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Abstract. Human genes have a variable length. Those having a coding sequence of extraordinary length and a high number
of exons were almost impossible to sequence using the traditional Sanger-based gene-by-gene approach. High-throughput
sequencing has partly overcome the size-related technical issues, enabling a straightforward, rapid and relatively inexpensive
analysis of large genes.

Several large genes (e.g. TTN, NEB, RYR1, DMD) are recognized as disease-causing in patients with skeletal muscle
diseases. However, because of their sheer size, the clinical interpretation of variants in these genes is probably the most
challenging aspect of the high-throughput genetic investigation in the field of skeletal muscle diseases.

The main aim of this review is to discuss the technical and interpretative issues related to the diagnostic investigation of
large genes and to reflect upon the current state of the art and the future advancements in the field.

Keywords: Large genes, variant interpretation, genetic diagnosis, variants of uncertain significance (VUS), copy number
variants (CNV)

INTRODUCTION

Human protein-coding genes have a variable
length, ranging from a few hundred nucleotides up
to several millions [1, 2]. Most of the large genes,
e.g. DMD, have introns with an extraordinary length
[2, 3]. Some other genes have adapted with evolution,
reducing the size of their introns to have a higher tran-
scriptional efficiency [4, 5]. TTN gene, for example,
has evolved through many gene duplication events by
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reducing the size of its introns and thus optimizing
its transcription [6].

Large genes have been reported to be enriched in
pathways linked to cancer or other human diseases,
including cardiomyopathy and skeletal muscle dis-
eases [4]. To study the genes with a long coding
sequence and a large number of exons, the traditional
Sanger sequencing was an extremely expensive, time
consuming and laborious approach. This technical
bias has hampered a proper investigation of these
genes for diagnostic purposes, reducing the number
of variants identified and hampering a correct diag-
nosis in probably thousands of patients.

The rapid and thorough investigation of multi-
ple genes, made possible by the introduction of
high throughput sequencing (HTS), has allowed the
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Table 1
Large genes causing a skeletal muscle disease

Coding Reference Size of the
exons transcript ID∗ coding sequence#

TTN 363 NM 001267550.1 107976
NEB 183 NM 001271208.1 25683
RYR1 106 NM 000540.2 15117
PLEC 32 NM 000445.3 13725
DMD 79 NM 004006.2 11058
SPEG 41 NM 005876.4 9804
COL12A1 66 NM 004370.5 9192
∗As listed in the Leiden Database. #longest transcript.

Fig. 1. – Gene-size related difficulties. Three are the main issues
related to the diagnostic investigation of large genes: the technical
issues due to the presence of repetitive sequences and the subse-
quent mapping difficulties; the biological issues due to alternative
splicing events resulting in isoforms with a different expression;
the interpretative issues related to the clinical interpretation of the
high number of rare variants identified in large genes.

analysis of large genes. The use of HTS has also
resulted into a growing number of variants identified
in these genes and in an increased diagnostic yield
[7–9], expanding the spectrum of diseases associated
with large-genes [10–14].

Here, we will briefly review the findings related
to the three skeletal muscle disease-genes with the
longest coding sequence (Table 1) [15]. We will then
discuss the technical and interpretative difficulties,
related to the sheer size of these genes, met during
the diagnostic workflow (Fig. 1). Finally, we will
mention the advancements in the field and the possi-
ble outcome of the recently developed, cutting-edge
sequencing technologies soon to be used in a diag-
nostic setting.

THE TITIN GENE, TTN

The 363-coding exon TTN gene encodes titin, the
largest known human protein [16]. Titin plays several
crucial structural and functional roles in the muscle
through a wide network of interactions and interac-
tors [17]. TTN mutations are responsible for a wide
spectrum of skeletal muscle disorders with or without
an overt cardiac involvement [17]. Skeletal muscle
titinopathies are mainly recessive and include con-
genital myopathies and proximal or distal myopathies
with a later onset [17–19]. Mutations in the last exons

can result in a dominant form, the Tibial Muscu-
lar Dystrophy, a late onset distal myopathy [20].
Missense mutations in a specific exon (exon 344)
have been associated with an adult onset hereditary
myopathy with early respiratory failure (HMERF)
[21, 22].

THE NEBULIN GENE, NEB

With its 183 exons, NEB encodes nebulin, a big
protein of 600–900 kDa [23]. Nebulin has a highly
repetitive structure and can bind hundreds of actin
monomers, thereby regulating the length of actin fil-
aments and their interaction with myosin [23].

NEB mutations are the most common cause of
autosomal recessive congenital nemaline myopathy,
but onset may range from the severe forms with a
perinatal onset to milder forms with a later onset [24].

However, recessive disease-causing variants in
NEB have been identified also in patients with a dis-
tal myopathy [25, 26], core rod myopathy [27], and
fetal akinesia/lethal multiple pterygium syndrome
[12, 28]. NEB with its 32-kb triplicate region (eight
exons repeated three times: 82–89, 90–97, 98–105)
is prone to copy number variants (CNV) [29]. More-
over, recently, Kiiski and colleagues described a large
in-frame deletion, dominantly inherited in a three-
generation family, causing a distal nemaline/cap
myopathy [30].

THE RYANODINE RECEPTOR GENE,
RYR1

RYR1 gene encodes ryanodine receptor 1, an intra-
cellular channel responsible for the release of Ca2+
from sarcoplasmic reticulum [31].

RYR1 mutations cause a wide spectrum of
dominant and recessive myopathies [32]. RYR1-
related myopathies are usually classified in several
histological subtypes, including central core dis-
ease, multiminicore disease, core–rod myopathy,
centronuclear myopathy and congenital fiber-type
disproportion [33–37]. Moreover, RYR1 mutations
are a well-known cause of dominant malignant
hyperthermia (MH) susceptibility [38], and of
exercise-induced rhabdomyolysis [39]. Recently, a
calf-predominant myopathy with core pathology was
associated with dominantly inherited RYR1 mutations
[14].
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ALTERNATIVE SPLICING EVENTS AND
MULTIPLE ISOFORMS

Large multi-exonic genes undergo extensive alter-
native splicing events in different developmental and
physiological states [40]. Alternative splicing is a
highly regulated process by which a single gene pro-
duces multiple distinct mRNA isoforms and protein
variants of different size [40].

Although TTN transcripts have traditionally been
classified in six main isoforms [16], we and other
groups have described a more complex splicing pat-
tern with an elevated number of alternative splicing
events, resulting into exon skipping events and the
use of alternative 5′ and 3′ splice sites. During
the prenatal development, larger and more compli-
ant titin isoforms are expressed. A perinatal switch
in titin isoforms leads to the production of shorter
transcripts [41], resulting into a smaller and less
compliant protein expressed in the later period of
life [42]. Interestingly, TTN mutations located in
exons with a higher fetal expression, result into a
form of arthrogryposis multiplex congenita charac-
terized by reduced fetal movements and a congenital
amyoplasia and severe hypotonia [19]. A different
expression of specific exons among anatomically
different muscles is also expected although the exper-
imental setting of our recent study on titin splicing in
adult skeletal muscles did not allow us to observe
any clear splicing difference among the anatomically
different muscles [43].

A complex splicing pattern has also been reported
for NEB. In particular, specific regions of the gene
(exons 63–66; exons 143–144; exons 167–177)
undergo extensive alternative splicing. A study
performed by Laitila and colleagues combining
expression array and RT-PCR data suggests that
anatomically different muscles do not show spe-
cific NEB isoforms [44]. NEB splicing is also
developmentally-regulated, resulting in different iso-
forms with potentially different functional roles [45].

In RYR1, a fetal isoform (ASI-) lacks residues
3481–3485 in exon 70 [46]. The alternative splicing
of this region plays an important role in adapting to
different physiological and pathological conditions
[47].

A number of RNA-binding proteins act as splic-
ing regulators, determining the isoform expression
of large genes. The muscle-specific splicing factor
RBM20 is responsible for TTN alternative splic-
ing [41, 48] and it targets other several important
genes, including cardiomyopathy and skeletal muscle

disease-related genes (e.g. CACNA1c, RYR2, LDB3,
DAB1, CAMK2D and SPEN) [49]. Similarly, CUG
binding protein 1 (CUG-BP1) regulates the alterna-
tive splicing of RYR1 [47].

A better understanding of these events and a fur-
ther characterization of the splicing regulators will
probably provide new insight in the pathogenesis of
human diseases and, probably, novel potential phar-
maceutical and therapeutic targets.

THE INTERPRETATION OF RARE
VARIANTS IN LARGE GENES

Because of their sheer size, rare variants in large
genes are observed almost in any test able to inves-
tigate these genes. The evaluation of the clinical
meaning of these variants is a challenging multi-step
process based on specific criteria, as suggested by
the ACMG/AMP guidelines [50]. These guidelines
represent a general framework and their application
to large genes does not allow a straightforward dis-
tinction between the few causative mutations and
the large number of rare, clinically irrelevant, vari-
ants. Thereby, clinical geneticists report most of these
experimentally identified rare variants as variants of
uncertain significance (VUS).

When interpreting variants in large genes, a ‘deep
phenotyping’ is crucial to identify a correlation
between the observed phenotype and the known gene-
associated clinical presentations [51]. The recent
large HTS-based studies are further expanding the
already broad range of clinical phenotypes associ-
ated to the genes discussed in this review [13, 14,
19]. Traditionally, the diagnosis of skeletal muscle
disorders benefits from a careful evaluation of clini-
cal signs and symptoms, of creatine kinase level, of
histopathological findings on a muscle biopsy and
of electromyography records. However, each of the
aforementioned tests does not have enough speci-
ficity to discriminate among the different genetic
forms. A comprehensive diagnostic approach and
analysis is thereby required. On the other side, in the
last few years, several international studies are suc-
cessfully identifying and describing specific patterns
of muscle involvement, evaluated through MRI scans,
in genetically different muscle disorders [52–55].

The different forms of titinopathies show specific
progression-related patterns of muscular involvement
[18, 19, 21, 56]. In the RYR1-related dominant cen-
tral core myopathies, MRI studies show a selective
involvement of vasti, sartorius and adductor magnus
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in the thigh and of soleus, gastrocnemii, and per-
oneal group in the leg with relative sparing of rectus
femoris, gracilis, adductor longus and tibialis ante-
rior [57]. A similar, although more diffuse, pattern
is seen in recessive RYR1 myopathies [58], although
in the new distal calf-predominant RYR1-myopathy
the target muscle was the medial gastrocnemius.
A small series study has showed the characteristic
involvement of the tibialis anterior and soleus and the
sparing of the thigh muscles in NEB-related nemaline
myopathies [59].

As we previously suggested for recessive
titinopathies [13], also for other recessive diseases
due to mutations in large genes, the identification
of bi-allelic variants resulting into a premature stop
codon (nonsense variants or small indels causing a
frameshift) or the detection of previously reported
mutations easily addresses the diagnosis. Novel mis-
sense and splice variants require an extensive and
comprehensive characterization including in silico,
in vitro and in vivo tests [13, 60].

Missense variants can result in a diagnosis
only when sufficient evidence supporting their
pathogenicity is obtained [50]. Many computational
tools for predicting the pathogenicity of missense
variants have been developed [61–63]. They take into
account the amino acid or nucleotide conservation
or the biochemical/structural/functional properties of
the amino acid change [64].

Recently, a deep learning network for pathogenic-
ity prediction, named PrimateAI, has been developed
[65]. The program has been trained using hundreds
of thousands of common variants from a large popu-
lation sequencing data from six non-human primate
species [65]. The sole analysis of the human pop-
ulation does not allow a correct evaluation of the
frequency of a specific variant. In humans, in fact, the
total number of common variants has been reduced by
bottleneck events that have largely reduced the ances-
tral diversity. Because of these bottleneck events, only
0.1% of the missense variants have a MAF > 0.1%
in the human population and, consequently, most of
the human missense variants are ultra-rare or private.
PrimateAI evaluates the allele frequencies of a spe-
cific variant in different primate species: if a variant,
affecting a conserved amino acid, is polymorphic in
these species, then most probably it will be benign
also in humans [65].

Recently, Laddach and colleagues developed a web
application, TITINdb, that integrates information
about TTN structure, sequence, variant and disease
in a single, user-friendly environment. TITINdb is

a precious resource to map TTN variants to domain
structures and to predict their impact using compu-
tational methods based on the protein structure and
sequence [66].

A different approach for in silico prediction is rep-
resented by ensemble methods able to combine the
results of several individual predictors to improve the
predictive performance [64, 67]. Recently, a novel
ensemble method, named REVEL, has been released
[68]. REVEL is reported to outperform the other
existing methods for distinguishing possible disease
causing missense mutations from rare missense vari-
ants with an MAF below 3% [68, 69].

Still more complex is the interpretation of syn-
onymous single nucleotide variants (sSNVs) that are
often thought to be functionally irrelevant since they
do not alter the protein sequences. However, sSNVs
have been associated to hundreds of different human
diseases since they can affect the transcription and
the splicing regulation, the microRNA binding, the
mRNA folding, and, finally, the translation [70–72].
Recently, Shi and colleagues have developed IDSV
(Identification of Deleterious Synonymous Variants),
a computational model able to predict the possible
deleterious effect of sSNVs by using a wide variety
of features [73].

Similarly, exonic variants causing missense
changes as well as intronic variants may be cryptic
splice mutations. Different bioinformatic tools have
been developed to predict a possible splicing effect of
an identified variant [74, 75]. SpliceAI is a deep resid-
ual neural network that uses the genomic sequence
of the pre-mRNA transcript to predict whether each
position in a pre-mRNA transcript acts as a splice
donor, splice acceptor, or neither and, also, to esti-
mate the splicing effects of genetic variants in each
genomic position [76]. The prediction score provided
by SpliceAI for each variant reflects the probability
of the variant altering the splicing [76]. With an accu-
racy over 95%, SpliceAI is reported to outperform the
other available tools [76].

In silico predictors may provide supporting evi-
dence for pathogenicity. However, a more reliable
evidence is provided by in vitro studies. Biochemical
and biophysical studies, using wild-type and mutated
constructs, have been used to characterize the effect
of missense variants in large genes. Using thermal
denaturation monitored by circular dichroism spec-
troscopy, Chauveau and colleagues demonstrated the
reduced stability of the missense mutation within
the enzymatic site of the TTN kinase domain
(p.Trp34072Arg) [77]. Similarly, Hastings and col-
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leagues proved that a TTN mutation (p.Ala178Asp),
located in the Z-disk region, leads to partial misfold-
ing of bacterially expressed Z1Z2 protein fragment
[78].

A second possibility is to study the effect of a
variant on protein–protein interactions. Using plas-
mid vectors for the expression of human nebulin
super repeats, Marttila and colleagues demonstrated
that a NEB missense variant (p.Ser6366Ile) causes
an increased nebulin–actin affinity and a second mis-
sense variant (p.Thr7382Pro) reduces the affinity of
nebulin for tropomyosin [79]. Recently, an interest-
ing nebulin super-repeat panel has been described
by Laitila and colleagues [80]. The panel allows the
study of the actin binding of each single super-repeat
and it is a precious and innovative tool to assess the
effect of NEB missense changes identified in patients
on nebulin-actin interaction [80]. Finally, in vitro
studies can provide a direct evidence of an abnor-
mal Ca2 + homeostasis, suggesting a disease-causing
effect of RYR1 variants [81–83].

Variants in canonical splice sites or predicted as
being splice-disrupting also need a further cDNA
validation and characterization. This is particularly
important considering that large genes have multi-
ple isoforms with a development- and tissue-specific
expression [43–45, 47]. Splice variants can result
in an out-of-frame deletion or insertion and, conse-
quently, in a premature truncation; however, they can
also result in a slightly longer or smaller protein (as a
consequence of an in-frame deletion or insertion, in
particular in presence of symmetric exons). A further
characterization of the protein expression and func-
tion is strongly recommended for a proper evaluation
of the mis-splicing effect.

A good example of the aforementioned issues
with interpretation of splicing variants is represented
by the recently identified recurrent TTN intronic
splice-site variant (c.39974-11T>G) [84]. A large
segregation in eight families where the variant, in
trans with a second causative variant, co-segregated
with the disease and a comprehensive analysis of
expression data strongly suggested the pathogenic
role of the identified variant [84].

A more robust proof of pathogenicity can be pro-
vided with functional genomics studies. Functional
genomics approaches include a number tools, requir-
ing for example patients’ cells, micro-organism or
animal models, that can be used (often in combina-
tions among them or with in vitro studies) to obtain
additional evidence for pathogenicity of genetic vari-
ants [85].

The availability of protocols to reprogram somatic
cells into pluripotent stem cells (iPSCs) enables, for
example, the study of sarcomere organization in iPSC
myocytes and cardiomyocytes derived from patients’
fibroblasts [86, 87]. On the other hand, RNA-
guided CRISPR (clustered regularly interspaced
short palindromic repeat)-associated Cas proteins can
be utilized to create knock in cellular and, above all,
animal models and mimic patients’, and hopefully
disease, states [88, 89].

So far, animal models have been mainly used to
prove that a novel gene, previously not reported as
disease causing, is implicated in the observed disease
(gene discovery) and/or to provide information on
the pathophysiological mechanisms triggered by the
gene mutations [90, 91].

For pathophysiology studies and for testing
potential therapeutic strategies, zebrafish models of
nemaline myopathy, titinopathy and Ryr1-related
myopathies have been used [92–94].

Similarly, to study the physiopathology of the
dominant tibial muscular dystrophy (TMD) and the
recessive limb-girdle muscular dystrophy (LGMD2J
or LGMD R10 titin-related) due to heterozygosity
and homozygosity for the FINmaj mutation, Charton
and colleagues generated a mouse model carrying the
same mutation [95]. Several RYR1 knock in mouse
models have been generated to mimic the equivalent
mutations identified in humans [96–99]. Recently,
Laitila and colleagues have generated and character-
ized a mouse model with compound heterozygous
Neb mutations (a missense p.Tyr2303His and a non-
sense p.Tyr935*), matching the genotype observed in
patients with a nemaline myopathy [100, 101].

An interesting perspective is represented by the
recently developed Gene Replacement (GR) tech-
nology that enables to replace mouse genes with
their full human orthologs [102]. The new full
gene-replacement model would mimic the same
expression, regulation and function of the human
gene, improving our understanding of the gene func-
tion, of the disease mechanisms triggered by gene
mutations and, finally, providing a valuable model
for possible treatment options [102]. The feasibility
of this approach for large genes is still to be proven.

Finally, considering the sheer size of these genes
and their complex structure with repetitive areas and
GC-rich regions, sequencing parameters (e.g. depth
and coverage) need to be carefully evaluated for a
proper interpretation of the genetic results [11]. The
sole DNA sequencing, in particular a non-custom
tailored exome sequencing, and the traditional algo-
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rithms in use in a diagnostic setting (mainly aiming at
the detection of SNV or small indels) can still result
into a number of elusive damaging variants. As dis-
cussed below, a more exhaustive workflow, including
further bioinformatic analyses and second-tier tests,
often results in a higher diagnostic rate, revealing
variants missed by the traditional diagnostic methods.

THE IDENTIFICATION OF COPY
NUMBER VARIANTS FROM HTS DATA

Copy number variants are genomic regions of loss
or gain of at least 50 bp in size, which are formed by
distinct mechanisms compared to SNVs and indels
[103]. CNVs are estimated to cause approximately
10% of disorders, and they seem to be even more
involved in neurological disorders than in many other
disorder groups [104, 105]. CNVs can be detected
from various types of next generation sequencing
(NGS) data, and numerous CNV detection algorithms
have been developed during recent years [103, 106].
Usually, different technical approaches are needed
for WES and gene panel data compared to WGS data,
since the former produce non-continuous sequencing
data [107]. The CNV detection algorithms designed
for WES and gene panel data require high aver-
age read-depth and uniform coverage to provide
sensitive and reliable CNV detection results, which
puts restrictions on the quality of NGS data [108].
Additionally, the whole spectrum of genomic struc-
tural variation can be detected only from WGS data,
as opposed to deletions and duplication, which are
detectable also from targeted sequencing data [107].

The CNV detection algorithms tend to have differ-
ing CNV detection accuracy and biases in detected
CNV classes: therefore, utilizing more than one
algorithm is generally recommended to achieve com-
prehensive CNV detection results [106, 109–111].
Kosugi and colleagues list CNV detection algorithms
for WGS data with relatively best performances for
each structural variation category, including CNVs
[103]. For now, studies with comparably comprehen-
sive algorithm comparisons are not available for WES
and gene panel sequencing data, but numerous studies
of smaller scale have been published to aid in making
the choice [105, 106, 109, 110].

Large deletions or duplications in the DMD gene
are a well-known cause of Duchenne and Becker
muscular dystrophies (70–80% of cases) and multi-
plex ligation-dependent probe amplification (MLPA)
is the current standard for clinical CNV analysis in

DMD [112, 113]. Two hot spots, proximal with exons
2–20 and distal with exons 45–55, contain most of the
CNV. Nevertheless, the detected CNVs are highly
heterogeneous. The breakpoints land mostly in the
very large introns. For most of the DMD and BMD
patients (>90%), the phenotype severity depends on
the effect of the CNV on translation, premature ter-
mination of protein synthesis through deleterious
change in read-frame being the most notable [112].
Therefore, detecting CNVs precisely on exon level is
highly important in the case of dystrophinopathies.
This is quite feasible from NGS data, with sepa-
rate approaches developed specifically for analyzing
CNVs in the gene DMD due to its high clinical signif-
icance, but more general approaches have provided
detections as well [114, 115].

The large size of certain genes involved in neuro-
muscular disorders in itself does not pose a problem
for CNV analysis from NGS data. However, nebulin
and titin provide unique challenges for CNV detec-
tion due to regions of segmental duplications [16,
23, 116]. Repetitive gene sequences are challeng-
ing to sequence and align accurately, which leads to
imprecise basis for accurate CNV analysis on these
regions [107]. These regions are especially difficult to
decipher from non-continuous short-read sequencing
data from WES and gene panels. For unambiguous
sequencing and mapping of these repeated regions,
special approaches are probably needed, namely spe-
cific probe designs and/or long-read sequencing, even
with WGS approaches [11]. These regions could be
actually of special interest: changes in the number of
triplicate region blocks in the gene NEB are poten-
tially pathogenic [116]. CNVs from other regions of
these giant genes have been detected during recent
years, also with NGS approaches. In TTN, CNVs
have been detected to cause myopathies with or with-
out cardiac involvement in compound heterozygosity
with other variant types [29, 115, 117] and in NEB
with even more variable outcomes [24, 30, 115].
Recently, a large heterozygous deletion in NEB was
identified as being the cause of a distal myopathy
through a probable dominant negative mechanism on
molecular level [30]. This is the first reported domi-
nant disease for NEB, suggesting that different rules
may apply for CNVs than for other types of vari-
ants in consideration of their clinical significance and
effects. Generally, CNVs as disease causing discov-
eries seem to be rare for these genes, maybe due to
difficulties in analyzing the genes with old methods.

CNVs have been discovered also in some other
genes causing a skeletal muscle disorder, such as
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LAMA2 [118], MTM1 [119], RYR1 [120], SACS
[121], SGCB [122] and others [123]. Nevertheless, it
is probable that large genes with few verified CNVs
detected by any methods so far (e.g. PLEC or LARGE)
will have ones soon, with the amount of comprehen-
sive genetic variation studies increasing.

Following detection of potentially interesting
CNVs, inferring their clinical significance and effects
is even less straightforward than for SNVs or small
indels: the variant databases available for CNVs
are generally not as well curated as for other vari-
ant types [124]. Additionally, comparing CNVs to
ones in these databases is not unequivocal, since
the reported breakpoints of the CNVs could differ
depending on their original detection methods [124,
125]. The American College of Medical Genetics
(ACMG) has published very recently guidelines for
interpreting and reporting germline CNVs [126]. The
application of these guidelines will probably modify
the interpretation of CNVs in a diagnostic setting.
The CNV guidelines will be probably improved and
customized for a more efficient diagnostic use. In the
meanwhile, the CNV detection results still need to
be regarded with caution and may need to be verified
with complementary methods [105, 111, 123]. This
increases workload and costs, thus setting back use of
NGS methods as an independent first-tier diagnostic
test.

RNA SEQUENCING AS SECOND TIER
TEST

RNA sequencing (RNAseq) is a convenient sec-
ond tier test that complements a DNA-based method
and is able to identify possible elusive variants [127,
128]. The low detection rate of DNA tests is probably
due to several reasons. Complex genetic mechanisms,
such as a digenic or oligogenic inheritance, and the
presence of causative mosaic variants, can proba-
bly explain the observed phenotype in part of the
unsolved cases [129–132]. On the other hand, part
of the patients with an undiagnosed disease carry
variants that are not detectable (for example deep
intronic variants in exome sequencing) or variants
not correctly interpreted (e.g. synonymous variants)
[10].

Cryptic splice mutations explain 9–11% of cases
with intellectual disability or autism spectrum dis-
orders, respectively [76]. A correct evaluation of
elusive splice variants, using bioinformatic tools and
RNASeq, can result into a similar increase in the diag-

nostic yield in most of the other rare genetic diseases.
Similarly, the integration of RNAseq with genome
sequencing has resulted in an improved diagnostic
rate for a wide spectrum of undiagnosed Mendelian
diseases [133]. Moreover, the availability of the most
appropriate tissue for RNA extraction/analysis fur-
ther increases the diagnostic rate [18, 128]. For
skeletal muscle disorders, muscle is the most infor-
mative tissue due to the higher expression of disease
genes [128].

After the first report of a novel re-occurring
COL6A2 mutation (c.930 + 189C > T) identified
using a well-designed workflow for prioritiz-
ing candidate aberrant splicing events [127],
a similar approach has been successfully used
to screen unsolved patients with a nemaline
myopathy [134]. Hamanaka and colleagues iden-
tified a novel deep-intronic NEB pathogenic vari-
ant (c.1569 + 339A > G) and a synonymous NEB
pathogenic variant (c.24684G > C; p.Ser8228Ser
affecting the last nucleotide of exon 175), both result-
ing in an aberrant splicing [134].

A different approach, described by Lee and col-
leagues, is of the extreme interest [133]. Instead of
analyzing the entire transcriptome to search for an
outlier (as described in ref. [127, 134]), they used
RNAseq to evaluate the effect on the transcripts of
rare, potentially causative, genetic variants using the
splicing predictors as a prioritizing method [133].

A muscle biopsy is routinely collected during the
diagnostic procedure for patients with skeletal muscle
disorders. However, the use of transcriptome analysis
for a diagnostic purpose will benefit from the devel-
opment of methods to transdifferentiate ex vivo skin
fibroblasts or blood mononuclear cells, not requiring
invasive medical procedures, to specific cell types.
This will virtually enable the analysis of transcripts
with a development-specific expression.

It is noteworthy that the interpretation of RNAseq
data is still challenging because of the presence of
natural splice variants that need to be distinguished
from the pathogenic splicing defects. Improved algo-
rithms and defined guidelines will probably facilitate
the interpretation of these data.

Finally, the effect of splice defects on translation
needs to be carefully evaluated.

FINAL CONSIDERATIONS AND FUTURE
PERSPECTIVES

The introduction of HTS has allowed us to over-
come the technical difficulties related to the size of
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the gene. DNA and RNAsequencing and, above all,
their combined use enable an exhaustive analysis of
most of the human genes and their size is not an issue
anymore [133].

The use of long-reads and linked-reads sequenc-
ing technologies will probably result into several
technical improvements, allowing the detection of
complex structural variations, large segmental dupli-
cations and possible microsatellite expansions, such
as trinucleotide repeat expansion [135–137]. These
technologies will also improve the variant detection
in repetitive regions where short reads do not map
uniquely. Finally, an important (and often neglected)
aspect is related to the phase information [138].
Short reads collapse the diploid genome in a single
sequence. Phasing variants using segregation stud-
ies is sometimes time-consuming and, somehow, not
cost-effective. These new technologies provide phase
information over long contiguous DNA segments
[138]. Large genes will probably benefit the most
from the introduction of long-reads and linked-reads
sequencing technologies.

The most challenging aspect for the diagnosis of
skeletal muscle disorders is definitively related to
the clinical interpretation of the high number of rare
variants detected in large genes (Table 2). Despite
the possible improvements in the variant interpreta-
tion and the definition of gene-tailored guidelines,
the variant interpretation is a dynamic process. It
evolves because of multiple factors including a bet-
ter understanding of the disease, the availability of

more performant in silico predictors and of addi-
tional population data, the development of novel
in vitro and in vivo functional studies and the
identification of novel cases [139–141]. Previous
studies have questioned, for example, the pathogenic-
ity of mutations associated with the limb girdle
muscular dystrophies (LGMDs) or with a cardiomy-
opathy, suggesting the need for a periodic, careful
re-evaluation of the experimental findings [139, 140].
A recent study by Appelbaum and colleagues has
discussed the ethical duty to reinterpret experi-
mentally identified variants, concluding that we all
need to re-evaluate periodically our findings in the
light of technical and interpretative improvements
[142].

A crucial aspect for a proper evaluation of the
sequence variants is represented by the choice of
appropriate functional studies. Although recommen-
dations have been recently issued to provide a detailed
guidance on the evaluation of functional data [143,
144], for the large genes discussed here, we do not
have a general agreement on the assays providing
sufficient evidence. Moreover, the large size of the
coding region is a considerable issue for specific
applications (e.g. cloning full-length sequence or –
mainly for titin - protein expression study). It is
however noteworthy that, in the context of MYH7-
associated inherited cardiomyopathies, a panel of
experts suggested that only functional data from
mammalian knock-in models provide supporting evi-
dence of the variant damaging effect [145].

Table 2
Challenges and possible improvements in variant interpretation

Key points for variant interpretation Challenges Possible improvements

Deep phenotyping Identification of clinical gene-related
hallmarks

International natural history studies on
large cohorts of patients; a large
consensus on the diagnostic and
prognostic value of each test/hallmark

Population data: allele frequency threshold Phenotypic divergence (1 gene = several
diseases)

Large epidemiological studies

Phasing/segregation Time-consuming and cost-ineffective
PCR-based analysis

Novel sequencing technologies, TRIO or
multi-sample sequencing

Elusive variants Repetitive regions, low covered areas,
CNV-prone sequences, cryptic
splice-causing variants

Improved computational tools, novel
sequencing technologies, second-tier
tests

Variant annotation/functional validation:
In silico tools Conflicting predictions; uncertain

accuracy
Improved (more accurate) computational

tools
In vitro experiments Large proteins to be dissected in more

manageable fragments
Benchmark assays

In vivo or ex vivo experiments High cost, non-scalability International multidisciplinary consortia
Public disease-databases Not standardized interpretation; limited

number of shared variants
Sharing data; gene/disease-tailored

guidelines for an improved variant
interpretation
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As discussed by Dr Rodenburg in his recent review
[85], obtaining functional evidence of pathogenicity
requires huge work and money. This effort brings a
reward in terms of scientific impact (and of granted
funds) when the novel variants are in novel disease
genes. The same effort is much less rewarding in
a diagnostic setting when the variants are in very
well-known disease-genes. However, a correct diag-
nosis is important for patients and an international
collaborative effort aiming at setting up and validat-
ing functional assays for the genes discussed here is
strongly advisable.

Finally, HTS has contributed to the identification
of digenic, or even more complex, genetic mecha-
nisms underlying human diseases [129, 132, 146].
This should be considered when evaluating the func-
tional and clinical impact of variants of unknown
significance.

Our understanding of large genes will benefit
from large, international and interdisciplinary con-
sortia [147–150]. A larger cohort of patients, shared
clinical and genetic data and shared scientific and
technological resources are needed for these complex
challenges [148–150]. Similarly, making available
experimentally identified variants and the interpre-
tation of their clinical significance through public
databases will help to standardize the assessment
of variant pathogenicity among different laboratories
[151–153].

A perfect synergy among scientists and clinicians
with a multidisciplinary expertise are required to
set up a full translational research, going from vari-
ant identification in patients to characterization of
pathophysiological mechanisms in muscular cells
and animal models, from basic research to clinical
developments - all for the benefit of the patients
[148, 150].
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Folkhälsan Research Foundation (B.U.), Erkko Foun-
dation (B.U.), Juselius Foundation (B.U.), Finnish
Academy (B.U.), Alfred Kordelin Foundation (S.V.).

The authors have no conflict of interest to report.

REFERENCES

[1] Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC,
Baldwin J, et al. Initial sequencing and analysis of the
human genome. Nature. 2001;409(6822):860-921.

[2] Lynch M, Conery JS. The origins of genome complexity.
Science. 2003;302(5649):1401-4.

[3] Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener
C, Kunkel LM. Complete cloning of the Duchenne mus-
cular dystrophy (DMD) cDNA and preliminary genomic
organization of the DMD gene in normal and affected
individuals. Cell. 1987;50(3):509-17.

[4] Sahakyan AB, Balasubramanian S. Long genes and genes
with multiple splice variants are enriched in pathways
linked to cancer and other multigenic diseases. BMC
Genomics. 2016;17:225.

[5] Grishkevich V, Yanai I. Gene length and expression level
shape genomic novelties. Genome Res. 2014;24(9):1497-
503.

[6] Higgins DG, Labeit S, Gautel M, Gibson TJ. The evolu-
tion of titin and related giant muscle proteins. J Mol Evol.
1994;38(4):395-404.

[7] Clark MM, Stark Z, Farnaes L, Tan TY, White SM, Dim-
mock D, et al. Meta-analysis of the diagnostic and clinical
utility of genome and exome sequencing and chromosomal
microarray in children with suspected genetic diseases.
NPJ Genom Med. 2018;3:16.

[8] Metzker ML. Sequencing technologies - the next genera-
tion. Nat Rev Genet. 2010;11(1):31-46.

[9] Gutowska-Ding MW, Deans ZC, Roos C, Matilainen J,
Khawaja F, Brugger K, et al. One byte at a time: evidencing
the quality of clinical service next-generation sequenc-
ing for germline and somatic variants. Eur J Hum Genet.
2019.

[10] Nigro V, Savarese M. Next-generation sequencing
approaches for the diagnosis of skeletal muscle disorders.
Curr Opin Neurol. 2016;29(5):621-7.

[11] Zenagui R, Lacourt D, Pegeot H, Yauy K, Juntas Morales
R, Theze C, et al. A reliable targeted next-generation
sequencing strategy for diagnosis of myopathies and mus-
cular dystrophies. Especially for the Giant Titin and
Nebulin Genes. J Mol Diagn. 2018;20(4):533-49.

[12] Abdalla E, Ravenscroft G, Zayed L, Beecroft SJ, Laing
NG. Lethal multiple pterygium syndrome: A severe phe-
notype associated with a novel mutation in the nebulin
gene. Neuromuscul Disord. 2017;27(6):537-41.

[13] Savarese M, Maggi L, Vihola A, Jonson PH, Tasca
G, Ruggiero L, et al. Interpreting genetic variants in
titin in patients with muscle disorders. JAMA Neurol.
2018;75(5):557-65.

[14] Jokela M, Tasca G, Vihola A, Mercuri E, Jonson PH, Lehti-
nen S, et al. An unusual ryanodine receptor 1 (RYR1)
phenotype: Mild calf-predominant myopathy. Neurology.
2019;92(14):e1600-e9.

[15] Bonne G, Rivier F, Hamroun D. The 2019 version of the
gene table of neuromuscular disorders (nuclear genome).
Neuromuscul Disord. 2018;28(12):1031-63.

[16] Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt
M, McNabb M, et al. The complete gene sequence of
titin, expression of an unusual approximately 700-kDa
titin isoform, and its interaction with obscurin identify
a novel Z-line to I-band linking system. Circ Res.
2001;89(11):1065-72.

[17] Savarese M, Sarparanta J, Vihola A, Udd B, Hackman
P. Increasing role of titin mutations in neuromus-



212 M. Savarese et al. / Is Gene-Size an Issue for the Diagnosis of Skeletal Muscle Disorders?

cular disorders. Journal of Neuromuscular Diseases.
2016;3(3):293-308.

[18] Evila A, Palmio J, Vihola A, Savarese M, Tasca G, Penttila
S, et al. Targeted next-generation sequencing reveals novel
TTN mutations causing recessive distal titinopathy. Mol
Neurobiol. 2017;54(9):7212-23.

[19] Oates EC, Jones KJ, Donkervoort S, Charlton A, Brammah
S, Smith JE, 3rd, et al. Congenital titinopathy: Comprehen-
sive characterization and pathogenic insights. Ann Neurol.
2018;83(6):1105-24.

[20] Hackman P, Vihola A, Haravuori H, Marchand S,
Sarparanta J, De Seze J, et al. Tibial muscular dystro-
phy is a titinopathy caused by mutations in TTN, the gene
encoding the giant skeletal-muscle protein titin. Am J Hum
Genet. 2002;71(3):492-500.

[21] Palmio J, Leonard-Louis S, Sacconi S, Savarese M, Pent-
tila S, Semmler AL, et al. Expanding the importance of
HMERF titinopathy: New mutations and clinical aspects.
J Neurol. 2019;266(3):680-90.

[22] Tasca G, Udd B. Hereditary myopathy with early respi-
ratory failure (HMERF): Still rare, but common enough.
Neuromuscul Disord. 2018;28(3):268-76.

[23] Bang ML, Caremani M, Brunello E, Littlefield R, Lieber
RL, Chen J, et al. Nebulin plays a direct role in promoting
strong actin-myosin interactions. FASEB journal : Official
publication of the Federation of American Societies for
Experimental Biology. 2009;23(12):4117-25.

[24] Lehtokari VL, Kiiski K, Sandaradura SA, Laporte J, Repo
P, Frey JA, et al. Mutation update: the spectra of neb-
ulin variants and associated myopathies. Hum Mutat.
2014;35(12):1418-26.

[25] Lehtokari VL, Pelin K, Herczegfalvi A, Karcagi V, Pouget
J, Franques J, et al. Nemaline myopathy caused by muta-
tions in the nebulin gene may present as a distal myopathy.
Neuromuscul Disord. 2011;21(8):556-62.

[26] Wallgren-Pettersson C, Lehtokari VL, Kalimo H, Paetau
A, Nuutinen E, Hackman P, et al. Distal myopathy caused
by homozygous missense mutations in the nebulin gene.
Brain. 2007;130(Pt 6):1465-76.

[27] Romero NB, Lehtokari VL, Quijano-Roy S, Monnier
N, Claeys KG, Carlier RY, et al. Core-rod myopathy
caused by mutations in the nebulin gene. Neurology.
2009;73(14):1159-61.

[28] Feingold-Zadok M, Chitayat D, Chong K, Injeyan M,
Shannon P, Chapmann D, et al. Mutations in the NEB gene
cause fetal akinesia/arthrogryposis multiplex congenita.
Prenat Diagn. 2017;37(2):144-50.

[29] Sagath L, Lehtokari VL, Valipakka S, Udd B, Wallgren-
Pettersson C, Pelin K, et al. An extended targeted copy
number variation detection array including 187 genes for
the diagnostics of neuromuscular disorders. J Neuromus-
cul Dis. 2018;5(3):307-14.

[30] Kiiski KJ, Lehtokari VL, Vihola AK, Laitila JM, Huovinen
S, Sagath LJ, et al. Dominantly inherited distal nema-
line/cap myopathy caused by a large deletion in the nebulin
gene. Neuromuscul Disord. 2019;29(2):97-107.

[31] Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryan-
odine receptors: structure, expression, molecular details,
and function in calcium release. Cold Spring Harb Perspect
Biol. 2010;2(11):a003996.

[32] Lawal TA, Todd JJ, Meilleur KG. Ryanodine Recep-
tor 1-Related Myopathies: Diagnostic and therapeutic
approaches. Neurotherapeutics. 2018;15(4):885-99.

[33] Ferreiro A, Monnier N, Romero NB, Leroy JP, Bonne-
mann C, Haenggeli CA, et al. A recessive form of central

core disease, transiently presenting as multi-minicore
disease, is associated with a homozygous mutation
in the ryanodine receptor type 1 gene. Ann Neurol.
2002;51(6):750-9.

[34] Wu S, Ibarra MC, Malicdan MC, Murayama K, Ichihara Y,
Kikuchi H, et al. Central core disease is due to RYR1 muta-
tions in more than 90% of patients. Brain. 2006;129(Pt
6):1470-80.

[35] Clarke NF, Waddell LB, Cooper ST, Perry M, Smith RL,
Kornberg AJ, et al. Recessive mutations in RYR1 are
a common cause of congenital fiber type disproportion.
Hum Mutat. 2010;31(7):E1544-50.

[36] Fattori F, Maggi L, Bruno C, Cassandrini D, Codemo V,
Catteruccia M, et al. Centronuclear myopathies: genotype-
phenotype correlation and frequency of defined genetic
forms in an Italian cohort. J Neurol. 2015;262(7):1728-40.

[37] Cassandrini D, Trovato R, Rubegni A, Lenzi S, Fior-
illo C, Baldacci J, et al. Congenital myopathies: Clinical
phenotypes and new diagnostic tools. Ital J Pediatr.
2017;43(1):101.

[38] Gillard EF, Otsu K, Fujii J, Khanna VK, de Leon S, Derde-
mezi J, et al. A substitution of cysteine for arginine 614 in
the ryanodine receptor is potentially causative of human
malignant hyperthermia. Genomics. 1991;11(3):751-5.

[39] Dlamini N, Voermans NC, Lillis S, Stewart K, Kamsteeg
EJ, Drost G, et al. Mutations in RYR1 are a common cause
of exertional myalgia and rhabdomyolysis. Neuromuscul
Disord. 2013;23(7):540-8.

[40] Park E, Pan Z, Zhang Z, Lin L, Xing Y. The expand-
ing landscape of alternative splicing variation in human
populations. Am J Hum Genet. 2018;102(1):11-26.

[41] Guo W, Bharmal SJ, Esbona K, Greaser ML. Titin
diversity—alternative splicing gone wild. J Biomed
Biotechnol. 2010;2010:753675.

[42] Greaser ML, Krzesinski PR, Warren CM, Kirkpatrick B,
Campbell KS, Moss RL. Developmental changes in rat
cardiac titin/connectin: transitions in normal animals and
in mutants with a delayed pattern of isoform transition. J
Muscle Res Cell Motil. 2005;26(6-8):325-32.

[43] Savarese M, Jonson PH, Huovinen S, Paulin L, Auvi-
nen P, Udd B, et al. The complexity of titin splicing
pattern in human adult skeletal muscles. Skelet Muscle.
2018;8(1):11.

[44] Laitila J, Hanif M, Paetau A, Hujanen S, Keto J, Somervuo
P, et al. Expression of multiple nebulin isoforms in human
skeletal muscle and brain. Muscle Nerve. 2012;46(5):730-
7.

[45] Lam LT, Holt I, Laitila J, Hanif M, Pelin K, Wallgren-
Pettersson C, et al. Two alternatively-spliced human
nebulin isoforms with either exon 143 or exon 144 and
their developmental regulation. Sci Rep. 2018;8(1):15728.

[46] Kimura T, Nakamori M, Lueck JD, Pouliquin P, Aoike F,
Fujimura H, et al. Altered mRNA splicing of the skeletal
muscle ryanodine receptor and sarcoplasmic/endoplasmic
reticulum Ca2+-ATPase in myotonic dystrophy type 1.
Hum Mol Genet. 2005;14(15):2189-200.

[47] Tang Y, Wang H, Wei B, Guo Y, Gu L, Yang Z, et al. CUG-
BP1 regulates RyR1 ASI alternative splicing in skeletal
muscle atrophy. Sci Rep. 2015;5:16083.

[48] Guo W, Schafer S, Greaser ML, Radke MH, Liss M,
Govindarajan T, et al. RBM20, a gene for heredi-
tary cardiomyopathy, regulates titin splicing. Nat Med.
2012;18(5):766-73.

[49] Bertero A, Fields PA, Ramani V, Bonora G, Yardimci GG,
Reinecke H, et al. Dynamics of genome reorganization



M. Savarese et al. / Is Gene-Size an Issue for the Diagnosis of Skeletal Muscle Disorders? 213

during human cardiogenesis reveal an RBM20-dependent
splicing factory. Nat Commun. 2019;10(1):1538.

[50] Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster
J, et al. Standards and guidelines for the interpretation of
sequence variants: a joint consensus recommendation of
the American College of Medical Genetics and Genomics
and the Association for Molecular Pathology. Genet Med.
2015;17(5):405-24.

[51] Delude CM. Deep phenotyping: The details of disease.
Nature. 2015;527(7576):S14-5.

[52] Barp A, Laforet P, Bello L, Tasca G, Vissing J, Mon-
forte M, et al. European muscle MRI study in limb girdle
muscular dystrophy type R1/2A (LGMDR1/LGMD2A). J
Neurol. 2019.

[53] GoMez-Andres D, Diaz-Manera J, Alejaldre A, Pulido-
Valdeolivas I, GonzaLez-Mera L, Olive M, et al.
Muscle imaging in laminopathies: Synthesis study iden-
tifies meaningful muscles for follow-up. Muscle Nerve.
2018;58(6):812-7.

[54] Alonso-Jimenez A, Kroon R, Alejaldre-Monforte A,
Nunez-Peralta C, Horlings CGC, van Engelen BGM, et
al. Muscle MRI in a large cohort of patients with ocu-
lopharyngeal muscular dystrophy. J Neurol Neurosurg
Psychiatry. 2019;90(5):576-85.

[55] Jungbluth H. Myopathology in times of modern imaging.
Neuropathol Appl Neurobiol. 2017;43(1):24-43.

[56] Evila A, Vihola A, Sarparanta J, Raheem O, Palmio J,
Sandell S, et al. Atypical phenotypes in titinopathies
explained by second titin mutations. Ann Neurol.
2014;75(2):230-40.

[57] Jungbluth H, Davis MR, Muller C, Counsell S, Allsop J,
Chattopadhyay A, et al. Magnetic resonance imaging of
muscle in congenital myopathies associated with RYR1
mutations. Neuromuscul Disord. 2004;14(12):785-90.

[58] Jungbluth H, Muller CR, Halliger-Keller B, Brockington
M, Brown SC, Feng L, et al. Autosomal recessive inheri-
tance of RYR1 mutations in a congenital myopathy with
cores. Neurology. 2002;59(2):284-7.

[59] Jungbluth H, Sewry CA, Counsell S, Allsop J, Chattopad-
hyay A, Mercuri E, et al. Magnetic resonance imaging
of muscle in nemaline myopathy. Neuromuscul Disord.
2004;14(12):779-84.

[60] Savarese M, Johari M, Johnson K, Arumilli M, Torella
A, Topf A, et al. Improved Criteria for the Classifica-
tion of Titin Variants in Inherited Skeletal Myopathies.
J Neuromuscul Dis. 2020.

[61] Ng PC, Henikoff S. SIFT: Predicting amino acid
changes that affect protein function. Nucleic Acids Res.
2003;31(13):3812-4.

[62] Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE,
Gerasimova A, Bork P, et al. A method and server for
predicting damaging missense mutations. Nat Methods.
2010;7(4):248-9.

[63] Schwarz JM, Cooper DN, Schuelke M, Seelow D. Muta-
tionTaster2: Mutation prediction for the deep-sequencing
age. Nat Methods. 2014;11(4):361-2.

[64] Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, et
al. Comparison and integration of deleteriousness predic-
tion methods for nonsynonymous SNVs in whole exome
sequencing studies. Hum Mol Genet. 2015;24(8):2125-37.

[65] Sundaram L, Gao H, Padigepati SR, McRae JF, Li Y,
Kosmicki JA, et al. Predicting the clinical impact of
human mutation with deep neural networks. Nat Genet.
2018;50(8):1161-70.

[66] Laddach A, Gautel M, Fraternali F. TITINdb-a com-
putational tool to assess titin’s role as a disease gene.
Bioinformatics. 2017;33(21):3482-5.

[67] Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM,
Shendure J. A general framework for estimating the rela-
tive pathogenicity of human genetic variants. Nat Genet.
2014;46(3):310-5.

[68] Ioannidis NM, Rothstein JH, Pejaver V, Middha S,
McDonnell SK, Baheti S, et al. REVEL: An ensemble
method for predicting the pathogenicity of rare missense
variants. Am J Hum Genet. 2016;99(4):877-85.

[69] Tian Y, Pesaran T, Chamberlin A, Fenwick RB, Li S, Gau
CL, et al. REVEL and BayesDel outperform other in silico
meta-predictors for clinical variant classification. Sci Rep.
2019;9(1):12752.

[70] Hunt RC, Simhadri VL, Iandoli M, Sauna ZE, Kimchi-
Sarfaty C. Exposing synonymous mutations. Trends
Genet. 2014;30(7):308-21.

[71] Cartegni L, Chew SL, Krainer AR. Listening to silence
and understanding nonsense: Exonic mutations that affect
splicing. Nat Rev Genet. 2002;3(4):285-98.

[72] Spencer PS, Siller E, Anderson JF, Barral JM. Silent sub-
stitutions predictably alter translation elongation rates and
protein folding efficiencies. J Mol Biol. 2012;422(3):328-
35.

[73] Shi F, Yao Y, Bin Y, Zheng CH, Xia J. Computational iden-
tification of deleterious synonymous variants in human
genomes using a feature-based approach. BMC Med
Genomics. 2019;12(Suppl 1):12.

[74] Desmet FO, Hamroun D, Lalande M, Collod-Beroud G,
Claustres M, Beroud C. Human Splicing Finder: An online
bioinformatics tool to predict splicing signals. Nucleic
Acids Res. 2009;37(9):e67.

[75] Leman R, Gaildrat P, Gac GL, Ka C, Fichou Y, Audrezet
MP, et al. Novel diagnostic tool for prediction of variant
spliceogenicity derived from a set of 395 combined in sil-
ico/in vitro studies: An international collaborative effort.
Nucleic Acids Res. 2018;46(15):7913-23.

[76] Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae
JF, Darbandi SF, Knowles D, Li YI, et al. Predicting
splicing from primary sequence with deep learning. Cell.
2019;176(3):535-48 e24.

[77] Chauveau C, Bonnemann CG, Julien C, Kho AL, Marks
H, Talim B, et al. Recessive TTN truncating mutations
define novel forms of core myopathy with heart disease.
Hum Mol Genet. 2014;23(4):980-91.

[78] Hastings R, de Villiers CP, Hooper C, Ormondroyd L, Pag-
namenta A, Lise S, et al. Combination of whole genome
sequencing, linkage, and functional studies implicates a
missense mutation in titin as a cause of autosomal dom-
inant cardiomyopathy with features of left ventricular
noncompaction. Circ Cardiovasc Genet. 2016;9(5):426-
35.

[79] Marttila M, Hanif M, Lemola E, Nowak KJ, Laitila J,
Gronholm M, et al. Nebulin interactions with actin and
tropomyosin are altered by disease-causing mutations.
Skelet Muscle. 2014;4:15.

[80] Laitila J, Lehtonen J, Lehtokari VL, Sagath L, Wallgren-
Pettersson C, Gronholm M, et al. A nebulin super-repeat
panel reveals stronger actin binding toward the ends of the
super-repeat region. Muscle Nerve. 2019;59(1):116-21.

[81] Tong J, McCarthy TV, MacLennan DH. Measurement of
resting cytosolic Ca2+concentrations and Ca2+store size
in HEK-293 cells transfected with malignant hyperthermia



214 M. Savarese et al. / Is Gene-Size an Issue for the Diagnosis of Skeletal Muscle Disorders?

or central core disease mutant Ca2+release channels. J Biol
Chem. 1999;274(2):693-702.

[82] Tong J, Oyamada H, Demaurex N, Grinstein S, McCarthy
TV, MacLennan DH. Caffeine and halothane sensitivity of
intracellular Ca2+release is altered by 15 calcium release
channel (ryanodine receptor) mutations associated with
malignant hyperthermia and/or central core disease. J Biol
Chem. 1997;272(42):26332-9.

[83] Monnier N, Kozak-Ribbens G, Krivosic-Horber R,
Nivoche Y, Qi D, Kraev N, et al. Correlations between
genotype and pharmacological, histological, functional,
and clinical phenotypes in malignant hyperthermia sus-
ceptibility. Hum Mutat. 2005;26(5):413-25.

[84] Bryen SJ, Ewans LJ, Pinner J, MacLennan SC,
Donkervoort S, Castro D, et al. Recurrent TTN
metatranscript-only c.39974-11T>G splice variant asso-
ciated with autosomal recessive arthrogryposis multiplex
congenita and myopathy. Hum Mutat. 2019.

[85] Rodenburg RJ. The functional genomics laboratory: Func-
tional validation of genetic variants. J Inherit Metab Dis.
2018;41(3):297-307.

[86] Takahashi K, Yamanaka S. Induction of pluripotent stem
cells from mouse embryonic and adult fibroblast cultures
by defined factors. Cell. 2006;126(4):663-76.

[87] Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agar-
wal A, et al. Modeling the mitochondrial cardiomyopathy
of Barth syndrome with induced pluripotent stem cell and
heart-on-chip technologies. Nat Med. 2014;20(6):616-23.

[88] Ford K, McDonald D, Mali P. Functional Genomics via
CRISPR-Cas. J Mol Biol. 2019;431(1):48-65.

[89] Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE,
et al. RNA-guided human genome engineering via Cas9.
Science. 2013;339(6121):823-6.

[90] Lornage X, Romero NB, Grosgogeat CA, Malfatti E,
Donkervoort S, Marchetti MM, et al. ACTN2 mutations
cause “Multiple structured Core Disease” (MsCD). Acta
Neuropathol. 2019.

[91] Sarparanta J, Jonson PH, Golzio C, Sandell S, Luque
H, Screen M, et al. Mutations affecting the cytoplasmic
functions of the co-chaperone DNAJB6 cause limb-girdle
muscular dystrophy. Nat Genet. 2012;44(4):450-5, S1-2.

[92] Hirata H, Watanabe T, Hatakeyama J, Sprague SM, Saint-
Amant L, Nagashima A, et al. Zebrafish relatively relaxed
mutants have a ryanodine receptor defect, show slow
swimming and provide a model of multi-minicore disease.
Development. 2007;134(15):2771-81.

[93] Steffen LS, Guyon JR, Vogel ED, Howell MH, Zhou Y,
Weber GJ, et al. The zebrafish runzel muscular dystrophy
is linked to the titin gene. Dev Biol. 2007;309(2):180-92.

[94] Telfer WR, Nelson DD, Waugh T, Brooks SV, Dowling
JJ. Neb: A zebrafish model of nemaline myopathy due to
nebulin mutation. Dis Model Mech. 2012;5(3):389-96.

[95] Charton K, Daniele N, Vihola A, Roudaut C, Gicquel
E, Monjaret F, et al. Removal of the calpain 3 pro-
tease reverses the myopathology in a mouse model for
titinopathies. Hum Mol Genet. 2010;19(23):4608-24.

[96] Lee CS, Hanna AD, Wang H, Dagnino-Acosta A, Joshi
AD, Knoblauch M, et al. A chemical chaperone improves
muscle function in mice with a RyR1 mutation. Nat Com-
mun. 2017;8:14659.

[97] Durham WJ, Aracena-Parks P, Long C, Rossi AE,
Goonasekera SA, Boncompagni S, et al. RyR1 S-
nitrosylation underlies environmental heat stroke and
sudden death in Y522S RyR1 knockin mice. Cell.
2008;133(1):53-65.

[98] Kushnir A, Betzenhauser MJ, Marks AR. Ryanodine
receptor studies using genetically engineered mice. FEBS
Lett. 2010;584(10):1956-65.

[99] Yang T, Riehl J, Esteve E, Matthaei KI, Goth S, Allen
PD, et al. Pharmacologic and functional characterization
of malignant hyperthermia in the R163C RyR1 knock-in
mouse. Anesthesiology. 2006;105(6):1164-75.

[100] Laitila J, McNamara E, Goullee H, Lawlor M, Ochala
J, Griffiths L, et al. A mouse model with compound
heterozygous nebulin mutations recapitulates the typical
form of nemaline myopathy. Neuromuscular Disorders.
2017;27:S183.

[101] Laitila JM, McNamara EL, Wingate CD, Goullee H, Ross
JA, Taylor RL, et al. Nebulin nemaline myopathy reca-
pitulated in a compound heterozygous mouse model with
both a missense and a nonsense mutation in Neb. Acta
Neuropathol Commun. 2020;8(1):18.

[102] Koob M, Karanjeet K, Benzow K. Moving human genet-
ics into the mouse: Full human gene-replacement models.
Presented at the American Society of Human Genetics
2019 Annual Meeting Houston, Texas. 2019.

[103] Kosugi S, Momozawa Y, Liu X, Terao C, Kubo M,
Kamatani Y. Comprehensive evaluation of structural vari-
ation detection algorithms for whole genome sequencing.
Genome Biol. 2019;20(1):117.

[104] Truty R, Paul J, Kennemer M, Lincoln SE, Olivares E,
Nussbaum RL, et al. Prevalence and properties of intra-
genic copy-number variation in Mendelian disease genes.
Genet Med. 2019;21(1):114-23.

[105] Pfundt R, Del Rosario M, Vissers L, Kwint MP, Janssen
IM, de Leeuw N, et al. Detection of clinically relevant
copy-number variants by exome sequencing in a large
cohort of genetic disorders. Genet Med. 2017;19(6):667-
75.

[106] Roca I, Gonzalez-Castro L, Fernandez H, Couce ML,
Fernandez-Marmiesse A. Free-access copy-number vari-
ant detection tools for targeted next-generation sequencing
data. Mutat Res. 2019;779:114-25.

[107] Mason-Suares H, Landry L, S. Lebo MJCGMR. Detect-
ing copy number variation via next generation technology.
2016;4(3):74-85.

[108] Kerkhof J, Schenkel LC, Reilly J, McRobbie S, Aref-
Eshghi E, Stuart A, et al. Clinical validation of copy
number variant detection from targeted next-generation
sequencing panels. J Mol Diagn. 2017;19(6):905-20.

[109] Sadedin SP, Ellis JA, Masters SL, Oshlack A. Ximmer: a
system for improving accuracy and consistency of CNV
calling from exome data. Gigascience. 2018;7(10).

[110] Zhao M, Wang Q, Wang Q, Jia P, Zhao Z. Computational
tools for copy number variation (CNV) detection using
next-generation sequencing data: features and perspec-
tives. BMC Bioinformatics. 2013;14 Suppl 11:S1.

[111] Välipakka S, Savarese M, Sagath L, Arumilli M, Giugliano
T, Udd B, et al. Improving copy number variant detection
from sequencing data with a combination of programs and
a predictive model. The Journal of Molecular Diagnostics.
2020;22(1):40-49.

[112] Tuffery-Giraud S, Beroud C, Leturcq F, Yaou RB, Ham-
roun D, Michel-Calemard L, et al. Genotype-phenotype
analysis in 2,405 patients with a dystrophinopathy using
the UMD-DMD database: a model of nationwide knowl-
edgebase. Hum Mutat. 2009;30(6):934-45.

[113] Aartsma-Rus A, Ginjaar IB, Bushby K. The importance
of genetic diagnosis for Duchenne muscular dystrophy. J
Med Genet. 2016;53(3):145-51.



M. Savarese et al. / Is Gene-Size an Issue for the Diagnosis of Skeletal Muscle Disorders? 215

[114] Kozareva V, Stroff C, Silver M, Freidin JF, Delaney NF.
Clinical analysis of germline copy number variation in
DMD using a non-conjugate hierarchical Bayesian model.
BMC Med Genomics. 2018;11(1):91.

[115] Välipakka S, Savarese M, Johari M, Sagath L, Arumilli M,
Kiiski K, et al. Copy number variation analysis increases
the diagnostic yield in muscle diseases. Neurology Genet-
ics. 2017;3(6).

[116] Kiiski K, Lehtokari VL, Loytynoja A, Ahlsten L, Laitila
J, Wallgren-Pettersson C, et al. A recurrent copy number
variation of the NEB triplicate region: Only revealed by
the targeted nemaline myopathy CGH array. Eur J Hum
Genet. 2016;24(4):574-80.

[117] Roggenbuck J, Rich K, Morales A, Tan CA, Eck D, King
W, et al. A novel TTN deletion in a family with skeletal
myopathy, facial weakness, and dilated cardiomyopathy.
Mol Genet Genomic Med. 2019;7(11):e924.

[118] Giugliano T, Savarese M, Garofalo A, Picillo E, Fiorillo
C, D’Amico A, et al. Copy Number Variants Account for a
Tiny Fraction of Undiagnosed Myopathic Patients. Genes
(Basel). 2018;9(11).

[119] Savarese M, Musumeci O, Giugliano T, Rubegni A, Fio-
rillo C, Fattori F, et al. Novel findings associated with
MTM1 suggest a higher number of female symptomatic
carriers. Neuromuscul Disord. 2016;26(4-5):292-9.

[120] Tian X, Liang WC, Feng Y, Wang J, Zhang VW, Chou CH,
et al. Expanding genotype/phenotype of neuromuscular
diseases by comprehensive target capture/NGS. Neurol-
ogy Genetics. 2015;1(2):e14.

[121] Piluso G, Dionisi M, Del Vecchio Blanco F, Torella A,
Aurino S, Savarese M, et al. Motor chip: a compara-
tive genomic hybridization microarray for copy-number
mutations in 245 neuromuscular disorders. Clin Chem.
2011;57(11):1584-96.

[122] Giugliano T, Fanin M, Savarese M, Piluso G, Angelini
C, Nigro V. Identification of an intragenic deletion in
the SGCB gene through a re-evaluation of negative
next generation sequencing results. Neuromuscul Disord.
2016;26(6):367-9.

[123] Fichna JP, Macias A, Piechota M, Korostynski M,
Potulska-Chromik A, Redowicz MJ, et al. Whole-exome
sequencing identifies novel pathogenic mutations and
putative phenotype-influencing variants in Polish limb-
girdle muscular dystrophy patients. Hum Genomics.
2018;12(1):34.

[124] Nowakowska B. Clinical interpretation of copy num-
ber variants in the human genome. J Appl Genet.
2017;58(4):449-57.

[125] Haraksingh RR, Abyzov A, Gerstein M, Urban AE, Sny-
der M. Genome-wide mapping of copy number variation
in humans: comparative analysis of high resolution array
platforms. PLoS One. 2011;6(11):e27859.

[126] Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney
H, Patel A, et al. Technical standards for the interpreta-
tion and reporting of constitutional copy-number variants:
a joint consensus recommendation of the American Col-
lege of Medical Genetics and Genomics (ACMG) and
the Clinical Genome Resource (ClinGen). Genet Med.
2019.

[127] Cummings BB, Marshall JL, Tukiainen T, Lek M, Donker-
voort S, Foley AR, et al. Improving genetic diagnosis
in Mendelian disease with transcriptome sequencing. Sci
Transl Med. 2017;9(386).

[128] Gonorazky HD, Naumenko S, Ramani AK, Nelakuditi V,
Mashouri P, Wang P, et al. Expanding the Boundaries of

RNA Sequencing as a Diagnostic Tool for Rare Mendelian
Disease. Am J Hum Genet. 2019;104(3):466-83.

[129] Lee Y, Jonson PH, Sarparanta J, Palmio J, Sarkar M, Vihola
A, et al. TIA1 variant drives myodegeneration in multisys-
tem proteinopathy with SQSTM1 mutations. J Clin Invest.
2018;128(3):1164-77.

[130] D’Amico A, Fattori F, Tasca G, Petrini S, Gualandi F,
Bruselles A, et al. Somatic mosaicism represents an under-
estimated event underlying collagen 6-related disorders.
Eur J Paediatr Neurol. 2017;21(6):873-83.

[131] Donkervoort S, Hu Y, Stojkovic T, Voermans NC, Foley
AR, Leach ME, et al. Mosaicism for dominant collagen 6
mutations as a cause for intrafamilial phenotypic variabil-
ity. Hum Mutat. 2015;36(1):48-56.

[132] Pehlivan D, Bayram Y, Gunes N, Coban Akdemir Z,
Shukla A, Bierhals T, et al. The Genomics of Arthro-
gryposis, a Complex Trait: Candidate Genes and Further
Evidence for Oligogenic Inheritance. Am J Hum Genet.
2019;105(1):132-50.

[133] Lee H, Huang AY, Wang LK, Yoon AJ, Renteria G, Eskin
A, et al. Diagnostic utility of transcriptome sequencing for
rare Mendelian diseases. Genet Med. 2019.

[134] Hamanaka K, Miyatake S, Koshimizu E, Tsurusaki Y,
Mitsuhashi S, Iwama K, et al. RNA sequencing solved
the most common but unrecognized NEB pathogenic
variant in Japanese nemaline myopathy. Genet Med.
2019;21(7):1629-38.

[135] Greer SU, Nadauld LD, Lau BT, Chen J, Wood-Bouwens
C, Ford JM, et al. Linked read sequencing resolves com-
plex genomic rearrangements in gastric cancer metastases.
Genome Med. 2017;9(1):57.

[136] Marks P, Garcia S, Barrio AM, Belhocine K, Bernate
J, Bharadwaj R, et al. Resolving the full spectrum of
human genome variation using Linked-Reads. Genome
Res. 2019;29(4):635-45.

[137] Pollard MO, Gurdasani D, Mentzer AJ, Porter T, Sandhu
MS. Long reads: their purpose and place. Hum Mol Genet.
2018;27(R2):R234-R41.

[138] Jang SS, Lim BC, Yoo SK, Shin JY, Kim KJ, Seo JS, et
al. Targeted linked-read sequencing for direct haplotype
phasing of maternal DMD alleles: a practical and reli-
able method for noninvasive prenatal diagnosis. Sci Rep.
2018;8(1):8678.

[139] Di Fruscio G, Garofalo A, Mutarelli M, Savarese M, Nigro
V. Are all the previously reported genetic variants in limb
girdle muscular dystrophy genes pathogenic? Eur J Hum
Genet. 2016;24(1):73-7.

[140] Andreasen C, Nielsen JB, Refsgaard L, Holst AG, Chris-
tensen AH, Andreasen L, et al. New population-based
exome data are questioning the pathogenicity of previ-
ously cardiomyopathy-associated genetic variants. Eur J
Hum Genet. 2013;21(9):918-28.

[141] Liu P, Meng L, Normand EA, Xia F, Song X, Ghazi A, et
al. Reanalysis of clinical exome sequencing data. N Engl
J Med. 2019;380(25):2478-80.

[142] Appelbaum PS, Parens E, Berger SM, Chung WK, Burke
W. Is there a duty to reinterpret genetic data? The ethical
dimensions. Genet Med. 2019.

[143] Brnich SE, Abou Tayoun AN, Couch FJ, Cutting GR,
Greenblatt MS, Heinen CD, et al. Recommendations for
application of the functional evidence PS3/BS3 criterion
using the ACMG/AMP sequence variant interpretation
framework. Genome Med. 2019;12(1):3.

[144] Gelman H, Dines JN, Berg J, Berger AH, Brnich S, Hisama
FM, et al. Recommendations for the collection and use of



216 M. Savarese et al. / Is Gene-Size an Issue for the Diagnosis of Skeletal Muscle Disorders?

multiplexed functional data for clinical variant interpreta-
tion. Genome Med. 2019;11(1):85.

[145] Kelly MA, Caleshu C, Morales A, Buchan J, Wolf
Z, Harrison SM, et al. Adaptation and validation of
the ACMG/AMP variant classification framework for
MYH7-associated inherited cardiomyopathies: Recom-
mendations by ClinGen’s Inherited Cardiomyopathy
Expert Panel. Genet Med. 2018.

[146] Karaca E, Posey JE, Coban Akdemir Z, Pehlivan D,
Harel T, Jhangiani SN, et al. Phenotypic expansion illu-
minates multilocus pathogenic variation. Genet Med.
2018;20(12):1528-37.

[147] Hackman P, Udd B, Bonnemann CG, Ferreiro A, Titinopa-
thy Database C. 219th ENMC International Workshop
Titinopathies International database of titin mutations and
phenotypes, Heemskerk, The Netherlands, 29 April-1 May
2016. Neuromuscul Disord. 2017;27(4):396-407.

[148] Boycott KM, Rath A, Chong JX, Hartley T, Alkuraya FS,
Baynam G, et al. International cooperation to enable the
diagnosis of all rare genetic diseases. Am J Hum Genet.
2017;100(5):695-705.

[149] Lochmuller H, Badowska DM, Thompson R, Knoers NV,
Aartsma-Rus A, Gut I, et al. RD-Connect, NeurOmics and
EURenOmics: Collaborative European initiative for rare
diseases. Eur J Hum Genet. 2018;26(6):778-85.

[150] Lochmuller H, Torrent IFJ, Le Cam Y, Jonker AH, Lau LP,
Baynam G, et al. The International Rare Diseases Research
Consortium: Policies and Guidelines to maximize impact.
Eur J Hum Genet. 2017;25(12):1293-302.

[151] Landrum MJ, Lee JM, Benson M, Brown GR, Chao C,
Chitipiralla S, et al. ClinVar: Improving access to vari-
ant interpretations and supporting evidence. Nucleic Acids
Res. 2018;46(D1):D1062-D7.

[152] Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros
JF, den Dunnen JT. LOVD v.2.0: The next generation in
gene variant databases. Hum Mutat. 2011;32(5):557-63.

[153] Amendola LM, Jarvik GP, Leo MC, McLaughlin HM,
Akkari Y, Amaral MD, et al. Performance of ACMG-AMP
Variant-Interpretation Guidelines among Nine Labora-
tories in the Clinical Sequencing Exploratory Research
Consortium. Am J Hum Genet. 2016;98(6):1067-76.


