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Abstract. MicroRNAs (miRNAs) are small 21–24 nucleotide RNAs that are capable of regulating multiple signaling path-
ways across multiple tissues. MicroRNAs are dynamically regulated and change in expression levels during periods of early
development, tissue regeneration, cancer, and various other disease states. Recently, microRNAs have been isolated from whole
serum and muscle biopsies to identify unique diagnostic signatures for specific neuromuscular disease states. Functional studies
of microRNAs in cell lines and animal models of neuromuscular diseases have elucidated their importance in contributing to
neuromuscular disease progression and pathologies. The ability of microRNAs to alter the expression of an entire signaling
pathway opens up their unique ability to be used as potential therapeutic entry points for the treatment of disease. Here, we will
review the recent findings of key microRNAs and their dysregulation in various neuromuscular diseases. Additionally, we will
highlight the current strategies being used to regulate the expression of key microRNAs as they have become important players
in the clinical treatment of some of the neuromuscular diseases.
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ABBREVIATIONS

AAV Adeno-associated viral vector
AON Antisense oligonucleotide
BMD Becker muscular dystrophy
CMD Congenital muscular dystrophy
CXMDJ Canine X-linked muscular dystrophy

in Japan
DM1 Myotonic dystrophy type 1
DM2 Myotonic dystrophy type 2
DMD Duchenne muscular dystrophy
EDMD Emery-Dreifuss muscular dystrophy
FSHD Facioscapulohumeral muscular dystrophy
IBM Inclusion body myositis
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LNA Locked nucleic acid
lncRNA Long, non-coding RNA
miR MicroRNA
MM Miyoshi myopathy
MO Morpholino
NM Nemaline myopathy
ORF Open reading frame
PM Polymyositis
PMO Phosphorodiamidate morpholino

oligonucleotide
shRNA Short hairpin RNA
SRF Serum response factor
UTR Untranslated region

INTRODUCTION

MicroRNAs were first identified as anti-sense
RNAs in C. elegans that were capable of regulating
the expression levels of proteins by directly binding
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to the 3’UTR (untranslated region) of their comple-
mentary mRNA target [1]. Mammalian microRNAs
were soon quickly identified and classified based
on their sequence homology with known C. elegans
microRNAs [2–4]. Improvements in whole-genome,
next-generation sequencing technologies, and large
scale transcriptome profiling have led to a subsequent
identification and classification of mammalian
microRNAs at a rapid rate starting in the mid to
late-2000 s [5, 6]. Parallel computational methods
and software algorithms have been developed which
allow for the prediction of microRNA target genes in
mammals [7–9].

Early gain and loss-of-function microRNA experi-
ments demonstrated that microRNAs have significant
roles in the regulation of protein function in many
mammalian processes such as cancer, immune reg-
ulation, and cardiac function [10–13]. Interestingly,
several of the early microRNAs identified as having
significant roles in cardiac development and func-
tion, also had significant enrichment in expression
in skeletal muscles [14, 15]. Large-scale microRNA
microarray platforms identified microRNAs that were
uniquely expressed and dysregulated in a variety of
different human neuromuscular diseases [16]. Serum
microRNA profiling of various neuromuscular dis-
eases also revealed a similar dysregulation of particular
microRNAs, and a unique diagnostic signature depen-
dent on the mutation of the specific gene such as
dystrophin [17, 18].

MicroRNAs as biomarkers and therapeutic entry
points for treatment of muscle disease

An area of microRNA biology that has gained a lot
of recent attention is the ability of microRNAs to circu-
late in the bloodstream via exosomes. MicroRNAs can
be secreted from one tissue type and be transported to
more distal tissues after being incorporated in multi-
vesicular bodies derived from the plasma membrane
of cells. It remains unclear whether or not the distal
(or target) tissues that incorporate these microRNA-
containing exosomes function to inhibit target mRNAs,
but this remains an active area of research. Nev-
ertheless, the isolation and identification of specific
miRNAs from these exosomes can reveal a significant
shift towards a diseased state (Fig. 1A).

Serum profiling of microRNAs from neuromuscu-
lar diseases has revealed that specific microRNAs are
indeed dysregulated in expression levels in a disease-
dependent fashion (Table 1). MicroRNAs isolated
from the serum of patients with Duchenne muscular

dystrophy revealed that specific muscle-enriched
microRNAs were significantly altered in expression
dependent on the progression of the dystrophic dis-
ease pathology [18]. Similar results were observed in
dystrophic mdx mouse muscles, which revealed that
one particular muscle-enriched microRNA, miR-206,
was significantly increased in expression levels when
compared with normal mouse muscles [19].

MicroRNAs represent a unique therapeutic entry
point for disease as a single microRNA can regulate
multiple signaling pathways rather than the classical
one gene, one target approach. Thus, several pharma-
ceutical and biotech companies have begun to develop
microRNA-based therapies for the treatment of dis-
ease in addition to using them as clinical biomarkers
of disease states [20, 21]. Recently, a miR-122 locked
nucleic acid (LNA)-inhibitor, Miravirsen (SPC3649),
has shown therapeutic efficacy and benefit in blocking
hepatitis C (HCV) viral replication in phase 2a clini-
cal trials [22]. Additionally, it has been demonstrated
that manipulation of microRNAs using mouse mod-
els of neuromuscular diseases can ameliorate some
of the disease pathologies associated with changes in
the expression levels of specific microRNAs [23–26].
Given the broad reaching applications of microR-
NAs as both molecular biomarkers and therapeutic
entry points, it is likely that microRNAs will become
key mediators in the identification and treatment of
patients with neuromuscular diseases. For example,
a patient with an identified neuromuscular pathology
and showing symptoms of a particular type of neu-
romuscular disease, but no mutation in the causative
gene for that particular disease may have their blood
drawn and microRNA profiled for diagnostic pur-
poses to identify or exclude a particular disease with
a defined microRNA signature (Fig. 1A). One could
also apply an appropriate therapeutic course of inter-
vention to a particular group of patients and use the
microRNA signature as a biomarker to see if the
dysregulated microRNAs return to more normal levels
(Fig. 1B).

MicroRNAs are dynamically regulated in many
muscle diseases

Duchenne muscular dystrophy (DMD)
One of the most studied neuromuscular diseases

with significant microRNA dysregulation is Duchenne
muscular dystrophy (DMD) [27]. Patients with muta-
tions in the DMD gene that result in the loss of the large
dystrophin protein isoform (Dp427) show loss of
ambulation, severe muscle degeneration, and heart
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Fig. 1. MicroRNAs can be isolated from serum and diseased muscles as diagnostic and quantitative biomarkers. Schematic showing the potential
for the use of microRNAs both as diagnostic biomarkers (A) and quantitative biomarkers (B) in neuromuscular disease. A. Serum or a muscle
biopsy can be taken from a patient with a known or undiagnosed neuromuscular disease. The sample is then analyzed for expression level
and compared with known expression levels of specific microRNAs known to be dysregulated in particular neuromuscular diseases. B. An
exon-skipping morpholino is used as a therapeutic intervention strategy to bypass the DNA deletion of exon 50 (red letter X) of protein-encoding
gene (e.g. dystrophin). The exon-skipping morpholino skips over exon 51 to restore the correct reading frame of the mRNA transcript. The
resulting mRNA transcript is spliced together to restore function and/or reading frame of the mature mRNA when it will be translated into
a mature protein by the ribosomal machinery. The microRNA levels are used as a non-evasive biomarker, and the microRNA biosignature is
monitored for restoration to that of normal healthy muscle control expression levels.

disease [28]. MicroRNA microarray profiling of
dystrophin-deficient muscles from human patient biop-
sies revealed a unique signature of dysregulated
muscle-enriched microRNAs when compared to other
muscular dystrophies [16]. Follow-up studies in mus-
cles of dystrophin-deficient mdx mice demonstrated
that many microRNAs that regulate nNOS signaling,
with a particular dysregulation of miR-1, miR-133a/b,
and miR-206 (also referred to as “myomiRs”), were
significantly altered by the loss of a functional dys-
trophin protein [29, 30]. MyomiRs (a term coined
by combining myo/muscle and miR/microRNA) was
used to originally describe three microRNAs (miR-1,
miR-133a/b, and miR-206) that showed enriched
expression in heart and skeletal muscles; but has since
expanded from its original definition to include sev-
eral additional microRNAs that are strongly expressed
in muscle lineages [31, 32]. Profiling of human
DMD patient myoblasts confirmed the dysregulation
of miR-1, but also found a significant dysregulation

in the expression of miR-29a both of which regu-
late a Dystrophin-nNOS-Hdac2 pathway [33]. Serum
profiling of human patients revealed that the three
muscle-enriched myomiR microRNAs were also dys-
regulated in both human patients and mdx mice [17,
18, 34, 35]. MicroRNA expression profiling of the
serum from the dystrophic CXMDJ canine dystrophin-
deficient model also showed a dysregulation of miR-1,
miR-133a, and miR-206 [36]. Another recent study
of serum obtained from DMD boys demonstrated that
in addition to the three myomiRs (miR-1, miR-133a/b,
and miR-206) being increased in expression, two other
muscle-enriched microRNAs, miR-208b and miR-499
were also increased in expression [37] (Table 1).
Another microRNA, miR-31, was shown to be signif-
icantly increased in DMD muscle, and might play a
role in normal muscles in the regulation of the dys-
trophin protein levels via binding to its 3’UTR [38].
(Table 1). A more broadly expressed microRNA, miR-
199a, was also shown to be induced in DMD muscle



4 M. S. Alexander and L. M. Kunkel / MicroRNA as Regulators of Skeletal Muscle Disease

Table 1
Several microRNAs known and validated as dysregulated in expression levels in different common neuromuscular disease. MicroRNA name,
neuromuscular disease, sample tested, expression change (compared to unaffected controls), and reference are listed. For the myomiRs (miR-
1, -133a/b, and 206) dysregulation was shown using serum from patients, except for DM1 (patient skeletal muscle biopsies). Note, only
those publications using quantitative measurements (i.e. not only microRNA microarray fold changes such as real time quantitative PCR) are

represented in the table

microRNA Neuromuscular disease Sample Expression change Reference(s)

miR-1 DMD, BMD, FSHD, DM1 serum, skeletal muscle biopsies (DM1) increased 18, 37, 46, 64, 73, 76
miR-21 MM, IBM PM skeletal muscle biopsies increased 16
miR-29b/c DM1 skeletal muscle biopsies decreased 76
miR-31 DMD skeletal muscle biopsies increased 38
miR-33 DM1 skeletal muscle biopsies decreased 76
miR-34a/b/c DM2 skeletal muscle biopsies increased 77
miR-125b DM2 skeletal muscle biopsies decreased 77
miR-133a/b DMD, BMD serum, skeletal muscle biopsies (DM1) increased 18, 37, 46, 64
miR-146b DM2 skeletal muscle biopsies increased 77
miR-193a/b DM2 skeletal muscle biopsies decreased 77
miR-199a DMD skeletal muscle biopsies increased 39
miR-206 DMD, BMD, DM1 serum, skeletal muscle biopsies (DM1) increased 18, 37, 46, 64, 73
miR-208a/b DMD; DM2 serum, skeletal muscle biopsies (DM2) increased 37, 77
miR-221 DM2 skeletal muscle biopsies increased 77
miR-335 DM1 skeletal muscle biopsies increased 76
miR-378a DMD; DM2 serum; skeletal muscle biopsies increased (DMD); 73, 77

decreased (DM2)
miR-381 DM2 skeletal muscle biopsies increased 77
miR-411 FSHD skeletal muscle myoblasts increased 62
miR-486 DMD skeletal muscle biopsies decreased 40
miR-499 DMD serum increased 37

biopsies due to a transcriptional activation of its pro-
moter via the myogenic factor serum response factor
(SRF) [39]. It has also been demonstrated that the
muscle-enriched microRNA, miR-486, is significantly
decreased in expression in DMD patient muscle biop-
sies and myoblast cell lines, but not in the milder
Becker muscular dystrophy (BMD) in which a par-
tially functional dystrophin protein is produced [40].
Thus, it can be concluded that many microRNAs that
are enriched in expression in skeletal muscle appear to
be strongly dysregulated in Duchenne muscular dys-
trophy.

The functional roles of these muscle-enriched dys-
regulated DMD microRNAs (or “dystromiRs” as they
are sometimes referred to as), lead to functional stud-
ies in mouse and muscle cell culture models [18].
These microRNAs (miR-1, miR-133a/b, and miR-206)
were first given the classification as “dystromiRs” as
potential diagnostic markers due to their dysregula-
tion in dystrophin-deficient mdx mouse and human
DMD patient skeletal muscles [17]. Global loss of
both copies of miR-1 (miR-1-1 and miR-1-2) in mice
revealed an essential function for miR-1 in postnatal
cardiac conduction function, sarcomere formation, and
activation of smooth muscle gene expression [41, 42].
Similar global deletion of both copies of miR-133a
(miR-133a-1 and miR-133a-2) revealed an essential
role for miR-133a in postnatal cardiac function, normal

cardiomyocyte proliferation, and activation of SRF-
dependent smooth muscle gene transcription [43].
Compound deletions of miR-1-1/miR-133a-2 and
miR-1-2/miR-133a-1, which in mammals are clus-
tered and transcribed at the same genomic locus,
revealed a role for these microRNAs as a regulator of
smooth muscle gene transcription via suppression of
the SRF cofactor myocardin [44]. The muscle enriched
microRNA, miR-206, has been shown to be overex-
pressed in dystrophic and regenerating skeletal muscle
samples along with serum from dystrophic patients and
animals [16, 18, 45, 46]. Surprisingly, mice lacking
miR-206 showed no overt skeletal muscle or cardiac
phenotypes, which has led to the speculation that
another microRNA may be playing a compensatory
role in its absence [47].

A significant number of muscle diseases including
DMD have elevated levels of microRNAs associ-
ated with fibrosis. One induced microRNA greatly
associated with the fibrotic response in skeletal mus-
cle disease is miR-21. MicroRNA-21 activation is
strongly correlated with proliferation of fibroblasts
and activation of TGF� signaling in several models
of fibrotic-associated diseases such as idiopathic pul-
monary fibrosis (IPF) [48]. MicroRNA-21 is strongly
induced in expression in DMD biopsies and is thought
to be regulated by plasminogen activator inhibitor-1
(PAI-1) [16, 26]. PAI-1 is a key regulator of the
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extracellular matrix (ECM) and fibrotic response in
mdx mouse muscles [26, 49]. Interestingly, miR-21
global knockout mice are viable and have reduced
tumorigenic capacity in several non-muscle cell can-
cers due to an induction of the inhibitors of the
Ras/MEK/ERK signaling pathways that normally
repressed by miR-21 function [50, 51]. MicroRNA-
21 was also shown to be significantly increased in
expression in rodent models of myocardial disease,
and activate ERK/MAPK signaling pathways in car-
diac fibroblasts [52]. However, it is important to note
that miR-21 global knockout mice showed the same
stress-dependent cardiac remodeling that occurred
in wild type control mice, suggesting that miR-21
inhibitor molecules might not have significant bene-
ficial effects on myocardial disease pathologies [53].
Additionally, endothelial cell-specific miR-21 knock-
out mice showed significant vasculature remodeling
concomitant with a reduction of collagen and other
ECM proteins [54]. Conversely, overexpression of
miR-21 in gain-of-function mouse models results in a
tissue-specific promotion tumorigenesis and cell pro-
liferation [55]. Administration of TGF� inhibitors in
mdx mice subsequently blocks fibrosis and decreases
miR-21 expression levels, thus making miR-21 both an
important regulator of the dystrophic disease pathol-
ogy and a useful biomarker for fibrotic response in
muscle disease [56].

Facioscapulohumeral muscular dystrophy (FSHD)
Facioscapulohumeral muscular dystrophy (FSHD)

is generally considered to be caused by the contraction
of D4Z4 repeats subsequently leading to the activa-
tion of a transcription factor DUX4 in skeletal muscle
[57, 58]. More recently mutations in the chromatin
remodeling factor SMCHD1 have been shown to affect
DUX4 expression and distinguish FSHD Type 1 from
FSHD Type 2[59]. The dynamic regulation of the
expression of DUX4 and its transcriptional regulation
have highlighted significant dysregulation of microR-
NAs during FSHD disease progression [60, 61]. The
overexpression of microRNA-411 in FSHD myoblasts
has been implicated as a potential mechanism for the
blocking of myogenic differentiation via directly sup-
pressing YAF2 and YY1 transcriptional function [62].
Full transcriptome analysis of microRNAs dysreg-
ulated in FSHD myoblasts and serum from FSHD
patients revealed a significant increase in expression
of the muscle myomiRs (miR-1, miR-133a/b, miR-
206) along with significant dysregulation of several
other microRNAs [63, 64] (Table 1). Next-generation
sequencing of FSHD myoblasts reported several addi-

tionally dysregulated microRNAs when compared
with unaffected patient myoblasts [65] (Table 1). Addi-
tionally, a long-noncoding RNA (lncRNA) DBE-T has
been implicated in the transcriptional activation of
DUX4, and may also play a significant role in the pro-
motion of the FSHD disease pathology [66]. Given the
complexity of FSHD disease progression, epigenetic
regulation by non-coding RNAs in FSHD muscles
might offer an explanation for the unique dysregulation
of myogenic and non-myogenic signaling pathways
that occur in the FSHD disease state [67–69].

Limb girdle muscular dystrophies (LGMDs)
and other neuromuscular diseases

Several other human neuromuscular diseases have
strong etiopathologies associated with a dysregula-
tion of microRNAs. The mouse model of laminin
�2 chain (MDC1A) congenital muscular dystrophy
showed significant alterations in expression lev-
els of both the myomiRs and fibrosis-associated
microRNAs [70]. LGMD2A is caused by a defi-
ciency of the protease calpain-3 that results in
muscle satellite cell defects, and a subsequent
reduction in expression of the muscle-enriched
myomiRs [71, 72]. Additionally, mouse models of
LGMD2C, LGMD2D, and Emery-Dreifuss muscu-
lar dystrophy (EDMD) have revealed novel insights
into the disease progression by identification of
a unique microRNA diagnostic signatures through-
out each diseases chronological progression [73].
Myotonic dystrophy is a multi-system disorder affect-
ing skeletal muscle, brain, heart, and other organs
commonly found in adults and is caused by either
CTG (DM1; Myotonic dystrophy type 1) or CCTG
(DM2; Myotonic dystrophy type 2) pathogenic repeat
expansions of either DMPK (DM1) or ZNF9 (DM2)
RNA transcripts [74, 75]. MicroRNA profiling of pri-
mary skeletal muscle myoblasts derived from DM1
and DM2 patients revealed unique diagnostic signa-
tures of dysregulated microRNAs dependent on the
type of myotonic dystrophy [76, 77] (Table 1). Several
of these microRNA studies demonstrate the dynamic
dysregulation of expression that can occur with vari-
ous microRNAs that have known or unknown functions
in skeletal muscle. One study of microRNAs dysreg-
ulated in DM2 patient myoblasts demonstrated that
miR-221, a microRNA shown to decrease in expres-
sion in the differentiation of quail myoblasts was
significantly increased in total expression level [77, 78]
(Table 1). Conversely, microRNA-378a, a microRNA
shown to be a regulator of metabolism and obesity,
was significantly deceased in DM2 patient myoblasts
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[77, 79] (Table 1). Interestingly, in the hearts of DM1
and DM2 patients the pri-miR-1 stem loop expres-
sion level increases in overall expression; however, the
mature miR-1 sequence is overall reduced in compar-
ison with unaffected patient hearts [80]. Conversely,
mature miR-1 is significantly increased in expression
levels in DM1 patient primary myoblast cell lines when
compared to unaffected control patient myoblast [76]
(Table 1). The authors of the study showing decreased
levels of miR-1 in DM1 and DM2 patient hearts
(despite increased levels of pri-miR-1) demonstrate
that miR-1 biogenesis is significantly altered due to
the muscleblind protein (MBNL1) sequestration in the
nucleus and dysregulation of microRNA interacting
RNA-binding factors [80]. Thus, it is possible that there

are different tissue-specific post-transcriptional regu-
lators of the microRNA processing machinery might
be the causative mechanism for such disparate results
of microRNA dysregulation in separate muscle tis-
sues. These studies highlight the principle that the
dysregulation of microRNAs in various muscle dis-
eases can yield unique diagnostic signatures that are
highly dependent on the causative disease mutation and
potentially have tissue-specific effects.

Therapeutic inhibition of microRNAs in muscle
diseases

Inhibition of microRNAs in vivo can be achieved
via injection or oral delivery of anti-sense 2′-O-

Fig. 2. Strategies to manipulate expression levels of microRNAs for the treatment of neuromuscular diseases. Therapies using Adeno-Associated
Viral vectors (AAV) delivery to increase or decrease the expression levels of a specific microRNA that could be used to treat either primary
or secondary consequences of the neuromuscular disease mutations and/or its disease-associated pathological symptoms. Synthetic approaches
involving microRNA inhibitors (LNAs, MOs, or other AON molecules; blue seed loop) or microRNA sponges (or other “decoy molecules”)
contain microRNA binding sites (red rectangles) and might be used to inhibit microRNA function via direct antisense inhibition thereby reducing
the levels of endogenous microRNAs (red seed loop) in the serum or tissue. MicroRNA sponges or decoy molecules can be used to remove
the amount of circulating or (“unbound”) microRNAs in a given tissue or from serum. Other synthetic molecules, such as microRNA mimics
(red seed loop; MIMIC), might be used to mimic the function of endogenous microRNAs thereby suppressing the microRNA’s intended mRNA
target gene.
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methyl oligonucleotide inhibitors, antagomiRs, or
locked nucleic acids (LNAs; a RNA-based molecule
whose ribose moiety is modified with an extra bridge
connecting the 2’ oxygen and 4’ carbon) that target
either the mature miRNA or the pri-miR precursor
microRNA [81–85]. These antisense approaches work
by blocking the target microRNA via direct binding,
thereby inhibiting the microRNA from binding to the
3’UTR of target mRNAs (Fig. 2). Additional strategies
include the use of multimerized microRNA comple-
mentary DNA sequences that act as “sponges” to
block microRNA function by increasing the amount of
bound microRNA to its complementary sequence [86].
It has already been shown that microRNA sponges
can block cancer microRNAs (or “oncomiRs) from
regulating their mRNA targets, thus having profound
effects on tumor propagation and metastasis [87,
88]. Several groups have multimerized microRNA
target sequences as another means of reducing the
levels of unbound or circulating microRNAs. One
study generated an AAV overexpressing miR-206
sponge consisting of multimerized miR-206 bind-
ing sites, and demonstrated successful inhibition of
miR-206 levels following injection into mice [89]. Fur-
thermore, another group identified a small molecule
inhibitor of the three myomiR function in vitro
[90]. Inhibition of specific microRNAs has already
shown therapeutic benefits in mouse models of car-
diac hypertrophy [91, 92]. Thus, novel inhibitors
(antisense or other methods) of microRNAs that are
induced in specific neuromuscular diseases might hold
promise in ameliorating specific aspects of the disease
progression.

Strategies to overexpress microRNAs in muscle

Stable, long-term overexpression of specific-
microRNAs in mammals has been demonstrated using
Adeno-Associated Viral Vectors (AAVs) for several
different diseases [93–95]. However, high-doses of
microRNA-overexpressing AAV viral particles had
been previously shown to induce liver failure due
to a saturation of the microRNA/shRNA processing
machinery, thus making the virus delivery strat-
egy, dosage, and serotype important in reducing
any liver toxicity [96]. AAV serotypes AAV-6, -8,
and -9 have been shown to be effective in the
delivery of micro-dystrophin and/or other constructs
to dystrophin-deficient skeletal and heart muscles
[97–100]. Femoral AAV delivery of miR-196a into a
mouse model of spinal and bulbar muscular atrophy
(SBMA) was effective and therapeutically efficacious

in targeting CELF2, a CUG-repeat binding protein
that causes RNA toxicity by trapping it in skeletal
muscles [24]. Other approaches such as the AAV over-
expression of miR-669a in �-sarcoglycan (Sgcb)-null
hearts showed long-term, and potent affects in restor-
ing sarcomere organization and cardiac function [95].
More recently, efforts have been made to generate syn-
thetic microRNA mimics with enhanced stability and
reduced toxicity for in vivo animal use [101]. How-
ever, there is little known about the long-term effects
and potency of these synthetic microRNA mimics, and
more work is required to optimize their delivery in to
muscle tissues.

CONCLUSIONS

There have been several recent studies that have
attempted to manipulate the expression levels of
microRNAs and more-importantly their mRNA tar-
gets in order to ameliorate neuromuscular disease
pathologies. To suppress expression of the toxic DUX4
protein in FSHD, AAV vectors carrying artificial
microRNA-based DUX4 open reading frame (ORF)
inhibitors showed efficacy in a DUX4 overexpressing
mouse model [102]. Manipulation of expression of the
muscle-enriched microRNAs miR-206 and miR-486
in mouse models of DMD showed benefits in reducing
fibrosis, promoting muscle regeneration, and improv-
ing overall muscle physiological strength [23, 25].
It is unclear whether or not these and other muscle-
enriched microRNAs would have similar benefits in
other mouse models of muscular dystrophy. As of
to date, no specific human mutation in a microRNA
sequence has been directly linked to a neuromus-
cular disease; however, there are some examples of
microRNAs that when genetically manipulated result
in muscle phenotypes similar to those found in human
patients with neuromuscular diseases. MicroRNA-
133a mutant mice develop centronuclear myopathy
(CNM)-like symptoms due to miR-133a’s direct reg-
ulation of the dynamin2 (DNM2) transcript [103].
Additionally, a naturally-occurring SNP mutation in
the 3’UTR of the Myostatin (GDF8) gene gener-
ated a novel miR-1/206 binding site resulting in
both a dramatic decrease in myostatin protein and
a consequential increase in muscle size [104]. It is
likely that with advances in next-generation sequenc-
ing technologies additional patient mutations in UTR’s
and perhaps even microRNA genomic sequences
might directly be causative for neuromuscular
diseases.
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MicroRNAs may likely be used as biomarkers for
testing the efficacy of a treatment for neuromuscular
disease. For example, phosphorodiamidate mor-
pholino oligonucleotide (PMO)-mediated dystrophin
restoration therapy in mdx mice was able to correct
the dysregulation of the myomiRs (miR-1, -133a/b,
-206) to normal wild type levels in mouse serum indi-
cating the dynamic nature of microRNA expression
in neuromuscular disease [34]. Indeed, measurement
of the disease progression severities such as the trait
of loss of ambulation amongst DMD patients, may
be quantitatively measured using serum microRNA
biosignatures as useful predictor of drug benefits in
DMD treatment patient cohorts [46]. With a renewed
emphasis towards non-invasive clinical biomarkers
of neuromuscular disease therapies, microRNAs are
an ideal biomarker to quantitatively measure the
effectiveness of novel drug therapies (Fig. 1B).
In conclusion, microRNAs are key players in the
neuromuscular diseases, and can be exploited as ther-
apeutic entry points for the treatment of disease
due to their dynamic regulation of many cellular
functions.

URLS

Sanger miRBase: http://mirbase.org/
MicroCosm (v5): http://www.ebi.ac.uk/enright-

srv/microcosm/htdocs/targets/v5/
miRDB: http://mirdb.org/miRDB/
TargetScan (v6.2): www.targetscan.org
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