) from a measurement of |Fi( �Q|�q)|2. The determination of �ei(d|�q) (d = 1, . . . , r) is
rather the exception than the rule [65]. It is nevertheless possible to obtain interesting information on the character
of the phonon mode from even limited measurements of |Fi( �Q|�q)|2. A particular promising case are strongly
polarised modes. The scattering of neutrons is very sensitive to the projection of the atomic movements onto �Q.
Mathematically this fact is expressed by the presence of the scalar products

(
�Q · �ei(d|�q)

)
(9.210)

in the phonon form factor. If we choose our experimental configuration in such a way that either

�Q‖�q

or

�Q ⊥ �q
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Fig. 54. In the phonon form factor the components of the eigenvector �ei(d|�q) (d = 1, . . . , r) are projected onto �Q. The visibility of a mode
depends strongly on this projection. This dependence allows us to specifically select modes via adapted experimental configuration. If �Q is
parallel to �q the transverse modes, for which �ei(d|�q) (d = 1, . . . , r) are all perpendicular to �q (and hence in this configuration also perpendicular
to �Q) will be invisible. In this configuration it is, therefore, assured that only the longitudinal components of the movements are measured.
This configuration is shown in the figure to the left. It can be realised in pure form. The transverse configuration (see figure to the right) will
for high-symmetry directions generally keep a mixed character as it is not possible to render �Q and �q perfectly perpendicular. The longitudinal
component diminishes, however, for a given �q with �Q. Hence it is preferable to work in distant zones of reciprocal space.

then we can separate the longitudinal modes

ei(d|�q)‖�q

from the transverse modes

ei(d|�q) ⊥ �q

(see Fig. 54).
Due to the presence of the factor Q2 in |Fi( �Q|�q)|2 it is preferable to work in higher Brillouin zones provided

that the intensity gain due to Q2 is not eaten up by the Debye–Waller factors

e−Wd( �Q), (9.211)

that depend on the Debye–Waller functions Wd( �Q) and, therefore, decrease with Q. As we will see in Section 10
the intensity at large Q values is transferred to scattering processes involving several phonons.

9.13. Incoherent elastic scattering

We now turn our attention to incoherent scattering. Our starting point is the partial differential cross section
(6.21)

(
dσ

dΩ dEf

)
inc

=
kf
ki

1
2π�

∑
λi

p(λi)
N∑
j

(
b2
κ − (b̄κ)2) ∫ ∞

−∞
dt〈λi|e−i �Q·�R0

j ei �Q·�Rj (t)|λi〉e−iωt, (9.212)
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that we can express in terms of the incoherent scattering function

Sinc( �Q,ω) =
∑
κ

(
b2
κ − (b̄κ)2)Ss

κ( �Q,ω). (9.213)

The partial self scattering functions are defined as

Ss
κ( �Q,ω) =

1
2π�

∑
j∈{jκ}

∫ ∞

−∞
dt
〈
e−i �Q·�Rj (t=0)ei �Q·�Rj (t)〉e−iωt. (9.214)

The expectation value involving a single atom

〈
e−i �Q·�Rj (t=0)ei �Q·�Rj (t)〉

is just a special case of the expectation value involving pairs of atoms

〈
e−i �Q·�Rj′ (t=0)ei �Q·�Rj (t)〉.

We, therefore, can rely on the formalism developed in the section devoted to coherent response. The Bloch identity
teaches us that

〈
e−i �Q·�uj ei �Q·�uj (t)〉 = e−2Wj ( �Q)e〈(

�Q·�uj )( �Q·�uj (t))〉. (9.215)

The first term in the expansion of this expression in terms of

ℵj,j( �Q, t) =
〈
( �Q · �uj)

(
�Q · �uj(t)

)〉
gives the incoherent elastic scattering
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)el
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(
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κ − (b̄κ)2)e−2Wj ( �Q)δ(�ω). (9.216)

If for a class of atoms {κ} all the occupied sites are equivalent then the Debye–Waller factor does only depend on
the type κ but not on the site j. We get

(
d2σ

dΩ dEf

)el

inc
=
∑
κ

∑
j∈{jκ}

(
b2
κ − (bκ)2)e−2Wκ( �Q)δ(�ω) =

∑
κ

Nκ
σinc(κ)

4π
e−2Wκ( �Q)δ(�ω), (9.217)

with N (κ) the number of atoms of type κ. This is equivalent to the expression that we would find in the case of fixed
atoms (see Section 6.5). The only difference is again the presence of the exp(−2Wκ( �Q)) factors in (9.217). The
�Q dependence introduced by them reflects the fact that the atoms are distributed about their equilibrium positions
due to thermal motion. Thus the incoherent scattering ceases to be isotropic and is directed towards the front. This
tendency is the more pronounced the higher the temperature. It is nevertheless still present at very low temperature
due to zero point fluctuations. This fact has to be taken into account if an incoherent scatter like vanadium is used
for calibration purposes.
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9.14. Diffuse scattering

It is important to distinguish between incoherent scattering and diffuse scattering. The term diffuse scattering
is employed when confronted with chemical disorder, i.e. with disorder in the occupation of an atomic site �Rj

by one or several chemical elements. A typical example are solid solutions. In a solid solution the positions �Rj
in the primitive cell of a crystal is occupied in completely random manner by different chemical elements. The
difference with respect to incoherent scattering lies in the fact that the physical quantities that we would like to
study with neutron scattering rely heavily on the chemical composition of the sample but not on its nuclear compo-
sition. Hence the diffuse scattering signal is of direct interest to us. It gives precious information on the chemical
composition (type of disorder, distribution and correlations among the chemical elements that occupy a site). In-
coherent scattering would allow us to obtain similar information on the distribution of isotopes. Unfortunately, the
distribution of isotopes or of nuclear spins is in general of lesser interest. Hence incoherent scattering could be
considered as a pure annoyance. In practice this is not true. It allows us to extract information on the time evolution
of a single scatterer with much more ease than from coherent scattering. We will demonstrate this in the following
section.

How can we include chemical disorder in our formalism? Following the reasoning that conducted us to inco-
herent scattering we have to take all possible arrangements into account when calculating statistically averaged
expectation values

S( �Q,ω) =

{
N∑

j,j′=1

(
bjb

∗
j′
)
Sj,j′ ( �Q,ω)

}
av

. (9.218)

The sums should be evaluated over the coherence volumes that we have discussed in section (4.9). Unlike incoher-
ent scattering the averaging imposed by chemical disorder not only affects the product of scattering lengths (bjb∗j′ )
but equally the partial scattering functions

Sj,j′ ( �Q,ω) =
1

2π�

∑
λi

p(λi)
∫ ∞

−∞
dt〈λi|e

−i �Q·�R0
j′ ei �Q·�Rj (t)|λi〉e−iωt. (9.219)

It is evident that Sj,j′ ( �Q,ω) will depend in detail on the chemical elements that occupy the sites j and j′. Apart
from the mass the interactions that determine the distance between atoms as well as the excitation spectrum depend
on the atom type. Therefore, in order to describe the diffuse scattering we rely on a concrete model of statistical
disorder.

The simplest model assumes that structure and chemical occupation are completely uncorrelated. In other words,
we can model the structure by a lattice with lattice positions �Rj . The disorder is taken into account by introducing
occupation factors at each site. Under these conditions the elastic scattering function can be written as

S( �Q,ω) =
N∑

j,j′=1

(fjfj′ )S
el
j,j′ (

�Q,ω) (9.220)

with

fj := bje−Wj ( �Q) (9.221)

and following (9.116)

Sel
j,j′ (

�Q,ω) =
∑
j,j′

exp
(
−i �Q ·

(
�R0
j′ − �R0

j

))
δ(�ω). (9.222)
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This expression is formally identical to (6.1). Thus we can immediately give the results for the averages:

j 
= j′: (fjfj′ ) = fj
2
, (9.223)

j = j′: (fjfj) = f2
j , (9.224)

with

fj =
∑
κ

cκj e−Wκ
j ( �Q)

∑
i

pij · bij =
∑
κ

cκj bje−Wκ
j ( �Q), (9.225)

f2
j =

∑
κ

cκj e−2Wκ
j ( �Q)

∑
i

pij ·
(
f ij
)2

=
∑
κ

cκj e−2Wκ
j ( �Q)b2

j . (9.226)

As in the Section 6.1 the coefficients pij give the probability of the scattering length of the element at site �Rj

having the value bij . The cκj factors give the fractional occupancy (concentrations) at site j for the atoms of type κ.
It follows that∑

i

pij = 1, (9.227)

∑
κ

cκj = 1. (9.228)

We are now able to write down the expressions for the cross sections.
Let us start with the incoherent cross section. Following (9.217) it is given by(

d2σ

dΩ dEf

)el

inc
=
∑
κ

Nκ
σinc(κ)

4π
e−2Wκ( �Q)δ(�ω) = N

∑
κ

cκ
σinc(κ)

4π
e−2Wκ( �Q)δ(�ω), (9.229)

where we have assumed that the Debye–Waller factors depend exclusively on the type of atom independent of the
site, which is not always the case. To illustrate this result we consider a very simple case. Two types of atoms be
distributed in an random fashion on a Bravais lattice. This could e.g. describe a metallic alloy. In this case

(
d2σ

dΩ dEf

)el

inc
=N

(
c1σinc(1)e−2W1( �Q) + c2σinc(2)e−2W2( �Q))δ(�ω)

4π

=N
(
(1 − c)σinc(1)e−2W1( �Q) + cσinc(2)e−2W2( �Q))δ(�ω)

4π
(9.230)

with c1 and c(:= c2) denoting the fractional concentrations of the two elements. The random occupation of the
lattice sites has, therefore, no effect on the incoherent response apart from the fact that the incoherent cross sections
σκ have to be properly weighted by the concentrations. As a matter of fact, we do not even need the formalism
involving the occupation factors fj in order to obtain this result.

Let us now turn our attention towards coherent elastic scattering. From the expressions (9.220) and (9.116) the
total scattering function is found to be

(
d2σ

dΩ dEf

)el

total
= Sel( �Q,ω)

=

N∑
j,j′=1

(fjfj′ )Sj,j′ ( �Q, �ω = 0)
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=
∑
j 
=j′

fjf
∗
j′ exp

(
−i �Q ·

(
�R0
j′ − �R0

j

))
δ(�ω) +

∑
j

f2
j δ(�ω)

=
∑
j,j′

fjf
∗
j′ exp

(
−i �Q ·

(
�R0
j′ − �R0

j

))
δ(�ω) +

∑
j

(
f2
j − fjf

∗
j

)
δ(�ω). (9.231)

The first term of this expression corresponds to the scattering function of the average structure, i.e. of the structure
that we obtain by placing on each site a fictitious element possessing the average scattering length and the average
Debye–Waller factor. In the case of a crystal, the Bragg peaks produced by this term persist and do not change posi-
tion. Only their intensity will be affected by the disorder. The second term closely resembles incoherent scattering.
Its �Q-dependence is limited to that of the Debye–Waller factors. If we subtract from this expression the expression
(9.229) that was found for the incoherent scattering we obtain what is known as Laue monotonic scattering. From
an experimental point of view105 diffuse scattering of this type is practically indistinguishable from incoherent
scattering.106

In order to further illustrate this general discussion we return to our example of two types of elements distributed
on a Bravais lattice. The averages of the scattering length are calculated as

f = (1 − c)e−W1( �Q)b1 + ce−W2( �Q)b2, (9.232)

f2 = (1 − c)e−2W1( �Q)(b1)2 + ce−2W2( �Q)(b2)2. (9.233)

For the total elastic cross section we find(
d2σ

dΩ dEf

)el

coh
= f2

∣∣∣∣∑
l

exp(i �Q ·�l)
∣∣∣∣2δ(�ω) +N

(
f2 − f

2)
δ(�ω). (9.234)

The first part of this expression gives rise to the Bragg peaks. The second part deserves to be looked at more
carefully. Using the expressions (9.225) and (9.226) and neglecting for the sake of clarity the Debye–Waller factors
we get

(
f2 − f

2)
= (1 − c)b2

1 + cb2
j −
(
(1 − c)b1 + cb2

)2

=
{

(1 − c)
(
b2

1 − b1
2)

+ c
(
b2

2 − b2
2)}

+
{

(1 − c)b1
2
+ cb2

2 − (1 − c)2b1
2 − c2b2

2
+
(
c− c2)b1b2

}
=
{

(1 − c)
(
b2

1 − b1
2)

+ c
(
b2

2 − b2
2)}

+
{(

c− c2)b1
2
+
(
c− c2)b2

2
+
(
c− c2)b1b2

}
=
{

(1 − c)
(
b2

1 − b1
2)

+ c
(
b2

2 − b2
2)}

+
{
c(c− 1)(b1 − b2)2}. (9.235)

The expression

N
{

(1 − c)
(
b2

1 − b1
2)

+ c
(
b2

2 − b2
2)}

(9.236)

105If the incoherent scattering is only due to the nuclear spins then polarisation analysis can be used to separate the spin-incoherent from the
diffuse scattering.

106This statement is true to the point where one often voluntarily confuses the diffuse scattering and the incoherent scattering in multicompo-
nent amorphous systems [4]. The coherent scattering cross section is then defined as the total variance of the distribution of scattering lengths b,
due to isotope, nuclear spin and chemical disorder. In this context one talks of incoherent scattering even for X-rays, which objectively does
not make sense if we use the strict definition that we gave for incoherent scattering in Section 6.1.
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is nothing but the incoherent scattering weighted with the particle concentrations. Apart from the neglected Debye–
Waller factors it is identical to (9.230). The diffuse scattering is included in the term

N
{
c(c− 1)(b1 − b2)2}. (9.237)

Like the incoherent scattering the diffuse scattering is independent of �Q apart from the dependence coming with
the Debye–Waller factors. It is observed whenever there exists a variation of the scattering lengths among the atoms
that share a lattice site, and this even if all the atoms involved scatter purely coherently.

In general the simple models employed here do not match reality. Chemical disorder, even in its very dilute
form, introduces structural distortions and thus influences the positions of the atoms and creates correlations among
neighbours. The Bragg scattering is, therefore, better described by expressions of the form

(
d2σ

dΩ dEf

)el

coh
= f2

∣∣∣∣∑
l

exp
(
i �Q ·

(
�l + �ustatic(�l)

))∣∣∣∣2δ(�ω), (9.238)

where we have introduced the disorder induced distortions in the form of static displacements

�l → �l + �ustatic(�l). (9.239)

The choice of the variable u has been done on purpose in order to emphasise the similarity with displacements
having their origin in vibrations. From this analogy we can conjecture for weak distortions that disorder can be
well represented by effective Debye–Waller factors. For a Gaussian distribution of distortions this static Debye–
Waller factor has the same form as the one obtained for vibrations

exp

(
1
2

( �Q · �ustatic)2

)
= exp

(
1
6
Q2u2

static

)
. (9.240)

Between Bragg peaks diffuse scattering is observed as the square of the Fourier transform of the distortions. These
distortion fields can nicely be related to sets of frozen phonons107 and thus can be described by eigenvectors. This
is a subject that we are not going to develop further.

9.15. Incoherent scattering from one phonon

After this small detour to diffuse scattering we now return to the discussion of incoherent scattering. The next
higher term in the expansion of (9.215) contains the correlation function

ℵj,j( �Q, t) =
〈
( �Q · �uj)

(
�Q · �uj(t)

)〉
=

�

2

∑
i

{[
Ai( �Q; j)

ωi

(
1 + n(ωi)

)
exp(iωit)

]
+

[
Ai( �Q; j)

ωi
n(ωi) exp(−iωit)

]}
(9.241)

with

Ai( �Q; j) :=
( �Q · �ei(j)) · ( �Q · �ei(j))∗

mj
=

| �Q · �ei(j)|2
mj

. (9.242)

107We imagine that the atomic displacements corresponding to the eigenvector of a particular phonon are suddenly frozen in time.
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This expression allows us to calculate the incoherent scattering function for the atom type κ as

S
1−ph
κ ( �Q,ω) =

∑
j∈{jκ}

e−2Wj ( �Q)

2π�

∫ ∞

−∞
dt
〈
( �Q · �uj)

(
�Q · �uj(t)

)〉
e−iωt

=
∑

j∈{jκ}

e−2Wj ( �Q)

2

∑
i

| �Q · �ei(j)|2
mκωi

{[(
1 + n(ωi)

)
δ(ω − ωi)

]
+
[
n(ωi)δ(ω + ωi)

]}
, (9.243)

and from there the partial differential cross section

(
d2σ

dΩ dEf

)1−ph

inc

=
kf
ki

∑
κ

(
b2
κ − (b̄κ)2)Sκ( �Q, �ω)

=
kf
ki

∑
κ

σinc

8πmκ

∑
j∈{jκ}

e−2Wj ( �Q)
∑
i

| �Q · �ei(j)|2
ωi

{[(
1 + n(ωi)

)
δ(ω − ωi)

]
+
[
n(ωi)δ(ω + ωi)

]}
.

(9.244)

We recognise the functional form of the coherent cross section with two Dirac δ-functions.
One of them

(
d2σ

dΩ dEf

)1−ph(+)

inc
=

kf
ki

∑
κ

(
b2
κ − (b̄κ)2)Sκ( �Q, �ω)

=
kf
ki

∑
κ

σinc(κ)
8πmκ

∑
j∈{jκ}

e−2Wj ( �Q)
∑
i

| �Q · �ei(j)|2
ωi

[(
1 + n(ωi)

)
δ(ω − ωi)

]
(9.245)

corresponds to the creation of a vibrational excitation and the other

(
d2σ

dΩ dEf

)1−ph(−)

inc
=

kf
ki

∑
κ

(
b2
κ − (b̄κ)2)Sκ( �Q, �ω)

=
kf
ki

∑
κ

σinc(κ)
8πmκ

∑
j∈{jκ}

e−2Wj ( �Q)
∑
i

| �Q · �ei(j)|2
ωi

[
n(ωi)δ(ω + ωi)

]
(9.246)

to its annihilation.

9.15.1. Relation with the partial density of states in cubic or isotropic systems
The general discussion of the incoherent one-phonon scattering has to end here. For an arbitrary system, hence

a priori anisotropic, the eigenvectors depend explicitly on the directions �Q, onto which they are projected. This is
particularly evident in a stratified system like graphite.108 A mode that describes a vibration of atoms in the layers
has no equivalent vibration perpendicular to the layers, at least not at the same frequency. The situation changes

108Graphite is actually a bad example here since it only scatters coherently.
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if the system is cubic and monatomic. For any eigenvector two other modes with the same energy must exist such
that the three vectors �eim (j) (m = 1, 2, 3) form an orthonormal system. The sum of the projections onto �Q gives109

∑
im

∣∣ �Q · �eim (j)
∣∣2 =

1
3
Q2
∣∣�ei(j)

∣∣2 =
1
3
Q2. (9.247)

It is tempting to think that when averaging over all �Q directions, for example when working with powders, all
systems boil down to the cubic monatomic case. This is unfortunately not true. Certainly, for a powder as well as
for an amorphous system the scattering function has to be independent of the direction of �Q. For a given band of
frequencies ]ω,ω + Δω] the average over all the projections of the eigenvectors onto �Q has necessarily the form

{∑
i

∣∣ �Q · �ei(j)
∣∣2}

ωi∈]ω,ω+Δω]
= f (Q,ω)

{∑
i

∣∣�ei(j)
∣∣2}

ωi∈]ω,ω+Δω]
. (9.248)

The problem is that the function f (Q,ω) is system dependent. In practice it is found that even systems of low
dimensionality such as nano-tubes can be interpreted correctly by assuming that f (Q,ω) = f (Q), which means tat
f (q,ω) = f (q), and thus independent of ω.

Inspired by the monatomic cubic system we are going to use the relation

f (Q,ω) =
1
3
Q2 (9.249)

and, therefore,

{∑
i

∣∣ �Q · �ei(j)
∣∣2}

ωi∈]ω,ω+Δω]
=

1
3
Q2
{∑

i

∣∣�ei(j)
∣∣2}

ωi∈]ω,ω+Δω]
. (9.250)

In order to ease the notation and to give a more precise significance to expression (9.246) we introduce the atom-
specific density of states

Fj(ω) :=
∑
i

∣∣�ei(j)
∣∣2δ(ω − ωi). (9.251)

It gives a measure of the number of modes that are present in a particular energy band and in which the atom j
participates. With the help of these density of states the differential cross section can be written as

(
d2σ

dΩ dEf

)1−ph(+)

inc
=

kf
ki

Q2

3

∑
κ

σinc(κ)
8πmκ

∑
j∈{jκ}

e−2Wj ( �Q)Fj(ω)

ω

(
1 + n(ω)

)
, ω > 0, (9.252)

(
d2σ

dΩ dEf

)1−ph(−)

inc
=

kf
ki

Q2

3

∑
κ

σinc(κ)
8πmκ

∑
j∈{jκ}

e−2Wj ( �Q)Fj(−ω)

−ω
n(−ω)

=
kf
ki

Q2

3

∑
κ

σinc(κ)
8πmκ

∑
j∈{jκ}

e−2Wj ( �Q)Fj(ω)

ω

(
n(ω) + 1

)
, ω < 0, (9.253)

109This relation is particularly evident if �ei1
(j) is parallel to �Q. In this specific case | �Q·�ei1

(j)|2 = Q2 and | �Q·�ei2
(j)|2 = | �Q·�ei3

(j)|2 = 0.
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where we have used the fact that n(−x) = n(x) + 1 (see Fig. 50) and defined

Fj(−ω) := Fj(ω), ω � 0. (9.254)

With this convention we are no longer obliged to make an explicit distinction between the expression for energy
gain and energy loss.110 Until now the index κ referred to a chemical element. This classification was adapted
because the coherent and incoherent scattering cross sections depended on the atom type. At this point it becomes
useful not to distinguish any longer between different types of atoms but between atoms that are symmetrically
inequivalent. The concept of symmetrical equivalence is well defined in crystals. In amorphous system all the
atoms of the same chemical element can often be considered to be equivalent. The expressions for the incoherent
cross section simplify further when introducing the partial density of states for the symmetrical equivalent atoms
distinguished by the index κ

Fκ(ω) :=
1

3Nκ

∑
j∈{jκ}

∑
i

∣∣�ei(j)
∣∣2δ(ω − ωi), (9.258)

with Nκ being the number of atoms of this type. The partial density of states can be evaluated referring to any one
single member of the class of equivalent atoms

Fκ(ω) :=
1
3

∑
i

∣∣�ei(j ∈ {jκ}
)∣∣2δ(ω − ωi). (9.259)

For the cross section the following expression is found

(
d2σ

dΩ dEf

)1−ph

inc
=

kf
ki

Q2 1
8π

∑
κ

Nκ
σinc(κ)
mκ

e−2Wκ( �Q)Fκ(ω)
(1 + n(ω))

ω
. (9.260)

In a crystal the number of inequivalent atoms is at maximum equal to the number of atoms in the primitive cell r.
Thus the result can be written as(

d2σ

dΩ dEf

)1−ph

inc
=

kf
ki

Q2 N

8πr

∑
d

σinc(d)
md

e−2Wκ( �Q)Fd(ω)
(1 + n(ω))

ω
. (9.261)

We would like to note that in order to arrive at this expression we have at no stage of the development used the fact
that in a crystal the eigenvectors are classified according to the wave vector �q. The translational symmetry, that is at

110We would nevertheless like to emphasise that a competing convention exist. The frequency ω is always assumed to be positive and the
incoherent scattering is given as

(
d2σ

dΩ dEf

)1−ph(+)

inc
=

kf

ki

Q2

3

∑
κ

σinc(κ)

8πmκ

∑
j∈{jκ}

e−2Wj (�Q) Fj (ω)

ω

(
1 + n(ω)

)
, ω > 0, (9.255)

(
d2σ

dΩ dEf

)1−ph(−)

inc
=

kf

ki

Q2

3

∑
κ

σinc(κ)

8πmκ

∑
j∈{jκ}

e−2Wj (�Q) Fj (ω)

ω
n(ω), ω < 0, (9.256)

which also can be written as

(
d2σ

dΩ dEf

)1−ph(±)

inc
=

kf

ki

Q2

3

∑
κ

σinc(κ)

8πmκ

∑
j∈{jκ}

e−2Wj (�Q) Fj (ω)

ω

[
1

2

(
cosh

(
�ω

2kBT

)
± 1

)]
. (9.257)
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the origin of this classification, has no added value in the case of incoherent scattering besides reducing equivalence
classes. This should not surprise us. The vectors �q define the relative phase of the movement of the atoms. Since
there is no interference between the wavelets originating from different atoms in the case of incoherent scattering
phase relations do not enter the game. As a consequence, and unlike for coherent scattering incoherent scattering
is not subjected to selection rules that invoke the conservation of crystal momentum.

The expression for the incoherent partial differential cross section is even simpler in the case of a Bravais lattice,
i.e. when we are dealing with only one atom per primitive cell

(
d2σ

dΩ dEf

)1−ph

inc
=

kf
ki

Q2 N

8π

σinc

m
e−2W ( �Q) g(ω)

ω

(
1 + n(ω)

)
(9.262)

with

g(ω) =
1

3N

∑
j

∑
i

∣∣�ei(j)
∣∣2δ(ω − ωi)

=
1

3N

∑
i

δ(ω − ωi)
∑
j

∣∣�ei(j)
∣∣2

=
1

3N

∑
i

δ(ω − ωi) (9.263)

the vibrational density of states (see Fig. 55 for a concrete example of an experimental density of states obtained
on a monatomic incoherent scatterer). In contrast to the expression (9.202) for coherent one-phonon scattering the
expression (9.262) is explicitly proportional to the number of scatterers N . The origin of this explicit dependence
has its origin in our convention for normalising the density of states g(ω). Combining (9.262) and (9.263) it be-
comes immediately obvious that the scattering is proportional to the number of modes, which again is proportional
to the number of atoms in the system.

Fig. 55. The density of states of Vanadium at 300 K and 600 K obtained from incoherent one-phonon scattering as measured on the instrument
IN6 (see Fig. 58) with an incident wave length of λ = 4.16 Å. The correction of the multi-phonon contribution has been made using the
procedure described in Section 10.5 (see Fig. 61). For a harmonic material, such as is Vanadium at these temperatures, the density of states is
more or less invariant with T .
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9.15.2. Ratio in intensity between inelastic and elastic scattering
The expressions that we have derived give the scattering intensity in absolute units. To get a feeling for the size of

inelastic signals it is interesting to compare them to the elastic signal as a reference. We will perform this exercise
for the simplest possible case, which is a monatomic incoherent scatterer on a cubic lattice like Vanadium. For
such a system the results found in the previous section and in particular the expression (9.262) can be rigorously
applied. According to (9.217) the elastic scattering is given by

(
dσ
dω

)el

inc
= Nσie

−2W (Q). (9.264)

If we concentrate on the low-frequency part of the spectrum then we know that the modes have their origin in
acoustic vibrations. These are represented by the well known linear dispersion relations

ω = �q · csound
j,q̂ (9.265)

with csound
j,k̂

the speed of sound along the direction q̂ for the acoustic branch j. The density of states in this region

can then be calculated as

g(ω) =

(
V

N

)(
2π2

c3
sound

)
ω2 =

3ω2

ω3
D

, (9.266)

where csound represents the velocity of sound averaged over all directions and all branches. ωD is the Debye
frequency of the material as defined via expression (9.266). V is the volume occupied by the N atoms.

In order to apply Eq. (9.262) we need to take into account the thermal occupation factors. For the excitation
energies

�ω 	 kBT : n(ω) → �ω/kBT.

Hence for the inelastic cross section in neutron energy gain we find

(
d2σ

dEf dΩ

)
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2Q2
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e−2W ( �Q)
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)

=
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3N
σi
8π

e−2W ( �Q)
(
Er(Q) · (kBT )

(�ωD)3

)
, (9.267)

with the recoil energy of the atom defined in Section 8.10. We will meet Er(Q) again several times in the discus-
sion of multi-phonons. This expression is proportional to the temperature but is no longer dependent on ω. This
statement holds for all three dimensional systems, which is to say for all systems whose density of states is propor-
tional to ω2. We see, in particular, that the decrease in the number of phonon states as ω tends to zero compensates
for the divergence of the factor n(ω/ω).111

This gives the ratio between the inelastic and elastic signal that we were looking for.

(
dσ
dΩ

)el

inc

/∫
�ωl

0

(
d2σ

d(�ω) dΩ

)el

inc
d�ω ≈ 4π

3

(
(�ωD)3

Er(Q)(�ωl)(kBT )

)
, (9.268)

where we have used ki ≈ kf for small energy transfers. Thus the ratio is defined by the characteristic energy �ωD
of the vibrational spectrum, the thermal energy kBT and the integration interval �ωl. These values are all in the

111n(ω) → (�ω/(kBT ))−1 for ω → 0 − ε (see Fig. 50).
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range between zero and 100 meV. The Debye energies are often around 40 meV, while kBT at room temperature is
around 30 meV. Taking Q = 2 Å−1 and an atomic mass of 50 amu, the recoil energy �

2Q2/2m is about 0.3 meV.
This simple estimation gives inelastic intensities (integrated over an energy range from 0 to 10 meV) that are 100
to 1000 times smaller than what is collected in the elastic channel. This explains why it is so important to keep
the background as low as possible for inelastic experiments. Note that the Debye–Waller factor, since it effects the
elastic and inelastic intensities in the same way, is not present in this ratio.

9.15.3. Generalised density of states
The systems that are of scientific interest are often complex and expression (9.262) is, therefore, not valid for

them. This is unfortunate as this expression allows for a simple interpretation of experimental results in terms of
a physical quantity of great interest, the density of states. From a purely formal point of view there is no problem
in postulating an expression similar to (9.262) for a crystal with several atoms in the primitive cell. Starting from
expression (9.260)

(
d2σ

dΩ dEf

)1−ph(+)

inc
=

kf
ki

Q2 N

8π
e−2W ( �Q)G(ω)

ω

(
1 + n(ω)

)
, (9.269)

where we have introduced the generalised density of states

G(ω) :=
r∑

d=1

σinc(d)
md

Fd(ω) (9.270)

and under the condition that the Debye–Waller factors

e−2Wd( �Q) ≈ e−2W ( �Q)

are more or less independent of d. In the generalised density of states G(ω) the partial density of states Fd(ω)
corresponding to different atoms in the primitive cell are weighted with what is called their respective scattering
power

σinc(d)
md

.

We have in principle the possibility of isolating the different contributions of the generalised density of states
provided that their exists a way of modifying the contrast. The situation is similar to isolating partial correlation
functions (see Section 8.4), of which the partial densities of states are the direct manifestation. Contrast variation
is possible if a chemical element possesses several isotopes with very different scattering lengths. This is the case
for hydrogen and deuterium. Care should, however, be applied in this specific case, which is often exploited in soft
matter and biology. The masses of the two isotopes are very different. This difference has a significant influence
on the frequencies of those modes, in which either hydrogen or deuterium participate. The most obvious example
is water. The spectrum of the librations softens drastically upon the exchange of light water H2O by heavy water
D2O.112

If we succeed in isolating the partial density of states then we are in a position to determine the vibrational
density of states g(ω). This is from a physics point of view the most interesting quantity since it enters into the
thermodynamical calculations. Identifying the partial density of states is unfortunately rarely possible. In most
cases we have to satisfy ourselves with the generalised density of states.

112It should not be forgotten that besides the masses, the scattering characteristics of hydrogen and deuterium are very different (see Sec-
tion 6.3). Deuterium is a coherent scatterer with a non-negligible incoherent cross section.
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In the light of the approximation that we were obliged to introduce in order to reach expression (9.269) the
statement that incoherent scattering gives direct access to g(ω) should be taken with a lot of precaution. It is
certainly true that even in the case of polyatomic systems it is always possible to write the scattering function
formally as

S( �Q,ω) = A( �Q,ω)Geff(ω), (9.271)

with, in analogy to expression (9.262),

A( �Q,ω) :=
�

4π

(σinc(j)e−2Wj (Q))av

2Mav

Q2

ω

[
n(ω) + 1)

]
(9.272)

and

Mav =
1
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∑
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mj and
(
b

2
e−2Wj (Q))

av =
1
N

∑
j

σinc(j) exp
(
−2Wj(Q)

)
. (9.273)

The effective density of states Geff(ω) is well-defined from an mathematical point of view. Unfortunately, it can
be very different from the true vibrational density of states g(ω), and even worse also from the generalised density
of states Gω). In the case where the goal itself is to verify a given dynamical model, the correct procedure is to
calculate the generalised density of states G(ω) from the theory, or even better to proceed directly to a calculation
of the scattering function S( �Q,ω) and to compare those quantities with the experimental data.

Without a theoretical model one should be aware of the errors introduced by blindly identifying the effective
density of states Geff(ω) with the true vibrational density of states g(ω). We find this source of error sufficiently
important to illustrate it with a simple but telling example: the dynamics of ice. Ice is a typical molecular crystal
and has several excitation bands (see Fig. 56). At low frequencies (�ω < 40 meV) the excitations correspond to

Fig. 56. Inelastic intensity of two H2O phases of ice measured at the instrument TOSCA at ISIS [36]. In ice the translational modes are well
separated from the librational modes. Due to the fact that for librations the movement is limited to the two hydrogen atoms the inverse effective
mass, that enters the intensity calculation is nine times as large as that to be used for the translations. If this fact is not properly taken into
account when extracting the vibrational density of states with the help of expression (9.271) the number of modes in the vibrational band is
overestimated, in the worst case by a factor of nine.
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the translational centre-of-mass motions of the water molecules. Let us for the moment neglect the fact that the
crystalline phases of ice possess more than one molecule in the primitive cell. If the librations that will be discussed
below are supposed to be completely decoupled from the translations, then the system can be considered atomic
(where the “effective” atom is the molecule H2O) in this low frequency region. The weight of each translational
mode in the cross section (9.260) is determined by 2σinc(H)/m(H2O). This result is obtained by remembering that
the eigenvectors ei are normalised to unity and that the scattering is dominated by the incoherent cross section of
hydrogen. The next higher band of excitations contains the librations of the water molecules. Librations are, like
translations, external modes, i.e. they do not introduce distortions of the H2O molecule. For ideal librations the
centre-of-mass is at rest (see the decoupling mentioned above). As the centre-of-mass nearly coincides with the
oxygen site we can assume in good approximation that the vibrational modes possess non-zero components only
for the hydrogen atoms. The weight of each librational mode in the cross section is determined by σinc(H)/m(H).
This implies that, even though they will contain the same number of modes, the intensity of a librational band will
exceed that of a “hypothetical” translational band covering the same frequency region by a factor 9. If this fact is
ignored and the generalised density of states is blindly interpreted as the true density of states then this mistake will
result in an enormous error in this admittedly eminently unfavourable case. This is confirmed by more elaborate
calculations using molecular dynamics simulations [13].

9.16. The incoherent approximation

As we already mentioned several times the density of states is of great importance for the physical properties of
a material. It is in principle accessible through the incoherent scattering signal provided we take the precautions
discussed in the previous section. Unfortunately113 one is often facing coherent scatterers. If one is dealing with
a monatomic crystal then one can always try to measure the entire set of dispersion curves and derive from this
information the density of states. This quickly becomes an impractical approach when working with even slightly
more complex structures, i.e. with several atoms in the primitive cell. The problem is rooted in the requirement that,
in order to determine the density of states, the experiment must capture the modes in their totality. Since coherent
scattering produced by phonons is very selective due to the conservation of crystal momentum this requires at
minimum the coverage of a symmetrically representative part of the Brillouin zone. Such a survey may still be
insufficient as due to the projection of the eigenvectors onto �Q in the form factor a particular phonon may be
invisible despite of the fact that both energy and crystal momentum conservation are fulfilled. To repeat a telling
example, the projection onto �Q is strictly zero for purely transverse modes in the first Brillouin zone. And even
if the signal contained contributions from all the modes this will not be a guarantee that we are in a position of
calculating the density of states. This will only be the case if we knew the exact weight with which the modes
contribute to the signal. This weight depends among other things again on the projection of the eigenvectors
onto �Q and thus calculating this weight implies a prior knowledge of these eigenvectors. We thus need a more
efficient method than the extraction of the density-of-states from single crystal data even if that method was very
approximative.

Given that an average over all the modes is needed it seems logical to turn towards powder measurements. The
possibility of realising such measurements has been discussed quite early (see for example [5]). To better define
the problem and to identify the principle sources of error we have to study in a bit more detail the influence of
powder averaging on the inelastic cross section. If we limit ourselves to cubic monatomic systems we obtain from
(9.202) for the coherent partial differential cross section

(
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=
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)
, (9.274)

113Unfortunately, because, as we had discussed in detail, the information content of coherent scattering is always superior to that of incoher-
ent scattering. The problem is related to extracting this information content.
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where we only show the part that concerns the emission of a phonon. The part that concerns the absorption can be
derived in perfect analogy.

In order to carry out the powder average it is in general preferable to transform the sum over q into an integral114
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. (9.276)

For a given energy transfer the vector �Q is defined in the reference system of the spectrometer by �ki and �kf . The
vectors �q as well as the eigenvectors �ei(�q) of the phonons are defined in the reference system of the sample. In a
powder this reference changes from one grain to the next. From the perspective of the sample the direction of �Q,
therefore fluctuates arbitrarily in all directions. Formally the vector �Q can be found with equal probability at any
point on a sphere with radius Q. In order to capture this effect we have to average the cross section over all possible
�Q directions. Let us define
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In this expression the spherical coordinates refer to (as explicitly indicated) �Q and not �kf (as in previous sections).
Carrying out this average for the expression (9.276) we find
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where in order to simplify the expression we pose �q �G := �q − �G. With respect to (9.276) the Dirac functions of the

vector �Q become Dirac functions of the norm Q. This makes perfect sense as in a powder we will always find a
grain that satisfies the conservation of crystal momentum �q �G = �Q provided that Q equals |�q �G|.

114We use the replacement

∑
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· · · → N
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∫
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(2π)3

∫
d3q . . . (9.275)

with VBz being the volume of the Brillouin zone.
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If the scattering had been incoherent then we would have found starting from (9.245)
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This is a result that we already know (see expression (9.262)).115 Compared to the expression (9.279) for incoherent
scattering the expression (9.278) for coherent scattering is more selective in terms of the modes that contribute to
the integral. In other words, the incoherent scattering is inclusive and the degree of inclusion is solely governed
by the incoherent scattering cross sections of the respective atoms. All modes are a priori present in the cross
section. The coherent scattering is selective. Even after powder averaging a specific mode will only contribute to the
measured cross section if the reciprocal lattice volume covered contains a lattice vector �G such that |�q− �G| = �Q. If
Q and ΔQ are small this volume is small and the number of �G that are susceptible to meet the condition |�q− �G| = �Q
will equally be small (see Fig. 57). In the case of very small Q the volume covered will be contained within the
first Brillouin zone and the wave vectors of the modes are submitted to the stringent condition of |�q| = Q. In this
scenario the bulk part of the modes will escape observation. The number of reciprocal lattice vectors that enter
into the cross section increases significantly with Q. Unfortunately very large Q values are not desirable for other
reasons. First of all the energy resolution decreases and secondly the multi-phonon contributions become dominant.

The solution consist in using reasonably large Q values and to allow at the same time an important variation ΔQ
in Q in order to assure a better sampling of modes. In practice this variation can be obtained using e.g. a multi-
detector. For a given energy transfer �ω the value of Q will vary when going from one detector to another. The
experiment then covers an entire shell in reciprocal space that is delimited by the spheres of radius Qmin(�ω) (in-
terior) and Qmax(�ω) (exterior). Let us denote by p(�ω,Q) the probability116 that the inelastic scattering proceeds
via a channel characterised by the energy transfer �ω and the norm of the momentum transfer Q. Then the coherent
cross section integrated over the reciprocal space volume V can be written as
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116This probability depends on the details of the experimental set-up. We will later give the exact expression for this probability in the case
of a direct geometry time-of-flight multi-detector spectrometer.
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Fig. 57. Part of the reciprocal space for a cubic lattice. The phonon dispersion curves are indicated in a schematic manner by the equipotential
lines. If there is only one detector, then Q is fixed by the energy transfer �ω. In a crystal only one point ( �Q, �ω) is measured. In a powder Q̂
scans all possible directions in the reference system of the sample. The measurement is in this way averaged over a sphere with radius Q. If the
radius of this sphere is small then only a small part of the modes are selected. With a multi-detector instrument (see Fig. 58) the area between
the spheres of radius Qmax and Qmin is covered. In the example shown here this area corresponds to about twenty zones in the plane and to
about one hundred zones in the three-dimensional volume.
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For a given mode (i, �q) the integration of the �Q dependent terms is then contained in the function
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In order to evaluate this expression further we neglect the �Q dependence of the Debye–Waller factor. For suffi-
ciently large volumes V we can imagine that the terms appearing in hi(�q) can be replaced by their mean values
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with n the number of terms, which is identical to the number of Brillouin zones contained in the volume V

n :=
V
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(2π)3 . (9.284)
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In the mean values
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For a monatomic cubic system
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and in parallel
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This leads to
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and finally to
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This result is identical to the expression found when integrating (9.279) for the incoherent scattering.117 Hence
we can postulate the incoherent approximation as [42](
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117For the incoherent scattering the averaging over Q is trivial if we, as done here, neglect the Q dependence of the Debye–Waller factors.
In a more realistic calculation, this dependence is taken into account (see Section 10.6).
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The expression to the right refers to a hypothetical incoherent scatterer. Under this approximation the formalism
that we have elaborated for incoherent scattering can be employed to obtain a good estimate for the density of
states of a coherent scatterer, provided that the region sampled in �Q is sufficiently large. The validity of this ap-
proximation can be tested by comparing values obtained for g(ω) when sampling over different regions in �Q space.
Another possibility to estimate the errors introduced by the incoherent approximation is computer simulations.
Good estimates are already obtained with not very sophisticated dynamical models. In general, as both experiment
[55] and simulation [67] show the introduced errors rarely exceed 20% and this even in the most unfavourable
cases.

For time-of-flight spectrometers in direct geometry (see [52] and Fig. 58) with a fixed incident energy and a
multi-detector118 covering the scattering angles from Θmin to Θmax the integrated cross section takes the form119
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The incoherent approximation translates in this case into
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or in an equivalent manner
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Comparing (9.294) to (9.281) allows us to identify
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which allows us to calculate
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118We assume that the data are integrated over the Φ angle along the Debye–Scherrer cones, that is to say along trajectories with |Q| =
constant. If the part of the cone that is covered varies with Θ this has to be taken into account when normalising the data.

119With �Q = �ki − �kf and Θ the scattering angle, it follows that
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and hence
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as well as

Q dQ = kikf sin Θ dΘ. (9.293)
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Fig. 58. The IN6 instrument at the ILL is a direct geometry time-of-flight instrument. The incident beam is monochromatic and pulsed, which
means that �ki is constant. kf is determined by the time it takes the neutron to travel from the sample to the detector. It is equipped with 334
detectors arranged in three rows. The detection tubes are arranged in such a way that they maintain the same angle with respect to the scattering
along the three rows. The vertical angular opening of the detectors ΔΦ is defined by the height. Spectrometers of this type permit to sample
reciprocal space for a given energy transfer as indicated in Fig. 57.

This gives, with the help of (9.289), the relation between the integrated cross section and the density of states
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This expression is extremely valuable because it allows to extract the density of states along the trajectories defined
by the scattering angles and does not require a preliminary extrapolation to constant Q curves. This is particularly
helpful when the data are collected with low incoming energy in up-scattering mode. Using a low incoming energy
may be advantageous in terms of resolution and equally because the lower Q-values lead to reduced multi-phonon
contributions.

10. Inelastic neutron scattering beyond the one-phonon expressions

The expressions that we have obtained for the scattering functions contain only one-phonon processes, either in
absorption or in emission. Formally this is the consequence of retaining only terms linear in

ℵj′,j( �Q, t) =
〈
( �Q · �uj′ )

(
�Q · �uj(t)

)〉
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when expanding the expression

exp
(
ℵj′,j( �Q, t)

)
= exp

(〈
( �Q · �uj′ )

(
�Q · �uj(t)

)〉)
. (10.1)

We had motivated this decision with the argument that the ionic displacements are small in the regime of the
harmonic approximation. If we had been precise we would have added that small means small with respect to the
inverse of the norm of the �Q vector.

The one-phonon expressions are, therefore, valid provided that (i) the temperature is sufficiently low, (ii) that the
system is far from points of instability in the phase diagram and that (iii) the momentum transfer | �Q| is not too large.
When the last condition is violated we should, independently of the validity of the first two conditions, either take
higher order contributions into account or, even better, calculate the scattering function directly without phonon
expansion. We insist on the fact that this inclusion of higher order effects will be necessary even if the harmonic
approximation remains valid. Multi-phonon contributions exist both for harmonic and anharmonic systems.

10.1. The integral version of the scattering function

In order to judge the complexity of a calculation without phonon expansion we remind ourselves that in the
harmonic approximation

Sκ,κ′ ( �Q,ω)

=
1

2πN�

∑
j∈{jκ},j′∈{jκ′}

∫ ∞

−∞
dte−iωte

−i �Q·(�R0
j′−�R0

j )
e−Wj′ ( �Q)e−Wj ( �Q)eℵj′ ,j ( �Q,t) (10.2)

with

2Wj( �Q) =
〈
( �Q · �uj)2〉 = ∑

α=x,y,z

3N∑
j=1

|Qα · ei(α, j)|2�

2mjωi
coth

(
1
2

�ω

kBT

)
, (10.3)

and

ℵj′,j( �Q, t) =
〈
( �Q · �uj′ )

(
�Q · �uj(t)

)〉
=
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2

∑
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∑
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√
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〈
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〉
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]
+
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(
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)
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〈
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〉
exp(−iωi′t)
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=

�
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{[
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(
1 + n(ωi)

)
exp(iωit)

]
+

[
Ai( �Q; j, j′)

ωi
n(ωi) exp(−iωit)
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, (10.4)

as well as

Ai
(
�Q; j′, j

)
=

( �Q · �ei(j′)) · ( �Q · �ei(j))∗
√
mj′mj

. (10.5)

Hence it is possible to calculate Sκ,κ′ ( �Q,ω) numerically provided that the dynamics of the system is known,
i.e. provided that it is possible to determine the frequencies and the eigenvectors of all the harmonic modes, for
example from ab-initio calculations or from molecular dynamics simulations.
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10.2. The isotropic harmonic oscillator

An analytical solution for the scattering function can be found for the simple isotropic harmonic oscillator.120

We are going to derive this function motivated by the pedagogical aspect of the exercise. Expression (10.2) is our
starting point. When dealing with only one oscillator of frequency ω0, which in addition is assumed to be isotropic,
the following expression is found for the Debye–Waller factor

2W ( �Q) =
〈
( �Q · �u)2〉 = Q2

�

2mω0
coth

(
1
2

�ω0

kBT

)
, (10.6)

and for the expectation value

ℵ( �Q, t) =
〈
( �Q · �u)

(
�Q · �u(t)

)〉
=

Q2
�

2mω0

{[(
1 + n(ω0)

)
exp(iω0t)

]
+
[
n(ω0) exp(−iω0t)

]}

=
Q2

�

2mω0

cosh(ω0(it+ �/(2kBT )))
sinh(�ω0/(kBT ))

. (10.7)

The energy and temperature scales are fixed by �ω0. The amplitude of the Debye–Waller function as well as
the expectation value is governed by Q2

�/2mω0. For a harmonic oscillator in one dimension the fluctuation in
momentum is calculated as

Δp =
√

〈n|p2|n〉 =
√

1
2

�mω0 (10.8)

for the ground state. Thus,

Q2
�

2mω0
=

1
4

(Q�)2

(1/2)�mω0
=

(
1
2
Q�

Δp

)2

. (10.9)

Hence the amplitude is governed by the ratio between the (i) the momentum transfer of the neutron and (ii) the
momentum fluctuations in the ground state of the harmonic oscillator. This expression could also have been written
in terms of energy ratios

Q2
�

2mω0
=

�
2Q2/(2m)

�ω0
=

Er

�ω0
. (10.10)

Here

Er(Q) =
�

2Q2

2m
(10.11)

is again the well known expression for the recoil energy of a particle with mass m.
The ratio Er(Q)/�ω0 can be considered as the principle parameter, that, along with the temperature, governs

the dynamic response of a harmonic oscillator.

120Analytic solutions for harmonic oscillators are often found in physics.
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If we postulate

y :=
Q2

�

2mω0

1
sinh(�ω0/(kBT ))

, (10.12)

z(t) := ω0

(
it+

�

2kBT

)
(10.13)

then

〈( �Q · �u)
(
�Q · �u(t)

)
〉 = y cosh

(
z(t)
)

(10.14)

and thus

S( �Q,ω) =
1

2π�
e−2W ( �Q)

∫ ∞

−∞
dte〈(
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(
−2W ( �Q)
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(
y cosh

(
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. (10.15)

At this point the identity

exp
(
y cosh

(
z(t)
))

=
n=∞∑
n=−∞

exp
(
nz(t)

)
In(y) (10.16)

is used with In = I−n the Bessel functions of the first kind121 (see Fig. 59). Executing the integral with the help
of this expression we find

∫ ∞

−∞
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n=−∞

In(y)
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=
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In(y) exp

(
�ω
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)
(2π�)δ(�ω − n�ω0). (10.19)

121We have already met the spherical Bessel functions in Section 3.3. Bessel functions are the solutions to the differential equation

x2 d2y

dx2
+ x

dy

dx
+
(
x2 − n2

)
y = 0. (10.17)

The Bessel functions of the first kind are the solutions defined at x = 0. They are calculated as follows

In(x) =

(
x

2

)n ∞∑
p=0

(−1)p

22pp!(n+ p)!
x2p. (10.18)

The graphical representation of the Bessel functions resembles the sine and cosine functions, the amplitude of which decreases as 1/
√
x.
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Fig. 59. Bessel functions of the first kind In(y) for n = 0, 1, 2.

This leads us to the scattering function

S( �Q,ω) = exp
(
−2W ( �Q)

)
· exp

(
�ω

2kBT

) n=∞∑
n=−∞

In(y)δ(�ω − n�ω0). (10.20)

Hence the neutron can gain or loose an integer number of energy units �ω0, which is the expected result. If we
only keep the n = 0 term we get the expression for elastic scattering of an isotropic harmonic oscillator. The
terms n ± 1 correspond to an increase or a decrease in the level scheme by a single step. The other terms involve
scattering processes corresponding to transitions over several levels. We would like to emphasise that we are not
dealing with a multiple scattering process in the sense of Section 11.5. The simultaneous creation or annihilation
of several vibrations is part of a single scattering process. It does neither depend on the size of the sample nor on
the mean free path of the neutrons. It is also not related to anharmonics. With small modifications (see [39]) the
result found for the isotropic harmonic oscillator is directly applicable to a system of several Einstein oscillators,
i.e. of several decoupled oscillators.

Given that (see Fig. 59)

In(y) → 1
n!

(
y

2

)n

for y → 0 and n > 0 (10.21)

the first term in (10.20) dominates for small Q values. The expansion of the scattering function in terms of “phonon”
processes is then indicated.
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10.3. The short time period or impulse approximation

At the other end of the spectrum, i.e. for Q → ∞ and thus for y → ∞, all the In(y) become comparable (see
Fig. 59). The sum in expression (10.20) can therefore no longer be truncated. To identify the mechanism at work
at large Q we need another approach, that we will briefly elaborate here.

The scattered waves interfere and their respective phases depend on the relative positions of the atoms, which
are a function of time. The time tprobe it typically takes the incident wave front to pass from one atom to another is
given by the phase velocity

vp =
�ω

�k
=

�k

2m
=

1
2
vg.

For example, thermal neutrons (vg ≈ 2 · 103 m/s) cover inter-atomic distances (a few Å) in a few tenths of a
picosecond. The inter-atomic travel time of the phase front tprobe is then very close to the characteristic phonon
time tph with frequencies in the THz range. In other words, the inter-atomic journey of the neutron wave front
is well synchronised with the oscillation of the atoms. This is another way of explaining why the observation of
phonons is so easy with neutrons. If the incident neutron energy increases tprobe gets shorter and shorter. In order to
observe complete oscillation cycles it is necessary to work with a very well-defined frequency of the incident and
scattered waves. The observation of interference effects requires a higher and higher relative energy resolution.122

In reality it is the opposite trend that the instruments provide. The absolute resolution decreases with the energy of
the neutrons.

The fact that the multi-excitation terms are all important for Q → ∞ tells us that the spectral response is going
to shift towards higher energies. The high Q transfers as well as the energy �ω require the use of high energy
neutrons. For a resolution of a few percent we can assume that the observed interferences all come from the short
time end of the correlation function G(�r, t). As a consequence we are going to expand the function

〈
( �Q · �u)

(
�Q · �u(t)

)〉
−
〈
( �Q · �u)2〉 = Q2

�

2mω0

{
cosh(ω0(it+ �/(2kBT ))

sinh(�ω0/(kBT ))
− coth

(
1
2

�ω

kBT

)}
(10.22)

that we had found for the isotropic oscillator in time. If we limit ourselves all together to G(�r, t = 0) we are
working in the static approximation. This necessarily gives us a purely elastic response. This response is vanishing
in the case of a harmonic oscillator.

Keeping terms up to second order we include both the real and the imaginary part of the function (10.22)

〈
( �Q · �u)

(
�Q · �u(t)

)
− ( �Q · �u)2〉 = Q2

�

2m

[
it− t2ω0

2
coth

(
1
2

�ω0

kBT

)]
. (10.23)

We are confronted with a Gaussian function shifted along the imaginary axis in the complex plane. The calculation
of the correlation function (10.15) involves a Fourier transform of (10.23). With

∫ ∞

−∞
dt exp

(
−at2 + bt

)
=

√
π

a
exp
(
b2/4a

)
(10.24)

122The increase in resolution is important here. For X-rays the inter-atom trajectory is much shorter (tprobe ≈ Å/c = 0.3 · 10−18 s).
Hence it can be assumed (and this argument was made before third generation synchrotrons came into operation [62]) that X-ray scattering
gives only access to instantaneous correlations (G(�r, t = 0)). This is obviously no longer true with the introduction of high resolution X-ray
spectrometers. The energy of the incident wave is so well defined (Ei/ΔE ≈ 107), that the interferences can be observed even so the phase
shifts are small on the scale of tprobe.
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the scattering function becomes

S( �Q,ω) =
1√

2πΔ2
exp

(
− (�ω − Er)2

2Δ2

)
. (10.25)

This is a Gaussian function centred on the recoil energy

Er =
�

2Q2

2m
(10.26)

with a width proportional to the Debye–Waller factor

Δ2 :=
Q2
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2

2m
(�ω0) coth

�ω0

2kBT

= Er(�ω0) coth
�ω0

2kBT

= 2(�ω0)2W ( �Q). (10.27)

Before interpreting the result (10.23) we will derive it in an alternative way, that is without using the analytical
expression (10.22). For very short times the change in position of an atom is given by its instantaneous velocity �vj .
We treat this fact in the language of quantum mechanics by writing the Heisenberg operator for the position as

�Rj(t) = �Rj(t = 0) +
Pj(t)

mj
t. (10.28)

This approximation is called the impulse approximation. In order to calculate the scattering function (9.74) the
correlation function
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should be evaluated. The character of the operators are emphasised by the writing in bold. Knowing that

[Rα,j , Pβ,j′ ] = i�δα,βδj,j′ (10.30)

the identity (9.78) is used to evaluate this expression〈
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. (10.31)

At this point we only keep the terms j = j′, which means that we consider the response as completely incoherent.
In other words, we assume that the resolution of our instrument is in sufficient to observe interference effects at
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these high frequencies having their origin in distinct atoms. The scattering function takes the form

S(�q,ω) =
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2π�N

∑
j

∫ ∞

−∞
dt exp

(
it

(
−ω +

�Q2
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. (10.32)

For atomes confined in harmonic wells the momentum distribution is given by a Gaussian

〈
exp

(
i �Q ·

Pj(t)

mj
t

)〉
= exp

(
−t2

〈( �Q · �Pj)2〉
2mj

)
. (10.33)

This expression can be verified using the Bloch identity (9.95), which can be applied safely since �P(α, j), in the
same way as �u(α, j), is expressed as a linear combination of creation and annihilation operators. We find the same
results as before (10.25) but with the width expressed as

Δ2 =
1
mi

〈
( �Q · �Pj)2〉. (10.34)

We, therefore, can conclude that the width of the signal is related to the velocity distribution (or momentum
distribution) of the particles. Using creation and annihilation operator algebra it is not too difficult to show that
(10.34) corresponds indeed to (10.27).

This result can be generalised. If for short times we describe the particles via free particle states with a well-
defined momentum �Pj , then

�Pj |�Pj〉 = �Pj |�Pj〉 (10.35)

and, therefore,〈
exp

(
i �Q ·
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mj
t

)〉
=
∑
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n(�Pj) exp

(
i �Q ·

Pj

mj
t

)
(10.36)

with n(�Pj) the probability of finding the ion j in the state |�Pj〉. The corresponding scattering function (10.33) is
calculated as

S( �Q,ω) =
∑
j

∑
�pj

n(�pj)δ

(
�ω − Er(Q) − �

mj
( �Q · �pj)

)
. (10.37)

Hence scattering experiments at very high energies measure the momentum distribution of the particles.
In Fig. 60 the S(Q,ω) for a powder of solid deuterium is shown. As we have already mentioned solid deuterium

is a quantum solid. The scattering from deuterium is unlike that of hydrogen mainly coherent. The quantum char-
acter of this solid implies that there are large fluctuations in the positions despite the low temperature. The mean
square displacement u2 is of the order of 0.25 Å2 with the Debye–Waller function being W (Q) = 1

6u
2. For �Q

vectors larger than a few Å−1 important multi-phonon contributions should be observed. This is confirmed by the
experiment. When Q increases the spectral response shifts towards energies above the one-phonon threshold and
its character becomes more and more incoherent. The ratio between the recoil energy and the energy threshold
of the phonons (see (8.90)) is approaching one starting from Q ≈ 4 Å−1. If we stay with coherent scatterers a
more favourable ratio can only be obtained for helium. However even for �Q values close to 8 Å−1 one is still
far from the region where the impulse approximation gives good results. In particular, the response does still not
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Fig. 60. Illustration of the passage from one phonon scattering to recoil scattering. As an example we use the quantum solid D2. For experimen-
tal details see [27]. The �Q and ω space accessible to the experiment, shown on the top figure, is much larger than the one presented in Fig. 33.
This is the advantage of using a much shorter wave length (1.1 Å−1 instead of 2.2 Å−1). The increase in field of view is coupled to a decrease
in resolution. The phonons in solid deuterium have energies that do not exceed 10 meV. The intensity observed above this value must then be
attributed to (i) transitions between the rotation levels of the molecule D2 as well as (ii) multi-phonon scattering. The multi-phonon scattering
increases with the momentum transfer Q. For very large Q values the inelastic intensity should, according to (10.24), be centred on the recoil
energy, which is indicated by the black circles. Due to the contributions from rotational transitions the corresponding parabola is rather a lower
limit to the observed scattering. In the lower figure cuts of S(q,ω) for Q = 3 Å−1 and Q = 6 Å−1 are shown. We observe that the coherent
scattering is shifted from the region of the phonon density of states (�ω < 10 meV) to higher energies, where it step by step looses its internal
structure and more and more resembles incoherent scattering. The elastic scattering is completely extinct at large Q. The width of the inelastic
signal at Q = 6 Å−1 is compatible with (10.27) if we use the Debye–Waller function determined experimentally (W (Q) ≈ 1

6 · 0.25Q [Å]2

[27]) and a mean �ω situated between 5 and 10 meV. However the curve at 6 Å−1 still does not really resemble a Gaussian. It, in particular,
still has structure on an energy scale inferior to the recoil energy.

resemble a Gaussian. In this context it is interesting to have a more detailed look at the approximation (see [31]).
The experiments really relevant for this approximation, whose purpose is to measure the momentum distribution,
are conducted with very large incident energies at the spallation source ISIS.

10.4. Multi-phonons in a single crystal

As soon as the oscillators are coupled and the eigenvectors cease to be trivial the analytic expressions for the
simple oscillator are a priori no longer applicable. At very large �Q values we still may assume that the atoms
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behave as individual particles experiencing the scattering as an impact. We can then hope that the approximation
of the scattering function with the recoil function (10.24) continues to give satisfactory results, provided that we
proceed via a correct averaging over all the different atom types.

For intermediate Q values we have little choice but to base our treatment on the expansion of the function

exp
(
ℵj′,j( �Q, t)

)
= exp

(〈
( �Q · �uj′ )

(
�Q · �uj(t)

)〉)
including higher order terms. The second order terms will have the form

ℵj′,j( �Q, t)2 =
〈
( �Q · �uj′ )

(
�Q · �uj(t)

)〉〈
( �Q · �uj′)

(
�Q · �uj(t)

)〉
. (10.38)

Expressing the position operators in terms of creation and annihilation operators (9.197) and performing the Fourier
transform (9.200) we can show that the scattering function for a harmonic crystal has non-zero contributions only
if the conditions

�ω =
�

2

2m

(
k2
i − k2

f

)
= �
(
±ωi(�q1) ± ωi′(�q2)

)
, (10.39)

�Q = �ki − �kf = �G± �q1 ± �q2 (10.40)

are met. Hence the scattering involves either (i) the creation of two phonons or (ii) the creation of a phonon
combined with the annihilation of a phonon or (iii) the annihilation of two phonons. For each process the energy
has to be conserved. The crystal momentum has to be conserved up to a reciprocal lattice vector ��G. Unlike
the one-phonon scattering (see (9.208) and (9.209)) the scattering from several phonons is not limited to discrete
values of �ωi(�q). For a given scattering angle and a given energy difference it is in principle always possible
to find combinations of (ωi(�q1),ωi′ (�q2)) that satisfy (10.39) and (10.40). The number of possible combinations
determines to a great deal the intensity of the two-phonon scattering for a given (�Q,ω) point. The continuity in
the two phonon response complicates considerably its interpretation. For this reason the multi-phonon scattering
has little experimental value. Often it is only an undesired background underlying the one-phonon peaks. This
noise, which is equally temperature dependent, has to be properly subtracted in order to determine the one-phonon
intensity correctly. This is no problem when the instrument resolution is good and the phonon peaks are well
separated.

Finding expressions equivalent to (10.40) for the conservation of crystal momentum starting from the �uj(t) op-
erators becomes very tedious when the number of ℵ(Q, t) factors increases. As we have indicated in Section 9.12
an explicit calculation is also not really necessary. The conservation of momentum is a consequence of the peri-
odicity of the Hamiltonian. It is a fundamental result of quantum mechanics, which stipulates that any symmetry
operation S of the system is coupled to a quantum mechanical operator Ts that commutes with the Hamiltonian.
For a free particle a displacement �r → �r + �r0 along any direction in space leaves the Hamiltonian invariant. Such
a translation changes the phase of the wave function by the amount �q · �r0. It is, hence, described by the operator

T�r0
= exp

(
i
�
�p · �r0

)
. (10.41)

T�r0
evidently commutes with H = p2/2m. It, therefore, constitutes a constant of motion. In other words, if the

particle starts out in an eigenstate to T�r0
it will stay in that state forever. In the case of several particles only

interacting among themselves the translation of the system as a whole will still leave the Hamiltonian invariant.
This translation is described by

T�r0
= exp

(
i
�

∑
i

�pi · �r0

)
. (10.42)
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The fact that [T�r0
,H] = 0 leads to the conservation of the total momentum. It naturally persists in a crystal. It

is nevertheless not very useful in the context of scattering. What really interests us is the consequences of the
translation by a lattice vector �R0. Unlike arbitrary translations of the system, these particular translations are
equivalent to a permutation of particles. They, therefore, create a link both between the displacements

�u(�R) → �u(�R− �R0)

and the momenta

�P (�R) → �P (�R− �R0)

of the particles. No such relation can be established for arbitrary translations. These relations are valid for all �R
that designate an equilibrium position of an atom. In order to exploit this extra symmetry it is necessary to identify
the associated quantum mechanical operator. We are looking for a unitary operator

T (�R0) = exp
(
iK(�R0)

)
that assures

exp
(
iK(�R0)

)
�u(�R) exp

(
−iK(�R0)

)
= �u(�R− �R0), (10.43)

exp
(
iK(�R0)

)
�P (�R) exp

(
−iK(�R0)

)
= �P (�R− �R0). (10.44)

For the operator T (�R0) to fulfil this requirement we choose

K(�R0)
∣∣{ni(�q)

}〉
=
∑
�q

∑
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ni(�q)(�q · �R0)
∣∣{ni(�q)

}〉
. (10.45)

The reader interested in the prove of this assertion can consult [2]. The fact that we write K(�R0) in the basis of
phonon eigenstates does not imply that the crystal should be harmonic. K(�R0) is an operator that extracts from a
given quantum state that is represented in the basis of phonon eigenvectors the sum of the projections of the wave
vector �q onto �R0. It is called the crystal momentum operator.

The translation operators T (�R0) all commute with each other. If the system at a given moment is in an eigenstate
of the Hamiltonian, then this state will be an eigenstate of all the individual translation operators T (�R0) with the
corresponding eigenvalues

exp

(
i
∑
�q

∑
i

ni(�q)(�q · �R0)

)
.

The fact that the T (�R0) commute with the Hamiltonian implies that the system has to preserve these eigenvalues.
If the occupation of a phonon level changes

ni(�q) → n′i(�q),

e.g. due to anharmonic interactions, then

exp

(
i
∑
�q

∑
i

ni(�q)(�q · �R0)

)
= exp

(
i
∑
�q

∑
i

n′i(�q)(�q · �R0)

)
∀�R0. (10.46)
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In other words

exp

(
i

[∑
�q

∑
i

ni(�q)�q − n′i(�q)�q

]
· �R0

)
= 1 ∀�R0. (10.47)

This is an expression that defines the reciprocal lattice vectors �G via

exp(i �G · �R0) = 1 ∀�R0. (10.48)

We, therefore, conclude[∑
�q

∑
i

ni(�q)�q − n′i(�q)�q

]
= �G. (10.49)

Hence symmetry requires that the crystal momentum is conserved within the system up to a reciprocal lattice
vector.

We will now add a neutron (or any other particle that only interacts with the ions, e.g. a Bloch electron) to
the system. The presence of the neutron does not perturb the symmetry of the lattice. When translated by �R0 the
neutron experiences the same interactions as before just with other ions. The neutron translation operator is given
by (10.41)

T n
�R0

= exp

(
i
�
�p · �R0

)
. (10.50)

The symmetry of the lattice implies that the product of T n
�R0

and T ions
�R0

commutes with the Hamiltonian. If the initial

state of the crystal is an eigenstate of the harmonic system and that if the neutron is found in the state �p = ��ki then
the combined system is in an eigenstate of

T n
�R0
T ions
�R0

∀�R0

with eigenvalues

exp

(
i

[
�ki +

∑
�q

∑
i

ni(�q)�q

]
· �R0

)
.

Due to the interactions between the neutron and the ions as well as anharmonic forces present in the crystal neither
the state of the neutron nor the state of the crystal will be stationary. To the contrary, both of them will evolve in
time. Using the same arguments that brought us to (10.49) we derive that between the quantum numbers of the
initial and final states the relation following relation holds:[∑

�q

∑
i

ni(�q)�q − n′i(�q)�q

]
+ �G = (�kf − �ki). (10.51)

The change in momentum of the neutron is thus compensation by a change in the crystal momentum. The change
in the crystal momentum corresponds to the changes in the wave vectors �q of the phonons up to a reciprocal lattice
vector �G. This is a very general result. It is valid for harmonic as well as anharmonic crystals and stays valid for
an arbitrary number of phonons exchanged. The one-phonon selection rules are just a specific case of the more
general expression.
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10.5. Iterative calculation of multi-phonon contribution for incoherent monatomic systems

An correction of multi-phonon contributions becomes mandatory when working with powders. In this case the
one-phonon response is already continuous as function of energy. It is, therefore, qualitatively indistinguishable
from the multi-phonon response. Without a model or lattice dynamical calculation a correction for multi-phonons
is difficult. Such a correction is nevertheless essential if we want to extract meaningful physical quantities from
the measurements. A rigorous iterative procedure can only de developed for an incoherent monatomic system.123

This restriction may seem prohibitive. In practice it is, however, realised that due to the multiple “averaging” of the
dispersion relations that is inherent to the calculation of multi-phonon contributions details do not really matter.
The method, therefore, gives quite convincing results even for rather complex systems.

For an incoherent monatomic system the expectation value that determines the scattering function (10.2) to first
order in the displacements has the form

ℵj,j( �Q, t) =
〈
( �Q · �uj)

(
�Q · �uj(t)

)〉
=

�

2
Q2

3N
1
m

∑
i

{[
1
ωi

(
1 + n(ωi)

)
exp(iωit)

]
+

[
1
ωi

n(ωi) exp(−iωit)

]}
, (10.52)

where we have used the expressions (9.241) and (9.250).124 The last expression can only be applied to cubic or
isotropic systems. The expression (10.52) can be reformulated using the density of states

g(ω) :=
1

3N

3N∑
i=1

δ(ω − ωi). (10.53)

Which leads to

〈
( �Q · �uj)

(
�Q · �uj(t)

)〉
=

�

2
Q2

m

{∫ ∞

0
dω

g(ω)
ω

[(
1 + n(ω)

)
exp(iωt)

]
+

∫ 0

−∞
dω

g(ω)
−ω

[
n(−ω) exp(iωt)

]}
. (10.54)

Using the identity

1 + n(ω) = 1 +
1

exp(�ω/(kbT )) − 1
=

exp(�ω/(kbT ))
exp(�ω/(kbT )) − 1

=
1

1 − exp(−�ω/(kbT ))
= −n(−ω) (10.55)

we end up with the relative simple expression

ℵj,j( �Q, t) =
〈
( �Q · �uj)

(
�Q · �uj(t)

)〉
=

�Q2

2m

∫ ∞

−∞
dω

g(ω)
ω

·
(
n(ω) + 1

)
· exp(iωt). (10.56)

123The corresponding method was introduced quite early by A. Sjölander [61].
124The factor (3N )−1 comes from the fact that the eigenvectors ei(α, j) have 3N components among which the amplitudes of vibration are

distributed.
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This expression can alternately be formulated as125

ℵj,j( �Q, t) =
�Q2

2m

∫ ∞

0
dω

g(ω)
ω

[
i sin(ωt) + cos(ωt) coth

(
�ω

2kbT

)]
. (10.57)

Defining

f (t) :=
2m
�Q2ℵj,j( �Q, t) =

∫ ∞

−∞
dω

g(ω)
ω

·
(
n(ω) + 1

)
· exp(iωt) (10.58)

the scattering function (see (8.7) and (10.2)) can be written as

S( �Q,ω) =
σinc

4π

N

2π�

∫ ∞

−∞
dte−iωte−2W ( �Q)e〈(

�Q·�uj )( �Q·�uj (t))〉

=
σinc

4π

N

2π�

∫ ∞

−∞
dte−iωt exp

(
−2W ( �Q)

)
· exp

(
�Q2

2m
f (t)

)

=
σinc

4π

N

2π�
exp

(
−�Q2

2m
f (0)

) ∞∑
p=0

1
p!

∫ ∞

−∞
dte−iωt

(
�Q2

2m
f (t)

)p

, (10.59)

where in the last line we have used the fact that126 (see (9.110))

2W ( �Q) =
�Q2

2m

∫ ∞

0
dω

g(ω)
ω

(
2n(ω) + 1

)
=

�Q2

2m
f (0) = ℵj,j( �Q, t = 0). (10.62)

125

(
1 + n(ω)

)
exp(iωt) + n(ω) exp(−iωt)

=
(

1 + n(ω)
)(

cos(ωt) + i sin(ωt)
)
+ n(ω)

(
cos(−ωt) + i sin(−ωt)

)

=
(

1 + n(ω)
)(

cos(ωt) + i sin(ωt)
)
+ n(ω)

(
cos(ωt) − i sin(ωt)

)

=
(

1 + 2n(ω)
)

cos(ωt) + i sin(ωt)

= coth

(
�ω

2kbT

)
cos(ωt) + i sin(ωt).

126Attention, the density of states are often not defined as a function of ω but of energy and normalised such that

∫ ∞

0
g(�ω) d(�ω) = 1. (10.60)

In this case the expressions should be modified accordingly. For the Debye–Waller function we obtain for example

2W ( �Q) =
�2Q2

2m

∫ ∞

0
d(�ω)

g(�ω)

�ω

(
2n(ω) + 1

)
=

�2Q2

2m

∫ ∞

0
d(�ω)

g(�ω)

�ω
coth

(
�ω

2kBT

)
. (10.61)
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From this we derive the intermediate scattering function

I( �Q, t) =
σinc

4π
N exp

(
−�Q2

2m
f (0)

) ∞∑
p=0

1
p!

(
�Q2

2m
f (t)

)p

. (10.63)

If only the first term in the sum is kept, which is equivalent to I( �Q, t = 0), then we end up with the elastic scattering
function (to be compared with (9.217))

S(p=0)( �Q,ω) = N
σ

4π
exp
(
−2W ( �Q)

)
δ(�ω). (10.64)

The next term gives the one-phonon response (to be compared with (9.262))

S(p=1)( �Q,ω) =
σinc

4π

N

2π�
exp
(
−2W ( �Q)

) ∫ ∞

−∞
dte−iωt

(
�Q2

2m
f (t)

)

=
σinc

4π

N

2π�
exp
(
−2W ( �Q)

) ∫ ∞

−∞
dte−iωt

(
�Q2

2m

∫ ∞

−∞
dω′ g(ω′)

ω′
(
n
(
ω′)+ 1

)
exp
(
iω′t
))

=
σinc

4π
N exp

(
−2W ( �Q)

)Q2

2m

∫ ∞

−∞
dω′ g(ω′)

ω′
(
n
(
ω′)+ 1

)
δ
(
ω − ω′)

=
N

8π
Q2σinc

m
exp
(
−2W ( �Q)

)g(ω)
ω

(
n(ω) + 1

)
. (10.65)

In order to calculate the contributions from several phonons we exploit the fact that

∫ ∞

−∞
dte−iωtf (t)p =

∫ ∞

−∞
dte−iωtf (t) · f (t)p−1 (10.66)

is the Fourier transform of a product of functions. Hence this Fourier transform is given by the convolution of the
individual Fourier transforms. With

T0(ω) :=
1

2π�

∫ ∞

−∞
dte−iωt =

1
�
δ(ω) = δ(�ω), (10.67)

T1(ω) :=
1

2π�

∫ ∞

−∞
dte−iωtf (t) =

g(ω)
�ω

(
n(ω) + 1

)

=
g(ω)
2�ω

(
coth

(
�ω

2kbT

)
+ 1

)
, (10.68)

the higher order terms are found in a recursive manner

Tp(ω) :=
∫ ∞

−∞
dte−iωtf (t)p =

∫ ∞

−∞
T1
(
ω − ω′)Tp−1

(
ω′) dω′. (10.69)

This is a very important result. The multi-phonon contributions are found by the repetitive convolution of the
density of states (correctly weighted by the occupation of modes) with itself. This constitutes a considerable sim-
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plification with respect to expression (10.59). For the scattering function we find

S( �Q,ω) =
σinc

4π
N exp

(
−2W (Q)

) ∞∑
p=0

1
p!

(
�Q2

2m

)p

Tp(ω). (10.70)

As a result it is possible to calculate the total inelastic scattering function up to the highest order of phonons as
long as the density of states g(ω) is known. In practice – and without prior knowledge – the density of states
g(ω) is determined in an iterative manner. First g(ω) is extracted from the data as if there were no higher order
contributions, i.e. by using (10.70). The first estimate of g(ω) is then inserted into the expressions (10.62) and
(10.68). This allows to determine the higher oder contributions to the scattering function via the expressions (10.69)
and (10.70), and this up to any desired number of terms pmax. The difference between this calculated cross section
and the actually measured cross section is used to tune g(ω). This procedure is continued until convergence is
reached thus yielding g(ω) in a self-consistent way.127

10.5.1. Symmetrised p-phonon terms
The functions Tn(ω) are not symmetric with respect to ω. Up till now this has not caused problems. It is never-

theless often preferable to work with symmetric functions when doing numerical calculations [50,61]. By defining

T
sym
p (ω) := e−�ω/(2kBT )Tp(ω) (10.71)

we verify that

∫ ∞

−∞
T

sym
1

(
ω − ω′)T sym

p−1

(
ω′) dω′ =

∫ ∞

−∞
e−�(ω−ω′)/(2kBT )T1

(
ω − ω′)e−�ω′/(2kBT )Tp−1

(
ω′) dω′

= e−�ω/(2kBT )
∫ ∞

−∞
T1
(
ω − ω′)Tp−1

(
ω′) dω′

= e−�ω/(2kBT )Tp(ω)

= T
sym
p (ω). (10.72)

Hence the functions T sym
p (ω) can be determined in the same recursive way as the Tp(ω) starting from

T
sym
1 (ω) =

g(ω)
2�ω sinh(�ω/(2kBT ))

. (10.73)

T
sym
1 (ω) is then symmetric with respect to ω and all the other T sym

p (ω), which are obtained by successive convolu-
tion, are symmetric as well.

Inserting the functions T sym
p (ω) into (10.70) the partial differential cross section can be written as

(
d2σinc

d(�ω) dΩ

)
inc

=
kf
ki

S( �Q,ω) =
Nσinc

4π

kf
ki

e�ω/(2kBT )e−2W (Q)
∞∑
p=1

(
�Q2

2m

)pT
sym
p (ω)
p!

. (10.74)

10.5.2. Normalised p-phonon terms
The expressions (10.70) and (10.74) both describe the scattering function as a sequence of terms with p-phonons.

They have in common that the functions Tp(ω) and T̃p(ω) employed for this purpose and which can be considered

127This procedure is for example implemented in the software package MUPHOCOR of W. Reichardt [50].
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as pseudo density of states of p phonons are not normalised. Due to this fact it is not evident to find the physical
quantity which controls the impact of each term and thus the convergence of the sequence. We can fix this problem
by normalising the pseudo-density of states Tp(ω). From (10.66) we get

∫ ∞

−∞
dωTp(ω) =

∫ ∞

−∞
dω
∫ ∞

−∞
dt e−iωtf (t)p =

∫ ∞

−∞
dtf (t)pδ(t) = f (0)p. (10.75)

With the identity (10.62) these norms are directly linked to the Debye–Waller functions

f (0)p =

(
2W (Q)

2m
�Q2

)p

. (10.76)

By defining

T̃p(ω) :=
Tp(ω)
f (0)p

= Tp(ω)

(
�Q2

2m
1

2W (Q)

)p

(10.77)

we obtain normalised functions∫ ∞

−∞
dωT̃p(ω) = 1. (10.78)

Inserting (10.77) into (10.70) the scattering function can be expressed as

S( �Q,ω) =
σinc

4π
N exp

(
−2W (Q)

) ∞∑
p=0

1
p!

(
�Q2

2m
f (0)

)p

T̃p(ω)

=
σinc

4π
N exp

(
−2W (Q)

) ∞∑
p=0

(2W (Q))p

p!
T̃p(ω). (10.79)

Hence the sequence converges rapidly if the Debye–Waller function for the Q in question is small. This is the case
if the mean square displacement u2 of the atoms is small. When Q or u2 increase the multi-phonon terms become
more and more important. This is the situation that we had already encountered in the discussion of the isotropic
harmonic oscillator. Thus the Debye–Waller function is a good indicator for the number of terms that should be
taken into account when analysing the data.

10.6. Integrating the p-phonon terms over angle and Q

The expressions that we have developed so far are valid for a particular Q-value. If the incoherent approximation
has to be used, or if in order to get decent statistics the data have to be anyway summed over several detector banks,
then one wishes to determine g(ω) from data integrated over Q or scattering angle. The integration of choice is
in this context the one that we have presented together with the incoherent approximation (see Eq. (9.295)). If we
apply this integration to expression (10.74) using (9.293), we obtain

(
dσ

d(�ω)

)
int

= ΔΦ
∫ θmax

θmin

(
d2σinc

d(�ω) dΩ

)
inc

sin θ dθ

= ΔΦ
∫ Qmax(ω)

Qmin(ω)

(
d2σinc

d(�ω) dΩ

)
inc

1
kikf

Q dQ
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= ΔΦ
Nσinc

4π

1

k2
i

e�ω/(2kBT )
∞∑
p=1

(
�

2m

)pT
sym
p (ω)
p!

∫ Qmax(ω)

Qmin(ω)
Q2pe−γQ2

Q dQ

= ΔΦ
Nσinc

4π

1

k2
i

e�ω/(2kBT )
∞∑
p=1

(
�

2m

)pT
sym
p (ω)
p!

1
2γp+1

∫ Qmax(ω)

Qmin(ω)

(
γQ2)pe−γQ2

d
(
γQ2)

(10.80)

with

γQ2 := 2W (Q), (10.81)

where Qmin and Qmax naturally depend on the frequency ω. This expression is rigorously exact for an incoherent
scatterer in a monatomic, cubic Bravais lattice.

Integrals of the type

Ip(y) =
∫ y

0
xpe−x dx, (10.82)

can be calculated by recursion

Ip(y) :=
∫ y

0
xpe−x dx = −ype−y − p

∫ y

0
xp−1e−x = −ype−y − pIp−1(y). (10.83)

This formula can easily be obtained by partial integration.128 The first terms are calculated as

I0(y) = −e−y , (10.89)

I1(y) = −(y + 1)e−y , (10.90)

I2(y) = −
(
y2 + 2y + 2

)
e−y , (10.91)

I3(y) = −
(
y3 + 3y2 + 6y + 6

)
e−y. (10.92)

128Partial integration is defined on the identity

∫ b

a
u′(x)v(x) dx =

[
u(x)v(x)

]b
a
−
∫ b

a
u(x)v′(x) dx. (10.84)

Posing

u(x) := −e−x, (10.85)

v(x) := xp (10.86)

it follows that

∫ b

a
xpe−x dx = −

[
xpe−x

]b
a
− n

∫ b

a
xp−1e−x, (10.87)

and hence

Ip(y) :=
∫ y

0
xpe−x dx = −ype−y − p

∫ y

0
xp−1e−x = −ype−y − pIp−1(y). (10.88)
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Thus we arrive at the result(
dσ

d(�ω)

)
int

= ΔΦ
Nσinc

8π

1

k2
i

e�ω/(2kBT )
∞∑
p=1

(
�

2m

)p 1
γp+1

(
Ip
(
γQ2
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)
− Ip

(
γQ2

min

))T sym
p (ω)
p!

. (10.93)

If the mean square displacements are small with respect to Q−2
max only the one-phonon term is left(

dσ
d(�ω)

)p=1

int
= ΔΦ

Nσinc

8π

1

k2
i

e−�ω/(2kBT )
(
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(
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1
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(

�
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1
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×
(
−
(
1 + γQ2

max
)
e−γQ2

max +
(
1 + γQ2
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)
e−γQ2

min
)
T

sym
1 (ω). (10.94)

In addition we can calculate the factor

I1
(
γQ2) = −

(
1 + γQ2)e−γQ2 ≈ −

(
1 + γQ2)(1 − γQ2) = −1 +

1
2
γ2Q4. (10.95)

Thus(
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d(�ω)
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32πm
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k2
i

(
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max(ω) −Q4
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. (10.96)

This expression establishes a simple relation between experimental data integrated over Q dQ and the density of
states g(ω). It is identical to (9.299) apart from the Debye–Waller factor. It permits to estimate the initial density of
states from which the iterative process can be started. A concrete example of how, with the formalism developed
here, multi-phonon terms can be calculated in an iterative way starting from the Q integrated data is shown in
Fig. 61 for the completely incoherent scatterer vanadium.

The expression (10.96) is also interesting from another point of view. The Q dependence of the Debye–Waller
factor was correctly taken into account when deriving this result. In addition, the Debye–Waller factor was kept to
the same order γ as the multi-phonons. The result is that the Debye–Waller factor disappears completely from the
expression for the one-phonon cross section. We draw the following conclusion. If it is not possible to correct for
the multi-phonons it is better not to correct for the Debye–Waller factor either since the two partially compensate
each other.

We would like to reinforce this point by using the f sum rule. With (see (10.65))

S(p=1)( �Q,ω) =
N

8π
Q2σinc

m
exp
(
−2W ( �Q)

)g(ω)
ω

(
n(ω) + 1

)
the first moment is found to be∫ ∞

∞
d(�ω)(�ω)S(p=1)( �Q,ω) =

N

8π
�

2Q2σinc

m
exp
(
−2W ( �Q)

) ∫ ∞

0
dωg(ω)

=Nb2 �
2Q2

2m
exp
(
−2W ( �Q)

)
= Nb2Er( �Q) exp

(
−2W ( �Q)

)
. (10.97)
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Fig. 61. Density of states for Vanadium at 300 and 600 K obtained from one-phonon incoherent scattering measured at the instrument IN6.
The curves that are corrected for multi-phonons to the second order are compared to the curves where no correction is made. The difference
can be attributed to two-phonon processes. The two-phonon contribution increases with temperature. If this correction is not taken into account
then one will postulate erroneously the existence of a vibrational band between 35 and 50 meV, which in addition would be predicted as highly
anharmonic.

The reduction of this moment with respect to the total moment according to (8.187) is due to the Debye–Waller
factor. The result is correct if we complete it with the contributions from muliti-phonons. If we decide to ignore
the multi-phonon effects it is better to ignore the Debye–Waller factor as well. Then at least the first moment is
reproduced correctly.

10.7. Susceptibility and anharmonic effects

In Section 8.11 we learned from (8.155) that the scattering function of any system can be written as

S( �Q,ω) =
1
π

(
1 + n(ω)

)
χ′′
�Q

[ω] (10.98)

with χ′′
�Q

[ω] the generalised susceptibility of a dynamic system. We would now like to apply this relation to vibra-

tions and phonons. If we take the coherent scattering function (9.185)

S
1−ph
coh ( �Q,ω) =

1
2

∑
i

|Fi( �Q)|2
ωi

{[(
1 + n(ωi)

)
δ(ω − ωi)

]
+
[
n(ωi)δ(ω + ωi)

]}

=
1
2

(
1 + n(ω)

)∑
i

|Fi( �Q)|2
ωi

{[
δ(ω − ωi)

]
+
[
δ(ω + ωi)

]}
(10.99)

as a starting point we find

χ′′
�Q

[ω] =
π

2

∑
i

|Fi( �Q)|2
ωi

{
δ(ω − ωi) + δ(ω + ωi)

}
. (10.100)
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The vibrational form factor is given by (9.186)

∣∣Fi( �Q)
∣∣2 :=

∣∣∣∣∑
κ

bκ√
mκ

∑
j∈{jκ}

e−i �Q·�R0
je−Wj ( �Q)( �Q · �ei(j)

)∣∣∣∣2.
Its temperature dependence is contained in the Debye–Waller factor. We should emphasise that the susceptibility
defined here refers to fluctuations in the density of the scattering length and not to the atomic density itself.

The expression (10.99) is in perfect analogy with the one derived for the simple harmonic oscillator with fre-
quency ω0 in the limit of vanishing damping (see expression (8.163)). For such an oscillator the susceptibility due
to fluctuations of the x position can be calculated as

χ′′
x̂+x̂[ω] =

π

2mω0

[
(δ(ω − ω0) − δ(ω + ω0)

]
. (10.101)

The expressions easily extend to incoherent scattering. With the incoherent one-phonon scattering function (9.260)
given by

S( �Q,ω)1−ph(+)
inc = Q2 1

8π

∑
κ

Nκ
σinc(κ)
mκ

e−2Wκ( �Q)Fκ(ω)
(1 + n(ω))

ω

we obtain an expression relating the susceptibility to the partial density of states

χ′′
�Q

[ω] =
1
8
Q2
∑
κ

Nκσinc(κ)
e−2Wκ( �Q)

ωmκ
Fκ(ω). (10.102)

This expression again depends on temperature only through the Debye–Waller factor. Following the same argument
as in the previous section, it is better to neglect this dependence if the multi-phonon contributions are not included.
Hence for a harmonic system the susceptibility

χ′′
�Q

[ω] = π
1

1 + n(ω)
Sinc( �Q,ω) (10.103)

that is obtained from the measured scattering function should be independent of temperature.
The qualitative affirmation of anharmonicity in the system is often not sufficient for pinning down the origin of

the anharmonic effects (for an example see Fig. 62). If we posses a single crystal, which puts us into the position
of studying in detail the dispersion curves, we can go one step further. Anharmonic processes have two principle
observable consequences. First of all the phonon peaks for a given �q and a given branch index i obtain a width.
Secondly the central frequencies change with temperature.

The susceptibility of a damped mode is given in its most general form [29]

χ′′
(i,�q)(ω) = A(i, �q)

4ω0(i, �q)Γ(i, �q;ω)
[ω2 − ω0(i, �q)2 − 2ω0(i, �q)Δ(i, �q;ω)]2 + 4ω(i, �q)2Γ(i, �q;ω)2 . (10.104)

Apart from the terms introducing a shift of the centre frequencies this expression resembles strongly the one (see
(8.159)) that we had obtained for the simple damped harmonic oscillator in Section 8.11.

The frequency dependence of ω0(j, �q) and Δ(j, �q) are a priori unknown which makes this expression impractical
for data interpretation. The simplest approximation, that preserves the analytic properties of the scattering function
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Fig. 62. Susceptibility (in arbitrary units) multiplied by the energy for the polymer RbC60 as a function of temperature upon heating from 300
to 450 K. The measurement was done on the instrument IN6 at the ILL. For details see [55]. For low temperatures the susceptibility is invariant
as a function of temperature. When the system starts to de-polymerise, i.e. around 350 K it becomes strongly anharmonic and the susceptibility
evolves. The excess in intensity developing at low energies can be explained with scattering originating from the rotation of the C60 monomers.

like parity is given by [22]

Δ(i, �q;ω) = Δ(i, �q), (10.105)

Γ(i, �q;ω) =
ω

ω0(j, �q)
Γ(i, �q). (10.106)

This choice gives us the susceptibility of a damped harmonic oscillator

χ′′
(i,�q)(ω) = A(i, �q)

4ωΓ(i, �q)
(ω2 − Ω(i, �q)2)2 + 4ω2Γ(i, �q)2 , (10.107)

where we have introduced the renormalised frequency Ω(i, �q) (see Fig. 63).
By introducing the frequencies

ωlor(i, �q)2 := Ω(i, �q)2 − Γ(i, �q)2

the susceptibility of a damped harmonic oscillator can be written in the alternative form [66]

χ′′
(i,�q)(ω) =

A(i, �q)
ωlor(i, �q)

[
Γ(i, �q)

(ω − ωlor(i, �q))2 + Γ(i, �q)2)
− Γ(i, �q)

(ω + ωlor(i, �q))2 + Γ(i, �q)2)

]
, (10.108)

that corresponds for Γ(j, �q) 	 ωlor(j, �q) to the sum of two Lorentzian functions from the gain and loss part of the
spectrum.

This form is interesting since it leads us in the case of Γ(i, �q) → 0 back to the expression (10.103) for the simple
harmonic oscillator, since

lim
ε→0

1
π

ε

x2 + ε2 = δ(x). (10.109)
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Fig. 63. Susceptibility obtained for a damped harmonic oscillator according to (10.107). For Γ � Ω the oscillator is over-damped. For Γ � Ω
one obtains two Lorentzians.

As a consequence the factor A(i, �q) can be determined by replacing in the expression (10.100) the term (10.101) –
valid in the limit Γ → 0 – by the expression (10.104). We identify

A(j, �q) =
∣∣Fi( �Q|�q)

∣∣2. (10.110)

The phonon form factors |Fi( �Q|�q)|2 are defined by (9.203). For the scattering function of an ensemble of damped
harmonic oscillators we find

S
1−ph
coh ( �Q,ω) =

1
π

(2π)3

2Vunit cell

∑
�G

∑
i,�q

|Fi( �Q|�q)|2
ωlor(i, �q)

(
1 + n(ω)

)

×
[
δ
(
�q − ( �Q+ �G)

) Γ(i, �q)
(ω − ωlor(i, �q))2 + Γ(i, �q)2)

− δ
(
�q + ( �Q+ �G)

) Γ(i, �q)
(ω + ωlor(i, �q))2 + Γ(i, �q)2)

]
. (10.111)

One should be careful when interpreting the parameters obtained from experimental data by fitting to the expres-
sions (10.107) or (10.111). For small damping the difference between Ω and ωlor is small. When Γ increases the
frequency Ω is the more physical parameter. In the case of a soft mode it extrapolates e.g. correctly to zero at the
transition temperature [22].

10.8. Partial summary

We will again briefly summarise the principle results of the two last sections.
Our starting point were the partial scattering functions defined according to (9.74)

Sκ,κ′ ( �Q,ω) =
1

2π�

∑
j∈{jκ},j′∈{jκ′}

∫ ∞

−∞
dt
〈
e−i �Q·�Rj′ (t=0)ei �Q·�Rj (t)〉e−iωt.
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In a fully relaxed solid the ionic movements are described by the ionic displacements around their equilibrium
position

�uj(t) = �Rj(t) − �R0
j , j = 1, . . . ,N.

The expectation value that appears in the expression for the partial scattering functions becomes an expectation
value of the displacements (9.77)

〈
e
−i �Q·(�R0

j′+�uj′ (t=0))
ei �Q·(�R0

j+�uj (t))〉 = e
−i �Q·(�R0

j′−�R0
j )〈

e−i �Q·�uj′ (t=0)ei �Q·�uj (t)〉.
The algebraic properties of the displacement operators �uj(t) allow us to transform this function in the harmonic
approximation into (9.104)

〈
e−i �Q·�uj′ ei �Q·�uj (t)〉 = e−Wj′ ( �Q)e−Wj ( �Q)e〈(

�Q·�uj′ )( �Q·�uj (t))〉,

with Wj( �Q) the Debye–Waller functions.
Written in this form it is no longer required to effectuate the statistical average over the exponential functions.

The operation 〈 〉 has shifted to the exponent. As a consequence this expression is amenable to an expansion in
terms of the expectation value

ℵj′,j( �Q, t) =
〈
( �Q · �uj′ )

(
�Q · �uj(t)

)〉
,

which is bi-linear in �uj(t).
The first term in this expansion describes the elastic scattering. For a crystal the coherent elastic cross section is

found as (9.128)

(
d2σ

dΩ dEf

)el

coh
= Nunit cell

(2π)3

Vunit cell

∣∣F ( �Q)
∣∣2∑

�G

δ( �Q− �G)δ(�ω),

with the nuclear form factor of the primitive cell

F ( �Q) :=
∑
d

b̄d exp
(
−Wd( �Q)

)
exp(i �Q · �d).

The next term in the expansion provides the contributions from single vibrations (9.185)

S
1−ph
coh ( �Q,ω) =

1
2

∑
i

|Fi( �Q)|2
ωi

{[(
1 + n(ωi)

)
δ(ω − ωi)

]
+
[
n(ωi)δ(ω + ωi)

]}

with

∣∣Fi( �Q)
∣∣2 =

∣∣∣∣∑
κ

bκ√
mκ

∑
j∈{jκ}

e−i �Q·�R0
j e−Wj ( �Q)( �Q · �ei(j)

)∣∣∣∣2.

The function Fi( �Q) is the vibrational form factor of the mode i. It determines the intensity, with which the mode
will be observed for a given momentum transfer �Q. For a crystal the translation symmetry adds the conservation
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of crystal momentum (9.202)

S
1−ph
coh ( �Q,ω) =

(2π)3

2Vunit cell

∑
�G

∑
i,�q

|Fi( �Q|�q)|2
ωi(�q)

×
[(

1 + n
(
ωi(�q)

))
δ
(
�q − ( �Q+ �G)

)
δ
(
ω − ωi(�q)

)
+ n
(
ωi(�q)

)
δ
(
�q + ( �Q+ �G)

)
δ
(
ω + ωi(�q)

)]
with the phonon form factor

∣∣Fi( �Q|�q)
∣∣2 =

∣∣∣∣∣
r∑

d=1

bd√
md

e−Wd( �Q)( �Q · �ei(d|�q)
)
e−i �Q·�d

∣∣∣∣∣.
The discreteness of the coherent one-phonon response permits the determination of the dispersion sheets.

The incoherent scattering for a given �Q is a continuous function of ω even for a crystal. For an isotropic system
it can be expressed as a function of the partial density of states

(
d2σ

dΩ dEf

)1−ph(+)

inc
=

kf
ki

Q2

3

∑
κ

σinc(κ)
8πmκ

∑
j∈{jκ}

e−2Wj ( �Q)Fj(ω)

ω

(
1 + n(ω)

)
, ω > 0.

For a crystal (9.261)

(
d2σ

dΩ dEf

)1−ph

inc
=

kf
ki

Q2 N

8πr

∑
d

σinc(d)
md

e−2Wκ( �Q)Fd(ω)
(1 + n(ω))

ω
. (10.112)

For a monatomic system this expression can be simplified. The incoherent scattering is directly related to the
vibrational density of states g(ω) (9.262)

(
d2σ

dΩ dEf

)1−ph

inc
=

kf
ki

Q2 N

8π

σinc

m
e−2Wd( �Q) g(ω)

ω

(
1 + n(ω)

)
.

The generalisation of this expression to poly-atomic systems is common practice despite the fact that it requires a
lot of care.

The one-phonon response is a good approximation for inelastic scattering provided that the displacements of
the ions are small with respect to Q−1. If this is condition is violated then multi-phonon contributions become
important. For monatomic incoherent systems these can be calculated starting from the density of states g(ω) using
(10.70)

S( �Q,ω) =
σinc

4π
N exp

(
−2W (Q)

) ∞∑
p=0

1
p!

(
�Q2

2m

)p

Tp(ω)

with the zero-phonon and one-phonon terms

T0(ω) :=
1

2π�

∫ ∞

−∞
dte−iωt =

1
�
δ(ω) = δ(�ω),

T1(ω) :=
1

2π�

∫ ∞

−∞
dte−iωtf (t) =

g(ω)
�ω

(
n(ω) + 1

)
=

g(ω)
2�ω

(
coth

(
�ω

2kbT

)
+ 1

)
.



340 H. Schober / An introduction to the theory of nuclear neutron scattering in condensed matter

This prescription is often extended to poly-atomic and even coherent systems. Caution is again advised.
If the Q transfer is very large then the scattering becomes a collision, under which the atoms recoil. We are in

the regime of the impulse approximation (10.25)

S( �Q,ω) =
1√

2πΔ2
exp

(
− (�ω − Er)2

2Δ2

)
.

The dynamic response boils down to a Gaussian centred on the recoil energy

Er =
�

2Q2

2m

with a width proportional to the Debye–Waller function

Δ2 = 2(�ω0)2W ( �Q).

It is important to distinguish between multi-phonons and anharmonic effects. Multi-phonons are present when
the displacements become large on the length scale of Q−1. They add strongly temperature dependent intensity
between the one-phonon peaks. Large displacements may also lead the system to explore the anharmonic part of
the potential. Anharmonicity of the potential influences all the aspects of the inelastic response. Notably it shifts
the frequency of the phonon peaks and gives rise to an intrinsic width of the one-phonon response. These two
aspects are captured by the damped harmonic oscillator. Its susceptibility is given by

χ′′
(i,�q)(ω) = A(i, �q)

4ωΓ(i, �q)
(ω2 − Ω(i, �q)2)2 + 4ω2Γ(i, �q)2 .

11. The particle beam

Throughout this article we have described the neutron beam by stationary plane waves. This choice was clearly
motivated by the necessity of manipulating interference phenomena. The stationary flux is, however, far from the
reality of a low-intensity particle beam. Neutrons even for a powerful source arrive individually and at large in-
tervals at the sample. This is in itself not a problem. The wave description remains valid if resolution is properly
included in the formalism as we will see in Section 11.6. However, the wave description is unnecessarily cumber-
some in situations where interference plays no role. The situation is well known in optics where it is dealt with by
switching between light rays and light waves as adequate [32,44]. The theory of light rays is a useful add-on to the
theory of light waves. It is applicable when all dimensions of the problem are short in units of the wave length. In
the case of particle waves instead of rays we speak of ballistic transport. Like in optics ballistic transport may be
used if the wave length is short in relation to the dimensions of the objects that are encountered along the trajectory.
For slow neutrons this ratio is close to one when the trajectory leads through matter.129 This explains the necessity
to work with waves in order to capture the interference effects of scattering. In the following we will see that this
simple statement should be further nuanced.

In this section we will first develop the formalism of a particle beam and then integrate this formalism into
the description of scattering experiments. We continue to describe the beam in a statistical manner, i.e. in terms
of probability distributions.130 Statistics is imposed on one hand by quantum mechanics and on the other hand
by the inherent uncertainties encountered in neutron production and in neutron transport. The statistical distribu-
tions used are also the basis for particle beam simulations [23]. They provide precise definitions of concepts such

129In condensed matter the dimensions of the objects encountered, which are the atoms, are of the order of a few Å.
130For all questions related to statistical notions the reader is referred to text books (e.g. [47]).
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as monochromaticity and divergence. We will limit ourselves to the most general description of beam transport
without going into any practical detail. Neutron optics is a subject of its own that is not within the scope of this
article.

11.1. Statistical description of the beam

We have already seen in Section 1.4 that a localised particle should be described by a wave package. This
package can be constructed via a superposition of plane waves131

ψ(x, t) =
1√
2π

∫
w(k)ei(kx−ω(k)t) dk. (11.1)

If the distribution of wave vectors k is a Gaussian we obtain for t = 0 a spatial width that is inversely proportional
to the width in k

(Δx)0 =
1
2

1
(Δk)0

. (11.2)

Any corpuscular descriptions of the beam has to take these quantum uncertainties in momentum and position into
account. In this spirit the vectors �r and �p(= ��k) will in the following be used to denote the average position and
momentum of a wave package.

Wave packages are accessible to experimental investigation. Similar to an optical Michelson or Mach-Zender
interferometer a neutron interferometer allows superimposing the neutron wave onto itself. This is achieved by
division of the amplitude [49]. In the course of a Bragg reflection from a perfect crystal the wave function splits into
two parts, one transmitted and the other reflected. By shifting one part in direct or phase space before recombining
the parts it is possible to determine the shape of the wave package. Attention, this information is obtained via a
series of measurements. Hence, the obtained result is a property of the beam and thus reflects all its imperfections.
Figure 64 shows an example.

The neutrons extracted from the moderator can be considered an expanding gas.132 Since the neutrons neither
interact with each other nor with a thermal bath this gas is not in equilibrium. From a classical point of view the
state of the gas is specified by the distribution

p
(
�k; (�r, t)

)
,

which gives the probability of detecting a particle with a propagation vector k̂ = �k/|�k| and energy E = �
2k2/2m

at a moment t in time at the location �r in space. This distribution is also called the phase space density of the
neutrons. In stationary mode of operation the phase space density does not explicitly depend on time and we can
ignore the variable t. This is naturally no longer the case when we shape the beam in time.

The probability distribution should be normalised such that the integral

N (t) =
∫
K

∫
R
p
(
�k; (�r, t)

)
d3k d3r (11.3)

gives the number of neutrons that can be detected at a given moment in the real space element

R = ΔrxΔryΔrz

131In an attempt to simplify things we limit ourselves again to one dimension.
132This description is based on the incoherent nature of the neutron beam starting with its production (attention the word incoherent here does

not have the same significance as when used in the scattering context). It is, therefore, not adapted to the treatment of interference phenomena
that can be observed by superimposing coherent neutron beams, e.g. produced with the help of beam splitting in a perfect crystal [49].
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Fig. 64. Interference pattern for neutrons diffracted by a pure silicon crystal. In order to obtain perfectly aligned crystal planes over macroscopic
distances the interferometer is cut from one single block of perfect silicon. By introducing material into one of the branches of the interferometer
we can change the “optical path” ΔD. This gives rise to the interference pattern shown. In complete analogy with the optical case (see Section 4)
one oscillation is equivalent to a change in the optical path length of a wave length, which here is close to 2 Å. The wave packages passing
through the interferometer possess an extension of about 100 Å. This defines the lateral coherence length of the beam. (Figures courtesy of
H. Rauch.)

around �r, and that possess wave vectors within the element

K = ΔkxΔkyΔkz

around �k. The wave vector space is also called K space. The Heisenberg uncertainty principle imposes that

Δrα · Δkα > 1

for α = x, y, z. The R and K volumes thus cannot be arbitrarily small since then p(�k; (�r, t)) would no longer be
well-defined with respect to their uncertainties. A rigorous mathematical treatment would proceed via a coarse
graining of phase space. First configuration space is rendered discrete by decomposing it into cubes of volume L3

centred on points �r. The states of the particles found inside the cube are described by cell functions that correspond
to plane waves inside the cube and vanish outside. Imposing periodic boundary conditions on the cell functions
renders the corresponding wave vectors �k discrete. Therefore, the decomposition of configuration space into finite
volumes transforms the continuous momentum space to a lattice of discrete points. The phase space volume, i.e.
the primitive cell of the phase space lattice containing one single state is given as h3. As the product of position and
momentum are not defined to better accuracy than given by the phase space cell it is assured that the Heisenberg
uncertainty principle holds. Details of the coarse graining process can be found in reference [43]. In practice it is
rare that the wave vector is better defined than 10−4 Å.133 Thus we do not take any risks with this definition as

133This is the value obtained for a backscattering instrument (see [52]) which is optimised for producing a highly monochromatic beam.
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long as we limit ourselves to respecting the above μm scale. Below this value p(�k; (�r, t)) is considered not to vary
significantly.

The real space density of neutrons is found by integrating the phase space density over the wave vector

ρn(�r, t) =
∫

d3kp
(
�k; (�r, t)

)
. (11.4)

The particle current that traverses a surface S is determined by the surface integral

I(t) =
∫ [∫

S
p
(
�k; (�r, t)

)
(�vk · d�a)

]
d3k =

�

m

∫ [∫
S
p
(
�k; (�r, t)

)
(�k · d�a)

]
d3k, (11.5)

with d�a the infinitesimal surface normal.
In the case of a rectangular surface A perpendicular to ẑ expression (11.5) reduces to

I(t) =
�

m

∫
A

dx dy
∫

p
(
�k; (x, y, t)

)
kz d3k. (11.6)

If the wave vectors, i.e. the velocities, are distributed homogeneously over the section A we get a further simplifi-
cation

I(t) = A
�

m

∫
p(�k; t)kz d3k = A · ρn · vz . (11.7)

In this final expression we have introduced the average velocity vz of the beam along the direction ẑ. Dividing this
expression by the surface area A we get the current density. In an isotropic system, e.g. inside the moderator, the
current density integrates to zero. There are as many particles traversing the surface in one direction as in the other.
In this case it is usefull to introduce the notion of flux Φ(t)

Φ(t) =
�

m

∫
p(�k; t)|kz | d3k = ρn · |vz |, (11.8)

Φ(t) is the number of particles traversing a unit surface in the direction ẑ per second.
A well-defined beam is characterised by narrow probability distributions. E.g. an ideally monochromatic beam

only contains neutrons with a single energy. Such a beam has an intensity close to zero. Hence it is preferable
that the monochromaticity is not perfect and that the energies of the neutrons are distributed around the nominal
value.134

E0(�r, t) =
1
N

∫
K

∫
R
p
(
�k; (�r, t)

)�2k2

2m
d3k d3r, (11.9)

with the standard deviation

ΔE(�r, t) =

√
1
N

∫
K

∫
R
p
(
�k; (�r, t)

)(�2k2

2m
− E0

)2

d3k d3r. (11.10)

ΔE is the absolute energy width of the beam. The relative width is given by

ΔE
E0

= 2
Δλ
λ

. (11.11)

134We will indicate the nominal values by the index zero and the variations (Full Width at Half Maximum) (FWHM) by the prefix Δ.
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In general the widths evolves as a function of space and time.
In a similar way it is possible to introduce the direction of the nominal wave vector k̂0(�r, t). The angular deriva-

tions with respect to this direction

Δk̂x(�r, t), Δk̂y(�r, t), Δk̂z(�r, t)

are called the divergences of the beam.
If we want to monitor the beam along its trajectory then we have to formally determine the distribution p(�k; (�r, t))

along that trajectory. This is done by counting the number of neutrons in R(�r ) that possess wave vectors inside
K(�k). The counts will fluctuate about the mean value, which constitutes the ultimate goal of our measurement.
Repeating the measurements allows us to reduce the uncertainties. Since the detection probability per unity of
time is constant for non-interacting particles the statistical distribution corresponding to the detection is a Poisson
distribution [47]. The error on the measurement will then be given by the square root of the number of detected
events. Doubling the measurement time will lower the error by a factor of

√
2.

11.2. Liouville theorem

As we have already mentioned the neutron beam is not coherent due to the thermal fluctuations in the source. It,
therefore, has to be described quantum mechanically by a mixed state (see the detailed discussion in Section 5.6).
A mixed state is characterised by the fact that the expectation values of observables A cannot be determined in the
form

〈Â〉 = 〈ψ|Â|ψ〉. (11.12)

Let us assume that the neutron beam in its most general form has been prepared such that it can be described
at a given moment in time, which we denote by t0, by a density operator ρ̂(t0). Let us further assume that for
t > t0 the beam evolves as a closed quantum system and that its interaction with the environment is governed by
a Hamiltonian Ĥ(t). In that case quantum mechanics tells us that the time evolution of the density operator ρ̂(t) is
given by the quantum Liouville equation

∂ρ̂(t)
∂t

= − i
�

[
Ĥ(t), ρ̂(t)

]
. (11.13)

To correctly apply the theorems that follow from this equation it is important to remember its condition of validity.
A quantum system can be considered closed if it is not coupled to a larger quantum system. As we have seen in
Section 5.6 such a coupling leads to effects of decoherence.135 It does not have to be isolated but is allowed to
interact with classical systems. E.g. a beam of neutrons travelling down a guide and being reflected from the static
potential of the guide coating can be considered a closed quantum system. It remains a closed quantum system
when Bragg scattered by a crystal or when following adiabatically a static magnetic field. It ceases to be a closed
quantum system if it interacts with microwave radiation or phonons triggering quantum mechanical transitions in
the corresponding quantum fields.

We would like to stress that the above equation has been derived for the density operator in the Schrödinger
picture. In this context we may recall the equation that governs the evolution of a Heisenberg operator Â(t)

∂Â(t)
∂t

=
i
�

[
Ĥ(t), Â(t)

]
. (11.14)

135The importance of the concept of decoherence has been recognised by awarding the 2012 Nobel Prize in physics jointly to Serge Haroche
and David J. Wineland “for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems”.
These experiments are directly related to the subject of decoherence.
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The reader may wish to note the sign change with respect to the quantum Liouville equation. Knowing that the
total time derivative of the density operator is calculated as

dρ̂(t)
dt

=
∂ρ̂(t)
∂t

+
i
�

[
Ĥ(t), ρ̂(t)

]
(11.15)

we conclude that

dρ̂(t)
dt

= 0. (11.16)

This conservation property is known as Liouville’s theorem. It implies that phase space density is conserved. The
classical version of Liouville’s theorem is obtained by replacing the commutator by Poisson brackets

∂ρ(t)
∂t

= −
{
ρ(t),H

}
, (11.17)

where ρ(q, p; t) is the classical distribution function in phase space that determines the probability ρ(p, q; t)dnqdnp
that the system will be found at time t in the infinitesimal phase space volume dnqdnp with q the canonical
coordinates and p the conjugated momenta of a Hamiltonian dynamical system. If we use the language of classical
mechanics then we may state that particles that start together within a given phase space volume will remain forever
united in that volume as they propagate along their respective phase space trajectories. The phase space volume
may change in shape but it cannot be compressed. Liouville’s theorem has important consequences for designing
instruments. It e.g. implies that mirrors can focus a beam in space only at the expense of accepting higher beam
divergence, i.e. a compression in configuration space always entails an expansion in particle momenta. To compress
the phase space volume it is necessary to couple the beam to external quantum systems like e.g. a phonon bath.
This fact is exploited in the case of thermal neutron moderation or in the case of the super thermal production of
neutrons presented in Section 6.6.

11.3. Optical elements and the transfer function

To simplify the description of neutron transport we decompose the trajectory into optical elements. This ap-
proach is applicable provided the passage of the neutron from one element to the next is unidirectional. A typical
example is a neutron guide. Neutrons enter the guide upstream and exit the guide downstream after a certain num-
ber of reflections. All exits are considered to be definitive. The description in terms of an optical element is even
indispensable for all elements of an instrumental setup that require the use of wave theory in order to describe their
functionality. This is e.g. the case for a crystal monochromator.

All optical elements in the neutron path change the distribution p(�k;�r, t). The interfaces between optical ele-
ments are denoted Si and Sf , respectively. The distributions before and after an optical element are given by

p(�k;�ri, ti), �r ∈ Si

and

p(�k;�rf , tf ), �r ∈ Sf .

An optical element is fully characterised if we know its transfer function

T (�kf ,�ki;�rf , tf ,�ri, ti)
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that indicates the probability of a given incident current producing a neutron �kf at the exit. Mathematically the
transfer function is defined by the relation

p(kf ;�rf , tf ) d3kf =

∫
T (�kf ,�ki;�rf , tf ,�ri, ti)

[
�

m

∫
Si

(�ki · d�a)p(�ki;�ri, ti)

]
d3ki. (11.18)

In stationary mode of operation we can neglect the t dependence. For a homogeneous, monochromatic incident
beam with zero divergence the current is given according to (11.7) as

�

m

∫
Si

(�ki · d�a)p(�ki;�ri, ti) = A
�

m
kzρnδ(�ki − �k0). (11.19)

This leads to

p(kf ;�rf , tf ) d3kf = ρnAi
�

m

∫
d3kiT (�kf ,�ki;�rf , tf ,�ri, ti)kzδ(�ki − �k0) (11.20)

= ρnA
�

m
k0
zT (�kf ,�k0) (11.21)

= ρn(�k0)AvzT (�kf ,�k0) (11.22)

= I0T (�kf ,�k0). (11.23)

This confirms that the transfer function acts as an operator that for every optical element associates to an incoming
neutron �ki a probability of ending up as an outgoing neutron �kf . This bears strong similarity with the scattering
cross section. This is actually not surprising given that the sample may itself just be considered one of the optical
elements of a beam line and that the transfer functions of other optical elements like monochromators have to be
calculated using the concepts developed for scattering. This will be the subject of the next section. In order to
describe the passage of the beam along a beam line composed of a series of optical elements we have to inject
in sequential manner the output distribution of the nth element into the n + 1st element as input. This procedure
allows to develop powerful simulation tools for spectrometer design [23].

11.4. Small samples

The sample is a priori an optical element among others.136 Its particularity in terms of neutron transport reside
in the fact that

• the sample is in general sufficiently small in order for the incident flux to be considered homogeneous over
the entire sample area;

• the detectors are placed sufficiently far from the sample so that the direction of the final wave vector can be
considered coinciding with the direction of the detector position vector (k̂f = r̂f ).

This allows us to eliminate the variables �ri and �rf . The influence of the sample on the beam can then de described
by the simplified function

f (�kf ,�ki) d3kf , (11.24)

that indicates the probability with which an incident neutron �ki present in the sample is scattered per unity of time
into the element d3kf about �kf in K space.

136The Bragg scattering is used both for rendering the beam monochromatic and as a tool for determining crystal structures.
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If we are in the regime of the Born approximation the incident neutron flux is not significantly attenuated by the
scattering. In practice this implies that our sample is sufficiently small. The density of neutrons ρn is in this case
homogeneous over the whole sample volume. The cross section is the probability per unity of time and per unity
of incident flux of scattering a neutron �ki into d3kf around �kf . We find formally

d2σ =
ρnV

Φi
f (�kf ,�ki) d3kf (11.25)

=
ρnV

ρnvi
f (�kf ,�ki)

m

�2 kf dΩ dEf (11.26)

= V
m2

�3

kf
ki

f (�kf ,�ki) dΩ dEf , (11.27)

where we have used

d3kf = k2
f dkf dΩ =

mkf
�2 dΩ dEf (11.28)

and

Φi = ρn
�

m
|�ki| = ρn

�

m
ki. (11.29)

ρn is the instantaneous density of neutrons and V is the sample volume. With137

d2σ

dΩ dEf
= N

σ

4π

kf
ki

S( �Q,ω) (11.30)

we get the identity

f (�kf ,�ki) =
N

V

�
3

m2

σ

4π
S( �Q,ω). (11.31)

Hence we find, as expected, the scattering function S( �Q,ω). We see in particular that f (�kf ,�ki) in the Born approx-

imation only depends on �Q and ω.

11.5. Finite size samples and multiple scattering

The goal of a neutron scattering experiment is to determine the scattering function S( �Q,ω). It is the scattering
function that gives us, as we have learned in Section 8.2, information about the existence of correlations in the
sample. Determining S( �Q,ω) is in practice equivalent to the measuring the distributions of neutrons p(�k;�r, t) after
the scattering. The precision of the measurement will depend on (i) the preparation of the incident beam and its flux
as well as (ii) the detected intensity and the precision of the detection process. The discussion of scattering has up to
now been based on the Born approximation. This approach is justified if the scattered wave is a small perturbation
of the incident beam and as a consequence does not have to be considered itself a source for secondary scattering

137Even though it breaks with the general philosophy of this article we will here limit ourselves to monatomic systems. Working with
monatomic systems allows us to extract the scattering lengths from the scattering function in the form of the pre factor σ/4π. This again makes
it possible to normalise the scattering function to the number of scatterers N (for the definitions and the discussion of normalisation of the
scattering function see Section 5.9). The generalisation to poly-atomic systems is not difficult to make.
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processes. The Born approximation, therefore, imposes that we should work with weakly scattering samples. This
constraint translates into a real dilemma for the experimentalist. The neutron flux is fixed, i.e. it is determined by
the source as well as the efficiency of the extraction, the transport and the shaping of the neutron beam. This flux
is often weak even at the most powerful neutron sources.138 In addition, the signal looked for is often not found
in the predominant scattering channel. The only variable of the experimental setup that allows the researcher to
improve the data statistics without deteriorating the data quality, e.g. in terms of resolution, is often the sample
size. Unfortunately, as we will see now, by increasing the sample volume and thereby leaving the range of validity
of the Born approximation undesirable second order effects will be produced. These effects have to be put into the
balance with the expected gain in statistics.

It is essential to understand these second order effects if we want to eliminate the risk of misinterpreting the
experimental data. Working with higher orders of the Born series is in principle possible. However, in practice
it turns out a forbiddingly heavy process. Intuitively it should be possible to describe the scattering process as a
random walk with the particle propagating freely between successive collisions. For this it is sufficient to mentally
break up the sample into regions sufficiently small so that the Born approximation holds. The Born scattering
produced by such a region is giving the characteristics of a “collision” in the sense of a transfer function.

Even if this approach is much simpler than working with higher order terms of the Born series it is not without
pitfalls. At first glance it may even seem paradoxical. We will dwell for a moment on this statement.

All along our discussion we have underlined that scattering is an interference process. But interference is just the
type of phenomena that cannot be described within a corpuscular approach. We recall: The neutron will as a matter
wave generate spherical wavelets along its path. These wavelets are characterised by a well-defined phase relation
among them. The superposition of these wavelets gives rise to the interference effects. This is the Huygens–Fresnel
principle applied to matter waves. From these interferences we derive the correlations existing between scatterers
in space and time. The typical example is the Bragg scattering from a single crystal that allows us to determine the
structure of the sample. The atomic planes scatter the neutrons of a given wave length along specific directions.
If the crystal is very pure these directions are very well defined. Experimentally we can, e.g. observe that Bragg
scattering depends on the macroscopic dimensions of a pure crystal such as silicon. The interference effects hence
extend over several millimetres (see Figs 66 and 67). In this case we are very far from the validity of the Born
approximation. The neutron in this case has to be defined by the superposition of the incident and scattered waves,
which due to the periodicity of the lattice take the form of Bloch waves.139 This is the foundation of dynamic
scattering theory that, as already mentioned in Section 9.9, will not be discussed in this article. However, we would
like to emphasise that these interference phenomena over very long distances are observable even for incident wave
packets that have a much shorter spatial extension. Hence it is necessary to resist the temptation to consider the
size of the incident wave package an upper bound to the size of the interaction zone. It is the capacity of the perfect
crystal to select under the given experimental conditions a narrow band of wave vectors from the incident wave
package that allows for the observation of interference effects over macroscopic distances.

We can summarise this short discussion as follows: when scattered the neutron interacts with the sample in its
totality. In other words, scattering is not a local phenomena. How can we retain under this condition the Born
approximation, which we had identified as the basis for the interpretation of neutron scattering, when we are for
experimental reasons obliged to work with macroscopic samples? And how can we talk of a mean free path and
collision if the scattering is not a local event?

The solution comes, luckily for the experimentalist, from the fact that the vast majority of samples are not perfect.
The extreme case is the ideal gas where there are no correlations between the positions of the different atoms. As
we have seen in Section 8.10 the scattering can, in this case, be described as the ensemble of collisions with the
individual atoms. This characteristic does not make the ideal gas very attractive for neutron scattering experiments.
In liquids the correlation length is limited to a few neighbouring atomic layers. The interferences effects due to the

138It is often said that neutron scattering is a flux limited experimental technique. This is less true for the last generation of spectrometers at
powerful sources.

139This is the wave function imposed by the symmetry for a particle in a periodic potential.
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Fig. 65. Schematic representation of neutron scattering from a finite size sample. During the passage the neutron will experience a number
of collisions. Each one of them will change the wave vector of the neutron (either the direction, or the energy or both at the same time). The
probability of these events is calculated in the Born approximation over the correlation volume that surrounds the location of the collision.
After a collision the neutron travels unencumbered a distance d. This distance is related to the integrated scattering probability. If the scattering
probability is high the collisions are frequent and hence the mean free path is short. In the case of a mosaic crystal the scattering is highly
directional. The Bragg lines are found by treating the crystallites in the Born approximation, given that the linear size of the crystallites is
smaller than the primary extinction length. In the case of a liquid or an amorphous system the correlation volumes are smaller. Opposite to
crystals all points are equivalent given that the liquid is isotropic and homogeneous. In the two cases the mean free path should be much longer
that the dimensions of the crystallites or the correlation volumes in order to apply the concept of scattering by collision.

superposition of the scattered wavelets fade out quite quickly with the distance between the scatterers. This allows
us to talk about a correlation volume (see Fig. 65). The correlation volume is a property of the sample. It is not
to be confounded with the coherence volume that we have discussed in Section 4.9 and which is a property of the
neutron beams. In the ideal case the coherence volume is made to match the correlation volume.

The correlation volume of a perfect crystal is macroscopic. In the Born approximation each plane that is added
refines the scattering pattern by sharpening the Bragg peaks. We have explicitly demonstrated the validity of this
statement for optical lattices (see Section 4.4). Saturation takes place when all of the initial intensity has passed
into the scattered wave. At this point the roles are swapped and the scattered wave becomes the incident wave. By
enlarging the crystal thickness further the neutron current will again be redirected, this time in the direction of the
original incident wave. This “beating” phenomena, that produces the interference fringes already mentioned above
is known as the Pendellösung [49]. Its experimental realisation is shown in Figs 66 and 67. The penetration depth
at which the incident wave fades is called the primary extinction length. The Born approximation is logically no
longer valid for crystals larger than the primary extinction length.

The bulk of the crystals that are found on neutron diffractometers are far from being ideal.140 In particular, they
have dislocations (see Fig. 65), i.e. the atomic planes are perfectly aligned only within the crystallites. We are
speaking of mosaic crystals. The interference effects are per definition very pronounced within a crystallite. The
ensemble of crystallites will on the other hand broaden the Bragg peaks by adding reflections at slightly different

140Crystalline matter is normally not present in single crystalline form. A notable exemption are the huge single crystals of silicon that are
grown for the electronic industry. A poly-crystal is composed of several single crystals, that we call crystallites.
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Fig. 66. Schematic illustration of the Shull experiment, which shows the existence of fringes in the Bragg scattering of neutrons (Pendellösung)
[59]. A monochromatic neutron beam is submitted to a Bragg reflection by a perfect silicon crystal. For perfect incidence the energy current is
directed parallel to the crystalline planes. For a divergent beam the transmission cone can expand until it reaches ±ΘBragg. In order to avoid
that this expansion obscures the interferences a good spatial resolution is obtained with slits.

scattering angles and wave lengths. We can thus identify the correlation volume in a mosaic crystal to a good
approximation with the size of the volume of the crystallites. If this size is inferior to the extinction length then
the Born approximation is applicable at the interior of a crystallite, this facilitates the formalism considerably. At
this point we would like to emphasise a fundamental difference between mosaic crystals and liquids or amorphous
systems. The liquid is homogeneous. Hence around any point �r we can draw a sphere that contains always the same
correlation volume. For a mosaic crystal the surroundings are completely different depending on whether the point
chosen is at the centre of the crystallite or if it is close to one of the boundaries. This inhomogeneity generates
particular scattering effects and should be taken into account when analysing the data.

From an practical point of view we can thus only distinguish with difficulty between (i) a scattering process
localised within in the correlation volumes and free propagation of the scattered particle from one volume to the
next and (ii) a scattering process over the whole sample volume treated with higher order terms in the Born series
(note the similarities between Figs 18 and 65). It is, therefore, the final size of the correlation volumes that allows
us to imagine the scattering as a process of multiple collisions (see Fig. 65).

The scattering rates and the propagation should be calculated in the Born approximation for the correlation
volumes (always under the condition that the linear dimensions of these volumes are smaller than the extinction
length). In order to describe the propagation we will first of all introduce the notion of the mean free path, which
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Fig. 67. Same as Fig. 66. The detected reflected flux varies periodically with the thickness of the crystal for a given wave length or in perfect
analogy with the wave length for a given thickness of the slab. In silicon for the (111) reflection the Pendellösung period is Δ = 0.213 mm. The
period Δ can be identified with the primary extinction length. Each fringe corresponds to an extra shift in wave length between the coherent
wave packages that propagate in the crystal [59].

is the mean distance that the neutron travels between two collisions. According to (11.24) the probability per unity
of time that a neutron with �ki is scattered is equal to

f (�ki) =
∫

f (�kf ,�ki) d3kf . (11.32)

Thus f (�ki)−1 is the average time that a neutron spends in the sample without being scattered. During this time the
neutron will be displaced by

l(�ki) =
v(�ki)

f (�ki)
. (11.33)

l(�ki) is the mean free path that we were looking for. Following (11.31) and using expression (11.28)

l(�ki)
−1 =

1

v(�ki)

∫
f (�kf ,�ki) d3kf

=
m

�ki

[
N

V

�
3

m2

σ

4π

∫
S( �Q,ω) d3kf

]

=
N

V

kf
ki

σ

4π

∫
S( �Q,ω) dΩ dEf

=
N

V
σtot. (11.34)

The mean free path can, therefore, be calculated from the total cross section.
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The number of neutrons141 ns(z) scattered at a point z along the trajectory is proportional to the scattering rate
(11.34) as well as to the number of neutrons nt(z) that have been transmitted up to z

dns(z) = nt(z) · 1
l
· dz = nt(z) · Nσtot

V
· dz (11.35)

with

dnt(z) = −dns(z). (11.36)

Equation (11.35) has a simple solution (see Fig. 65)

nt(z) = nt(0) exp

(
−z

l

)
(11.37)

for the number of neutrons transmitted up to z. Thus the number of scattered neutrons up to z is given by

nd(z) = ni(0)

(
1 − exp

(
−z

l

))
. (11.38)

In the case of very low scattering

z 	 l =
NV

σtot
:

nd(z)
ni(0)

=
σtot

NV
z. (11.39)

Once the neutron is propagated up to a point �r it will, with a certain probability, undergo a collision. Following
this collision the neutron will change its direction and energy. The resulting distribution of wave vectors can be
calculated via f (�kf ,�ki) (11.31). After the collision the neutron can exit the sample or be scattered a second time and
so forth. This is called multiple scattering. Multiple scattering is always an annoyance. It destroys the connection
that exists between the measured signal and two-point correlation functions. Multiple scattering could in principle
open a way to three point (or even higher) correlation functions. However this has so far not been demonstrated to
work in practice (see Section 8.5).

11.6. Resolution

The scattering functions define the transfer function of the sample according to (11.31). The intensity registered
at the detector per energy interval can thus be obtained via (see also [18])

I(Ef ) dEf ∝
∫∫

p(�ki) · S( �Q, �ω) · p(�kf ) d3ki d3kf . (11.40)

The distribution p(�ki) has already been introduced. It gives the probability that a neutron with wave vector �ki is first
produced at the source and then finds its way through the optical elements to the sample. The distribution p(�kf )
describes in perfect analogy the probability of a neutron leaving the sample and finding its way to the detector. It

141To make sure to distinguish between the number of neutrons n and the number of scatterers N we use small and capital letters, respec-
tively.
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can be obtained by creating a virtual population of neutrons at the location of the detector. This population should
reflect the detector characteristics concerning resolution in time and space and efficiency of detection. The detector
thus plays the role of an inverse source. These neutrons are then propagated back to the sample. They retrace
exactly the path that the scattered neutron have taken.142

In order to facilitate the discussion the distributions p(�ki) and p(�kf ) are assumed to be homogeneous over the
whole sample volume and time independent.

The expression (11.40) can then be written as a convolution [17]

I(Ef ) dEf ∝
∫∫

R( �Q− �Q0, �ω − �ω0) · S( �Q, �ω) d3Q d�ω, (11.41)

with the resolution function defined as

R( �Q, �ω) =
∫∫

p(�ki) · p(�kf ) · δ
(
�Q− (�ki − �kf )

)
· δ
(

�ω − �
2

2m

(
k2
i − k2

f

))
d3ki d3kf . (11.42)

R( �Q, �ω) measures the number of combinations of �ki and �kf that are compatible with the conditions �ki−�kf = �Q

and Ei − Ef = �ω. The variables �Q0 and �ω0 denote the central values of �Q and �ω. They constitute the centre
of gravity of the resolution function, around which the measurement is performed. In order to extract the quan-
tity S( �Q0, �ω0), which finally is what interests us, the measurement should be de-convoluted with the resolution
function. In particular the variation in the total number of neutrons in the primary and secondary beam has to be
corrected for. These quantities are formally described by the phase space volumes

Vi =

∫
p(�ki) d3ki and Vf =

∫
p(�kf ) d3kf . (11.43)

The de-convolution is a delicate mathematical procedure. In the case where the aim of the measurement consists
in verifying a model it is preferable to calculate first the scattering function from the model and then to convolute
the result with the resolution function. Ideally we would want to work with as good a resolution as possible, i.e.
with resolution functions that sharply peak at ( �Q0, �ω0). This implies that the distributions p(�ki) and p(�kf ) are
narrow, which leads to a small intensity (see (11.41)). Resolution thus has often to be traded in for flux. A well-
designed spectrometer will give the experimentalist the possibility of adapting the resolution to the requirements
of the measurements while sacrificing as little flux as possible.

To give a concrete idea of phase space volumes and resolution we will take a closer look at the practical aspects of
Bragg scattering. Bragg scattering was introduced in Sections 4 and 9.8. It is at the basis of crystal monochromators.
In reciprocal space the condition for Bragg scattering can be formulated as

�τ = �kf − �ki, |�ki| = |�kf |.
(11.44)

�τhkl = h�a∗1 + k�a∗2 + l�a∗3

denotes a reciprocal lattice vector perpendicular to the lattice planes. Its norm is directly related to the distance
dhkl between the planes

|�τhkl| = 2π/dhkl.

Bragg scattering takes places when the vectors �ki, �kf and �τ form an equilateral triangle with τ as the basis. As

seen in Fig. 68 there is a strong correlation between the length of the �k vector and the angle it subtends with �τ . In

142This is possible since the equations that governs the neutron propagation are symmetric under time reversal in the absence if dissipation.
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Fig. 68. Description of Bragg scattering in reciprocal space. The conditions for Bragg scattering are fulfilled if the projection of the incident and
diffracted wave vectors onto the reciprocal lattice vector �τ equal k sin Θ = τ/2. This constraint establishes an exact one-to-one correspondence
between �ki and �kf . The incident beam has necessarily a finite divergence αi. In the case of a polychromatic beam this divergence results in
a divergent scattered beam. This is indicated by the light grey regions in figure (a). The divergence of the incident beam is translated into
a spectral distribution Δkf of the diffracted beam. The spectral width can be controlled by reducing the divergence of the diffracted beam
with the help of a collimator (the dark grey regions in figure (a)). Thus the phase space volume Vi translates into a phase space volume
Vf defined by the intersection of this region with the line τ/2. It is immediately obvious that for a given divergence the spectral resolution
(monochromaticity) increases with the Bragg angle Θ and, therefore, depends crucially on the lattice spacing d. For a mosaic crystal the
orientation of the crystallites varies statistically. The corresponding distribution can be describe by the parameter η. In our scheme mosaicity
corresponds to turning the diagram in figure (a) by ±η/2 around the origin O. In figure (b) we show how the element Vf can be obtained

from Vi for an incident beam without divergence. One constructs the images of the shortest and longest �ki vectors with respect to the lines
O −R− and O−R+, respectively. Note that Vf will be inclined with respect to �kf . In figure (c) we show the general situation of an incident
beam with divergence αi being diffracted by a mosaic crystal into a final beam of controlled divergence αf . The volume Vf reflects the final
intensity that can be obtained provided that the volume Vi is fully filled. An experimental configuration is optimal if Vf is maximal for the

required p(�kf ), i.e. for the required �kf and Δkf . Figure (d) shows the situation of a crystal with a distribution in lattice spacing d. A variation
in d can be obtained via a gradient in the chemical composition or via thermal or mechanical treatment introducing distortion.

the case of an ideal crystal only the vectors �ki and �kf of a fine slice of phase space can participate in the Bragg
scattering. This leads to a tiny diffracted intensity. Only by introducing a distribution of crystallites (mosaic) or
of lattice spacing (distortions, displacements) we obtain non-zero phase space volumes and hence real diffracted
intensities.143

In order to better understand how a distribution of neutrons influences the measurement we will look at the
resolution at a slightly different angle. As we have seen the scattering of a neutron can be described in the Born
approximation by a superposition of spherical waves

ψout(�r ) ∝
∑
l

bl

[
eikf ·|�r−�rl|

|�r − �rl|
· ψin(�rl)

]
∝
∑
l

bl

[∫
p(�ki) ·

eikf ·|�r−�rl|

|�r − �rl|
· ei�ki�rl d3ki

]
, (11.45)

with �rl being the position of the lth scatterer and bl its scattering length. This is the Huygens–Fresnel principle
applied to neutron scattering (see Section 4). The source of the spherical waves is the incident wave function ψin,

143In reality Bragg scattering is never ideal due to the extinction effects we already have mentioned.
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which in order to take the beam characteristics into account has to be expressed as a weighted superposition of
plane waves. As in the case of optical diffraction the scatterers that are found along the wave front, i.e. have
positions, for which �ki ·�rl is constant, will scatter in phase.144 Due to the distribution in direction and wave length
of �ki (and �kf ) the phase coherence is perturbed and the interference patterns are blurred when the distance between
the scatterers increases. The resolution function can thus be considered the image of the coherence volume (see
Section 4) in reciprocal space [24]. The coherence volume is in a certain way the field of view of the instrument in
real space.

The resolutions ΔQi, i = x, y, z and �Δω as well as the coherence volumes increase considerably with the wave
length. This is not really surprising due to the fact that the definition of a beam is normally done with respect to
its nominal values. As a consequence it is the relative resolutions ΔQ/Q and Δω/ω that are similar over a wide
range of instruments. Longer wave length, however, limit the range of accessible (�Q, �ω) points. For example, in
the case of elastic scattering, where |�ki| = |�kf |, the maximal Q is 2�ki for �kf = −�ki. By reducing |�ki| we limit the
dynamic range of the experimental setup, this means we reduce the field of view in reciprocal space. Large fields
of view in real space and in reciprocal space are thus conflicting requirements.

Acknowledgements

I would like to thank Ursula Bengaard Hansen for having provided a translation into English of the original
French article [53] that is at the basis of this work. This facilitated my task enormously. Stéphane Rols, Françoise
Leclercq-Hugeux, Andrea Orecchini, Mohamed Zbiri and Alexander Schober for proof reading of the French
original. Colin Carlile deserves particular thanks for the extensive proof reading of this article.

The way the theory of non-relativistic scattering is presented here has been hugely inspired by my own teachers
in quantum mechanics and solid state physics. Writing this article I relied heavily on the lecture notes of courses
on theoretical physics given by D. Strauch, U. Schröder and U. Rössler at the University of Regensburg.

Of equal importance were the monographs on quantum physics by C. Cohen-Tannoudji, B. Diu and F. Laloë,
and by O. Hittmair. Concerning the theory of neutron scattering itself I have learned it, as the reader will have
certainly realised, from the excellent books of Lovesey and Squires.

References

[1] P. Ageron, Nuclear Instr. Meth. A 284 (1989), 197.
[2] N.W. Ashcroft and N.D. Mermin, Physique des Solides, EDP Science, 2002 (Solid State Physics, Saunders College, 1975).
[3] E. Balcar and S.W. Lovesey, J. Phys. C: Solid State Phys. 19 (1986), 4605.
[4] A.C. Barnes, H.E. Fischer and P.S. Salmon, J. Phys. IV France 111 (2003), 59.
[5] M.M. Bredov, B.A. Kotov, N.M. Okuneva, V.S. Oskotskii and A.L. Shak-Budagov, Sov. Phys. Solid State 9 (1967), 214.
[6] J.M. Carpenter and C.A. Pelizzari, Phys. Rev. B 12 (1975), 2391.
[7] J.M. Carpenter and C.A. Pelizzari, Phys. Rev. B 12 (1975), 2397.
[8] J. Chadwick, Nature 129 (1932), 312.
[9] J. Chadwick, Proc. Roy. Soc. A 136 (1932), 692.

[10] C. Cohen-Tannoudji, B. Diu and F. Laloë, Quantum Mechanics, Vols 1, 2, Hermann, 2007. (Quantum Mechanics, Vols 1, 2, Wiley VCH,
1977.)

[11] J. Daillant and A. Gibaud, X-ray and Neutron Reflectivity: Principles and Applications, Springer-Verlag, Berlin, 1999.
[12] C.G. Darwin, Phil. Mag. 27 (1914), 315, 675.
[13] J. Dawidowski, F.J. Bermejo and J.R. Granada, Phys. Rev. B 58 (1998), 706–715.
[14] P.G. de Gennes, Physica 25 (1959), 825.

144As the scattered wave function ψout is observed in the detector we must in a rigorous formalism include in the expression (11.45) the
shaping of the scattered beam, i.e. the probability that a neutron with wave vector �kf finds its way into the detector. This would bring us to
an expression like (11.41). In the case of optical diffraction we are confronted with a similar problem. The diffracted beam has to be projected
onto the observation plane. The lenses that are used fort this purpose will introduce distortions in the image (see Fig. 19).



356 H. Schober / An introduction to the theory of nuclear neutron scattering in condensed matter

[15] P. Debye, Interferenz von Röntgenstrahlen und Wärmebewegung, Ann. d. Phys. 348 (1913), 49 (in German).
[16] A.-J. Dianoux and G. Lander (eds), Neutron Data Booklet, Institut Laue-Langevin, Grenoble, France, 2002.
[17] B. Dorner, Acta Cryst. A 28 (1972), 319.
[18] B. Dorner, Journal of Neutron Research 13 (2005), 267.
[19] G. Eckold, Symmetry aspects of excitations, phonons, in: International Tables of Crystallography, Vol. D, Chapter 2.1.
[20] P.A. Egelstaff, Adv. Phys. 11 (1962), 203.
[21] S.A. Egorov and J.L. Skinner, Chem. Phys. Lett. 293 (1998), 469.
[22] B. Fåk and B. Dorner, Physica B 234–236 (1997), 1107.
[23] E. Farhi, V. Hugouvieux, M.R. Johnson and W. Kob, J. Comp. Physics 228 (2008), 5251.
[24] J. Felber, R. Gähler, R. Golub and K. Prechtl, Physica B 252 (1998), 34.
[25] E. Fermi, Sul moto dei neutroni nelle sostanze idrogenate (in Italian), Ricerca Scientifica 7 (1936), 13. (English transl.: E. Fermi, Collected

Papers, Vol. I, Italy, 1921–1938, Univ. of Chicago Press, Chicago/London, 1962, pp. 980–1016.)
[26] J.H. Ferzinger and A. Leonard, Phys. Rev. 128 (1962), 2188.
[27] A. Frei, E. Gutsmiedl, C. Morkel, A.R. Müller, S. Paul, M. Urban, H. Schober, S. Rols, T. Unruh and M. Hölzel, Phys. Rev. B 80 (2009),

064301.
[28] H.R. Glyde, Excitations in Liquid and Solid Helium, Clarendon Press, Oxford, 1994.
[29] H.R. Glyde and E.C. Svensson, in: Methods of Experimental Physics, Part B, Vol. 23, D.L. Price and K. Sköld, eds, Academic Press, New

York, 1987.
[30] M.L. Goldberger and F. Seitz, Phys. Rev. 71 (1947), 294.
[31] J.M.F. Gunn and M. Warner, Z Physik B: Condensed Matter 56 (1984), 13.
[32] E. Hecht, Optics, Addison Wesley, 2001.
[33] O. Hittmair, Lehrbuch der Quantentheorie, Thiemig-Verlag, München, 1972.
[34] J. Jensen and A.R. Mackintosh, Rare Earth Magnetism: Structures and Excitations, Clarendon Press, Oxford, 1991.
[35] Ch. Kittel, Physique de l’état solide, Dunod, 1998. (Solid State Physics, 8th edn, John Wiley and Sons, 2005.)
[36] M.M. Koza, H. Schober, S.F. Parker and J. Peters, Phys. Rev. B 77 (2008), 104306.
[37] M. Le Bellac, Physique Quantique, 2nd edn, EDP Science, 2007.
[38] K.-D. Liss, A. Magerl and W. Gläser, Nuclear Inst. Meth. A 335 (1993), 523.
[39] S.W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Nuclear Scattering, Vol. 1, Polarization Effects and Magnetic

Scattering, Vol. 2, Oxford Univ. Press, Oxford, 1984.
[40] A.A. Maradudin, E.W. Montroll, G.H. Weiss and I.P. Ipatova, Theory of Lattice Dynamics in the Harmonic Approximation, Academic

Press, New York, 1971.
[41] A. Messiah, Méchanique Quantique, Dunod, Paris, 1959. (Quantum Mechanics, Dover Publications Inc., 2014.)
[42] V.S. Oskotskii, Sov. Phys. Solid State 9 (1967), 420.
[43] R.K. Osborn and S. Yip, Foundations of Neutron Transport Theory, Gordon Breach, New York, 1967.
[44] J.P. Pérez, Optique, Dunod, Paris, 2004.
[45] J.M. Perez-Mato, M. Aroyo, J. Hlinka, M. Quilichini and R. Currat, Phys. Rev. Lett. 81 (1998), 2462.
[46] G. Placzek, Phys. Rev. 86 (1952), 377.
[47] K. Protassov, Analyse statistique des données expérimentales, Collection Grenoble Science, Grenoble, 2002.
[48] A. Rahman, K.S. Singwi and A. Sjölander, Phys. Rev. 126 (1962), 986.
[49] H. Rauch and S. Werner, Neutron Interferometry, Oxford Univ. Press, Oxford, 2000.
[50] W. Reichardt, Bericht des Forschungszentrums Karlsruhe, 1984.
[51] K. Schmalzl, D. Strauch and H. Schober, Phys. Rev. B 68 (2003), 144301.
[52] H. Schober, Neutron instrumentation in neutron applications in Earth, in: Energy and Environmental Sciences, L. Liang, R. Rinaldi and

H. Schober, eds, Springer, New York, 2008, pp. 37–104.
[53] H. Schober, Diffusion des neutrons par la matière cristalline ou amorphe non-magnetique, EDP Sciences, Collection SFN 10 (2010),

159–336.
[54] H. Schober, Europ. Phys. J. Web of Conferences 22 (2012), 00012.
[55] H. Schober, A. Tölle, B. Renker, R. Heid and F. Gompf, Phys. Rev. B 56 (1997), 5937–5950.
[56] P. Schofield, Phys. Rev. Lett 4 (1960), 239.
[57] V.F. Sears, Adv. Phys. 24 (1975), 1.
[58] V.F. Sears, Neutron Optics, Oxford Univ. Press, New York, 1989.
[59] C.G. Shull, Phys. Rev. Lett. 21 (1968), 1585.
[60] S.K. Sinha, E.B. Sirota, S. Garoff and H.B. Stanley, Phys. Rev. B 38 (1988), 2297.
[61] A. Sjölander, Arkiv för Fysik 14 (1958), 315.
[62] G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering, Cambridge Univ. Press, Cambridge, 1978.
[63] M. Steiner, J. Low Temp. Phys. 135 (2004), 545.
[64] D. Strauch, Classical Mechanics, Springer, Berlin/Heidelberg, 2009.
[65] D. Strauch and B. Dorner, J. Phys. C: Solid State Phys. 19 (1986), 2853.



H. Schober / An introduction to the theory of nuclear neutron scattering in condensed matter 357

[66] E.F. Talbot, H.R. Glyde, W.G. Stirling and E.C. Svensson, Phys. Rev. B 38 (1988), 11229.
[67] S.N. Taraskin and S.R. Elliott, Phys. Rev. B 55 (1997), 117–123.
[68] L. Van Hove, Phys. Rev. 95 (1954), 249.
[69] I. Waller, Zur Frage der Einwirkung der Wärmebewegung auf die Interferenz von Röntgenstrahlen, Z. Physik A: Hadrons and Nuclei 17

(1923), 398 (in German).
[70] M.J. Yeager, Neutron diffraction analysis of the structure of retinal photoreceptor membranes and rhodopsin, in: Neutron Scattering for

the Analysis of Biological Structures, B.P. Schoenborn, ed., Brookhaven National Laboratory, Upton, New York, 1976.
[71] A. Zeilinger and T.J. Beatty, Phys. Rev. B 27 (1993), 7239.


