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Abstract. While skeletal muscle remodeling happens throughout life, diseases that result in its dysfunction are accountable
for many deaths. Indeed, skeletal muscle is exceptionally capable to respond to stimuli modifying its homeostasis, such as
in atrophy, hypertrophy, regeneration and repair. In particular conditions such as genetic diseases (muscular dystrophies),
skeletal muscle’s capacity to remodel is strongly affected and undergoes continuous cycles of chronic damage. This induces
scarring, fatty infiltration, as well as loss of contractibility and of the ability to generate force. In this context, inflammation,
primarily mediated by macrophages, plays a central pathogenic role. Macrophages contribute as the primary regulators of
inflammation during skeletal muscle regeneration, affecting tissue-resident cells such as myogenic cells and endothelial cells,
but also fibro-adipogenic progenitors, which are the main source of the fibro fatty scar. During skeletal muscle regeneration
their function is tightly orchestrated, while in dystrophies their fate is strongly disturbed, resulting in chronic inflammation.
In this review, we will discuss the latest findings on the role of macrophages in skeletal muscle diseases, and how they are
regulated.
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MMP Matrix Metalloproteinase

MD Muscular dystrophy

MSA Myositis-specific antibody

NAMPT  Nicotinamide phosphoribosyl-
transferase

Nfix Nuclear Factor I X

NF«B Nuclear Factor kappa B

NSAID Nonsteroidal anti-inflammatory drugs

OPN Osteopontin

PDGFR  Platelet Derived Growth Factor
Receptor

RANKL  receptor activator of nuclear factor

NF-«B ligand
RANTES Regulated upon Activation, Normal
T Cell Expressed and Presumably

Secreted
SC Satellite Cell
SCG sarcoglycan
TGFp Transforming growth factor beta
TIMD4 T Cell Immunoglobulin And Mucin
Domain Containing 4
TNF Tumor Necrosis Factor
Treg regulatory T cell
uPA urokinase plasminogen activator
VEGF Vascular endothelial growth factor
WT Wild Type
INTRODUCTION

Disruption of homeostasis in skeletal muscle tis-
sue can be triggered by many variables, including
changes in diet or exercise, local injury, systemic
infection, genetic disease, and ageing. In most of
these cases, inflammation and in particular macro-
phages play a primordial role in the pathology.
Macrophages, along with neutrophils, are part of
the leukocyte family first described in 1908 by Elie
Metchnikoff. In addition to their immunoprotective
role against pathogens, macrophages have a num-
ber of additional roles during development and tissue
remodeling, in particular in skeletal muscle [1-3].

Skeletal muscle regeneration is made possible by a
population of adult muscle stem cells called satellite
cells (SC) [4]. After damage or microenvironment
changes, SCs activate, proliferate, and differenti-
ate into myoblasts/myocytes before fusing with one
another or with surrounding myofibers. As fitting
their definition as a stem cell, SCs are capable of
self-renewal which maintains a potent pool of cells
throughout life (reviewed in [5, 6]). Despite the essen-

tial role SCs play in muscle regeneration, these events
won’t happen without the help of other cells harbored
in the interstices between the myofibers: endothe-
lial cells, pericytes [7], fibro/adipogenic progenitors
(FAP) [8-10], and foremost, macrophages [11-16].
Specifically, following damage, macrophages are
responsible for the release of a pool of cytokines,
chemokines and alarmins called damage-associated
molecular pattern (DAMPs). These molecules are
part of a coordinated response that initiates ster-
ile inflammation and induction of blood-circulating
monocytes’ infiltration into the tissue.

In healthy tissue, successful skeletal muscle regen-
eration is typically complete within 3 weeks, and
without any need for external intervention (anti-
inflammatory drugs for example) [17]. However,
when disrupted, the process can take months and is
often associated with fibrotic deposition (scarring)
and adipogenesis. Examples of such disruptions in
muscle homeostasis include repeated injures, vol-
umetric mass injuries, modification in homeostasis
during ageing (sarcopenia), prolonged immobil-
ity/atrophy (e.g. cancer: cachexia), genetic diseases
that directly affect the muscle (e.g. Duchenne and
Becker Muscular Dystrophies (DMD, BMD), and
Limb-girdle muscular dystrophy (LGMD)).

In this review, we briefly describe the roles of
macrophages in skeletal muscle regeneration, then
turn our focus to their roles in muscular dystrophies
(MD) and how current treatments act on their func-
tions.

MACROPHAGES, DEFINITION AND
FUNCTION IN SKELETAL MUSCLE
REMODELING

To study muscle regeneration and inflammation,
injury models that make use of toxins (notexin, car-
diotoxin), chemicals (barium chloride) and mechani-
cal trauma (crush, freezing, ischemia, laceration) are
used to stimulate a response. Depending on the type
of damage the kinetics of the inflammatory response
will vary, however the overall regenerative process
of the tissue remains the same (for more information
about injury models, please read [18]).

The study of macrophages in vitro is usually
conducted using bone marrow-derived macrophages
(BMDM). Macrophage polarization in vitro is
required to induce the secretion of specific cytokines
associated to their functions such as phagocytosis of
apoptotic cells, cell growth and tissue repair promo-
tion, or fighting bacterial infections. Like T cells,
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Table 1
Monocyte/Macrophage populations
Population Markers Functions References
Blood circulating Ly-6C+ Ly6C+, CCR2+, CD11blow, F480low, - Patrol blood system and [38, 39]
monocytes CX3CR1low infiltrate tissues
Ly-6C- Ly6C-, CCR2-, CD11b+, F480+, - Patrol blood system
CX3CR1+
Tissue resident Embryonic liver- Ly6C-CCR2-F4/80hi CD11blow - unknown [26, 31]
Macrophages derived Lyvelhigh
Adult bone Ly6C-CCR2-F4/80low CD11bhigh - unknown
marrow-derived Lyvellow
Acute damage Ly-6C+ Ly6C+, CCR2+, CD11blow, F480low, - Activate MuSC [17, 52, 56, 59]
CX3CRl1low, CD11c+ proliferation.
- Phagocyte debris and dead
myofibers
- Kill FAPs
Ly-6C- Ly6C-, CCR2-, CD11b+, F480+, - Support myogenesis and
CX3CRI1+,CDIllc+ myofiber growth
- Support FAP survival
Chronic damage Ly-6Chigh Ly6Chi, CCR2+, CD11blow, F480low, - Activate MuSC [56, 59]
CX3CRl1low, CD11c+ proliferation.
- Kill FAPs
Ly-6C- Ly6C-, CCR2-, CD11b+, F480+, - Activate MuSC
CX3CR1+, CDI1c+ proliferation.
- Kill FAPs

macrophages can acquire two main inflammatory
profiles: classically activated M1 (related to type 1
inflammation — Th1) and alternatively activated M2
(related to Type 2 inflammation — Th2). The Th1/Th2
paradigm in macrophage has been extensively dis-
cussed and we encourage reading the following
reviews [19, 20]. BMDM are stimulated with IFNvy,
IL-4/1L-13, or IL-10, to respectively mimic either the
pro-inflammatory/classically activated state “M1”,
the alternative activation state “M2a”, or the anti-
inflammatory state “M2c” [21]. Other M2 states
have been proposed, such as M2b (immune com-
plex activation [22]) and M2d (TLR antagonist [23,
241]), but are not relevant in muscle biology. More-
over, Lipopolysaccharide (LPS) alone or together
with IFNv, can be used to induce a stronger pro-
inflammatory activation state. However, in the case
of tissue regeneration and sterile inflammation, the
use of LPS and of these in vitro methods in general
might push macrophages into state not representative
of that found in vivo.

The understudied tissue-resident macrophages

Skeletal muscle resident macrophages are quies-
cent cells, occupying space within the connective tis-
sue that surrounds myofibers and in close proximity
to blood vessels [25, 26]. As in other tissues, dis-
tinct subsets of resident macrophages arise from
either developmental origins (yolk sac-, aorta-gonad-

mesonephros- (AGM), or liver-derived hematopoie-
sis) or from the adult bone marrow (BM) [27]. It has
been shown that tissue-resident macrophages acquire
tissue specific functions. For example, Kupffer cells
(liver) play a crucial role in the clearance of blood
toxins, and alveolar macrophages (lung) will actively
clean pathogens and microorganisms from the air-
ways [28-30]. In skeletal muscle, so far the only
proposed role of tissue resident macrophages is the
attraction of circulating blood monocytes to the site
of damage [26]. Yet, tissue resident macrophages are
still heterogeneous, with a sub-type expressing stress-
response genes such as KIf2 or Fos [31].

It has been established that tissue-resident macro-
phages derive from primitive hematopoiesis in the
liver and definitive hematopoiesis in the BM [32,
33]. As of now, the muscle research community
lacks a specific marker to distinguish skeletal muscle
resident macrophages from infiltrating monocytes.
However, it seems that a proportion of resident
macrophages are embryonically derived, while ano-
ther subpopulation is maintained by blood-derived
monocytes [31, 32, 34]. The embryonic-derived tis-
sue-resident macrophages are Ly-6C~CCR2™
F4/80"CD11b!°%, while the BM-derived tissue-
resident macrophages are Ly-6C~CCR2~F4/80!°%
CD11bheh [32] (Table 1). More recently, the marker
Lyvel has been added to the list of the markers for
tissue resident macrophages [31, 35]. Wang et al.,
also suggest that Lyvel expression (high versus low)
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could differentiate between the embryonic-derived
(Lyvel'%) and the blood-derived (LyvelMeh) tissue
resident macrophages (Table 1). [31] In the heart,
tissue-resident macrophages can be distinguished by
expression of the marker T cell Immunoglobulin and
Mucin Domain containing 4 (TIMD4). TIMD4"
macrophages are able to locally self-renew, while
TIMDA4™ cells are replaced by blood-derived cells
[36]. Moreover, cardiac resident macrophages
seem to have very specific functions depending on
their location. For example, resident macrophages
present in the atrioventricular nodes are required to
maintain cardiac contraction via the formation of gap
junctions with cardiomyocytes [37]. The regulation,
self-renewal, and function of skeletal muscle-
resident macrophages at homeostasis and during
regeneration is not yet understood. The charac-
terization (ontology and specific markers) of this
population should be definitively one of the focus
points for better understanding of their function at
steady state, during tissue remodeling (mild or acute
damage), ageing, and in disease [2, 30].

Infiltrating monocytes and their function as
macrophages

Circulating blood-monocyte infiltration

In blood, monocytes separate into two subsets
[38]. The first, which is CCR2~Ly-6C~CX3CR1"igh
CD11b™F4/80" functions to patrol the vasculature
in search of pathogens [39] (Table 1). The other sub-
setis CCR2Ly-6CTCX3CR1'°¥CD11bVF4/80'°%
and homes to damaged tissues primarily through the
CCL2(MCP1)-CCR2 axis [40-44]. This cytokine-
receptor interaction was one of the first described
to induce monocytes infiltration into tissues after
damage and has been observed as indispensable
in liver, heart, and skeletal muscle [43, 45-47].
Since then, other chemokines have been described,
suchas: RANTES/CCLS, MIP3/CCL3, MIP4/CCLA4,
MCP-3/CCL7, MCP-4/CCLS8 [48]. Sources of these
chemoattractant can vary by tissue and context. For
example, deletion of tissue resident FAPs using the
PDGFRa-CRE:DTA mouse model induced a strong
reduction in infiltrating CD45% cells after damage
in skeletal muscle [49]. While this has not been
backed up with migration assays in vitro, FAPs are
known to produce and secrete MCP-1 and CSF1,
which are known chemoattractant for leucocytes [50].
Alternatively, cells such as SCs and myofibers have
also been shown to attract monocytes/macrophages
[51,52]. Currently, only CCR2+Ly-6CTCX3CR1!°%

CD11b'°"F4/80'°% monocytes are known to infil-
trate damaged muscle [11, 17, 53, 54]. One of the
best pieces of supportive evidence comes from the
use of the Nur77-KO mouse model. Nur77 (also
known as NR4A1) is an orphan transcription fac-
tor involved in cell proliferation. Depletion of Nur77
induces a block in S phase, leading to apoptosis of
Ly6C™ MO in the bone marrow [55]. Interestingly,
while Nur77-KO animals lack the Ly-6C~ blood-
circulating monocyte population, Ly-6C~ macro-
phages are found in the muscle after acute damage
in similar numbers to control littermates [53].

Blood-derived macrophage functions

The infiltration of monocytes and their differ-
entiation into macrophages is essential for proper
skeletal muscle regeneration [11, 16, 17, 40, 56-58].
Once extravasated, blood monocytes differentiate
into inflammatory macrophages and lose CCR2
expression. Of note, this differentiation step is not
fully understood yet and may be independent of the
process leading to the appearance of alternatively
activated and pro-regenerative macrophages (skew-
ing), which is associated with the downregulation
of Ly-6C [11, 53] (Fig. 1). Ly-6C™ and Ly-6C~
macrophages are observed in a temporally precise
sequence and are efficiently coordinated for skeletal
muscle regeneration.

Pro-inflammatory macrophages (Ly-6C*F4/80%
CD11bTCX3CR1'Y) secrete cytokines and growth
factors that support SC proliferation but induce
death in FAPs [52, 56, 59]. Following the clear-
ance of debris, dead cells, and necrotic myofibers,
macrophages slowly activate a program that skews
them towards a pro-regenerative phenotype (Ly-
6C~F4/80TCD11bTCX3CR1Mgh) which supports
myogenic cell differentiation and fusion [17, 52, 60—
62], and FAP survival [56, 59]. Knockout murine
models have demonstrated the importance of this
phenotypical skewing for efficient muscle regenera-
tion and identified several actors guiding this process,
including AMP-activated Kinase (AMPK), Mitogen-
activated protein kinase (MAPK) phosphatase 1
(MKP-1), CCAAT-enhancer-binding proteins (C/
EBPR), and Nuclear Factor I X (Nfix) [17, 63—
65]. To note, in addition to Ly-6C, F4/80 and
CDl11b, other markers can also be used to distin-
guish pro-inflammatory macrophages from the pro-
regenerative type and are highlighted in Fig. 1 and
Table 2. Through this process, macrophages are
sensitive to and secrete various cytokines required
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Table 2
Markers for ma macrophages involved in skeletal muscle regeneration
Markers Population Functions References
CCR2 Infiltrating monocyte CCL2 receptor [15, 4042, 45, 58]
iNOS Pro-Inflammatory (Ly-6C+) Transform Arginine in Nitric Oxid [21]

Cox-2 Pro-Inflammatory (Ly-6C+) Catalyzes the conversion of arachidonic acid to prostaglandins [16,21]
CD163 Pro-regenerative (Ly-6C-) Scavenger Receptor [11,17]
Arginase 1 Pro-regenerative (Ly-6C-) Transform Arginine in Ornithine [21,231]
Fizz1/RELMa Pro-regenerative (Ly-6C-) Pro-fibrotic secreted cytokine [21,231]
CD206/MRC-1 Pro-regenerative (Ly-6C-) Mannose Receptor, specific function unknown [11,17,21]
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Fig. 1. Temporal expression of macrophage and inflammatory
markers. After damage, infiltrated monocytes differentiate into
macrophages, up-regulate CD11c, CD11b, F4/80, and CX3CR1
(top graph) and express pro-inflammatory markers such as Ly-6C,
CCR2, iNOs, and Cox-2 (middle graph). After 1-2 days in the
tissue, they downregulate pro-inflammatory markers and start to
express anti-inflammatory proteins such as CD206, CD163, and
Arginase 1 (bottom graph).

for efficient skeletal muscle regeneration, briefly
described here (Fig. 2):

Annexins are known for their role in resolv-
ing inflammation by inducing neutrophil apoptosis
and activating monocyte phagocytosis. Specifically,
Annexin Al has long been studied in vitro in models
of tumor growth and arthritis [66, 67]. While

Annexin Al is expressed by a number of cell types
(FAPs, SCs, and macrophages), its receptor FFPR2
is expressed only by macrophages [68] and acti-
vates AMPK, promoting phagocytosis and inducing
macrophage skewing toward a pro-regenerative phe-
notype [17, 61].

Insulin-like growth factor 1 (IGF-1) has been
thoroughly described for its anabolic effect on skele-
tal muscle [69—72]. However, only more recently
has it been shown to also be macrophage-derived.
Indeed, deletion of IGF-1 in leukocytes using the
Lysozyme“RE mice induces a delay in muscle regen-
eration due to a defect in pro-regenerative phenotype
switching [73].

Interferon gamma (IFNvy) is a pleiotropic
cytokine produced by various cell types and seems
to have a dual role on myogenesis. So far, IFNvy
has been described as expressed by myogenic cells
and NK cells, but not in macrophages [74,75]. How-
ever, macrophages are sensitive to IFNvy’s effects
as a pro-inflammatory cytokine. Consequently, IFN~y
signaling has to be quickly downregulated by regula-
tory T cells (Treg: FoxP3tCD4 T cells) in order for
macrophages to resolve the inflammation and skew
toward a pro-regenerative profile [75]. Interestingly,
IFNvy has been shown to have pro-myogenic func-
tions as IFNvy-KO mice display impaired skeletal
muscle regeneration [74]. However, over-stimulating
human myoblasts with IFNvy in vitro also leads to
a defect in myogenesis, independently of myoblast
apoptosis [76]. Moreover, IFNvy has been shown to
antagonize TGFf signaling in FAP-like cells. Indeed,
IFNv treatment reduces fibrosis in skeletal muscle
after laceration injury, which is probably due to FAP
apoptosis [77, 78].

Interleukin 1 beta (IL-1f) is part of the IL-1
superfamily (with IL-1a and IL-33) and is mostly
expressed by pro-inflammatory macrophages imme-
diately after damage [11, 79]. IL-18 receptors
(IL-1R1 and IL-1R2) are not only expressed by
macrophages but also in SCs and FAPs [68]. In vitro,
stimulation of C2C12 cells or primary myoblasts
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Fig. 2. Macrophages orchestrate muscle-resident cell behaviour during tissue repair. Left panel: after injury, Ly-6C+ macrophages secrete
CCL3, NO, TNFa and IL-1pB, clear fibro-adipogenic progenitors (FAPs) from the tissue, and support myogenic cell proliferation. Once
skewed to an anti-inflammatory profile, macrophage produce IL-6, GDF3, TGFpB, and VEGF, which participate into the support of the
myogenic program and myofiber growth. Macrophage content within the tissue returns to basal around 2 weeks after damage by either
re-circulation or local apoptosis. Right panel: in case of repeated trauma, the number of macrophages present in the tissue rises, which could
be due to continuous infiltration, or to local proliferation. Both Ly-6C+ and Ly-6C— macrophages are present within the tissue, which causes
the accumulation of both pro- and anti-inflammatory cytokines in the damaged area. FAPs are activated, differentiate into fibroblast and

adipocytes and myogenesis is delayed.

with IL-1{ induces cell proliferation [79]. This effect
is probably due to the activation of NF«B signal-
ing, which is key for cell proliferation and survival.
Of note, adding IL-13 blocking antibody in human
myogenic cell culture with macrophage-conditioned
medium induced myotube formation [52]. This sug-
gests that IL-13 also has an anti-myogenic role,
protecting from early differentiation.

Interleukin 10 (IL-10) is required for macro-
phages to acquire a pro-regenerative function [80,
81]. However, early delivery of IL-10 will prema-
turely induce macrophage skewing, delaying ske-
letal muscle regeneration [80]. This confirms that
macrophage skewing needs to be precisely tempo-
rally regulated as faster resolution of inflammation
does not always induce better recovery. This is
supported by observations following the use of
ice or anti-inflammatory compounds such as nons-
teroidal anti-inflammatory drugs (NSAIDs) [2, 82].
Indeed, studies have reported that the use of NSAIDs
1) did not reduce soreness after exercise, 2) negatively

affected SC fate, and 3) reduced muscle protein syn-
thesis post exercise. However, in > 65-year-old adults,
as well as in old rats, NSAIDs help in the gain of mus-
cle mass. Altogether, mouse, rat, and human studies
report conflicted results in the use of NSAIDs, thus
their use should be consciously done [83].
Interleukin 6 (IL-6) production has been observed
in almost all cells present in skeletal muscle (FAPs,
endothelial cells, smooth muscle cells, myofibers,
and various immune cells such as eosinophils and
macrophages). Like TGF and TNFa, IL-6 has both
pro and anti-inflammatory functions [84], making
understanding its role in regeneration complicated.
To note, IL-6 is produced at a high level after exer-
cise, but the source seems to be myofibers rather than
infiltrating immune cells [85]. However, the concen-
tration of IL-6 peaks at day 6 after acute injury, and
delivery of IL-6 in vitro has interestingly no effect on
proliferation of the myogenic cell line C2C12 [79].
However, as observed with IL-13, blocking IL-6
in human macrophage conditioned medium induces
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myotube formation in vitro, suggesting an anti-myo-
genic function of macrophage-derived IL-6 [52].

Interleukin 13 (IL-13) and Interleukin 4 (IL-4)
are type 2 cytokines usually secreted by eosinophils,
T cells, and Innate Lymphoid Cells (ILCs). Both have
been described to induce macrophage skewing [86,
87]. To note, IL-4 treated FAPs support SC differ-
entiation in vitro [86]. Plus, the IL-4/IL-13 axis also
blocks FAP differentiation into adipocytes, allowing
efficient regeneration [86]. In adipose tissue, it has
been suggested that the IL-4/IL-13 axis is required
for tissue resident mesenchymal stromal cells (FAP-
like cells) to produce CCL11 (Eotaxinl) and attract
eosinophils to maintain a type 2 inflammatory envi-
ronment [87-89]. This chain of events has not been
demonstrated in skeletal muscle, but represents a
potential mechanism for eosinophil recruitment and
the resolution of inflammation.

Nicotinamide phosphoribosyltransferase (NAMPT,
also known as Visfatin or PBEF) is secreted by a spe-
cific population of macrophages during regeneration
and acts on SCs via CCRS5 to induce their proliferation
[62]. In a zebrafish model, NAMPT+ macrophages
appear to assume a pro-regenerative role similar to
that observed in mouse and human, where they appear
2 days after injury and express arg2, mmpl3, and
mmp9 [62].

Transforming growth factor beta (TGF) is
a complex cytokine known to affect the behavior
of most cells through disparate signaling pathways.
The TGFB superfamily is composed of 50 mem-
bers, with TGFB1 and myostatin being the most
highly expressed in skeletal muscle [90]. One of
the best known functions of TGFp is its potent
effect on fibrogenesis [8, 9, 91]. For example, TGF[3
induces FAP survival (counteracting the IFNy/TNFa
pro-apoptotic effect) and differentiation into myofi-
broblast [59]. TGFp is also known for its inhibitory
effect on myogenesis [92-95]. As TGFB ligands
(TGFB1, 2, and 3) are secreted by multiple sources,
it is difficult to discern paracrine and autocrine
function. Interestingly, macrophage-secreted GDF3,
which is a ligand of the TGF@ superfamily, has
been shown to promote SC commitment to myo-
genesis [60]. Lastly, TGFpB is known to be secreted
in a non-active form (called latent TGFR), which is
sequestered in the ECM in complex with latent TGF(3
binding proteins (LTBP) [96]. Thus, its activity and
action on SCs and FAPs can temporally differ from
its secretion.

Tumor Necrosis Factor alpha (TNFa). TNFa
is another complex cytokine, which can have differ-

ent effects that are dependent upon its concentration.
Interestingly, when secreted at high concentrations
by inflammatory macrophages, it has anti-myogenic
properties. However, when TNFa is secreted at low
levels by anti-inflammatory macrophages, it instead
functions as a pro-myogenic cytokine [52]. This dif-
ferential effect is probably compounded by a globally
changing cytokine milieu in the regenerative process.
It would be interesting to study if the dual function
of TNFa is only due to its concentration, or to its
cooperation with other cytokines (e.g. IL-1p3).
Vascular endothelial growth factor (VEGF).
While VEGF is mostly known for its pro-angiogenic
functions, its effects on myogenic cell behavior have
recently been explored [97, 98]. Indeed, inhibition
of VEGF induces myotube formation in vitro, sug-
gesting an anti-myogenic function of macrophagic
VEGF [52]. However, Verma et al., showed that
SC-derived VEGFA helps to maintaining the niche
micro-environment and encourages their own quies-
cence [98]. Interestingly, quiescent SCs do not appear
to express detectable levels of VEGF receptors (Kdr
(VGFR2) or FitlI (VGFR1)). Thus, further studies
into how VEGFA acts on SC behavior is warranted.

HISTOPATHOLOGY AND ANIMAL
MODELS OF MUSCULAR DYSTROPHIES

MDs are a heterogeneous group of inherited dis-
orders characterized by progressive wasting and
weakness of muscle tissue that compromises patient
mobility, leading to wheelchair dependency. In severe
cases, patients with MDs die prematurely due to res-
piratory and cardiac failure [99]. Many MDs are
caused by mutations in the genes coding for pro-
teins of the dystrophin-glycoprotein complex (DGC)
or required for the correct assembly of the DGC.
The main components of this multiprotein complex
are dystrophin and sarcoglycan subunits. Struc-
turally, the DGC links the F-actin cytoskeleton of
myofibers to the ECM. The absence of even one
protein of the DGC often causes the disassembly
of the entire complex, causing sarcolemmal (the
myofiber plasma membrane) fragility and leading
to myofiber damage and necrosis that is aggra-
vated by contractile activity [100-102]. Damaged
myofibers are repaired or replaced by SCs, but as they
share the same genetic mutation, the newly formed
myofibers are destined for the same degenerative
fate. Consequently, muscle tissue enters into a con-
tinuous cycle of degeneration and regeneration that
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results in chronic inflammation and substitution of
contractile muscle tissue with adipose and fibrotic
tissue. At the histological level, dystrophic muscle is
characterized by necrotic myofibers, desynchronized
centrally-nucleated regenerative myofibers, immune
cell infiltration, and the presence of fatty/fibrotic
lesions in place of muscle tissue [103].

The most common MD is the Duchenne muscular
dystrophy (DMD), an X-linked autosomal recessive
disease caused by a mutation in the ~2.4 Mb dys-
trophin gene that results in complete loss of the
dystrophin protein and affects approximately 1 in
3,500-6,000 boys [104, 105]. The first signs of dis-
ease are usually observed around 2 to 3 years of
age, followed by progressive muscle wasting, grad-
ually leading to wheelchair use and eventual death
caused by respiratory and cardiac complications [99,
106, 107]. In DMD 60% of dystrophin mutations are
large insertions or deletions that lead to frameshift
errors downstream, whereas approximately 40% are
point mutations or small frameshift rearrangements
[108]. Becker-type muscular dystrophy (BMD) is
also caused by a mutation to the dystrophin gene,
but one that permits the synthesis of an internally
truncated and partially functional protein, leading
to a milder phenotype in affected boys [99]. MDs
are particularly difficult to treat due to the post-
mitotic nature of cardiac and skeletal muscle, as
well as the abundancy of muscle tissue across the
body. Different animal models are used to under-
stand the development of the dystrophic disease as
well as molecular and cellular pathways involved in
this process [109]. Here are some of the main mouse
models:

mdx mice: the mouse model for DMD is called
mdx and is the main animal model used to study MDs.
The mdx mutant came from a spontaneous mutation
in a colony of C57BL/10ScSn mice, first reported in
1984 by Bulfield. Myofiber necrosis appears in the
limbs of mdx mice at 3 weeks of age and a first peak
of inflammation and necrosis occurs at4 weeks. From
this point forward, the muscle enters a cycle of degen-
eration and regeneration. At 8 weeks of age, 80% of
myofibers are centrally-nucleated and myofiber size
is highly heterogeneous [110-113]. Due to the lack of
the DCG, mdx myofibers are fragile, and damage can
be easily induced through muscle contraction (similar
to eccentric exercise). Unlike human DMD muscles
that are progressively replaced by fat and fibrosis,
limb muscles of young mdx mice develop only mild
fibrosis and no fat infiltration, suggesting that mdx
muscles have a higher capacity for regeneration com-

pared to human dystrophic muscle. At 12 months of
life, mdx muscle is still regenerative [111, 112] and
it is not until 18 and 24 months of age that fibro-
sis and adipose infiltration are observed, respectively
[110]. The only mdx muscle that faithfully recapitu-
lates human DMD progression is the diaphragm. In
this tissue, the first histopathological muscle lesions
appear at 1 month of life and over time myofibers are
replaced by fibrotic tissue [114, 115]. Thus, while
human DMD patients and mdx mice both lack dys-
trophin, mice do not progress to the same level of
pathophysiological severity, which limits their use
for modelling human DMD. Since the mdx mouse
model does not adhere to the general symptoms of the
human disease, some variations of the mouse model
have been generated in order to better mimic DMD
pathology:

Micro-damage: a mechanical strategy entailing
repeated daily microneedle stabs, inducing fibrosis
and myofiber size heterogeneity 1-week post-injury
in the tibialis anterior of mdx mice. Asynchronous
regeneration is linked to appearance of fibrotic tissue
and failed regeneration [116, 117].

mdx:utrn+/- mouse model: a genetic strategy
used to create mdx models that develop fibrosis
earlier. It is based on the hypothesis that some
structural proteins, such as UTROPHIN could com-
pensate the lack of dystrophin in mdx mice. Double
knockout mdx:utrn—/~ mice show severe progres-
sive MD, leading to premature death, although
haploinsufficiency of the utrn gene is enough to
induce early fibrosis in limb muscles in mdx mice
[118, 119].

D2-mdx: another hypothesis advanced to explain
histological differences between mdx mice and DMD
muscle was a higher regenerative capacity inherent
to the murine genetic background. In fact, after sev-
eral rounds of cardiotoxin injury, C57BL10 mouse
strain muscles regenerate efficiently while muscles
of DBA/2 mice display fibrosis and fat infiltration
[120]. This impaired regeneration is due to a decrease
in SC proliferation, leading to a decrease in myo-
genic cells available for fusion and consequently
smaller regenerated myofibers. The most commonly
used mdx murine model is on the C57BL10 back-
ground, while mdx mice backcrossed with the
DBA/2 background (or D2-mdx) exhibit more rapidly
progressing dystrophic pathology [120-122]. D2-
mdx display muscular atrophy and an increase
in fibrotic area in tibialis anterior, gastrocnemius
and quadriceps muscles compared to mdx mice
[120, 121, 123].
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mdxPt28¢°: Recently, Young et al., generated a
model of mdx with complete loss of dystrophin by
introducing a disruption in the reading frame down-
stream of exon 63: mdxP°38%° [124]. These dystrophic
mice do not express the full length Dp427 isoform
of dystrophin but do express the truncated Dp71
isoform. The total absence of the long dystrophin
isoform induces a decrease in myofiber size, and an
increase of fibrosis and calcification in the tibialis
anterior. Calcification was also observed in other limb
muscles and in the heart of mdx"®€%° mice. Inter-
estingly, high numbers of macrophages were found
around calcified myofibers [124]. This model is often
compared to the DMD-null mouse model that lack the
full length of the dystrophin protein (both Dp71 and
DP427 isoforms) [125, 126].

«a-sarcoglycan deficiency: the mouse model for
a-sarcoglycan deficiency (sgca™/~) mouse) was
designed to model an existing sarcoglycan human
mutation, found in patients of LGMD type 2D/R3
[132]. Necrotic myofibers are observed at 3 weeks of
age and more than 70% of myofibers are centrally-
nucleated in limb muscles and diaphragm at 8 weeks.
The sgca'™/~) mouse exhibits a decrease in muscle
function and, importantly, fibrosis occurs earlier in
limb muscles and the diaphragm [132—-134]. So even
while the genetic origin of the disease is different
between mdx and sgcal~/~) mice, the development
of DM pathology in the latter more closely captures
that observed in human MDs.

In mdx, sgca(_/ -), and DMD, a highly inflamma-
tory environment (in terms of cell infiltration and
cytokine detection) is observed compared to WT,
non-damaged muscles [111, 115, 128, 134-137].
While macrophages are required and beneficial for
efficient muscle regeneration after acute injury (see
chapter above), chronic inflammation leads to tissue
damage. In the case of skeletal muscle, the deleterious
effect of macrophages during periods of chronic dam-
age is hypothesized to be attributed to: 1) a sustained
inflammatory environment that promotes muscle tis-
sue damage, and 2) fibrosis induced by abnormal
persistence of wound-healing macrophages. Indeed,
in the last decades, many studies thoroughly inves-
tigated the phenotype and functions of macrophages
in MDs.

ROLE OF MACROPHAGES IN CHRONIC
INJURY: FRIENDS OR FOES?

Muscle regeneration following acute injury can be
impaired by genetically or pharmacologically affect-

ing macrophage’s capacity to infiltrate the tissue [11,
57, 58, 138-140]. However, in dystrophic muscle the
decreased inflammation associated with modifying
macrophage’s infiltrative capacity often correlates
with improved tissue functionality. In both human
DMD, and mouse models like in sgca™/~) and madx,
the number of macrophages correlate with expression
of fibrotic markers [56].

Depletion of blood-circulating monocytes in
young mdx mice using an anti-F4/80 antibody
reduces the number of damaged myofibers, pre-
sumably because it delays the peak of inflammation
that normally occurs in mdx mice at early time
point [141] (Table 3). Preventing macrophage
infiltration by deleting the TLR4 receptor also
attenuates MD progression in 6 and 12-week-old
mdx mice by limiting muscle damage and fibrosis,
while also limiting loss of force [142] (Table 3).
Likewise, deleting the CCR2 receptor in mdx mice
(mdx:CCR27/7) decreases macrophage infiltration
in the diaphragm at 6 weeks of life. Interestingly,
at 12 weeks of age, mdx:CCR2~/~ mice have
the same number of intramuscular macrophages
compared to mdx control mice, suggesting a role
for tissue-resident macrophages in disease pro-
gression. Furthermore, there are more CD206+
(pro-regenerative) macrophages and fewer iNOS+
(pro-inflammatory) macrophages in the diaphragm
of mdx:CCR2™/~ mice at 6 weeks of age. Again,
this may be due to contribution of tissue-resident
macrophages, which may not be able to efficiently
acquire a pro-inflammatory phenotype. No differ-
ence in terms of histopathology is observed between
mdx and mdx:CCR2~/~ mice at 6 weeks of age,
but at 12 weeks of age a decrease in the number of
necrotic myofibers and area of fibrosis is observed
in the diaphragm of double mutant mice. Functional
improvement in the diaphragm is observed at both 6
weeks and 12 weeks of age [143] (Table 3).

Consistent with these results, the use of a pharma-
cological antagonist of CCR2/CCRS receptor (CVC
or cenicriviroc) in mdx mice from 2- to 6-weeks of age
decreased macrophage infiltration of the diaphragm
in treated mice without any effect on myofiber
necrosis and fibrosis. However, no changes in the ratio
of CD206+ or iNOS+ macrophage were observed
[144] (Table 3). Analysis of mdx mouse pathology
at 1 year shows that these animals approach a similar
disease state to that of human DMD patients (force,
regenerative capacity, central nuclei, muscle hyper-
trophy, and myofiber branching). Similarly, the early
improvements observed in the diaphragm and quadri-
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Table 3
Depletion of monocyte/macrophage in mdx mouse model
Mouse model Result References
mdx injected with anti-F4/80 antibody - Improved soleus muscle at 1- and 4-weeks of age [141]
mdx:TLR4-KO - Improved TA and diaphragm muscle histopathology at 6- and 12-weeks [142]
of age
mdx:CCR2-KO - Improved diaphragm muscle histopathology and function at 6- and [143, 145]
12-weeks of age
- No improvement of diaphragm muscle histopathology and function at
6-months of age
mdx injected with CCR2/CCRS antagonist - Decreased macrophage infiltration at 2- and 6-weeks of age with no effect [144]
on diaphragm muscle histopathology
- No changes in macrophage polarization (iNOs/CD206 ratio)
mdx:CD11b-DTR - Worsening TA muscle histopathology at 12-weeks of age [147]

ceps of mdx:CCR2™/~ is lost by 6 months of age in
these animals [145]. As in the study by Mojumbar
et al., the diminution of macrophage infiltration at an
early time point (4 weeks of age) disappears by 14
weeks and 6 months [143, 145], It remains unclear
whether the regression in histological and functional
improvement is due to re-infiltration of macrophages
or from an effect on their inflammatory profile and
function.

When mdx mice are crossed with a urokinase
plasminogen activator (uPA) deficiency model the
progeny exhibit an increase in the degenerative
muscle phenotype, including increased fibrosis and
decreased muscle function. This phenotype also cor-
relates with a decrease in macrophage infiltration in
the dystrophic muscle [146] (Table 3). Interestingly,
the transplantation of WT-BM into the mdx:uPA~/~
mice increased macrophage infiltration in dystrophic
muscle and reversed the deleterious effect of uPA
knockout, suggesting a pro-regenerative role of
infiltrating uPA-expressing macrophages within the
dystrophic muscle. Of note, muscular regeneration
after acute injury is also observed in uPA~/~ mice
and is rescued by WT BM transplantation as well
[146]. Another study demonstrated that the depletion
of macrophages in mdx mice (using a mouse model
expressing the Dipheteria Toxin Receptor under the
CD11b promotor) compromises muscle regeneration
at 12 weeks of age by promoting adipogenic fate in
SCs [147].

In conclusion, the functional phenotype of macro-
phages and more specifically, their trophic function
toward other cells within the muscle, impacts dis-
ease progression more than the overall number of
macrophages present in dystrophic muscle, and this
parameter should be taken in consideration when ana-
lyzing muscle histopathology (Table 3).

Trophic functions of macrophages toward muscle
homeostasis in mdx mice

During healthy muscle regeneration, two function-
ally distinct populations of macrophages are observed
in a temporally precise sequence. Together, these
pro-inflammatory Ly-6C™ and pro-regenerative Ly-
6C™ macrophages efficiently coordinate to help heal
the damage and return the affected muscle tissue
back to homeostasis. However, the situation becomes
more complex in dystrophic muscles, where gauging
the functional status of the macrophages within the
affected tissue using simple markers such as Ly-6C
may be less reliable (Fig. 1 and Tables 1 and 2). In
fact, a recent work suggests that this method fails to
accurately capture the nuances of macrophage tran-
scriptional status within these situations [56]. During
muscle regeneration, macrophages simultaneously
express pro- and anti-inflammatory programs, and
their function is ultimately determined by the balance
of these programs [17, 54, 56] (Fig. 1 and Table 1).
Gene expression analyses of Ly-6C* and Ly-6C~
macrophages sorted from non-fibrotic and fibrotic
dystrophic muscle (mdx and sgca™/~) mice) show
that the canonically pro-regenerative Ly-6C™ popula-
tion actually express high levels of pro-inflammatory
markers, suggesting the presence of a mixed-function
population of macrophages within dystrophic mus-
cle [56]. Indeed, nearly 50% of macrophages present
in mdx mice express both TNFa and TGFB [59].
Future studies that incorporate single cell and spa-
tial RNA-sequencing technologies allow us to better
understand macrophage polarization and function in
dystrophic muscles and particularly, how they inter-
act with other cell types. Nevertheless, numerous
studies have helped to identify general functions of
macrophages in chronic muscle injury.
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Genetic ablation of IFN<y in mdx mice (mdx:IFNvy-
KO) does not affect macrophage infiltration in 4
and 12 month-old mice, but does lead to a de-
crease in iNOS production and reduced dam-
aged myofibers in hindlimb muscles [148]. The
loss of IFNv also increased Myodl and Myogenin
expression, which are markers of proliferating and
differentiating myoblasts whose expression is linked
with regeneration. Indeed, mdx:IFNy-KO mice have
more centrally-nucleated myofibers and exhibit
improved muscle function, suggesting enhanced tis-
sue repair [148].

Deletion of iNOS in mdx mice (mdx:iNOS-KO) has
no effect on macrophage infiltration, but decreases
myofiber lysis [149]. In DMD and mdx muscles,
a local increase in TNFa has been observed, and
leads to the activation of NF«B signaling [150, 151].
Consistently, NF«xB activity increases in diaphragm,
gastrocnemius and tibialis anterior of 5-week-old
mdx mice compared to WT mice. In mdx mice, NFxB
is present in nuclei of both regenerating myofibers
and immune cells.

Macrophage-specific deletion of NF«B in mdx
mice decreases the number of necrotic myofibers
and results in reduced expression of TNFa and IL-
1B in 4-week-old animals. Interestingly, the specific
deletion of NFxB in myofibers stimulates muscle
regeneration and leads to an increase in embryonic
myosin heavy chain positive (¢eMHC™) myofibers.
Furthermore, an increase in cells expressing Pax7
and MyoD is observed in 4-week-old mdx-NF«B-
KO mice, suggesting a negative role of NF«kB on
SC behaviour. Finally, pharmacological inhibition
of IKK/NF«B pathway reduces muscle necrosis and
improves muscle regeneration, supporting the notion
that this pathway is active in several cell types present
in dystrophic muscle which act synergistically to res-
cue myopathic progression [151].

Weekly intra-peritoneal injections of TNFa-
blocking antibodies in mdx mice during the first 90
days of life decrease the number of necrotic myo-
fibers and have a positive effect on treadmill run-
ning time. Unfortunately, neither the inflammatory
profile, nor possible mechanisms of action were
investigated in this study [152]. The use of anti-
IL-6 antibody on mdx:utrn=/~ from 2 to 13 weeks
of age, was shown to significantly improve skeletal
muscle histopathology by reducing Creatine Kinase
(CK) levels, fibrosis deposition, increasing regenerat-
ing myofiber size [153]. However, these effects were
not seen in the diaphragm. Paradoxically, while IL-6
has been shown to participate to the DMD pathology

[154], the inflammatory response, quantified by q-RT-
PCR was unchanged [153]. Moreover, Kostek et al.
treated mdx mice with IL-6 blocking antibodies for
5 weeks with no functional or histological improve-
ments, but rather an increase in their “inflammation
score” (quantified by the number of mononuclear
cells observed on muscle slides) [155].

In arelated recent study, 4-month-old mdx:utrnt/~
mice were injected intra-peritoneally every 3 days,
for 28 days, with blocking antibody against RANKL
(receptor activator of nuclear factor NF«B lig-
and) [156]. While muscle damage and fibrosis
were decreased, and associated with an increase in
myofiber size, the number of infiltrated macrophages
did not change after treatment. Nevertheless, a rela-
tive increase of CD206™" macrophages was observed
in muscle of mdx/utrn/~ mice injected with RANKL
blocking antibody [156]. Similarly, the frequency of
CD2067™ cells increased in muscles of mdx:IFNvy-KO
mice [148].

Mdx:IL-10-KO mice have elevated numbers of
necrotic myofibers and perform poorly in treadmill
performance tests at both 4 and 12 weeks of age, when
compared to mdx mice. These mice have a lower fre-
quency of CD163™ pro-regenerative macrophages in
muscle, but quantification of total macrophage infil-
tration was not performed [81]. Thus, IL-10 secretion
seems to be beneficial for dystrophic muscle.

Finally, the beneficial effect of depleting specific
pro-inflammatory cytokines or signaling pathways in
MD pathology could be due to the fact that dystrophic
myofibers are more sensitive to oxidative stress [157,
158].

Overall, the above studies suggest that decreasing
macrophage pro-inflammatory signals and pushing
them to an anti-inflammatory phenotype could be
beneficial for dystrophic muscle [156]. However,
most studies have focused on the first few weeks
of life in mdx mice, which unlike human patients is
known to peak in inflammation at 4-weeks of age
[141, 159]. Thus, further detailed studies and criti-
cal evaluation of these datasets will be required to
assess the potential of macrophage modulation as a
therapeutic option for MD patients.

The role of macrophages in the formation of
fibrosis in muscular dystrophies

At steady state, muscle ECM is a three-dimen-
sional network that represents around 5% of tissue
volume. The ECM is primarily composed of collagen
type I, with myofibers being surrounded by collagen
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IV [160]. ECM’s function as a structural substrate
capable of supporting muscle fibers, blood vessels,
and nerves must not eclipse its critical role as a regula-
tor of cell fate. For example, it has been demonstrated
that Collagen V and VI are intimately linked to SC
quiescence [161, 162]. After muscle injury, ECM is
degraded by inflammatory cells, which permits their
infiltration into the damaged tissue, while concomi-
tantly facilitating effective migration of SCs [163,
164]. Specifically, the ECM is degraded by matrix
metalloproteinases (MMPs), secreted by inflamma-
tory cells and damaged myofibers [165-167]. A
transient partially degraded ECM participates in
myoblast differentiation and provides a scaffold for
regenerative myofibers [168]. As such, the balance
between ECM degradation and production is impor-
tant for efficient regeneration. Fibrosis, which is a
characteristic feature of MD pathology, is caused
by excessive accumulation of ECM components
resulting from ECM over-production, a defect in
its degradation, or both [168, 169]. Among the
factors that promote ECM remodeling, TGFf is
believed to be the most important. TGF( not only
induces collagen I, connective tissue growth factor
(CTGF/CCN?2) and fibronectin expression by FAPs/
fibroblasts, but also inhibits MMP expression in
fibroblasts through SMAD pathway activation [90,
170-172]. While macrophages and SCs do express
some collagen proteins, FAPs are the primary source
of ECM component secretion [162, 173, 174]. FAPs
were identified in 2010 and are defined as SCA-
1/PDGFRa™, CD31/CD45/a7int™ cells. FAPs are
located in the skeletal muscle interstitial space and
proliferate upon injury [8, 9]. In both in vitro and
invivo conditions, FAPs are capable of spontaneously
differentiating into fibroblasts and adipocytes, but
they do not differentiate into myogenic cells [8,
9, 50]. They stimulate myogenic differentiation in
SCs, which once differentiated into myofibers, block
FAP adipogenic differentiation [8, 175, 176]. In
mdx mice, the number of PDGFRa™ cells positively
correlates with fibrosis and addition of TGFRB1 to
FAPs in vitro induces a dose-dependently increase in
fibrotic markers (such as collagen I and CTGF [8, 9,
59]), supporting the importance of this factor in fibro-
sis development. Importantly, the balance between
proliferation and apoptosis of FAPs is directly deter-
mined by macrophage-derived TGF(31

The unforgettable TGF B
During skeletal muscle regeneration, pro-inflam-
matory macrophages first secrete TNFa, which

induces FAP apoptosis bringing their numbers
back to pre-damage levels. Next, pro-regenerative
macrophages secrete TGF(3 to stimulate the sur-
vival of remaining FAPs and the production of a
regenerative provisional matrix. Proper balance and
coordinated expression of these cytokines is thus crit-
ical for reestablishment of the ECM [56, 59, 177]
(Fig. 2). For more background on the role of FAPs
in muscle homeostasis, we suggest the following
reviews [178, 179].

In DMD patients, TGFB1 is elevated in both
blood plasma and muscle, and is correlated with
fibrosis [91, 180, 181]. In addition, treatment of
WT mice with recombinant TGFB1 stimulates the
expression of collagen I and induces muscle fibro-
sis independently of injury or disease [182]. It has
been demonstrated that asynchronous myofiber dam-
age and regeneration, such as that observed in DMD,
directly induces fibrosis through the TGF@1 pathway
[117]. However, the induction of a fibrogenic pro-
gram in FAPs is not the only way in which TGF@1
can modulate muscle homeostasis. The binding of
TGFA1 and/or myostatin to their specific cell-surface
receptors (TGFBR1/ALKS and TGFBR2 dimer for
TGFp1; activin receptor types IIA and IIB dimer, or
TGFBR1/ALKS and ALK4 receptor dimer for myo-
statin) can lead to a decrease in the expression of the
muscle fiber hypertrophic factor IGF-1 [93, 183].

TGFR1 is expressed by multiple different cell types
such as FAPs/fibroblasts and endothelial cells, but
mainly by macrophages: over 75% of these cells in
the mdx diaphragm express TGF[3 [90, 171, 184]. One
important feature of TGFB1 signaling is that ligand
gene expression may not directly lead to downstream
signaling activation. This has been demonstrated in
animal models where TGF( expression levels do not
correlate with the amount of fibrosis observed [185,
186]. Indeed, secreted TGF1 is often found bound
to LTBP and is stabilized but kept inactive until LTBP
cleavage [187]. Notably, DMD muscles exhibit ele-
vated LTBP4, regulating TGFB1 availability [188].

Treating mdx mice with Nilotinib (which inhibits
p38-like kinases downstream of TGFf) rescues the
dystrophic phenotype by decreasing FAP numbers
and the associated fibrosis [56, 59]. The dys-
trophic environment alters the effect of macrophages
toward FAPs. Inflammatory macrophages (Ly-
6CTCX3CR1'9%) isolated from fibrotic mdx muscle
have lost their ability to induce fibroblast apoptosis
and instead stimulate collagen I expression [56]. This
effect is reversed by anti-TGFf antibody treatment.
Moreover, inflammatory macrophages from fibrotic
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mdx muscle express more LTBP4, which allows for
more latent TGFB1 to be stabilized within the ECM
compared to non-fibrotic mdx muscle. In mdx mus-
cle, FAPs secrete MMP14 and BMP1 proteases to
release TGFR1 from LTBP4 [56].

Treatment of mdx mice with the AMPK acti-
vating compound metformin (otherwise used for
the treatment of type 2 diabetes) promotes pro-
inflammatory to pro-regenerative macrophage phe-
notype skewing, reduces fibrosis, and improves
muscle morphology [56]. In mdx:IL-10-KO mice,
macrophages increase their expression of pro-
inflammatory cytokines and an increase in mature
TGFR and collagen I secretion within muscle tissue is
observed [189]. Similarly, fibrinogen (a soluble pro-
tein released into the blood in response to stress which
accumulates in mdx and DMD muscles)-activated
BMDMs treated with blocking IL-1B antibodies
exhibit a decrease in Tgfb gene expression. On the
other hand, mdx fibroblasts treated with conditioned
medium of fibrinogen activated BMDM increases
collagen I (Collal) expression, and this pro-fibrotic
effect can be reverted with TGF@1 blocking anti-
body [190]. Together, these studies demonstrate that
the atypical pro-inflammatory macrophages found in
dystrophic muscle not only act on myofiber damage
and repair, but are also capable of directly inducing
fibrosis. Thus, in dystrophic conditions, the dysregu-
lation of macrophage phenotype induces a vicious
cycle between macrophage LTBP4-TGF expres-
sion, FAP survival and ECM component expression
that leads to fibrosis.

It should be noted that the effects of TGF[3 are not
limited to FAP/fibroblasts. SCs and endothelial cells
also express receptors for this molecule. In vitro treat-
ment of SCs and endothelial cells with TGFp results
in decreased myotube and angiotube formation and is
associated with an increase in fibrotic gene expression
[174]. By using specific endothelial cell and SC track-
ing mice, this phenomenon has been replicated in vivo
in 6-month-old mdx mice. Specifically, approxi-
mately 12% of SCs downregulated a myogenic fate
marker (loss of a7-integrin) and showed elevated
Collal and fibronectin extra domain A (Eda-Fnl)
expression. Similarly, 30% of the original endothe-
lial cell population reduced CD31 expression, with a
concomitant increase in Collal and Eda-Fnl [174].
Within dystrophic muscle, infiltrating macrophages
also become pro-fibrotic expressing more collagen
I and less CD45. These “fibrotic” SCs, endothelial
cells and macrophages represent only 1-2% of the
total fibrogenic population, and while they may not

have a major impact on fibrosis per se, they may no
longer be capable of participating in muscle and ves-
sels formation. Indeed, myogenic cells, endothelial
cells and macrophages must communicate for effec-
tive muscle regeneration and it has been observed that
mdx mice also exhibit impaired vessels formation and
functional vascular defects [98, 191, 192].

Other proteins expressed by macrophages that
modulate MD progression

Several studies have pointed out additional pro-
teins expressed by macrophages that exacerbate or
attenuate muscular dystrophy progression.

MMPs are expressed by macrophages and support
cell migration to injured tissue. MMP expression is
increased in dystrophic mouse muscle. mdx:MMP9-
KO mice not only show reduced macrophage infil-
tration, but also a switch toward a pro-regenerative
macrophage phenotype, characterized by an increase
in CD206%. Moreover, mdx:MMP9-KO mouse mus-
cle structure is improved and correlates with a
decrease in serum Creatine Kinase levels, which is
a marker of myofiber damage [193, 194]. Lastly,
depletion of MMP9 increases SC proliferation and
improves the engraftment potential of myoblasts in
recipient mouse muscle pre-injured with cardiotoxin
[194]. However, MMPs also play a beneficial role in
the regenerative process that follows acute damage.
For example, MMP-10 is expressed by macrophages
and endothelial cells in response to injury, and its
deletion increases macrophage infiltration, myofiber
necrosis and interstitial fibrosis [195]. Batimastat is
a broad spectrum MMP inhibitor that acts on MMP-
1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, and
MMP-14 activity by mimicking the site in the col-
lagen substrate that is cleaved by MMPs [196, 197].
Treatment of mdx mice with Batimastat increases the
levels of DGC protein components, improves muscle
structure and force, and reduces the number of dam-
aged myofibers. A decrease in the number of infil-
trating macrophages, as well as in fibrosis (decreased
Col3al expression and smaller proportion of
Picrosirius red stained area) was also observed [198].

IGF-1 induces muscle hypertrophy in mice and
rats by promoting SC proliferation and myofiber
anabolism [199-201]. Treating mdx mice with IGF-
1 for 8 weeks, starting from 5-6 weeks of age,
improves fatigue resistance in EDL and soleus mus-
cles [202]. Similarly, overexpression of IGF-1 in
mdx mice induces muscle hypertrophy, increases
muscle force and reduces fibrosis [71]. Deplet-
ing macrophages in injured muscle significant
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Fig. 3. mdx-macrophage specific functions. Via the production of many cytokines and proteins, macrophages present in mdx muscle are able
to simultaneously stimulate and inhibit various cellular processes such as monocyte infiltration, satellite cell (SC) proliferation, myofiber
growth, fibro-adipogenic progenitor (FAP) proliferation and differentiation.

decreases IGF-1 levels, showing that macrophages
are a primary source of IGF-1 within this context.
Moreover, deletion of macrophage-specific dele-
tion of IGF-1, as in the LysMCRE mouse strain,
induces a defect in pro-regenerative phenotype
acquisition and, consequently, delayed muscle regen-
eration [73]. Overexpression of IGF-1 in myofibers
down-regulates the expression of pro-inflammatory
cytokines and rapidly stimulates tissue remodeling
[203]. This suggests an autocrine effect of IGF-1 on
macrophages and a paracrine effect on myogenic cells
that appears beneficial within the context of MD.
Leukemia inhibitory factor (LIF) is expressed by
myoblasts and macrophages and has a positive effect
on SC proliferation [204, 205]. In mdx mice, treat-
ment with LIF decreases fibrosis, stimulates muscle
regeneration, and increases myofiber size [206, 207].
In 2019, Welc et al., studied the effect of LIF overex-
pression in macrophages using a transgene controlled
by the human CD11b promoter [208]. 1-12-month-
old mdx mice overexpressing LIF in CD11b™ cells
showed a reduction in collagen deposits in TA
and diaphragm muscle. Bone marrow transplanta-
tion (BMT) of transgenic CD11b™/LIFT cells into
1-month-old mdx mice decreases macrophage infil-
tration with a decreased collagen I, IV and V
deposit area in tibialis anterior muscles 4 months
after transplantation. Interestingly, TGF@ secretion

by macrophages is decreased in the presence of LIF,
which also decreases FAP numbers. While TGF(
induces CTGF/CCN?2 expression in the C2C12 cell
line, co-stimulation with LIF abrogates this increase
after 24 h in culture. In vivo, while SCs from LIF
BMT/mdx express less ECM related genes, mice do
not present any changes in their histopathology [208],
consistent with the notion that SCs do not play a major
role in collagen deposition.

Klotho is a transmembrane protein that can be
cleaved and released as a hormone, or alternatively
expressed in a truncated form capable of being
secreted [209, 210]. It modulates multiple signal-
ing pathways, including FGFs, IGF1, TGFP and Wnt
[211]. At2 weeks of age, mdx mice display no differ-
ence in Klotho expression compared to WT mice. As
inflammation peaks later during disease progression,
Klotho expression drops, remaining low until at least
3 months of age. The overexpression of Klotho in mdx
mice decreases fibrosis, increases myofiber size at 24
months, and increases treadmill running time [212].
Interestingly, it has been demonstrated that Klotho
signaling is suppressed by TNFa in the kidney [213].
Injection of recombinant Klotho protein decreases
pro-inflammatory signals in both kidney and heart
tissue [214, 215]. The increase of TNFa and IFNvy
observed in mdx muscles coincides with a decrease
in Klotho [216]. In vitro TNFa treatment decreases
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Klotho expression in C2C12 myotubes but activates
its expression in macrophages. This phenomenon is
also observed in the presence of IL-10 [216]. Of
note, BMT of cells overexpressing Klotho into mdx
mice hosts increases Pax7% SCs and myofiber size.
Conditioned media co-culture experiments demon-
strate that overexpression of Klotho by macrophages
directly stimulates proliferation of SCs [216]. Rescue
of Klotho expression by macrophages in mdx mice
improves MD histopathology by acting on myogenic
cell proliferation [216].

Osteopontin (OPN) is up-regulated in both
DMD patients and in mdx mice. OPN, also known
as Secreted Phosphoprotein 1 (SSP1) has been
described as an upstream activator of NF«B signaling
[217, 218]. Depletion of OPN in mdx mice does not
modify the total number of infiltrated macrophages
but skews their phenotype to a less inflammatory
profile (from iNOS™ to CD206%/CD163™). Lack of
OPN in mdx mice increases LIF, IGF-1 and uPA, and
is associated with increased muscle mass, myofiber
diameter, and improvement in muscle function [219].
OPN affects both immune and myogenic cells, but it
is not clear which cell is responsible for its secre-
tion, or whether its effect on muscle tissue is direct
or indirect.

TREATMENT OF MUSCULAR
DYSTROPHIES: WHAT ABOUT
MACROPHAGES?

Excessive inflammation within dystrophic muscle
is demonstrably more deleterious than beneficial. The
only treatment that has shown a delay in disease
progression is the use of glucocorticoids. Unfortu-
nately, these potent anti-inflammatory drugs have
significant side effects. Prednisone, one of the most
widely used glucocorticoids, decreases inflamma-
tion and delays the progression of DMD, prolonging
ambulation and modestly improving muscle strength
and cardiopulmonary function. Side effects include
bone fragility, weight gain, mood changes, and even
muscle weakness [220-224]. Glucocorticoids stim-
ulate the AKT1/FOXO1 pathway, which decreases
protein synthesis and increases protein catabolism
and is responsible for the seemingly contradictory
muscle weakness and atrophy observed in patients
treated with this drug [225]. Another potent glucocor-
ticoid is Dexamethasone, but side effects are severe,
making it an unappealing candidate for long-term
treatment. Deflazacort is a less potent glucocorti-

coid that has a similar effect to prednisone but
with a reduced number of side effects [224, 226].
In the end, a combination of the different drugs
seems the most appropriate way to delay MD pro-
gression [227]. The main concern stays the poor
knowledge of long-term effects. For example, mdx
mice treated with prednisone for 50 days showed an
improvement in early disease progression, which was
subsequently lost when treatment was continued to
100 or 150 days [221]. In addition, whether the effects
of corticosteroids are mainly through abatement of
inflammation or though one of the other pleiotropic
effects of these compounds is not yet clear.
Therapeutic approaches that harness macrophages
are beginning to emerge. 24 hours after an acute
ischemia/reperfusion injury, intra-muscular injection
of pro-inflammatory macrophages has been shown
to improve muscle regeneration, characterized by
increased muscle force, myofiber diameter and by
decreasing collagen deposition at 14 days post-
reperfusion [228]. At 5 and 7 days after reperfusion, a
decrease in damaged muscle area is observed (prob-
ably via improved removal of dead cells). While
the total number of macrophages was unchanged
between control and the macrophage-injected mus-
cles, an increase in the number of CD206" macro-
phages was observed 5 days post-perfusion in the
macrophage-injected muscle, demonstrating that the
injected pro-inflammatory macrophages switched
toward a pro-regenerative phenotype within the
treated muscle [228]. Injection of human macro-
phages into damaged muscle of immuno-suppressed
mice, together with human myoblasts, improved
myoblast proliferation and led to better host cell inte-
gration within the myofibers [229]. As observed in
mice, five days after their injection pro-inflammatory
human macrophages expressed anti-inflammatory
markers, further demonstrating their capacity to
locally change phenotype during progression of mus-
cle regeneration [229]. Of note, one of the main
causes of failure of cell therapy for MDs is the poor
survival and migration capacity of SCs and myoblasts
after intramuscular injection. Co-injection of BMDM
and SCs into mdx muscle increases their proliferation,
survival and migration [51]. Thus, “non-dystrophic”
macrophages seem to support injected myoblasts in
their regeneration of muscle tissue. Modification of
macrophage phenotype could be beneficial to dys-
trophic muscle not only because macrophages act
negatively on fibrogenic cells within the progression
of MD, but also because of the evidence support-
ing their use in these cell therapies. Interestingly,
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Novak et al. demonstrated that myoblasts are not
the only cells capable of delivering phosphorodiami-
date morpholino oligomers to myofibers, and that
macrophages are also potent releasers of these ther-
apeutics, making them an attractive candidate for in
situ delivery to myoblasts and myofibers [230].

CONCLUSION

Macrophages have been studied for decades and
most of their functions are now understood. Indeed,
their role beyond infection response, specifically as
tissue resident cells involved in the remodelling of tis-
sues (development, regeneration and repair) are well
understood within the research community. How-
ever, the manipulation of their inflammatory state in
order to direct their trophic functions toward tissue-
resident cells is far from being defined. MDs, and
especially DMD are multifactorial diseases where
necrosis, chronic inflammation, defects in angiogen-
esis, fibrofatty infiltration, and tissue remodelling
occur asynchronously within the tissue. The defect in
macrophage function in these diseases could be one
of the reasons for poor outcome of cell and gene ther-
apies. It is therefore important that further efforts be
made to safely manipulate macrophage dynamics so
that they might be used to therapeutic effect as part of
a MD rescue approach. Today, single cell technology
such as CITE-seq (Cellular Indexing of Transcrip-
tomes and Epitopes by Sequencing) should allow the
community to link macrophage function, polarization
state and gene expression, to find appropriate thera-
peutic gene and protein targets. We imagine a future
where “re-booting” or resynchronizing the inflamma-
tory system would allow improvements to the muscle
repair cycle, by delaying fibrosis apparition, and the
loss of muscle function; or as synergistic tools used
alongside gene and cell therapies to improve their
efficacy.
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