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Abstract.

Background: Subjects with Charcot-Marie-d00 @T) disease show hands impairment which is a relevant problem
affecting the quality of life. This symptomjsgeM{egfto muscle weakness and reduced motor coordination of the upper limb.
However, most studies focus on lower li 1rment, therefore the investigation of upper limb disability is necessary to
identify biomarkers able to monitor ecific features and to tailor rehabilitation.

Objective: This study aimed at ateriZing upper limb muscle co-contraction using the co-contraction index (CCI) in
CMT population.

Methods: Upper limb kinepsai lectromyography (EMG) data were collected from fourteen CMT subjects (6-CMT1A
and 8-CMT1X) during mo@s typical of daily living activities. Rudolph’s CCI was used to quantify muscle co-contraction
of four muscle pairs acting or'$houlder, elbow and wrist. All CMT subjects underwent clinical examination. Thirteen healthy
subjects served as the normative reference (HC).

Results: CMT1X and CMT1A showed a significant reduction in CCI for distal and proximal muscle pairs compared to HC.
Furthermore, CMT1A showed greater values of CCI compared to CMT1X mainly for the axial and axial-to-proximal muscle
pairs. Movement speed and smoothness were not altered compared to HC. In addition, EMG metrics showed moderate-to-
strong significant correlations with clinical outcomes.

Conclusions: CCI was able to quantify disease-specific deficits with respect to the normative reference, highlighting motor
control alterations even before motor output impairment. CCI was also sensitive in detecting CMT subtypes-based differences
and adopted compensatory strategies. Our findings suggest that CCI can be an outcome measure for CMT disease monitoring
and interventional studies.
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INTRODUCTION

Charcot-Marie-Tooth (CMT) disease is the most
common hereditary neuropathy. Although the num-
ber of new CMT diagnoses has recently increased,
probably due to the improvement of diagnostic strate-
gies, CMT is still considered a rare disease.

There is an important variability in the clini-
cal expression of the disease. The first symptoms
reported by the patient, for example difficulty in run-
ning and frequent falls, concern the lower limbs.
Upper limbs involvement usually appears later and
is less severe, with deficit of the intrinsic muscles of
the hand, loss of opposition, grip strength and dex-
terity and consequently difficulties in manipulating
objects [1]. Ninety-eight percent of CMT1A patients
report limitations in upper limb functioning, particu-
larly affecting the dominant hand [2]. They perceive
impairment in work, family roles, and outdoor activ-
ities. Unfortunately, the diagnostic improvement has
not been accompanied by a therapeutic one in terms
of both drugs and physical therapy. With regard to
the latter, probably this could be due to the fact that
patients with the same genetic disorder show different

deficit-specific biomarkers to create a highly per

alized rehabilitation program based on the pagfents’
needs. Moreover, until now the research fgh)
been mostly focused on lower limbs im @but,
according to the needs reported by pajd (M€ upper
limbs function is crucial as well r these rea-
sons, quantification of upper exh@ﬂisabilities or
motor adaptive strategies is @ 1 for developing
tailored upper limb rehabstdiggdtor CMT patients.
Most of the studies c@ the distal lower limb
function, although some stifdies investigated also the
function of spared proximal segment in order to
assess possible motor strategies to recover the distal
loss of function [4]. This approach could give impor-
tant information also for the upper limb function that,
according to recent studies focused on rehabilitation
and patients’ needs [3, 5], has a great impact on daily
and working life of CMT patients.
Electromyographic and kinematic analysis are
commonly used in the current clinical practice to
evaluate lower limbs in many neurological and
orthopaedical conditions [6, 7]. Gait Analysis is
a very useful instrument to assess gait disorders
and to guide the possible therapies or rehabilitative
interventions [8—10]. Instrumental indices calculated

by surface electromyography (sSEMG) have already
proven to be a useful tool for identifying biological

biomarkers to follow the disease progression of CMT
[11, 12]. In fact, SEMG can be a suitable measure to
study diseases affecting muscle and nerve, such as
CMT, as it provides crucial information on the neu-
romuscular changes/progress induced by the disease
[13].

One of the most critical clinical features of
CMT is muscle weakness leading to an alteration
of co-contraction mechanism between agonist and
antagonist muscles [14], which is a neural strategy
adopted by the central nervous system to stabi-
lize joints and ensure movement accuracy [15].
SEMG-based co-contraction indices (CCI) are used
in literature to quantify the muscle co-contraction,
defined as the simultang6us activation of agonist and
antagonist muscles_d human movement [15],
and have proven t0 ising tools for quantify-

Yol [ 16]. This muscle activation
tegy for regulating joint stiffen-
can be considered as an alternative
estimating joint stiffness, since the lat-
ter is 3ficult to measure experimentally or calculate

putationally [17]. Two of the most common CCls

e guggested by Falconer and Winter et al. [18] and
clinical features thus making it necessary to iderlx udolph et al. [19]. The former is based on the ratio

etween the less activated muscle and the total mus-
cle activation and provides a numerical value related
to the magnitude of co-contraction level, while the
latter, calculated as the ratio between the less and the
more active muscles multiplied by the total muscle
activation, provides an estimation of the magnitude of
co-activation as well as the relative activity observed
in the two muscles. In the light of this feature, i.e.
the possibility of accounting both for the similar-
ity and the magnitude of the EMG signals, and in
consideration of its greater correlation with the joint
stiffness, the Rudolph index is the one most used in
the literature [15, 20].

The demyelinating and axonal features of CMT
could cause an imbalance in the muscle co-
contraction during movements. This abnormal
tightening of muscles results in stiffened joints, which
cause deformities of the limbs [5]. Therefore, the
quantification of this phenomenon using sEMG-
based CCI in CMT subjects could allow a better
understanding of how the disease progression alters
the myoelectric activity of upper limb muscles. Few
studies have investigated the muscle activations in the
lower limb during dynamic conditions [21, 22], while
for what concerns the upper limb, to our knowledge,
no EMG-based movement data have been published
yet.
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To achieve this goal, the aim of this exploratory The CMTES is a subscore of the total CMTNS
observational study was two-fold: (1) to characterize that includes 7 items based on patients’ symptoms
the muscle co-contractions of subjects with CMT1A and examination findings and excludes the electro-
and CMT1X compared to healthy subjects during physiology, with a maximum total score of 28 points
upper limb motor tasks and (2) to analyze the concur- (indicating the worst condition) [26].
rent validity of the SEMG-based index with clinical We completed the clinical assessment with the
scales. DASH and SF36 questionnaires for a subjective eval-

uation of upper limb disability and quality of life.
The DASH questionnaire consists of 30 questions
that inquire about symptoms and functions of the
upper limbs [27]. These provide a single main score,
the DASH function/symptoms (DASH-FS) score,
which is basically a summation of the responses. The
questions test the degree of difficulty in performing a
variety of physical actiyfies because of arm, shoulder

MATERIALS AND METHODS
Farticipants

We recruited CMT patients with a confirmed
genetic diagnosis of CMT who were attending the
multidisciplinary outpatient clinic for the diagnosis
and treatment of inherited peripheral neuropathies
at the IRCCS Ospedale Policlinico San Martino of
Genoa, Italy. Exclusion criteria were: underage sub-
jects, inflammatory arthritis, diabetes, hearing loss,
uncontrolled pain, the presence of other neurologi-
cal diseases or unrelated clinical conditions affecting
motor functions and previous surgical interventions
at the upper limb limiting joint ROM.

Th F36 total score (SF36-TOT) consists of 36
tions on the general health status of patients,

The protocol was approved by the local ethical hlghe.r scores 1ndlcgt1ng a better health status.
1s questionnaire provides separate subscores, of

committee (N. Registro CER Liguria: 113REG20 which four are related to physical activity (Physi-

All participants provided written informed con L. .
the Is) tudy Izvhlcl? was conducted in accor dan cal Functioning (PF), Role-Physical (RP), General
’ Health (GH).

the Helsinki Declaration.

Q& Instrumented clinical assessment

Clinical evaluation

Dynamometer
All subjects underwent evaluation by The maximal isometric voluntary contraction of
means of the Sollerman tion Test (SHFT), both hands was assessed by a hand-held dynamome-
executed following the@lshed protocol, Short ter (Citec CT 3001, CIT Technics BV, Groningen,
Form 36 (SF36), Disabffity of Arm, Shoulder The Netherlands) measuring hand grip (DYN-HG)
and Hand (DASH) and CMT Examination Score and tripod pinch (DYN-TP). Both measures were per-
(CMTES). We also assessed upper limb strength by formed according to a standardized testing procedure

mean of Medical Research Council (MRC) on the [24, 28, 29].
following muscles: deltoids (DEL), biceps (BIC), tri-

ceps (TRI), wrist (WE) and finger (FE) extensors, SEGT
short abductor of the thumb (SAT), first interosseous The sensor-engineered glove test (SEGT) was used
(FD). according to a previously published protocol. It was
The SHFT is a standardized hand function test con- used to evaluate finger opposition movements using
sisting of 20 activities of daily living [23]. Each tested motor sequences in a quantitative spatial-temporal
hand is given a score (Sollerman score) ranging from way in both dominant (DH) and non-dominant hands
0 to 80 points, with a higher score indicating better (NDH). An “eyes-closed paradigm” was chosen to
hand function. avoid possible confounding effects because of the
Thumb opposition was evaluated according to the integration of acoustic and visual information. The
Kapandji opposition score, which defines 10 stages patients were instructed to execute finger opposition
of opposition, with full opposition scored as stage 10 movements of different complexities: finger tapping

[24, 25]. (FT) sequence (opposition of thumb to index) and
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index-medium-ring-little (IMRL) sequence (oppo-
sition of thumb to index, medium, ring, and little
finger) at maximum velocity. The tasks comprised
the execution of a repetition of each sequence, last-
ing 30 seconds, with alternate hands. Data were
processed with customized software from Glove Ana-
lyzer System which permits selection to acquisition
and experimental protocol. The following parame-
ters were measured: touch duration (TD) or contact
time between thumb and another finger (in ms); inter-
tapping interval (ITI) or time between the end of the
contact of the thumb and another finger and the begin-
ning of successive contact (in ms); movement rate
(MR) [1/ (TD +ITT)] or frequency of complete motor
task (in Hz). The MR has been recognized to be the
most sensitive glove parameter to detect differences
between subjects affected by CMT and controls [30].
Patients with some limitation of the range of motion
of their hands or weakness were encouraged to try to
complete the task or to make the efforts to perform
at their best. The SEGT software calculated the total
amount of touches and recorded any “errors” in the
sequence.

Experimental setup

Participants were asked to perform differen
tasks, while they were seated on a chair, vy
feet fully resting on the floor. During , the
hand’s marker (end-effector) trajecto% corded
by an optoelectronic system (Vig jon Systems

Ltd., Oxford, UK) with frequepgyNd 00 Hz and then
low-pass filtered at 6 Hz. Th o1 tasks were:

e Shoulder Abductio@ (SAT): starting from
the rest position with the arm lying on the body
side with the wrist in neutral position and fingers
extended, subjects were asked to carry out the
shoulder abduction movement (90 degrees).

e Elbow Flexion Task (EFT): starting from the rest
position with the arm lying on the body side with
the forearm supinated, subjects were asked to
flex the arm until the hand was placed in front
of the shoulder.

e Wrist Flexion Task (WFT): starting with the
pronated forearm placed on a table with
adjustable height and the hand open outside the
edge of the table, subjects were asked to actively
flex the wrist to the maximum.

e Wrist Extension Task (WET): starting with
the pronated forearm placed on a table with
adjustable height and the hand open outside the

g

edge of the table, subjects were asked to actively
extend the wrist to the maximum.

e Drinking Task: starting from the rest position
where subjects were seated in front of the table
with both hands placed on the table which had a
glass placed at 400 mm from its edge aligned
with the subject sagittal plane, subjects were
required to reach and grasp for the glass with
his/her arm (DGT, grasping phase) and to lift it
from the table to the mouth (DLT, lifting phase).

Surface electromyography was recorded using
self-adhesive  Ag-AgCl electrodes (Medtronic
Kendall, diameter: 24 mm, diameter of the active
part: 10mm, bipolg onfiguration, interelec-
trode distance: 20 and the system EMG
wave/zerowire 8 ¢ Is" (Cometa Srl, Italy) with
a sampling of of 1000Hz. The surface

electrodes ye¥e plgced over the muscles of interest,
accordi e anatomical guidelines [31] and
SEN cifications [32]. The myoelectric activ-

ity of ¥e 8 muscles was recorded from the following

d pectoralis (DEL/PEC, axial-to-proximal muscle
air), (3) biceps and triceps brachialis (BIC/TRI,
proximal muscle pair), and (4) flexor and extensor
carpi radialis (FCR/ECR, distal muscle). Figure 1
shows an example of the collected raw EMG data
for all the four antagonist muscle pairs in a healthy
and CMT subject during the shoulder abduction and
wrist extension tasks.

The EMG probes were placed, unilaterally, on the
dominant side of both HC subjects and CMT sub-
jects selected according to MRC values of fingers
extensors or, in case the latter were identical, of wrist
extensors. The instants of initiation and termination
of each repetition were computed from the veloc-
ity of the hand’s marker positioned. A movement
was considered to begin when the marker velocity
first became greater than 5% of the peak velocity
and was considered to end after the speed dropped
and remained below the 5% threshold again. Raw
EMG signals were band-pass filtered (10400 Hz,
2nd order), full wave rectified and then low-pass fil-
tered (4 Hz, 4th order) in order to obtain the EMG
linear envelopes [33]. Finally, all data were time-
normalized to 100% of the movement duration and
then, in order to not alter the variability in EMG, the
EMG linear envelopes of each muscle was amplitude-
normalized to their maximum value obtained across
recorded different tasks [34, 35], thus also taking into

By muscle pairs: (1) trapezius and latissimus
(TRA/LAT; axial muscle pair), (2) deltoid
p
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Fig. 1. Raw EMG signals of a healthy control and a subject with CMT. The panel on the left shows the raw EMG of the agonist (blue)
and antagonist (red) muscle pairs of a healthy subject, while the one on the right shows the data of a subject with CMT. (A, B) report the
data for the trapezius and latissimus dorsi and (C, D) for deltoid and pectoralis during the shoulder abduction task. (E, F) report the data
for biceps and triceps brachialis and (G, H) for extensor and flexor carpi radialis during the wrist extension task. SAT: shoulder abduction
task; WET: wrist extension task; TRA: trapezius; LAT: latissimus dorsi; DEL: deltoid; PEC: pectoralis, BIC: biceps brachialis; TRI: triceps

brachialis; ECR: extensor carpi radialis; FCR: flexor carpi radialis.
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account force-velocity and length-tension relation-
ships in the muscles [19].

Co-contraction index (CCI)

Rudolph’s CCI in the version proposed by Don in
2007 (Equation 1) [36, 37], has been calculated to
quantify the muscle co-contraction of the four antag-
onist muscle groups. This index estimates the level
of simultaneous activations of muscles regardless of
their action (i.e., a muscle pair can reverse their mus-
cle activation in a specific time interval) [36].

CC[Rudalph =

Zn lowerEMG; [ (lowerEMG; + higherEMG;)
i higherEMG; 2

100 (1)
n

In this expression (Equation 1) i represents the
sample number, n indicates the number of data sample
in the interval, while lower EMG; and higher EMG;
represent respectively the minimum and the maxi-
mum value at sample i of the EMG linear envelopes
from the antagonist muscle pair [36]. The index is
expressed in percentage (%) ranging from O to 100,
where higher co-contraction values represent higher
level of activation of both muscles [19]. The CCI was
computed in each trial and subsequently avera
across the repetitions for each participant.

Magnitude of CCl is defined as the relativ; l%?
tude of simultaneous contraction betweeg o g

muscles (Fig. 2) and is classified usj such
normal, increased or reduced magnj respect

to the normative reference [38]. Q~

Kinematic analysis

The kinematics of t ent was assessed
by calculating speed an§ smg@othness variables dur-
ing each repetition of the tasks and then averaged
across the repetitions for each participant. Movement
speed was computed using the spatial 3D coordinates
of the hand marker as the ratio between the trajec-
tory length at each time instant and the time spent.
Higher values indicate faster movements. Smooth-
ness was calculated by identifying the number of
Peaks (i.e., movement units) of the tangential velocity
of the hand’s marker, as velocity peaks indicate the
alternation of deceleration and acceleration phases
of the hand. Lower number of peaks indicates better
smoothness [39].

Statistical analysis

Statistical analysis was performed using SPSS.
Since the normality of the instrumental parameters

data (co-contraction and kinematic indices) was sat-
isfied (Shapiro-Wilk test), descriptive statistics are
reported as means and standard deviations

For each task the differences between CMTI1A,
CMT1X and the Healthy Control (HC) groups were
statistically tested using the parametric ANOVA test
with Bonferroni correction for differences between
unpaired groups.

Between-group (CMT1AvsHC, CMTI1XvsHC,
CMT1AvsCMT1X) effect sizes of the co-contraction
index were examined by calculating the Cohen’s d
value and was classified according to its absolute
value as small (0.20-0.49), moderate (0.50-0.79) or
large (> 0.80) [41].

Spearman’s correlatigh gnalysis was used to deter-
mine the relationshig Wtween CCIs and clinical
scales in the wh group. To interpret the
magnitude of g BQMrefation coefficients, the follow-
ing absolu based guidelines from Campbell
et al. [@ followed, as very slight (0-0.19),

slig 0.39), moderate (0.40-0.59), strong
(0.60 9) and very strong (0.80-1).
<

@ 0.05 was selected to indicate significance in the

%‘&zESULTs

tical analysis carried out.

A total of 18 patients were enrolled. One subject
was excluded because the diagnosis of CMT was not
genetically confirmed. Three subjects were excluded
because they did not undergo the kinematic evalu-
ation. The mean age of the remaining 14 patients
was 51.1 £ 15.7, range 28-83 yo and the male/female
ratio was 1.3. The CMT subtype distribution of par-
ticipants in this study was 43% of CMT1A, 57% of
CMT1X (Table 1). Only one person was left-handed.
At the CMTES score, 7 subjects fell into the cat-
egory of moderate disability, while the other 7 of
mild disability [42]. No subjects had severe disability
scores.

We also tested a group of 13 age matched healthy
subjects with a mean age of 48.5 £ 11.7, range 29-72
yo and male/female ratio of 0.8.

Comparison of motor performances among
groups

All CMT performed the tasks independently, with-
out any assistance. During all tasks no significant
differences were found among groups for movement
speed (Table 2). For what concern the movement
smoothness, only CMT1X showed abnormal val-
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Fig. 2. Normalized EMG envelope and CCI of a healthy control, subject with CMT1A and CMT1X. Normalized EMG envelope for
the biceps (agonist, blue line) and triceps brachialis (antagonist, red line) as well as the CCI (black dotted line) of the two muscles during
the elbow flexion task for a healthy subject (A, HC), a subject with CMT1A (B, CMT1A) and a subject with CMT1X (C, CMT1X). EFT:
elbow flexion task.
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Table 1
Demographic and clinical characteristics
of CMT patients
CMT patients
N 14
Age, Mean (SD) 51.13 (15.7)
Sex, N(%)
Male 8 (57%)
Female 6 (43%)
CMT type, N(%)
CMT 1A 6 (43%)
CMT 1X 8 (57%)
DH, N (%)
DH 13 (93%)
NDH 1 (7%)
CMTES
Mean (SD) 9.8 (3.04)
Range 5-15

N: number; SD: standard deviation.

ues with respect to HC during the drinking grasping
task, indicating a reduction in the movement quality
(P=0.02).

Comparison of CCIls among groups

The CCls values of all motor tasks are reported i
Fig. 3 for CMT groups and HC.

The CMTI1X showed a reduction in the@
in all tasks for at least one muscle paigglF1
FCR/ECR Cohen’s d=1.63, P<0.01; RI
Cohen’s d=1.95, P<0.01; 3C BI ohen’s
d=1.38, P<0.01; 3D DEL/PE heg’s d=1.14,
P=0.02 and BIC/TRI Cohe %5 P=0.01;
3E BIC/TRI Cohen’s d = 1. N1; 3F BIC/TRI
Cohen’s d=1.29, P=0.02¥, Whid€ the CMT1A only
during the wrist extens@sk (Fig. 3C BIC/TRI
Cohen’s d=1.22, P=0.01 and FCR/ECR Cohen’s
d=1.63, P<0.01).

CMTI1A group showed a significant increase of
the CClIs with respect to CMT1X for the axial muscle
pair TRA/LAT during the elbow flexion task (Fig. 3B
Cohen’s d=1.66, P <0.01), for the axial-to-proximal
muscle pair DEL/PEC during the drinking grasping
phase (Fig. 3E Cohen’s d =0.94, P =0.02), and for the

distal muscle pair FCR/ECR during the elbow flexion
task (Fig. 3B Cohen’s d=1.07, P=0.02).

Correlation between CClIs and clinical-based
outcome measures

Figure 4 reports the correlation analysis between
clinical outcomes and CClIs parameters. EMG met-
rics showed statistically significant correlations with

the clinical outcomes. In particular, CClgcr/Ecr
showed moderate-to-strong correlations with the fol-
lowing clinical scales: 1) DASH (disability, in SAT
P=0.03 and DLT P=0.02), 2) MRC (distal mus-
cle strength, FI item in SAT P=0.02, WE item
in DLT P=0.02), 3) SF36-PF (physical function-
ing related to the Health-Related Quality of Life,
in SAT P<0.01, EFT P=0.03, DGT P=0.03, DLT
P=0.01) and 4) SEGT-IMRL-TD (finger opposition
movements quality, in DLT P=0.04). CClgic/TRI
showed strong correlation with the general health
status of the Health-Related Quality of Life (SF36-
GH in EFT P=0.02 and DLT P =0.02) and moderate
correlation with distal muscle strength (MRC-SAT
in DLT P=0.04). CCLfky, /LaT showed strong cor-

@@:USSION

In this study, we investigated the sensitivity of an
EMGe-based metric to detect differences of the motor
performance among CMT subtypes and healthy sub-
jects. Different methods have been introduced in the
literature to quantify muscle co-contraction, however
a gold standard has not yet been established [43].
Among the different CCI formulations, Rudolph’s
CCI is the one most commonly used by clinical
researchers to quickly and easily assess the simul-
taneous activation of the agonist-antagonist muscle
from sEMG data [15]. Specifically, this index pro-
vides values which include both the temporal and
magnitude components of EMG signals of antago-
nistic muscles [19], thus overcoming the limitations
of the other CCI formulations, relating only to the
intensity of simultaneous muscle activation. In addi-
tion, this index avoids divide-by-zero errors [19] and
does not require a-priori classification of muscles in
agonist and antagonist [36].

Our findings highlighted that the EMG-based anal-
ysis here presented allow to characterize the motor
behavior of the CMT persons with respect to the
normative reference during motor tasks typically
involved in activities of daily living.

Persons with CMT recruited in this study were in
a mild-to-moderate status of severity disease, with
no difference in CMTES and SHFT between the two
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Table 2
Mean and standard deviation of speed and smoothness parameters for healthy subjects
and CMT subgroups during all the motor tasks

Motor task HC (N=13) CMTIA (N=6) CMTIX (N=8)
Mean (SD) Mean (SD) Mean (SD)
Speed (m/s) SAT 0.616 (0.098) 0.735 (0.020) 0.737 (0.021)
EFT 0.379 (0.097) 0.315 (0.012) 0.428 (0.019)
WET 0.135 (0.028) 0.138 (0.023) 0.159 (0.047)
WFT 0.143 (0.030) 0.145 (0.045) 0.171 (0.048)
DGT 0.183 (0.049) 0.192 (0.041) 0.184 (0.068)
DLT 0.205 (0.055) 0.195 (0.048) 0.220 (0.068)
Smoothness (#peaks) SAT 1(0) 1(0) 1(0)
EFT 1(0) 1.02 (0.04) 1(0)
WET 1(0) 1 (0) 1 (0)
WFT 1(0) 1.02 (0.04) 1(0)
DGT 1.03 (0.09) 1.33 (0.38) 1.5 (0.65)*
DLT 1.21 (0.32) 1.17 (0.15) 1,13 (0.25)
SD: standard deviation; HC: healthy control; SAT: shoulder abduction task; EF w flexion

task; WET: wrist extension task; WFT: wrist flexion task; DGT: drinking ge#Sag ask; DLT:
drinking lifting task. The speed is reported in m/s, while the smoothness @ s. *P<0.05

indicates significant difference between HC and CMT1X.

groups according to the CMT subtypes: CMT1A and
CMT1X. Kinematic results showed that CMT1A and
CMT1X persons, overall, performed the motor tasks

at similar movement speed and smoothness compared

to the control group, except for the reaching move-
ment of the drinking grasping task where the CMT1
movement quality was lower than the reference &
(Table 2).

The most marked difference betwee t
CMT groups and the control group, w ugd in
the wrist extension task, where bo and
CMT1X showed a significant regmgt®n of muscle
co-contraction in the proximal nfyggtespairs. In addi-
tion, CMT showed also a mg
synergy, especially CMT
ations on the proximal-tgaxidl and axial muscle pairs
were found. This is in line"With the characteristics of
CMT that most commonly causes progressive mus-
cle weakness starting from the body extremities up
to the mid-axial part, reaching a level of impair-
ment mild to moderate for the former and slight for
the latter. The reduction in the CMT co-contraction
indices was probably the result of degeneration of
axons and myelin of nerves. This damage causes dis-
persion in the muscle activation signal by reducing
the subjects’ ability to modulate the coactivation of
agonist and antagonist muscles around the articular
joints. During dynamic movements the agonist mus-
cle requires more effort to move the limb with respect
to the antagonist one. Therefore, a minor recruitment
of agonist muscle, can appear as an increased activity
of the antagonist muscle, resulting in reduced CCI.
This co-contraction deficit was particularly evident

in CMT ects, who showed a reduction in CCI
indicQ functional movements for at least one

muscledpair. These subjects may have had a greater

geof the motor nerve conduction compared
CMT1A subjects, whose disease progression

ig 'slower when compared to other forms of CMT
44]. Interestingly, CMT1A showed an increased co-
contraction with respect to the CMT1X, especially
for the more proximal muscle pairs with a lower
level of conduction damage. These features could be
the result of a structural reorganization in the brain
of CMT1A patients, mostly probably involving the
anterior cerebellum and possibly reflecting compen-
satory mechanisms in response to peripheral nerve
pathology [45]. It is well known that co-contracting
muscles is an effective strategy for providing articular
joints stability by modulating mechanical impedance
and thereby allowing the central nervous system to
develop adaptive strategy of functioning movement
[46]. A recent study found that distributed cerebellar-
parietal-frontal network functions are able to regulate
muscle co-contraction with the cerebellum as its
key component [46]. Therefore, the CMT1A-induced
changes in the cerebellar cortex could be the ori-
gin of the increased co-contraction in these subjects
as compensatory strategy used to reduce movement
instability caused by muscle weakness [47, 48]. How-
ever, literature evidences report that CMT1A subjects
are usually less compromised in the upper limb
compared to CMT1X. Therefore, CMT1A subjects
may still be able to perform an effective movement
although with altered motor control and, probably,
a multidisciplinary examination may be able to cap-
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Fig. 3. Co-contraction indices during upper extremity motor tasks in CMT groups and Healthy Controls. CCI values for all the muscle
pairs during the following motor tasks: (A) shoulder abduction, (B) elbow flexion, (C) wrist extension, (D) wrist flexion, (E) drinking grasping
and (F) drinking lifting. Bars charts and error bars represent, respectively, mean and standard error of CCIs for Healthy Controls (HC, white),
CMTI1A (gray) and CMT1X (black). *P <0.05 indicates significant differences between CMT1A or CMT1X and HC, or between CMT1A
and CMT1X. SAT: shoulder abduction task; EFT: elbow flexion task; WET: wrist extension task, WFT: wrist flexion task; DGT: drinking
grasping task; DLT: drinking lifting task; TRA/LAT: trapezius and latissimus dorsi muscle pair; DEL/PEC: deltoid and pectoralis muscle
pair, BIC/TRI: biceps and triceps brachialis muscle pair; FCR/ECR: flexor and extensor carpi radialis muscle pair.

ture these subtle differences in the impairment, not
detectable by clinical scales.

This study found correlations between indices of
co-contraction and clinical signs of CMT, especially

for the tasks related to the ADLs (SAT and DLT).
The negative correlation between upper limb disabil-
ity (DASH) and distal co-contraction (CCIgcr/Ecr)
indicates that the lower the upper limb disability is,
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Fig. 4. Correlation analysis between clinical scores and EMG-based co-contraction ggs
between CCI and clinical scales and their sub-items in the whole CMT group during the
drinking grasping and drinking lifting. The dimension and the pixel intensity of circles

from -1 to 1 as indicated by the legend at the bottom right. Significant correlations ar

duration; MR: movement rate; SF36: Short Form 36; GH: General Heail
SAT: shoulder abduction task; EFT: elbow flexion task; DGT: drinkg

This is compatible with the characteristic
ease related to the first symptoms on ic
involves the distal muscle part wigmgbRgrmalities of
the nerve conduction. In fact, re rve conduc-
tion velocities (more deﬁci sult in reduced
values of CCI, while grgmteNgsfiormal conduction
velocities in greater valiigs ofj CClI (less deficit).

The association betwedh the maximum volun-
tary contraction (DYN-TP) and axial muscle co-
contraction (CCItra,LAT) instead probably reflects
the disease-induced compensatory strategy, as CMT
did not show a reduction of the CCI but rather
an increase, especially CMTI1A (Fig. 3). In fact,
the lower the distal muscle strength is, the higher
the axial muscle co-contraction results. The cor-
relation between SF36-PF and SEGT-FT-MR and
CClItrA,/LAT can be interpreted from the same point
of view: the better the subject health status and
movement ability are, the lower the need for compen-
sation strategy is. While the other correlation of the
CClgcr/Ecr with the clinical scale relative to muscle
strength (MRC), global health status (SF36-PF and
DASH) and movement ability (SEGT-IMRL-TD)
indicate that the better the conservation of the distal

the lower the muscle co-contraction deﬁQ r@’

aé#Spearman’s correlation coefficients
ks of shoulder abduction, elbow flexion,

with *P <0.05 (Spearman’s correlation test).
esearch Council; MRC-DEL: deltoid; MRC-TRI:
RC-SAT: short abductor of the thumb; MRC-WE: wrist
pdium-ring-little; ITI: inter-tapping interval; TD: touch

physiological co-contraction (higher CCIgcr/EcR) 1S,
the better the clinical evaluation results.

In conclusion, the CCI may be more sensitive in
early recognition of an altered motor pattern even in
subjects with mild impairment or small changes over
time. These aspects are very relevant in a slow-course
disease, where patients often complain of distal weak-
ness or difficulties in common activities of daily
living without the most used clinical scales being
able to capture these variations. The implications are
important to plan a tailored rehabilitation treatment
to preserve strength and dexterity and to perform a
better and more complete assessment even in clinical
trials, since until now there is no therapy available to
cure CMT patients.

Limitations

Despite the novelty of this study, the small sample
size could limit the generalization of the results. How-
ever, the Cohen’s d values of the CCIs showed large
effect sizes in the contrast analysis, both between
CMT groups and between a sub-group of CMT
(CMT1A or CMT1X) and HC. An a-posteriori power
analysis was conducted on the basis of the CCI effect
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sizes of the proximal muscle pair BIC/TRI between
CMT sub-groups and the control group during the
WET. Fixed a ratio /a equal to 4, the study mean
power was calculated and resulted 0.82, indicating
that the sample size of the present study was adequate
to support future investigations of the use of CCIs as
potential index in CMT to quantify disease-specific
co-contraction features in CMT.

CONCLUSIONS

The results of this study indicate that the EMG-
based indices are promising measures to detect
the initial deterioration of agonist-antagonist muscle
control associated to CMT disease, even when the
movement kinematics is not yet altered with respect
to the healthy subjects. In addition, the analysis here
presented was able to quantify deficits and compen-
sation strategies characteristic of the disease, which
were adopted to regulate the joint movement in order
to obtain a better performance to such an extent that
it was comparable to that of the healthy subjects. The
results obtained by this study contribute to the iden-
tification of outcome measurements to monitor CM
disease, to plan the training of CMT subjects an
detect the rehabilitation-induced changes. C)
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