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Qing Yub, Kanneboyina Nagarajub, Ayar Kumard, Mahasweta Girgenrathd, Caroline B.M. Coffeye,
Vivian Cruze, Pam M. Van Rye, Laurent Bogdanikf , Cathleen Lutzf , Anne Rutkowskig

and Dean J. Burkine,∗
aSwiss Foundation for Research on Muscle Diseases, Cortaillod, Switzerland
bCenter for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, USA
cBiozentrum, University of Basel, Basel, Switzerland
dDepartment of Health Sciences, Boston University, Boston, MA, USA
eDepartment of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA
f The Jackson Laboratory, Bar Harbor, ME, USA
gCure Congenital Muscular Dystrophy and Kaiser SCPMG, Los Angeles, CA, USA

Abstract. Laminin-�2 related Congenital Muscular Dystrophy (LAMA2-CMD) is a progressive muscle disease caused by
partial or complete deficiency of laminin-211, a skeletal muscle extracellular matrix protein. In the last decade, basic science
research has queried underlying disease mechanisms in existing LAMA2-CMD murine models and identified possible clinical
targets and pharmacological interventions. Experimental rigor in preclinical studies is critical to efficiently and accurately
quantify both negative and positive results, degree of efficiency of potential therapeutics and determine whether to move
a compound forward for additional preclinical testing. In this review, we compare published available data measured to
assess three common parameters in the widely used mouse model DyW, that mimics LAMA2-CMD, we quantify variability
and analyse its possible sources. Finally, on the basis of this analysis, we suggest standard set of assessments and the use
of available standardized protocols, to reduce variability of outcomes in the future and to improve the value of preclinical
research.
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INTRODUCTION

The congenital muscular dystrophies (CMDs) are
a group of rare neuromuscular diseases with an
estimated prevalence around 0.5 per 100,000, with
LAMA2-CMD accounting for approximately 24%
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of cases [1]. In 1994, Tome et al identified a sub-
set of CMD patients with an absence of laminin �2
staining on muscle biopsy [2]. Immunohistochemi-
cal testing led to the subsequent identification of the
LAMA2 gene. Since then, a number of mutations have
been reported [3, 4]. It is now clear that the muta-
tions that result in laminin-211 deficiency lead to an
early-onset, severe phenotype, whereas partial defi-
ciency typically results in a milder phenotype [5]. The
clinical features of LAMA2-CMD include hypotonia
at birth and development delay. Progressive mus-
cle weakness, contractures and scoliosis contribute
to respiratory insufficiency. Patients may achieve
unsupported sitting, but very few attain ambulation.
Additional secondary complications may include
feeding difficulties, seizures, cardiac arrhythmias and
subclinical cardiomyopathy. Due to the presence of
laminin-211 in myelin, some patients may demon-
strate a peripheral neuropathy [4, 6, 7]. There is
currently no treatment for this progressive and usually
fatal disease.

Given the limited patient numbers and prohibitive
cost of clinical trials, it is critical to design pre-clinical
testing to yield high quality, interpretable and repro-
ducible data. The DyW model was created 1998 by
homologous recombination in Lama2-knockout ES
cells [8, 9] and therefore mimics the severe form of
LAMA2-CMD. These mice are passive, small and
thin at birth. A preliminary review of the literature
revealed that there is a significant range of variability
of natural history data on the most common phe-
notypic assessments, like survival, body weight and
locomotion from lab to lab. For instance, early data
showed that most mice die within 2–4 weeks [9],
however, most publications report a longer median
survival between 8 and 14 weeks [10–15]. There is
no consensus on the type of muscle that should be his-
tologically assessed or the limbs to be used for grip
strength assessment; in other cases there is no consen-
sus on the unit chosen (absolute values vs percentage
of wild-type). This variability makes it difficult to
merge the scarce drug efficacy data available for this
model and to obtain robust evidence to proceed in a
promising direction. A more strict use of standardized
assessment protocols and the reporting of absolute
values would undoubtedly increase comparability of
results.

For the purpose of this review, we collected historic
preclinical data in DyW from four different laborato-
ries to better define variability and identify challenges
in the reproducibility of experimental DyW data. We
then propose a standard set of assessment and the

use of the standardized protocols created by TREAT-
NMD and by CureCMD, to assist in generating
consistent preclinical testing and outcomes.

METHODS

Data collection

To evaluate inter-laboratory variability, we col-
lected published and unpublished raw data on survival
and body weight from four separate laboratories
(labelled A, B, C and D in this study) and assessed
the prognostic usefulness of body weight at vari-
ous time points as a predictor of survival. Survival
time was collected once for each of 117 DyW mice
and not collected for WT mice. In some laborato-
ries dyW mice were from Jackson laboratories and
fully backcrossed on the C57Bl/6 background and
others dyW mice were obtained from Dr. Eva Eng-
vall or collaborators [8, 9] and were on a mixed
strain background that included C57Bl/6. Males and
female mice were included in the study, but data sets
and analysis were not separated by sex. All other
measurements were repeated on the same mice over
various time periods (ranging from 2 to 11 weeks
depending on the measure and the laboratory); there-
fore the total number of data points is greater than
the number of mice (Table 1). Feeding and handling
regimens were compared between the laboratories to
evaluate the possible effect on body weight and sur-
vival. Additionally, data on respiratory assessments
(plethysmography) from two laboratories was evalu-
ated given the relevance to patient pathophysiology.

Statistical methods

We explored the following outcome measures in
this analysis; survival time in days, body weight,
and plethysmography measurements including respi-
ratory rate, tidal volume and enhanced pause (PenH)
normalized for body weight. All outcomes were
examined for quality and descriptive statistics were
produced. The Shapiro-Wilk test showed that body
weight was normally distributed while plethysmog-
raphy measurements were not; therefore PenH and
PenH/BW were log transformed for all analyses.

Survival analysis was performed on all mice expir-
ing by natural death. Survival time was compared
between the four laboratories using a log-rank test.
The significant overall comparison led to further
pair-wise comparisons between each laboratory via
log-rank test and the resulting p-values were adjusted
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Table 1
Number of data points and mice included in this analysis

Measurement Total number of data points Number of mice
DyW–/– WT Total DyW–/– WT Total

Survival 117 N/A 117 117 N/A 117
Body weight 1126 395 1521 555 138 693
PenH 130 128 258 55 50 105
PenH/BW 125 126 251 51 48 99

for multiple comparisons. Kaplan-Meier survival
curves were generated for survival in all four labora-
tories. Body weight was measured using two methods
that differed in assessment frequency. One labora-
tory measured body weight once a week; the other
measured body weight multiple times per week but
reported only the maximum for the week. The analy-
sis used whichever value was provided regardless of
method. For mice where peak weight and weight at
single time points was reported, only the peak value
was used. This approach was applied to 73 data points
although the weight difference between single and
peak values was less than 5%. The analysis was lim-
ited to mice up to the age of 12 weeks as all data
beyond 12 weeks was limited to one laboratory and
only three data points were available for WT mice
beyond 12 weeks.

Body weight was compared between laboratories
and between mice within each laboratory using a
mixed effects linear regression model. This model
tested the main effects of laboratory and age along
with a laboratory × age interaction term, and includ-
ing the individual mouse as a random coefficient to
account for repeated measurements on the same ani-
mal. The predictive value of body weight on survival
in DyW mice was determined at weeks 1 through 8
using linear regression models where survival time in
days was the outcome and body weight the predictor.

Plethysmography outcomes were measured and
reported by two laboratories (Lab A and Lab D) and
all analyses were performed separately for each lab-
oratory. Data was limited to weeks 3 through 10 as
only 3 data points were available after week 10, and
all analyses used log-transformed values. Both PenH
and PenH/BW were compared between strains within
each laboratory using a mixed effects linear regres-
sion model testing main effects of strain and age along
with a strain × age interaction term, and including the
individual mouse as a random coefficient to account
for repeated measurements on the same animal.

Assessment of variability with increasing age and
magnitude did not account for repeated values and
used all available data points for that category. For age

assessment, stratification by laboratory was retained
and all available mice for each one week age group
were combined. Means and 95% confidence inter-
val (CI) were calculated by strain and plotted. For
magnitude assessment, data from both laboratories
were combined and all available values binned into
categories to produce an even distribution through the
magnitude range. Means and 95% CI were calculated
by strain and plotted.

Sample sizes and power were calculated for a com-
parison of each outcome between WT and DyW mice
to evaluate which outcomes and which time points
are potentially most useful in experimental studies.
We calculated the power a comparison of 12 mice
per group would yield, and the number of mice per
strain needed to detect a statistically significant dif-
ference between WT and DyW. All calculations were
performed at a 0.05 type I error rate and using a t-test.

All analyses were performed using Stata V13 (Col-
lege Station, TX) and a nominal � = 0.05 was used to
define statistical significance.

VARIABILITY ASSESSMENT

Survival and weight gain

We observed and compared survival of DyW
mice from four laboratories and found that survival
clustered into two groups (Fig. 1; Table 2). Two lab-
oratories showed median survival times of 34 and 44
days (Labs D and B, respectively) and two laborato-
ries showed greater median survival times of 82 and
84 days (Labs A and C, respectively). Median sur-
vival time was significantly different between most
laboratories (see Table 2). For each laboratory, the
number of mice, the median survival, standard errors
and 95% CI are reported. The last column shows pair-
wise comparisons of median survival time between
each laboratory. The curves clearly show the diversity
in the mouse populations between laboratories.

We looked closely at body weight development of
both DyW and wild type (C57BL/6) mouse strains
to assess the variability seen between colonies at
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Fig. 1. Kaplan-Meier plot of DyW survival by laboratory. Survival
estimates are shown for each laboratory along with a reference line
at 50% survival.

different laboratories. We first compared each strain
among different laboratories, then compared strains
within the same laboratory. Looking only at DyW
mice, there was an overall significant gain in weight
over time (gain of 0.5 g per week; p < 0.001) and the
slopes of these growth curves were strikingly similar
(Fig. 2). However, DyW mice from Lab A showed a
consistently greater body weight than the other three
laboratories (p < 0.001) over all time points. The com-
parison of body weight in WT mice from three of
the laboratories which provided data (A, B, and D)
is shown in Fig. 3. Overall, WT mice in all three
labs had an average rate of gain of 2.1 g per week;
p < 0.001. Assessing over all time points, mean body
weight was not significantly different between Lab
A and Lab B (p = 0.052), but Lab D showed signif-
icantly greater overall mean body weight than both
Lab A (p = 0.001) and Lab B (p = 0.023). Here the
rate of gain, or slope, in WT mice was not shown
to be significantly different between different labs,
however Fig. 4 shows the rate of weight gain is not
identical between labs as we saw in the DyW mice
(Fig. 3).

In Labs A, B and D, body weight gain over time
was consistently greater in WT mice, compared to
DyW mice, with mean increases in weight gain for
WT animals of 1.6 g per week (Lab A, p < 0.001),
3.3 g per week (Lab B, p < 0.001) and 2.3 g per week
(Lab D, p < 0.001). Weight gain data was not available
for Lab B.

The predictive value of body weight on survival

With the availability of weight and survival data for
a large number of mice from several laboratories, we
evaluated weight at various time points as a predictor
of survival using regression coefficients that estimate
the increase in survival (days) for every gram increase
in weight gain (Table 3). The predictability of survival
by weight seems to increase regularly from week 1 to
week 5 and then decrease again quickly by week 8.

Respiratory assessment

To compare respiratory assessments in both labo-
ratories, we compared a standard set of respiratory
measures (respiratory rate, tidal volume, expiratory
flow), and PenH values normalized to body weight
(i.e. PenH divided by BW). Lab A used a whole
body plethysmography chamber from Buxco Elec-
tronics while Lab D used an unrestrained whole body
plethysmography chamber PLY 4211 equipped with
Halcyon TRD 5715 pneumotacograph from Buxco
Electronics (Data Sciences International now).

Body weight normalized PenH values are signif-
icantly higher in all DyW mice as compared to all
wild-type mice and both strains show a significant
decrease over time (Fig. 5). The rate of decrease
is similar in both strains where all mice from Lab
A showed a significant overall decrease of 0.07
PenH/BW units per week and all mice from Lab D
showed a significant overall decrease of 0.12 units
per week. No interaction between strain and time
was evident, indicating that the rate of decrease over

Table 2
Comparison of median survival (natural deaths) by laboratory. Overall comparison between

all laboratories and pairwise comparisons between each laboratory pair are shown

Laboratory N (observed) Median SE 95% CI Overall Pairwise comparisons of
survival p-value median survival time

between laboratories

Lab A 20 82 8.2 67–98 <0.0001 Lab A vs. Lab B (p < 0.001)
Lab B 34 44 2.2 37–47 Lab A vs. Lab C (p = NS)
Lab C 67 84 10.3 61–93 Lab A vs. Lab D (p < 0.001)
Lab D 16 34 5.3 24–39 Lab B vs. Lab C (p < 0.001)

Lab B vs. Lab D (p = 0.03)
Lab C vs. Lab D (p < 0.001)
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Fig. 2. DyW body weight over time by laboratory. The change in body weight of DyW mice over time is shown for each of the four laboratories.
Individual body weights are represented with open circles and regression lines from the mixed effects linear model are represented by solid
lines.

Fig. 3. WT (C57BL/6) body weight over time by laboratory. The change in body weight of WT mice over time is shown for each of the
three laboratories reporting results. Individual body weights are represented with open circles and regression lines from the mixed effects
linear model are represented by solid lines.

time was not different between DyW and WT mice.
Figure 6 shows that variability in PenH/BW is strain-
dependent, being generally higher in mutant mice
than in WT mice. Mice from Lab D show a greater
variability in PenH/BW in the mutant strain than mice
from Lab A. The amount of variability in PenH and
PenH/BW values with respect to magnitude was con-
sistent through the range of values until reaching the
highest values (PenH values > 0.55 and PenH/BW

values > 0.072) where variability increased dramat-
ically (data not shown).

The remaining respiratory parameters are summa-
rized over all time points in Table 4. Longitudinal
analysis in each lab reporting the assessment showed
that DyW have a significantly lower mean tidal
volume than WT at all time points (� = –0.42,
p < 0.001 for Lab A; � = –0.053, p < 0.001 for Lab
D); mean tidal volumes increased significantly over
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Fig. 4. Wild-type body weight distribution in three laboratories. Histograms of body weight for all WT mice from three laboratories are
shown. For each laboratory, the vertical reference line represents the mean for that laboratory.

Table 3
Predictability of survival by body weight in DyW mice at ages 1 to 8 weeks

Week N r2 P-value % variability in survival � coefficient (95% CI)
described by body weight

1 34 0.007 0.63 0.7% 1.29 (–4.08–6.67)
2 52 0.021 0.30 2.1% 1.99 (–1.83–5.82)
3 58 0.086 0.025 8.6% 3.92 (0.50–7.33)
4 50 0.151 0.005 15.1% 3.29 (1.03–5.56)
5 41 0.397 <0.001 39.7% 3.90 (2.34–5.45)
6 29 0.359 0.001 35.9% 3.63 (1.71–5.55)
7 23 0.205 0.030 20.5% 1.80 (0.19–3.41)
8 9 0.024 0.69 2.4% –0.66 (–4.42–3.10)

Most statistically significant (by the magnitude of both the p-value and the beta coefficient) is highlighted
in bold.

time regardless of strain points (� = 0.05, p = 0.049
for Lab A; � = 0.011, p < 0.001 for Lab D); and the
rate of increase in both strains was the same (Fig. 7A).
DyW mice also showed a significantly lower mean
breath rate over all time points than WT mice in
lab D (� = –75.1, p < 0.001, but there was no signifi-
cant change in mean breath rate over time for either
laboratory (Fig. 7B).

SOURCES OF VARIABILITY

Evaluation of husbandry conditions

We compared husbandry conditions of mice in
Labs A, B, C and D to detect possible sources of
variability. All laboratories applied group housing of
up to 5 mice in individually ventilated cages, with

wild-type siblings raised in the same cage and other
mice strains housed in the same facility. Humidity,
temperature and light cycles of 12 hours were com-
parable. Cage size was 607 cm2 in Lab A, 334 cm2

in Lab B, 780 cm2 in Lab C and 484 cm2 in Lab D.
Only Lab C used conventional versus barrier housing
without environmental enrichment and adopted warm
pads for the mice. Labs B, C and D used wood chips
as embedding while Lab A used corn cob. Finally,
the litter size was greatest is Lab A with 8–10 pups
and lower in Lab B (5-6 pups), Lab C (5 pups) and
Lab D (4–8 pups). Water quality was the same and
all laboratories but Lab D used softened food pellets
on the bottom of cage to facilitate access for weak
mice; food was available in all cases ad libitum. How-
ever, food brands were different. Analysis of the food
composition as provided by the manufacturer showed
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Fig. 5. Body weight normalized PenH values over time in both DyW and WT mice. The change in logarithm transformed body weight
normalized PenH values (PenH/BW) over time is shown for both WT and DyW mice from the two laboratories reporting results. Individual
log PenH/BW in WT mice are represented with circles and regression lines from the mixed effects linear model are represented by solid lines.
Individual log PenH/BW in DyW mice are represented with X’s and regression lines from the mixed effects linear model are represented by
dashed lines.

little variation in the crude fat, protein and carbo-
hydrates contents, although ingredient policies were
somewhat different. Amino acid compositions were
comparable in all brands; microelements concentra-
tion varied for Zn, Cu and Mn but without correlation
to growth behaviour. There were clear differences in
vitamin composition of the food products (Table 5).

Evaluation of genetic background

Originally, the Lama-2-knock out construct was
electroporated into embryonic stem cells derived
from 129S1/Sv mice, then injected into C57BL/6J
blastocysts and the resulting chimeric males were
bred to Black Swiss females to generate the mutant
colony. These mutant mice were then backcrossed
to C57BL/6 for at least four generations to pro-
duce a colony of DyW mice [8]. DyW mice were
then deposited at Jackson Laboratory, where high-
density SNP (single nucleotide polymorphism) panel
analysis revealed the mice were ∼90% C57BL/6
allele-type. After this, the colony at the Jackson Lab-
oratory was additionally backcrossed to C57BL/6J
inbred mice using a marker-assisted speed congenic
approach to complete this congenic line. Given the
wide variations in phenotypes associated with the dif-
ferent DyW colonies, we sought to assess the genetic

background of the mice from the different labs. Using
the MegaMuga 76,000 SNP marker panel built on the
Illumina Infinium platform available from Neogen
Corporation, we performed a SNP analysis to quan-
tify the level of genetic heterogeneity in the colonies
of Lab A, C and D, along with the Jackson Laboratory
colony (Lab B). The data demonstrate that genomes
of mice from The Jackson Laboratory and Lab D
comprised 99% of the C57BL/6J strain. In contrast,
the genomes of mice from Lab C and Lab A com-
prised 95% and 63% of C57BL/6 strain, respectively.
The SNP analysis also revealed that those SNPs that
were not C57BL/6J in nature were derived from a
number of different strains, consistent with the initial
breeding information of the founder line being bred
to a Black Swiss mouse.

DISCUSSION

By comparing data assessed in the DyW model,
we observe the main variability in growth rates and
overall survival. Mice clustered into two distinct
populations with different life expectations. Genetic
analysis revealed that mice from the first cluster
with shorter half-life Labs B and D) were of almost
pure C57BL/6J genetic background, while mice of
the second cluster with longer half-life (Labs A
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Fig. 6. Variability of PenH/BW values. The variability observed at different ages in PenH/BW values in the two labs reporting results are
shown 6A and 6B. Dots and X’s represent the mean PenH/BW value for all mice of that age, and bars represent 95% confidence intervals.
Sample numbers are indicated below each bar.

Table 4
Comparison of respiratory values

Measurement Lab A Lab D
WT DyW–/– WT DyW–/–

N Mean ± SD N Mean ± SD N Mean ± SD N Mean ± SD

Exp. Flow (mL/s) 36 3.668 ± 1.224 46 2.388 ± 0.797 94 3.420 ± 0.991 93 2.043 ± 0.615
Insp. Flow (mL/s) 36 5.906 ± 1.620 46 4.109 ± 1.532 94 6.382 ± 1.537 93 3.752 ± 1.086
Breath rate (BPM) 34 462 ± 51 39 426 ± 64 94 468 ± 76 93 392 ± 61
Tidal volume (mL) 34 0.174 ± 0.042 39 0.129 ± 0.041 94 0.174 ± 0.049 93 0.115 ± 0.032
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Fig. 7. Tidal volume and Breath rate over time in both WT and DyW mice. (A) The change in tidal volume over time is shown for both WT
and DyW mice from the two laboratories reporting results. Individual tidal volume in WT mice are represented with circles and regression
lines from the mixed effects linear model are represented by solid lines. Individual tidal volume in DyW mice are represented with X’s and
regression lines from the mixed effects linear model are represented by dashed lines. (B) The change in breath rate over time is shown for
both WT and DyW mice from the two laboratories reporting results. Individual breath rate in WT mice are represented with circles and
regression lines from the mixed effects linear model are represented by solid lines. Individual tidal volume in DyW mice are represented
with X’s and regression lines from the mixed effects linear model are represented by dashed lines.

Table 5
Comparison of vitamin content in four rodent food products from three brands

Vit A (IU/g) Vit E (mg/kg) Vit K3 (mg/kg) Vit B1 (mg/kg)

Lab A 12.6 100 40 27
Lab B 20 30.2 20 79
Lab C 16 200 5 24
Lab D 29 75 1.9 10
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Table 6
Sample size and power estimates using observed data

Age Body weight PenH/BW Exp. flow Insp. Flow Tidal volume Breath rate
(weeks)

3 Power to detect a significant difference with
12 mice per group

69.0 97.2 51.2 72.7 17.5 11.1

N needed (per group) to detect a significant
difference at 80% power

16 7 23 15 81 169

4 Power to detect a significant difference with
12 mice per group

99.9 98.9 72.9 99.0 93.9 44.9

N needed (per group) to detect a significant
difference at 80% power

5 7 15 6 9 27

5 Power to detect a significant difference with
12 mice per group

99.9 98.5 99.8 99.9 99.7 80.4

N needed (per group) to detect a significant
difference at 80% power

3 7 5 4 6 12

6 Power to detect a significant difference with
12 mice per group

99.9 70.0 98.4 99.5 99.9 63.9

N needed (per group) to detect a significant
difference at 80% power

3 15 7 6 5 17

7 Power to detect a significant difference with
12 mice per group

99.9 99.9 99.9 99.9 97.7 52.6

N needed (per group) to detect a significant
difference at 80% power

3 4 5 4 7 22

8 Power to detect a significant difference with
12 mice per group

99.9 99.1 93.9 94.5 80.2 74.7

N needed (per group) to detect a significant
difference at 80% power

3 6 9 8 12 14

9 Power to detect a significant difference with
12 mice per group

99.9 99.9 99.9 99.9 99.7 94.1

N needed (per group) to detect a significant
difference at 80% power

4 4 3 3 6 9

10 Power to detect a significant difference with
12 mice per group

99.9 93.5 99.5 99.2 61.4 89.6

N needed (per group) to detect a significant
difference at 80% power

3 9 14 6 18 10

Table 7
Recommended standards for data collection and result reporting in DyW

Reporting

General
Strain Mutant strain, wild-type strain, sources, gender
Food Report brand and product number, use of softened food
Sample size Report considerations on sample size
Other reporting Blinding and randomization
Parameters
Body weight In grams, at 1,2,3,4,5,6,8 wk, report peak weight of each week, use Kaplan-Meier plots
Fibrosis H&E with quantitation as % of area in TA and Triceps at 4,6,8 wk
CNF Percentage in TA and Triceps at 4,6,8 wk
CK In U/ml at 4 and 8 wk
Locomotion Movement time and rest time in seconds at 4,6,8 wk

and C) were more heterogeneous in their genetic
background. This can be explained with the use of
in-house colonies and the possibility of genetic seg-
regation or additional genetic modifications. Indeed,
a certain variability in weight was also seen in wild
type mice.

Interestingly, Labs B and D, which recorded the
lowest survival rates in DyW, use also two different
rodent food products from the same manufacturer,

and these contain lower concentrations of vitamin E
(30 and 75 mg/kg, respectively) than the food from
the other two manufactures used by Labs A and C
with the longest survival rate (100 and 200 mg/kg).
Similarly, laboratories that recorded a lower survival
rate used food with a slightly higher vitamin A con-
centration than laboratories with a longer survival rate
(20 and 29 IU/g vs 12.6 and 16 IU/g). Other vita-
min contents differed according to the food brand,
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although they had no obvious relationship to survival
rates or body weight gain rate (see Table 5). Vitamin
E has antioxidant properties and stabilizes cell mem-
branes, in particular myocytes [16], against oxidative
damage, which is a cause of muscle degeneration
in many neuromuscular diseases [17]. Malnutrition-
derived dystrophy or muscle atrophy are known in
animals [18]. Some trials with vitamin E in the
1990’s, however, did not show a beneficial effect
on human muscular dystrophy [19]. Other hous-
ing conditions that were different across laboratories
did not seem to correlate with survival or weight
gain.

An interesting finding of our study is that body
weight at 5 weeks in the DyW is, to a certain extent,
predictive of survival, as evidenced by the strongest
linear relationship between survival and body weight
and the greatest amount of variability in survival
explained by body weight at week 5. Our data sug-
gest that for every 1 g increase in body weight in DyW
mice at this age, survival increases by 3.9 days with
a probability of 40%. On the contrary, weights at 1
to 3 weeks of age are poor predictors of survival.
Using body weight as a surrogate measure for sur-
vival would allow an investigator to gauge efficacy
early in treatment course prior to confounding factor
of hind limb paralysis. We do not have survival data
on WT mice to assess whether body weight at any par-
ticular time point is predictive of survival. Given the
differences in body weight seen at 5 weeks between
WT mice (17.3 ± 2.7 g) and DyW mice (8.4 ± 2.5 g),
we are hesitant to comment on predicting survival in
WT mice.

Respiratory assessment by whole body plethys-
mography has been implemented in the last years and
was successfully applied to detect drug efficacy in
mdx mice [20, 21]. Instrument calibration and sam-
ple size seem to play an important role in the analysis
[21]. The assessment of respiratory function in mice
reflects a main outcome measure in patients with mus-
cular dystrophies. Since the application of this assay
to DyW mice is only recent, we collected data from
the two laboratories to evaluate the properties of this
measurement in this mouse model. Only the breath
rate did not change over time in either lab and does
not seem to be predictive of pathology.

A survey of sample size and power calculations
done at each time point shows that many of the out-
comes, even with the observed variability, are able
to significantly detect a difference between WT and
DyW mice (Table 6). However a detectable difference
is less apparent under 5 weeks of age. In addition,

breath rate was not detectable in a reasonable number
of mice until 9 weeks of age.

Finally, a comparison of histological evaluations
from the four laboratories was not possible because
of the use of different muscles for histological param-
eters and sometimes of different measurement units.
This shows the need of standardized assessment to be
able to pool results.

RECOMMENDATIONS TO IMPROVE
REPRODUCIBILITY OF PHENOTYPIC
ASSESSMENTS IN THE DyW MOUSE
MODEL

Our analysis suggests that the variability we
observe in outcomes like survival and weight
gain may result from genetic drifting or from the
food composition, while husbandry condtions were
acceptably similar across laboratories. However,
genetics and food composition vary just as well in
the human population, and studies assessed in mice
obtained from one single source and fed with one
single diet may deliver more constant, but prob-
ably also less representative results. We underline
instead the need to adopt lab-internal standard mea-
sures of handling and feeding of mice and to report
the food brand and regimen in the description of
mice handling (at present, only about 16% of the
publications report the food manufacturer-personal
observation). Regular checks of the genetic back-
ground help avoiding excessive segregation and it
is highly recommended to always run controls with
untreated or sham-treated mice to account for genetic
heterogeneity. We furthermore recommend a mini-
mal data set with standardization of reporting data in
papers addressing therapeutic interventions on DyW,
to allow data pooling and direct comparability of
results (Table 7). Finally, the use of standardized,
agreed-upon protocols (see www.curecmd.org) for
the assessment of single parameters and a careful esti-
mation of the minimal sample sizes required to obtain
sufficient statistical power will certainly improve
consistency of results and translatability of efficacy
studies.
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