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1. Introduction

Interventions in neonatal brain injury are best
considered as neuroprotective or neurorestorative
or both. In general, neuroprotective interventions
prevent primary cellular injury or death, and neu-
rorestorative interventions ameliorate or prevent the
subsequent disturbances of brain maturation, i.e.,
hypomyelination, impaired neuronal development,
altered connectivity, etc. The purposes of this com-
mentary is to review briefly the neuroprotective and
neurorestorative potential of stem cells, but par-
ticularly to discuss the recent evidence that stem
cell-derived exosomes are the principal mediators of
these beneficial effects and that these small vesicles
could prove to realize the potential of stem cell ther-
apy in perinatal brain disease.

2. Stem cells

Experimental studies of perinatal hypoxic-
ischemic disease, stroke, white matter injury, and
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intraventricular hemorrhage in neonatal animals
indicate that stem cells have both neuroprotective and
neurorestorative properties [1-17]. The cells have
shown benefit after administration in the acute period
(neuroprotective) and in the chronic phase (neu-
rorestorative). Multiple stem cell populations have
been studied but mesenchymal stem cells (MSCs),
especially from human umbilical cord blood (or
Wharton’s jelly) (UCB), have been used particularly
commonly. MSCs have been favored because of
relative effectiveness, ready availability and low
immunogenicity. A variety of routes of cell admin-
istration have been utilized. Intracerebral, intraven-
tricular, intravenous, and intranasal approaches have
been most common. Intravenous delivery has resulted
in definite, though variable benefit in experimental
models [9, 16, 18]. Notably, systemic administration
of MSCs results in substantial retention in lungs and
other systemic organs [19]. Intranasal administra-
tion has been especially efficient and effective [1, 4, 7,
15, 17]. (Stem cells administered by this route appear
to target the injury site after entering the brain via
olfactory neural processes traversing the cribriform
plate). However, several factors have hindered broad
use of stem cells in newborn infants with neurolog-
ical disease, e.g., nonoptimal routes for repetitive
administration, the possibility of tumorigenic
potential, and immunogenicity, albeit low.
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Some of the concerns regarding stem cell therapy
have been addressed by the use of autologous cord
blood therapy. Such an approach has been shown
to be feasible in human neonatal hypoxic-ischemic
encephalopathy, and clinical trials are in progress [ 14,
20]. However, logistical issues related to collection,
processing, storage, and dosing are substantial.

The balance of experimental data indicates that the
beneficial effects of stem cells relate not principally to
engraftment and differentiation of the stem cells but,
rather, to paracrine effects, i.e., factors released by
stem cells exert the beneficial effects [19]. The medi-
ators of these paracrine effects, presumably, could
constitute more direct and specific therapeutic agents.
Although neurotrophins and other molecules may be
involved, it now appears plausible that the principal
mediator of the paracrine effects of stem cells is the
exosome.

3. Exosomes

Exosomes are a type of small (20-100 nm) mem-
brane bound vesicle secreted from all cells in both
physiological and pathophysiological states [21-24].
They carry proteins, lipids and nucleic acids, includ-
ing various RNA species, particularly microRNA
(miRNA). These vesicles are involved in cell-cell
communication, and in brain, in communication
between brain cells (neurons and glia) as well as
between these cells and the periphery [23]. One
excellent example of these communications within
the developing brain involves the coordination by
oligodendrocyte exosomes of myelination of axons
by oligodendrocytes [23]. Importantly, exosomes
can cross the blood-brain barrier in either direc-
tion, thus allowing analysis of blood to assess the
status or function of specific brain cells and entry
into brain from blood for neuroprotective or neu-
rorestorative functions. The latter will be emphasized
in this Commentary. A notable example of the for-
mer role is detection in blood of exosomes that
contain Alzheimer disease-specific oligomeric pro-
teins and thereby providing the potential to provide
ultrasensitive early detection of Alzheimer disease
[25]. Concerning the latter role, increasing evidence
indicates that exosomes from MSCs mediate the
beneficial effects of stem cell therapy in various
pathological neurological states, including perinatal
brain injury (see later). Particular promise for MSC-
derived exosomes in neonatal disorders has already
been shown in experimental models of necrotizing

enterocolitis [26] and bronchopulmonary dysplasia
[27].

Of the cargo in exosomes, miRNA is of major
importance in mediating therapeutic effects (see
later). Importantly, MSC-derived exosomes are read-
ily isolated and can be engineered to contain selected
miRNA species to enhance the therapeutic effects
in neuropathological states (see later). Exosomes
derived from UCB-derived MSCs have low immuno-
genicity, high biocompatibility, and strong targeting
ability [22]. They maintain high activity during
relatively long-term storage, can be administered
intravenously and, as noted earlier, readily cross the
blood-brain barrier [23].

4. Exosomes and brain injury

Exosomes derived principally from MSCs have
been shown to exhibit both neuroprotective and neu-
rorestorative properties. The experimental models
have included studies focused on mature and on
developing animal models. In the following, I will
emphasize the latter.

Experimental models of brain injury of mature
animals have included stroke, intracerebral hem-
orrhage, spinal cord ischemia, and traumatic brain
injury [28-35]. Exosomes were prepared from MSCs
from multiple sources. The exosomes were admin-
istered usually intravenously, but occasionally by
intrathecal or intranasal routes. Both neuroprotective
and neurorestorative effects were observed. The for-
mer consisted principally of prevention of neuronal
death and neuroinflammation. A particularly infor-
mative recent example involved intravenous infusion
of exosomes in the hours after stroke, induced in adult
rats by middle cerebral artery occlusion/reperfusion
[34]. The exosomes led to a reversal of microglial
polarization from a damaging M1 state to a protec-
tive M2 state. Microglial pro-inflammatory cytokines
were diminished, anti-inflammatory cytokines and
neuroprotective factors were increased, and neuro-
logical outcome was improved. In view of the critical
role of microglial-mediated inflammation in the gen-
esis of perinatal brain injury [36], the findings are
of major interest. Later neurorestorative effects in
adult models have involved axonal outgrowth, oligo-
dendrogenesis, repair of white matter, angiogenesis,
and improved neurological function subsequently.
Although comparisons of effectiveness are difficult,
one head to head comparison of treatment with MSCs
versus exosomes in a stroke model showed equal
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improvement with both approaches [37]. Moreover,
engineered exosomes (see later) containing selected
miRNA had more potent therapeutic effects in stroke
and traumatic brain injury than did naive MSC-
derived exosomes [23].

Experimental models of perinatal brain injury
have emphasized studies of hypoxic-ischemic and
inflammation-induced injury, especially to cerebral
white matter. The reports have appeared in the past
five years [38—41]. Concerning perinatal hypoxic-
ischemic injury alone, Ophelders et al. studied
mid-term ovine fetuses subjected to transient umbil-
ical cord occlusion [38]. Exosomesderived from
MSC:s (prepared from bone marrow) were adminis-
tered intravenously one hour and four days following
the insult. The intervention led to reduced seizures
and partial prevention of hypomyelination.

A later study in a developing animal model
assessed the inflammatory brain injury induced
by lipopolysaccharide injected on P3 in rats [39].
Exosomes derived from bone marrow MSCs were
injected intraperitonially at three hours before and
24 hours after the lipopolysaccharide. The beneficial
effects in brain were prominent, i.e., prevention of
reactive gliosis at P4, decrease of cell death in cortex
and white matter at P5, amelioration of hypomyeli-
nation at P11, improved cognition at P30 and P90,
and restored microstructure of white matter by MRI
(increased fractional anisotropy and reduced radial
diffusivity) at P125.

The most recent studies in developing animal
models have focused on the use of exosomes by
the intranasal route for inflammation-induced and
combined hypoxia-ischemia/inflammation-induced
perinatal brain injury [40, 41]. In both in vitro and
in vivo (P3 rats) experiments, intranasal exosomes
sharply reduced microglia-mediated neuroinflamma-
tion [41], key mediator of cerebral white matter injury
in premature infants [42]. In a subsequent, still more
relevant study, the same group assessed the effects
of intranasal exosomes (prepared from UCB-MSCs)
in a model of hypoxia-ischemia (carotid occlusion)
and inflammation (lipopolysaccharide injection) —
induced brain injury in P2 rats [40]. By using infrared-
labeled exosomes and in vivo imaging, it could
be shown that intranasally administered exosomes
reached the frontal regions within 30 minutes after
administration and distributed throughout the brain
after three hours. The therapy led to reduced neu-
ronal death in the subplate zone of parietal cortex and
in the hippocampus. Moreover, an increased number
of mature oligodendrocytes and normal myelination

was observed at PH. At four weeks, improved neuro-
logical outcome was observed in the exosome-treated
animals.

Taken together, the studies of perinatal brain
injury support that systemic or intranasal delivery
of exosomes have both neuroprotective and neu-
rorestorative properties. The findings suggest further
that a cell-free preparation of MSC-derived exo-
somes can substitute for the cellular counterpart in the
treatment of newborns, especially perhaps preterm
newborns with hypoxic-ischemic and inflammation-
induced brain injury.

5. Engineering exosomes —how to make a
good treatment even better

Therapeutic benefits of exosomes could be
enhanced by altering its cargo to serve specific pur-
poses. Exosomes are enriched in miRNAs and in
vivo and in vitro studies specifically support that the
therapeutic effects of MSC-derived exosomes can
be attributed largely to the miRNA cargo (although
delivery of cargo proteins can also play a role in some
instances) [23]. This feature underlies the possibility
tailoring exosomes to target specific recipient cells
in the brain more efficiently than with naive cell-
derived exosomes. Thus, exosomes can be engineered
to target delivery of miRNA to brain cells, accord-
ing to the disorder to be treated. For example, in
a model of traumatic brain injury, miRNA-enriched
exosomes led to polarization of microglia to a non-
inflammatory phenotype, enhanced neurogenesis and
improved functional recovery [32]. As noted earlier,
pro-inflammatory microglia are important mediators
of cerebral white matter injury in premature infants
[36]. Moreover, tailoring of exosomes could enable
multiple targets to be targeted at different times
after a neural insult. Exosomes loaded with a neu-
roprotective miRNA could be administered in the
acute period, and exosomes loaded with a restorative
miRNA could be administered during the subacute
and chronic phases [23].

6. Conclusions

Although stem cells have been shown to con-
vey benefit in a variety of experimental models of
perinatal brain injury and in some human disorders,
difficulties with routes of administration for repeti-
tive administration, preparation, and safety have been
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considerable. Moreover, the discovery that the bene-
ficial effects of stem cells are mediated principally by
paracrine effects has led to the search for the medi-
ators of benefit. Exosomes, small vesicles released
by stem cells and capable of crossing the blood-brain
barrier, appear to be principal mediators of benefit.
Recent experimental studies support this conclusion
and tailored exosomes can enhance the benefit. Scal-
ing up of exosome isolation and production for use
in humans now seems achievable and lyophilization
can be used to preserve exosomal cargo bioavail-
ability [23]. Although safety considerations need full
exploration, the neuroprotective and neurorestorative
properties of exosomes appear to present the possibil-
ity for a sea change in the management of the infant
with neurological injury.
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