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Abstract. The lack of effective failure correlation analysis is one main reason for the gap between the reliability models and
the actual complex systems with mixed static and dynamic characteristics. Takagi and Sugeno (T-S) dynamic fault tree is one
powerful tool to analyze the static and dynamic failure logic relationship but it assumes the failure probability of the event
is independent. Therefore, this paper proposes a multi-dimensional T-S dynamic fault tree analysis method involving failure
correlation. The method integrates the failure probability distribution function of basic events with multi-factors and the multi-
dimensional copula function, and the important measure of this method is also deduced. The reliability model expression for
systems with failure correlations, both in series and in parallel, is discussed and verified. Compare the proposed method with
the assumption that the probability of a failure event is independent. This method solves the problem of a large error when
ignoring the failure correlation between parts and the degree of the correlation between variables can be characterized. The
reliability analysis can be conducted on complex systems affected both by multi-factors and failure correlations. The proposed
method is applied to the reliability analysis of a hydraulic height adjustment system and the correctness and superiority of
the method are verified.

Keywords: Multi-dimensional T-S dynamic fault tree, copula function, failure correlation, importance measure, reliability
analysis

1. Introduction

As modern engineering systems become larger and
more complex, and the level of system integration
becomes higher, it is crucial to consider various sys-
tem characteristics to ensure their reliability, which
poses a huge challenge to system reliability analysis
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and evaluation. The system characteristics to be con-
sidered mainly include the following aspects: 1) Due
to the complexity and diversity of engineering system
structure and fault types, the fault evolution process
exhibits mixed static and dynamic failure behavior. 2)
The occurrence of system failures is often influenced
by multi-factors due to the operating mechanism and
working environment of the system. 3) The coupling
relation of system structure and function makes the
system and its components have multimode failure
and failure correlation. Several traditional methods
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have been researched and proven to be powerful
tools for analyzing and evaluating system reliabil-
ity, including Reliability Block Diagram (RBD) [10],
Fault Tree Analysis (FTA) [13, 29], Binary Deci-
sion Diagram (BDD) [5, 18], Markov chains [1, 24],
Bayesian Network (BN) [2], etc. These traditional
methods have certain advantages in terms of model-
ing, execution, and computational efficiency, but also
have significant limitations: 1) The RBD is usually
based on the static model of the system and cannot
consider the effect of dynamic factors on system reli-
ability. 2) Static fault tree analysis has been developed
into Dugan dynamic Fault tree analysis (DFTA) that
can capture dynamic failure behavior, but it can only
perform qualitative analysis and require the assis-
tance of Markov chains or Monte Carlo methods
for quantitative calculations. 3) While Markov chains
offer a solution to dynamic behavior problems, it is
limited by its inability to handle failure behaviors that
follow non-exponential distributions. Additionally, in
dealing with complex systems, the challenge of expo-
nential growth in state space arises. 4) BDD is a useful
tool to evaluate the impact of various factors on deci-
sion outcomes. However, its applicability is limited
to simple and unambiguous problems. It has proven
to be less effective in addressing complex and fuzzy
problems, and the modeling process is relatively com-
plex. 5) The BN requires probability calculation and
inference during inference, which may require more
computing resources and time. Especially in cases
where the network is large or has complex structures,
the computational complexity will further increase.
Traditional analysis methods have not fully consid-
ered the effect of mixed static and dynamic failure
behavior, multi-factor influencing characteristics and
failure correlation on system reliability analysis. With
the emergence of the above problems, their limita-
tions are becoming increasingly apparent.

The Takagi-Sugeno dynamic Fault tree analysis (T-
S DFTA) method proposed by scholars Yao et al. [4]
can describe both static and dynamic failure behav-
ior. It developed after TS-FTA [16], a method can
only describe static failure behavior. It overcomes the
shortcoming that the DFTA [19] method can only
qualitatively analyze. T-S dynamic gates and their
event description rules can infinitely approximate the
failure behavior of real systems and can describe any
form of static and dynamic failure behavior. Further-
more, Yao et al. [3] proposed a continuous-time T-S
DFTA method, which is capable of solving the calcu-
lation error problem of discrete-time T-S DFTA and
indicating the changing trend of system failure prob-

ability. Taking the tape winding hydraulic system as
an example, Sun et al. [17] applied the continuous-
time T-S DFTA algorithm to the quantitative analysis
of dynamic system reliability.

In addition to being dynamic, actual systems are
also affected by multi-factors. Considering the effect
of a wide variety of factors on the system fault prob-
ability, Cui and Li [27] proposed a state absorption
method and a state recurrence method in accordance
with the Space Fault Tree (SFT) to study the logical
relationship between reliability and factors. Further
considering the effect of multi-factors and taking the
electrical system as the research object, the failure
probability distribution of the components and the
system under the two factors (including time and
temperature), as well as the probability importance
and criticality importance of the components were
obtained [26]. Chen et al. [7] proposed a continuous-
time multi-dimensional T-S DFTA and applied it to
the reliability analysis of the hydraulic system of
concrete pump trucks. Although the above method
enhances the description ability of the fault tree and
other methods under multi-factors, the failure corre-
lation between the components in the system is not
considered.

In the actual system, a wide variety of compo-
nents have a certain failure correlation due to mutual
cooperation. The reliability analysis results will sig-
nificantly deviate from the actual situation if only the
failure independence between components is consid-
ered. Thus, the effect of failure correlation problems
should be considered. Tang et al. [20] proposed a
novel theoretical method for reliability calculation
with failure correlation in mechanical systems. The
static and dynamic calculation models in accordance
with copulas theory were built, and the problem of
determining the correlation degree was solved. On
that basis, the precision was ensured, and the calcu-
lation was simplified significantly. Safaei et al. [12]
used a copula to model the dependency structure of
components and studied the aging replacement pol-
icy for repairable series and parallel systems with n
dependent components. Ding et al. [11] developed a
reliability analysis method based on Copula Bayesian
Network (CBN). The correlation between a wide
variety of subsystems and components was consid-
ered, and the difficulty of modeling and assessment
was overcome. Mahmoudi et al. [8] built a reliabil-
ity analysis model for weighted-k-out-of-n systems
with failure correlation using the copula function.
Saberzadeh et al. [30] considered a complex system
composed of n independent elements used the copula
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function to model the dependency between compo-
nents, and studied the reliability of the system under
the degradation performance. These methods mainly
focus on solving the problem of failure correlation
with copula functions. It needs to be emphasized that
there is a lack of research on system reliability anal-
ysis when considering the multiple failure modes of
components under the effect of multi-factors, as well
as the mixed static and dynamic failure behavior and
failure correlation.

In this paper, the multi-dimensional T-S dynamic
fault tree analysis method involving failure corre-
lation is proposed, in which the failure correlation
model is incorporated into the multi-dimensional T-S
DFTA model. Then a typical application case is taken
as the reliability analysis of a hydraulic transmission
system. Hydraulic transmission is developing toward
high precision and complexity, so its reliability is
affected by multi-dimensional factors other than time,
and it has dynamic dependency between components.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the multi-dimensional T-S
DFTA method. Section 3 is devoted to the failure
correlation reliability analysis method. Section 4 pro-
vides the multi-dimensional T-S DFTA method for
correlation failure. Section 5 presents an example
analysis of the hydraulic system to verify the fea-
sibility of the proposed method. Finally, Section 6
concludes the paper.

2. Multi-dimensional T-S DFTA method

2.1. T-S dynamic gates and their event sequence
description rules

The T-S model comprises a series of IF-THEN
rules, which can accurately describe nonlinear sys-
tems by using a series of local linear subsystems
combined with membership functions. T-S dynamic
gates and their event sequence description rules can
approximate the failure behavior of the real system
infinitely and describe any static and dynamic fail-
ure behaviors. The T-S dynamic fault tree model is
shown in Fig. 1. xi (i = 1, 2, . . . , n) represents the
basic event, and y represents the top event, then G1
represents the T-S dynamic gate.

The event sequence description rules include input
rules and output rules. The input rules are adopted
to describe the fault sequence of basic events x1∼xn,
which is expressed by the sequence rule O(l ). The
output rule describes the failure time of the top event

Fig. 1. T-S dynamic fault tree.

y when the basic event xi fails in a certain sequence.
Table 1 lists the event sequence description rules.

In the input rules, the natural numbers o(t1)∼o(tn)
are adopted to express the failure occurrence
sequence of basic events x1∼xn. The failure occur-
rence time of the basic events with small values is
earlier than that of the basic events with high values.

Boudali [15] employed the unit-step function and
impulse function in the continuous-time BN method
to describe the dependencies of a complex dynamic
system. In accordance with the above idea, the
sequence rule O(l ) is formed by multiplying a set of
unit-step functions. According to the properties of the
unit-step function u(ti–tj), it is adopted to describe the
fault sequence of basic events x1∼xn.

u
(
ti − tj

) =
{

0, ti < tj

1, ti ≥ tj
(1)

In the output rules, the impulse function δ (ty–ti) is
employed to describe the failure time of the top event
y.

δ
(
ty − ti

) =
{

0, ty /= ti

∞, ty = ti
(2)

where ti and ty represent the failure time of basic
events xi and top event y, respectively. δ (ty–ti) = ∞
indicates that the top event y fails at ti. In contrast, δ

(ty–ti) = 0 indicates that y does not fail at ti.
Rule 1 in Table 1 serves as an example to interpret

rules, i.e., basic events x1 to xn are executed according
to 1, 2, . . . , n, and then o(t1) = 1, o(t2) = 2, . . . , o(tn)
= n. The sequence rule O(1) is expressed as follows:

O(1) = u (tn − tn−1) u (tn−1 − tn−2) · · · u (t2 − t1)
(3)

In this case, the output rule is represented by the
impulse function δ(1)(ty) of the top event y.

Compared with conventional logic gates express-
ing static and dynamic relationships, T-S dynamic
gates are capable of characterizing any dynamic logic
gate relationships, thus reducing the difficulty of fault
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Table 1
Event sequence description rules of G1 gate

Rule x1 x2 · · · xn O(l) y

1 1 2 · · · n O(1) δ(1)(ty)
2 1 3 · · · n O(2) δ(2)(ty)
...

...
...

...
...

...
...

l o(t1) o(t2) · · · o(tn) O(l) δ(l)(ty)
...

...
...

...
...

...
...

r n n-1 · · · 1 O(r) δ(r)(ty)

Table 2
Event sequence description rules of the T-S dynamic gate transforming from AND gate

Rule x1 x2 O(l) y

1 1 2 u(t2–t1) δ(ty–t2)
2 2 1 u(t1–t2) δ(ty–t1)

Table 3
Event sequence description rule of composite T-S dynamic gate

Rule x1 x2 O(l) y

1 1 2 u(t2–t1) δ(ty–(t1 + d))
2 2 1 u(t1–t2) δ(ty–t2)

tree modeling. For static and dynamic failure behav-
iors which cannot be expressed by existing logic
gates, the corresponding event sequence description
rules can be set for modeling and analysis based on
T-S dynamic gates. In the following, AND gate and
compound dynamic gate are taken as examples of the
transformation process of each logic gate to the T-S
dynamic gate.

(1) AND gate transforms to T-S dynamic gate
AND gate indicates that the top event occurs when

all basic events occur. Table 2 lists the event sequence
description rules when T-S dynamic gate is adopted
to express the logic of AND gate.

(2) Composite dynamic gate transforms to T-S
dynamic gate

Besides AND gate, OR gate, priority-AND gate,
etc., T-S dynamic gates can describe any logic rela-
tions of events through input and output rules which
are maybe difficult to describe with existing logic
gates.

The cooling and filtering system in a hydraulic sys-
tem is taken as an example. The basic events x1 and
x2 represent the cooler failure and the filter failure,
respectively, and the top event y is the cooling and fil-
tering system failure. When the basic event x1 of the
cooler fails, the hydraulic oil temperature increases
continuously. It is assumed that after a period d, the
oil temperature exceeds the allowable maximum oil

temperature of the system, resulting in system fail-
ure, i.e., y fails at time ti+d which is later than the
time x1 fails. In the other situation, the top event y
happens when filtering system x2 fails. Subsequently,
the event sequence description rules of the composite
T-S dynamic gate are listed in Table 3.

2.2. Multi-dimensional T-S DFTA method

The multi-dimensional T-S DFTA method com-
prises an input rule and an output rule algorithm in
which multi-factors are considered.

(1) Input rule algorithm
The input rule algorithm is capable of obtaining

the execution possibility of the respective rule in the
T-S dynamic gate.

When the basic events xi(i = 1, 2, . . . , n) are
affected by the working time ti and other k factors
(h1, h2, . . . , hk), the rule execution possibility P*(l ),
which describes the rule l is expressed as:

P∗
(l) =

n∏
i=1

O(l)fi (ti, h1, h2, · · · , hk) (4)

where n denotes the number of basic events; O(l ) is
the sequence rule; fi(ti, h1, h2, . . . , hk) is the failure
probability density function of xi.
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The failure probability density function is written
as follows:

fi (ti, h1, h2, · · · , hk) = ∂k+1Fi (ti, h1, h2, · · · , hk)

∂ti∂h1∂h2 · · · ∂hk
(5)

where Fi(ti, h1, h2, . . . , hk) is the failure probability
distribution function of xi.

(2) Output rule algorithm
The failure probability density function and the

failure probability distribution function of the top
event can be obtained by calculating the rule exe-
cution possibility and the top event unit impulse
function using the output rule algorithm.

The failure probability density function fy(ty, h1,
h2, . . . , hk) of the top event y represents expressed
as:

fy

(
ty, h1, h2, · · · , hk

)
=

r∑
l=1

∫ +∞

0

∫ +∞

0

· · ·
∫ +∞

0
P∗

(l)δ(l)

(
ty
)

dt1dt2 · · · dtn

(6)

where r is the total number of rules, generally r = n!;
δ(l )(ty) is the unit impulse function of the top event y.

The failure probability distribution function Fy(ty,
h1, h2, . . . , hk) is obtained by integrating Equation
(6) in the factors as follows:

Fy

(
ty, h1, h2, · · · , hk

)

=

k+1︷ ︸︸ ︷∫ +∞

0

∫ +∞

0

· · ·
∫ +∞

0

∫ t

0

fy

(
ty, h1, h2, · · · , hk

)
dtydh1dh2 · · · dhk

(7)

2.3. Verification of multi-dimensional T-S DFTA
method

The multi-dimensional T-S DFTA method is com-
pared with the Dugan dynamic fault tree analysis
method based on the Markov chain solution.

(1) Dugan dynamic fault tree analysis method
based on Markov chain

The Dugan dynamic fault tree of a hydraulic sys-
tem is shown in Fig. 2. G1∼G3 represent hot spare
gates, OR gates, OR gates respectively, y is the top
event, y1 and y2 are intermediate events, and the fail-
ure rates λi of the basic events xi (i = 1, 2, 3, 4)
are 2×10–6/ h, 2×10–6/ h, 3×10–6/ h, 6×10–6/ h,
respectively.

Fig. 2. Dugan dynamic fault tree analysis for hydraulic system.

Fig. 3. Markov state transition diagram.

By analyzing the failure principle of the system,
the failure path of the system is:⎧⎪⎨

⎪⎩
x1 → x2 + x3 + x4

x2 → x1 + x3 + x4

x3 + x4

The Markov state transition diagram transformed
by the system failure path is shown in Fig. 3.

From Fig. 3, the Markov state transition rate matrix
D can be obtained as follows:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−
4∑

i=1

λi λ1 λ2 λ3 + λ4

0 −
4∑

i=2

λi 0
4∑

i=2

λi

0 0 −λ1 − λ3 − λ4 λ1 + λ3 + λ4

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8)

According to the Markov differential equation and
the state transition rate matrix D, it is obtained that:

dP (t)

dt
= DT P (t) (9)

where, P(t) = [P1(t), P2(t), . . . , Pq-1(t), Pq(t)]T. P1(t),
P2(t), . . . , Pq-1(t), and Pq(t) are the probabilities of
the system being in states 1∼(q–1) and yq(q = 1, 2,
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Fig. 4. Multi-dimensional T-S dynamic fault tree for hydraulic
system.

Table 4
Event sequence description rules of G1 gate

Rule x1 x2 O(l) y1

1 1 2 u (t2 − t1) δ
(
ty1 − t2

)
Table 5

Event sequence description rules of G2 gate

Rule x3 x4 O(l) y2

1 1 2 u (t2 − t1) δ
(
ty2 − t1

)
2 2 1 u (t1 − t2) δ

(
ty2 − t2

)
Table 6

Event sequence description rules of G3 gate

Rule y1 y2 O(l) y

1 1 2 u (t2 − t1) δ
(
ty − t1

)
2 2 1 u (t1 − t2) δ

(
ty − t2

)
. . . , kq) at time t, respectively. q is the number of
states in the Markov state transition diagram.

By substituting the task time tM = 10000h, the fail-
ure rate of basic events, and the initial value P(0) = [1,
0, 0, 0]T into Equation (9), the failure probability of
the system in state Fa can be calculated, and Py(tM)
= 0.086427.

(2) Multi-dimensional T-S DFTA method
The Dugan dynamic fault tree of the hydraulic

system shown in Fig. 2 is transformed into a multi-
dimensional T-S dynamic fault tree shown in Fig. 4.

The event sequence description rules of G1∼G3
gates established from the multi-dimensional T-S
dynamic fault tree in Fig. 4 are shown in Tables 4–6.

The failure probability of each component of the
hydraulic system obeys the exponential distribution

Fig. 5. Curve of failure probability of top event y changing with
time.

under the influence of the working time t. Through
the multi-dimensional T-S DFTA method, from Equa-
tions (4) to (7) and Tables 4 to 6, it can be obtained
that when the task time tM = 10000h, the failure prob-
ability of the top event y is Py(tM) = 0.086427, which
is the same as the results calculated by the mothed of
Markov chain as above.

The failure probability distribution curve of the top
event y with time is shown in Fig. 5.

The multi-dimensional T-S dynamic fault tree can
show the change curve of the top event failure prob-
ability with time. Therefore, the multi-dimensional
T-S DFTA method is feasible and superior.

2.4. Importance of multi-dimensional T-S DFTA

Importance analysis takes on an essential signifi-
cance in reliability analysis. The importance ranking
of the respective component or subsystem in the sys-
tem under different conditions can be obtained based
on the results of the importance analysis, which is
beneficial to find the weak links of the system and
enhance its reliability [22].

Probability importance is expressed as the influ-
ence degree how basic component reliability changes
on system reliability changes. The probability impor-
tance of the multi-dimensional T-S dynamic fault tree
of basic event xi is written as follows:

IPr (xi) = ∂Fy

(
ty, h1, h2, · · · , hk

)
∂Fi (ti, h1, h2, · · · , hk)

(10)

where Fy(ty, h1, h2, . . . , hk) and Fi(ti, h1, h2, . . . ,
hk) are the failure probability distribution functions
of the top event and the basic event, respectively.

The probability importance of multi-dimensional
T-S DFTA refers to the difference of failure proba-
bility distribution function of top event y in state yq(q
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= 1, 2, . . . , kq) when failure probability distribution
function Fi(ti, h1, h2, . . . , hk) is 1 and 0, respectively.

IPr (xi) = F
(
yq, Fi (ti, h1, h2, · · · , hk) = 1

)
−F

(
yq, Fi (ti, h1, h2, · · · , hk) = 0

) (11)

3. Failure correlation reliability analysis
method

Failure correlation is a common phenomenon in
mechanical systems or hydraulic systems. Ignoring
failure correlation between components will cause
deviation in reliability analysis results, so failure
correlation should be considered in the reliability
analysis process. The copula function is an essential
tool to describe the correlation between variables, and
it has been extensively employed to solve the problem
of failure correlation.

3.1. Sklar theorem for n-dimensional copula
functions

Let X = (X1, X2, . . . , Xn) be an n-dimensional
random vector, its marginal distribution function is
F1(x1), F2(x2), . . . , Fn(xn), and the joint distribution
function is H(x1, x2, . . . , xn), then there is a unique
n-dimensional copula function Cn(u1, u2, . . . , un),
so that for any (x1, x2, . . . , xn)∈Rn, can be obtained:

H (x1, x2, · · · , xn) =
Cn (F1 (x1) , F2 (x2) , · · · , Fn (xn))

(12)

When all the components of an n-dimensional ran-
dom variable X = (X1, X2, . . . , Xn) are independent
of each other, it can be obtained that:

Cn (u1, u2, · · · , un) = u1u2 · · · un (13)

3.2. Common copula functions

There are some types of common copula functions
[9, 21, 25] as shown in Table 7.

3.3. Failure correlation reliability model with a
series system

For the series system, the failure logic relation
is OR gate, i.e., a system failure occurs when any
component fails. It is assumed that the series sys-
tem comprises n components x1, x2, . . . , xn, and
the reliability functions corresponding to the respec-

tive component are R1(t), R2(t), . . . , Rn(t). When the
components are independent of each other, the system
reliability Ra(t) is expressed as follows:

Ra (t) =
n∏

i=1

Ri (t) (14)

Under the complete correlation between compo-
nents, the reliability Rb(t) of the system is expressed
as follows:

Rb (t) = min (R1 (t) , R2 (t) , · · · , Rn (t)) (15)

Considering the actual correlation between com-
ponents in the series system, the actual system
reliability R(t) should be within the range of the com-
plete independence and the complete correlation of
the respective component, which is expressed as fol-
lows:

n∏
i=1

Ri (t) ≤ R (t) ≤ min (R1 (t) , R2 (t) , · · · , Rn (t))

(16)
The copula function Cn(u1, u2, . . . , un) is adopted

to describe the correlation between the components
of the series system, and the reliability of the system
Rc(t) is written as [20]:

Rc (t) = �1
1−R1(t)�

1
1−R2(t) · · · �1

1−Rn(t)Cn (u1, u2, · · · , un)

(17)

where “�” represents the difference.
The single difference is �u2

u1
C(u, v0) = C(u2,

v0)–C(u1, v0), and the double difference is �v2
v1

�u2
u1

C(u, v) = C(u2, v2)–C(u2, v1)+C(u1, v2)–C(u1, v1),
and so on.

Equation (17) suggests that when the series sys-
tem is consistent with the copula function correlation
the fault probability distribution function Fc(t) is
expressed as:

Fc (t) = 1 − �1
F1(t)�

1
F2(t) · · · �1

Fn(t)Cn (u1, u2, · · · , un) (18)

where Fi(t)(i = 1, 2, . . . , n) denotes the failure
probability distribution function corresponding to the
respective component.

3.4. Failure correlation reliability model with a
parallel system

In a parallel system, its failure logic relation is
AND gate, i.e., the system fails when all components
of the system fail. It is assumed that the parallel sys-
tem consists of n components x1, x2, . . . , xn and the
corresponding reliability function of the respective
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Table 7
Two-dimensional Copula function and its tail dependence

Function Type C (u, v; θ) Tail dependence

Gauss
∫ �−1(u)

−∞
∫ �−1(v)

−∞
1

2π
√

1−θ2
exp
(

2θxy−x2−y2

2(1−θ2)

)
dxdy, θ ∈ [−1, 1] Tail symmetry

Gumbel exp
(

−
[

(− ln u)1/θ + (− ln v)1/θ
]θ)

, θ ∈ (0, 1] Right tail correlated

Clayton
(
u−θ + v−θ − 1

)−1/θ
, θ ∈ (0, ∞) Left tail correlated

Frank − 1
θ

log
[

1 +
((

e−θu − 1
)

·
(
e−θv − 1

))
/
(
e−θ − 1

)]
Tail symmetry

component is R1(t), R2(t), . . . , Rn(t). When the cor-
relation between components is not considered, the
reliability Ra(t) of the system is written as follows:

Ra (t) = 1 −
n∏

i=1

(1 − Ri (t)) (19)

When the complete correlation between compo-
nents is considered, the reliability Rb(t) of the parallel
system is obtained by the component with the greatest
reliability, which is expressed as follows:

Rb (t) = max (R1 (t) , R2 (t) , · · · , Rn (t)) (20)

The copula function Cn(u1, u2, . . . , un) is adopted
to describe the correlation between the components
of the parallel system, and the reliability of the system
Rc(t) is written as [20]:

Rc (t) = 1 − Cn (1 − R1 (t) , 1 − R2 (t) , · · · , 1 − Rn (t)) (21)

Equation (21) suggests that when the parallel sys-
tem is consistent with the copula function correlation,
the fault probability distribution function Fc(t) is
expressed as follows:

Fc (t) = Cn (1 − R1 (t) , 1 − R2 (t) , · · · , 1 − Rn (t))
(22)

4. Failure correlation reliability analysis
method

The multi-dimensional copula function is intro-
duced into the multi-dimensional T-S dynamic fault
tree model, so that it can analyze the reliability of
failure correlation of complex systems affected by
multiple factors. Thus, the failure correlation multi-
dimensional T-S DFTA method is proposed.

4.1. Multi-dimensional copula function

The system comprises n components xi(i = 1, 2,
. . . , n). When the failure correlation of the respective

component is only affected by the working time t, the
fault probability distribution function of the respec-
tive component is Fi(ti)(i = 1, 2, . . . , n). The failure
probability density function is fi(ti)(i = 1, 2, . . . , n).
Assuming that the joint probability distribution func-
tion is F(t1, t2, . . . , tn), according to Equation (12),
there is a unique copula function Cn(u1, u2, . . . , un)
as follows:

F (t1, t2, · · · , tn) = Cn (F1 (t1) , F2 (t2) , · · · , Fn (tn)) (23)

Taking the derivative of the above equation, the
joint probability density function f(t1, t2, . . . , tn) of
F(t1, t2, . . . , tn) is expressed as follows:

f (t1, t2, · · · , tn) =

cn (F1 (t1) , F2 (t2) , · · · , Fn (tn))
n∏

i=1

fi (ti)
(24)

where cn(u1, u2, . . . , un) is the density function of
Cn(u1, u2, . . . , un) which is expressed as follows:

cn (u1, u2, · · · , un) = ∂nC (u1, u2, · · · , un)

∂u1∂u2 · · · ∂un

(25)

When the failure correlation of the respective com-
ponent is affected by t and other k factors (h1, h2, . . . ,
hk), the failure probability distribution function of the
respective component is Fi(ti, h1, h2, . . . , hk)(i = 1,
2, . . . , n), and the failure probability density function
is expressed as fi(ti, h1, h2, . . . , hk)(i = 1, 2, . . . , n).
The joint probability distribution function F(t, h1, h2,
. . . , hk) and the joint probability density function f(t,
h1, h2, . . . , hk) are expressed as follows:

F (t, h1, h2, · · · , hk) =

Cn (F1 (t1, h1, h2, · · · , hk) , · · · , Fn (tn, h1, h2, · · · , hk))
(26)
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Fig. 6. T-S dynamic fault tree with failure correlation.

f (t, h1, · · · , hk) =

cn (F1 (t1, h1, · · · , hk) , · · · , Fn (tn, h1, · · · , hk))

n∏
i=1

fi (ti, h1, · · · , hk)

(27)

4.2. Multi-dimensional T-S DFTA with failure
correlation

(1) Dynamic gates of failure correlation and their
description rules of event sequence

Let the basic event be xi(i = 1, 2, . . . , n) and
the failure time of each event is ti(i = 1, 2, . . . ,
n). To distinguish the multi-dimensional T-S DFTA
method with failure correlation from that without fail-
ure correlation, the top event and its failure time under
failure P∗

C(l) = O(l)f (t, h1, h2, · · · , hk)correlation
are expressed as yC and tyC

respectively, where
the subscript C suggests that the failure correlation
between the basic events is described by the copula
function. The T-S dynamic gate of failure correlation
is illustrated in Fig. 6. Gate GC is represented as the
T-S dynamic gate of failure correlation, and its event
sequence description rules are shown in Table 8. O(l )
is the failure sequence rule of the respective basic
event and δ(l)

(
tyC

)
is the failure time of yC in rule l,

respectively.
(2) Multi-dimensional T-S DFTA with failure cor-

relation
1) Input rule algorithm
When there is failure correlation between the basic

events xi(i = 1, 2, . . . , n), the joint probability density
function f(t, h1, h2, . . . , hk) is adopted to replace the
product of the failure probability density functions of
each event. Moreover, the rule execution possibility
P∗

C(l) of the T-S dynamic gate with failure correlation
is expressed as follows:

P∗
C(l) = O(l)f (t, h1, h2, · · · , hk) (28)

When the respective basic event xi(i = 1, 2, . . . , n)
is independent of each other, it yields:

P∗
C(l) = O(l)f (t, h1, h2, · · · , hk)

= O(l)cn (F1 (t1, h1, h2, · · · , hk) , · · · , Fn (tn, h1, h2, · · · , hk))

n∏
i=1

fi (ti, h1, h2, · · · , hk) = O(l)

n∏
i=1

fi (ti, h1, h2, · · · , hk)

(29)

The result of Equation (29) is consistent with Equa-
tion (4), thus suggesting that when the basic event is
independent of each other, the rule execution possi-
bility obtained by the copula function is consistent
with multi-dimensional T-S DFTA method without
failure correlation.

2) Output rule algorithm
Based on the above input rule algorithm, the failure

probability density function of the top event yC with
failure correlation is expressed as follows:

fyC

(
tyC

, h1, h2, · · · , hk

)
=

r∑
l=1

∫ +∞

0

∫ +∞

0

· · ·
∫ +∞

0

P∗
C(l)δ(l)

(
tyC

)
dt1dt2 · · · dtn

(30)

By integrating Equation (30) within working time
t, the failure probability distribution function of yC

with failure correlation is expressed as follows:

FyC

(
tyC

, h1, · · · , hk

)
=
∫ +∞

0

∫ +∞

0

· · ·
∫ +∞

0

∫ t

0

fyC

(
tyC

, h1, · · · , hk

)
dtyC

dh1 · · · dhk

(31)

4.3. Importance of multi-dimensional T-S DFTA
with failure correlation

The probability importance equations of multi-
dimensional T-S dynamic fault tree with failure
correlation is derived as below.

When the basic event xi(i = 1, 2, . . . , n) has failure
correlation, the probability importance IPrC (xi) with
failure correlation is expressed as follows:

IPrC (xi) = ∂FyC

(
tyC

, h1, h2, · · · , hk

)
∂Fi (ti, h1, h2, · · · , hk)

(32)
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Table 8
Events sequence description rules of Gc gate

Rule x1 x2 · · · xn O(l) yc

1 1 2 · · · n O(1) δ(1)

(
tyC

)
2 1 3 · · · n O(2) δ(2)

(
tyC

)
...

...
...

...
...

...
...

l o(t1) o(t2) · · · o(tn) O(l) δ(l)

(
tyC

)
...

...
...

...
...

...
...

r n n-1 · · · 1 O(r ) δ(r)

(
tyC

)
Table 9

Event sequence description rules of Gc gate

Rule x1 x2 O(l) yc

1 1 2 u (t2 − t1) δ
(
tyC

− t1
)

2 2 1 u (t1 − t2) δ
(
tyC

− t2
)

where FyC
(ti, h1, h2, . . . , hk) and

Fi(ti, h1, h2, . . . , hk) denote the failure proba-
bility distribution functions of the top event yC and
the basic event xi(i = 1, 2, . . . , n) respectively under
the effect of multiple factors when considering the
existence of failure correlation in xi(i = 1, 2, . . . , n).

4.4. Verification of multi-dimensional T-S DFTA
with failure correlation

The series system is taken as an example for veri-
fication. It is assumed that a series system comprises
components x1 and x2. When the failure of the system
is only affected by the working time t, the failure prob-
ability distribution function of the two components is
denoted as F1(t1) and F2(t2), and the failure probabil-
ity density function is expressed as f1(t1) and f2(t2).
The copula function C(F1(t1), F2(t2)) is adopted to
represent the failure correlation of the two compo-
nents. The multi-dimensional T-S DFTA with failure
correlation is employed to solve the failure probabil-
ity distribution function of the series system.

The T-S dynamic fault tree with failure correlation
of the series system is built. Table 9 lists the event
sequence description rules of gate Gc.

According to the input rule algorithm, the rule exe-
cution possibility in Table 9 can be calculated as
follows:

P∗
C(1) = O(1)c (F1 (t1) , F2 (t2))

2∏
i=1

fi (ti)

= u (t2 − t1) c (F1 (t1) , F2 (t2)) f1 (t1) f2 (t2)

(33)

P∗
C(2) = O(2)c (F1 (t1) , F2 (t2))

2∏
i=1

fi (ti)

= u (t1 − t2) c (F1 (t1) , F2 (t2)) f1 (t1) f2 (t2)

(34)

In accordance with the output rule algorithm, the
failure probability density function and failure prob-
ability distribution function of the series system are
expressed as follows:

fyC

(
tyC

) =
2∑

l=1

∫ +∞

0

∫ +∞

0
P∗

C(l)δ(l)

(
tyC1

)
dt1dt2

= f1
(
tyC

)(
1 − ∂C

(
F1
(
tyC

)
, F2

(
tyC

))
∂F1

(
tyC

) )

+f2
(
tyC

)(
1 − ∂C

(
F1
(
tyC

)
, F2

(
tyC

))
∂F2

(
tyC

) )
(35)

Fy
C

(t) = F1 (t) + F2 (t) − C (F1 (t) , F2 (t)) (36)

According to Equation (18), the failure probabil-
ity distribution function Fc(t) of the series system
in compliance with the conventional copula function
can be obtained:

Fc (t) = 1 − �1
F1(t)�

1
F2(t)C (F1 (t) , F2 (t))

= F1 (t) + F2 (t) − C (F1 (t) , F2 (t))
(37)

Equations (36) and (37) suggest that the failure
probability distribution function solved by the multi-
dimensional T-S DFTA with failure correlation is
consistent with that solved using the reliability model
of the failure correlation series system [14]. As a
result, the correctness of the model in solving the
reliability problem of the failure correlation series
system is verified.

When considering that the failure of the series sys-
tem is affected by three factors, taking working time
t, working temperature T and shock number s as the
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examples, the failure probability distribution func-
tions of components x1 and x2 are expressed as F1(t1,
T1, s1) and F2(t2, T2, s2), respectively. The correlation
between components is expressed by copula function
C(F1(t1, T1, s1), F2(t2, T2, s2)), and the fault proba-
bility distribution function F(t, T, s) of the system is
expressed as follows:

F (t, T, s) = F1 (t1, T1, s1) + F2 (t2, T2, s2)

−C (F1 (t1, T1, s1) , F2 (t2, T2, s2))
(38)

4.5. Advantages

The failure correlation multi-dimensional T-S
DFTA method can comprehensively consider and
analyze multi-factor influence problems and failure
correlation problems in the system. The problem of
large errors can be solved by considering the sys-
tem’s static and dynamic characteristics and taking
into account the correlation between parts. The results
of the reliability analysis are closer to the real situ-
ation. It reduces the misjudgment of system failure
probability and component importance ranking when
considering fault correlation. It has advantages over
the multi-dimensional T-S DFTA method without
considering failure correlation.

5. Case analysis

The shearer has been confirmed as the critical
equipment for the fully mechanized mining face in the
coal mine. The shearer comprises the cutting depart-
ment for coal cutting, the transmission system for
power transmission, as well as the hydraulic height
adjustment system [23]. To be specific, the hydraulic
height adjustment system is a vital part of the shearer,
which is mainly responsible for adjusting the height
of the cutting drum [28]. It is easy to fail in a working
environment with high dust, complex force, narrow
space and long working hours. Thus, it is necessary
to conduct reliability analysis of the hydraulic height
adjustment system.

Figure 7 depicts the hydraulic principal diagram
of the shearer hydraulic height adjustment system.
The externally controlled electro-hydraulic revers-
ing valve controls the action of raising the cylinder,
and the low-pressure pump provides externally con-
trolled pressure oil for the electro-hydraulic reversing
valve. The electro-hydraulic reversing valve with an
emergency handle can be manually reversed by the
emergency handle when the electromagnetic pilot

Fig. 7. Principal diagram of hydraulic height adjustment system.

valve cannot be changed. The hydraulic lock cooper-
ates with the Y-type neutral function reversing valve,
so that the height adjustment oil cylinder can be
stopped at any position and can be prevented from
moving after stop.

5.1. System reliability analysis without failure
correlation

(1) Failure probability analysis
Based on the working principle and failure mech-

anism of the hydraulic height adjustment system
of the shearer, the multi-dimensional T-S dynamic
fault tree of the hydraulic height adjustment system
is built as shown in Fig. 8. G1, G4∼G7 represent
the T-S dynamic OR gate, G2 represents the T-S
dynamic cold-spare gate, and G3 represents the T-
S dynamic priority-AND gate, respectively. x1∼x12
are basic events, and the specific event names and
failure rates are shown in Table 10 [6]. y is the top
event. y1∼y6 represents intermediate events, and the
specific event names are: filter system failure, pilot
valve commutation failure, hydraulic oil contami-
nation, Electrohydraulic reversing valve failure, oil
supply system failure, and execution system failure.

In the hydraulic height adjustment system, the life
of the electromagnetic relief valve and the hydraulic
pump is significantly affected by the hydraulic shock.
Let the shock obey a Weibull distribution, and its fail-
ure probability distribution function is as follows, and
its parameters are shown in Table 11.

Fi (s) = 1 − exp
[−(s/η)m

]
(39)

where m is the shape parameter, s is the number of
shocks, and η is the characteristic life.
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Fig. 8. Multi-dimensional T-S dynamic fault tree for hydraulic
height adjustment system.

The event sequence description rules for gates
G1∼G7 are built, and the G1, G2 and G3 gates
are used as an example for description. The event
sequence description rules for the G1 gate are shown
in Table 12.

The event sequence description rules for the G2
gate are shown in Table 13.

The event sequence description rules for the G3
gate are shown in Table 14.

When the failure probability of the respective com-
ponent obeying the exponential distribution is only
under the effect of the working time t and the task

time is tM = 5000h, the failure probability distri-
bution of the top event y can be obtained by the
multi-dimensional T-S DFTA method as shown in
Fig. 9.

As depicted in Fig. 9, the relationship between the
two factors on the top event failure probability of the
hydraulic height adjustment system is shown. when
the working time t increases from 0 to 5000h, the
failure probability value increases from 0 to nearly
0.2 when only the time factor is considered. With the
increase of the number of shock s from 0 to 1×106

times, the failure probability value increases from
0 to nearly 0.24 when only shock number factor is
considered. When t = 5000h, s = 1×106 times, the
failure probability achieves the maximum value of
0.4. It can be seen that compared with only consider-
ing the influence of a single factor on the probability
of system failure, the multi-dimensional T-S DFTA
method considering multiple influencing factors can
obtain more comprehensive results when analyzing
the reliability of the system.

(2) Probability importance analysis
The probability importance of the respective basic

event of the hydraulic height adjustment system is
expressed in Equation (10), which can be classified
into two types in accordance with the different dis-
tribution trends and the magnitude. The first type of
probability importance involves basic events x1, x2,
x3, x4, x9-1 and x9-2, as presented in Fig. 10. The sec-

Table 10
Name and failure rate of basic event

Event Event name Failure Rate Event code Event name Failure Rate
code (×10–6/h) (×10–6/h)

x1 Oil suction filter 1 0.3 x8 High-pressure pump 13.5
x2 Oil suction filter 2 0.3 x9-1 Solenoid pilot valve of

electro-hydraulic reversing valve
4.5

x3 Oil return filter 0.5 x9-2 Manual pilot valve of
electro-hydraulic reversing valve

3.5

x4 Hydraulic oil 0.5 x9-3 Main valve of electro-hydraulic
reversing valve

4.0

x5 Electromagnetic relief
valve 1

4.7 x10 Hydraulic lock 1.1

x6 Electromagnetic relief
valve 2

4.7 x11 Height adjustment cylinder 5.5

x7 Low-pressure pump 9.0 x12 Throttle valve 3.5

Table 11
Weibull parameters of the basic events

Basic event xi Component name Shape parameter
m

Characteristic life
η/(×106 times)

x5, x6 Electromagnetic relief
valve

4.0521 13.0173

x7, x8 Hydraulic pump 3.0791 1.8992
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Table 12
Event sequence description rules of G1 gate

Rule x1 x2 x3 O(l) y1

1 1 2 3 u(t3–t2)u(t2–t1) δ
(
ty1 − t1

)
2 1 3 2 u(t2–t3)u(t3–t1) δ

(
ty1 − t1

)
3 2 1 3 u(t3–t1)u(t1–t2) δ

(
ty1 − t2

)
4 2 3 1 u(t2–t1)u(t1–t3) δ

(
ty1 − t3

)
5 3 2 1 u(t1–t2)u(t2–t3) δ

(
ty1 − t3

)
6 3 1 2 u(t1–t3)u(t3–t2) δ

(
ty1 − t2

)
Table 13

Event sequence description rules of G2 gate

Rule x9-1 x9-2 O(l) y2

1 1 2 u (t9-2 − t9-1) δ
(
ty2 − t9-2

)

Table 14
Event sequence description rules of G3 gate

Rule y1 x4 O(l) y3

1 1 2 u
(
t4 − ty1

)
δ
(
ty3 − t4

)
2 2 1 u

(
ty1 − t4

)
0

Fig. 9. Failure probability distribution of top event y without fail-
ure correlation.

ond type of probability importance comprises basic
events x5, x6, x7, x8, x9-3, x10, x11 and x12, as illus-
trated in Fig. 11.

In the first type of probability importance, the
descending order is x9-2 = x9-1, x4, x3, x1 = x2. The
distributions of x1, x2 are the same and both are close
to x3, so that x2 and x3 are not drawn in Fig. 10. As
depicted in Fig. 10, the probability importance of x1,
x4, x9-1 and x9-2 increases with the extension of the
working time, whereas x9-1 and x9-2 increase faster
than x1 and x4. With the increase of the number of
shocks, it shows a distribution trend of first increas-
ing and then decreasing, whereas the trends of x9-1

Fig. 10. The first type of probability importance without failure
correlation.

Fig. 11. The second type of probability importance without failure
correlation.

and x9-2 are more significant than those of x1 and x4.
In the probability importance of the second type of

Fig. 11, the descending order is x8, x7, x11, x5, x9-3,
x12 and x10. x5 is equivalent to x6.

The comparison between Figs. 10 and 11 suggests
that when failure correlation is not involved, the prob-
ability importance of the second type is larger than
that of the first type. According to the trend of the
probability importance of the basic events in Fig. 11
it can be seen that basic events x11, x5, x9-3, x12 and
x10 change relatively large and should be focused on.
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Fig. 12. Multi-dimensional T-S dynamic fault tree copula model
for hydraulic height adjustment system.

5.2. System reliability analysis with failure
correlation

The hydraulic transmission system is dependent on
hydraulic oil who circulates in the system as the work-
ing medium for transmitting energy. The failure of
the hydraulic components will have more correlation
when the oil is polluted. Accordingly, the reliability
analysis results will be more realistic when the failure
correlation between components is considered in the
reliability analysis of the hydraulic system.

(1) Failure probability analysis
As depicted in Fig. 12, the multi-dimensional T-

S dynamic fault tree copula model of the system is
built based on the multi-dimensional T-S dynamic
fault tree of the hydraulic height adjustment sys-
tem and the failure correlation contents of the basic
events. x1∼x12 represent the basic events, which are
the same hydraulic components as those represented
by the multi-dimensional T-S DFTA without consid-
ering failure correlation in Section 5.1. Unlike y1∼y6
and G1∼G7 in Section 5.1, yc1∼yc6 denote the fail-
ure correlation intermediate events, and Gc1∼Gc7 are
failure correlation T-S dynamic gates whose logical
relationship between subordinate events is expressed
by the corresponding copula function.

Since the correlation between the life of mechani-
cal parts is generally positive, Gumbel-Copula will be
selected as the copula function based on the require-
ments of model parameter estimation and simple
calculation. The failure correlation degree of the sub-
ordinate event is changed by changing the correlation
coefficient θ of the copula function. The multi-
dimensional T-S dynamic fault tree copula model

Table 15
Basic event failure correlation content

Event code Copula function Correlation
coefficient θ

x5 and x7 Gumbel Copula 0.2
x6 and x8 Gumbel Copula 0.2
x10, x11 and x12 Gumbel Copula 0.3

Fig. 13. Failure probability distribution of top event yc with failure
correlation.

is equivalent to the multi-dimensional T-S dynamic
fault tree model when there is no correlation between
subordinate events, i.e., when they are entirely inde-
pendent. The failure correlation between the basic
events x5 and x7, x6 and x8, x10, x11 and x12 is consid-
ered in the hydraulic height adjustment system. The
copula function types and Correlation coefficient θ

used by x5 and x7, x6 and x8, x10, x11 and x12 are
shown in Table 15.

The event sequence description rules for the failure
correlation T-S dynamic gates Gc1∼Gc7 are built, and
Gc1 is taken as an example for illustration, as shown
in Table 16.

To be specific, yc1 denotes the upper event under
failure correlation, thus suggesting filter system fail-
ure. In the multi-dimensional T-S dynamic fault tree,
the G1 gate denotes an OR gate, so that the failure
correlation T-S dynamic gate Gc1 represents the OR
gate with failure correlation.

The fault probability distribution of top event yc

under failure correlation is obtained from the multi-
dimensional T-S dynamic fault tree copula model, as
presented in Fig. 13.

Figure 13 illustrates the changing trend of the fail-
ure probability of the top event yc of the hydraulic
height adjustment system under t and s. The failure
probability of the top event increases with the increase
of t and s. Under the effect of the number of shocks
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Table 16
Event sequence description rules of gate Gc1

Rule x1 x2 x3 O(l) y1

1 1 2 3 u(t3–t2)u(t2–t1) δ
(
tyc1 − t1

)
2 1 3 2 u(t2–t3)u(t3–t1) δ

(
tyc1 − t1

)
3 2 1 3 u(t3–t1)u(t1–t2) δ

(
tyc1 − t2

)
4 2 3 1 u(t2–t1)u(t1–t3) δ

(
tyc1 − t3

)
5 3 2 1 u(t1–t2)u(t2–t3) δ

(
tyc1 − t3

)
6 3 1 2 u(t1–t3)u(t3–t2) δ

(
tyc1 − t2

)

Fig. 14. Comparison of the failure probability distribution.

s, its upward trend is from slow to fast. Thus, the
failure probability of the top event increases with the
increase of t and s.

The two failure probability distributions with and
without failure correlation are compared to further
examine the effect of failure correlation on the over-
all reliability of the system. As depicted in Fig. 14, the
trend of the two changes with the factors is the same,
and only the value of the failure probability is differ-
ent, i.e., the failure probability distribution without
failure correlation is slightly more significant than
the failure probability distribution with failure corre-
lation. This is because the positive correlation of the
basic events is considered in the reliability analysis
of failure correlation. Due to the effect of positive
correlation between basic events, the survival prob-
ability of the respective basic event is greater than
that when they are independent of each other, so that
the reliability of the system is enhanced, that is, the
probability distribution of failures considering failure
correlation is smaller than the probability distribution
of failures that do not consider failure correlation.

Only the reliability analysis results at the sys-
tem level are obtained by solving the system failure
probability distribution with failure correlation. The
following is a multi-dimensional T-S dynamic fault
tree copula importance algorithm for the respective

Fig. 15. The first type of probability importance with failure cor-
relation.

basic event to analyze the probability importance.
At the level of basic components, the quantitative
reliability analysis of the shearer height adjustment
system with failure correlation is carried out.

(2) Probability importance analysis
According to the distribution of the probability

importance of the basic events of the hydraulic height
adjustment system under failure correlation, the prob-
ability importance is divided into two types, and each
category contains the same basic events as without
considering failure correlation.

The probability importance of the first type with
failure correlation is shown in Fig. 15, and its
descending order is x9-2, x9-1, x4, x3 and x1 = x2.
To clarify the difference between them, the impor-
tance of involving failure correlation is subtracted
from that when it is not considered, and the difference
of the distribution between the first type of probabil-
ity importance with and without failure correlation is
presented in Fig. 16.

The importance distributions of the second type
of probability importance basic events x10 and x5
intersect with failure correlation. x5 is equal to x6.
Compared with the case without failure correlation,
the importance order of x5, x9-3, x10, x11 and x12 has
changed. Fig. 17 illustrates the probability impor-
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Fig. 16. The difference between the first type of probability impor-
tance distributions with and without failure correlation.

Fig. 17. The second type of probability importance with failure
correlation.

Fig. 18. The difference between the second type probability impor-
tance distributions with and without failure correlation.

tance distribution of the second type of the basic event
under failure correlation. They are sorted from high
to low as x8, x7, x9-3, x11, x12, x10 and x5. Fig. 18
presents the difference between the distribution of the
second type of probability importance without failure
correlation and with failure correlation.

5.3. Result and recommendations

Through the examples studied, it can be seen
that compared with not considering the failure cor-
relation, the failure probability of the system top
event considering the failure correlation decreases
by 0.0368 at t = 5000h, s = 1×106 times. The
probability importance of x9-3, x10, and x12 (main
valve of electro-hydraulic reversing valve, hydraulic
lock, throttle valve) increased by 0.0341, 0.0312,
and 0.0375 respectively, which changed significantly
compared with that when failure correlation is not
considered. In other words, in the actual situa-
tion where correlation is widespread, more attention
should be paid to x9-3, x10, and x12.

Based on the case analysis presented in this chap-
ter, the findings suggest that neglecting the influence
of failure correlation can lead to a misjudgment of
the probability of system failure. Such misjudgment
can introduce errors into the reliability evaluation
process of the system. Additionally, from the rank-
ing results of probability importance, ignoring failure
correlation can lead to a misjudgment of important
components that have a significant impact on the
system. Consequently, this can lead to prioritization
errors during maintenance and repair activities. These
observations highlight the significance of the pro-
posed method for practical reliability assessment and
subsequent maintenance and repair tasks.

6. Conclusions

T-S dynamic fault tree is one powerful tool to ana-
lyze the static and dynamic failure logic relationship.
Based on T-S DFTA, this paper comprehensively
studies the reliability analysis of complex systems
with mixed static and dynamic characteristics and
failure correlation affected by multi-factors. A reli-
ability analysis method of multi-dimensional T-S
dynamic fault tree analysis with failure correlation is
proposed. Firstly, the T-S DFTA is multi-dimensional
processed to enable an analysis of systems affected
by multi-factors. Furthermore, the copula function
is multi-dimensional processed and integrated into
the multi-dimensional T-S DFTA algorithm, which is
verified in the series system. Meanwhile, the impor-
tance algorithm of multi-dimensional T-S dynamic
fault tree with failure correlation is proposed. For
the sake of illustration, the method is applied to
the hydraulic height adjustment system of a coal
mining machine. The system failure probability
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distribution and basic events importance order of
multi-dimensional T-S DFTA are calculated without
and with considering failure correlation. The results
illustrate that the method is more in line with the
actual situation. It lays a theoretical basis for discov-
ering the weak links of the system and enhancing the
reliability of the system.

The main attraction of this research lies in its
focus on the issue of failure correlation and multi-
factors, which expands the framework for reliability
assessment and analysis. However, in the present
analysis, this paper just discusses the commonly used
series and parallel systems, while other types of sys-
tems, such as warm-standby and k-out-of-n systems,
require further research. In addition, in the future
work, this method will catch our focus by considering
the optimization of constraints such as cost, weight
volume in real systems.

Acknowledgments

This project is supported by the National Natural
Science Foundation of China (Grant No. 51975508),
Hebei Natural Science Foundation (Grant No.
E2021203061).

References

[1] A. Peiravi, M. Nourelfath and M.K. Zanjani, Redundancy
strategies assessment and optimization of k-out-of-n sys-
tems based on Markov chains and genetic algorithms,
Reliability Engineering & System Safety 221 (2022),
108277.

[2] A.J. Chuku, S. Adumene, C.U. Orji, et al., Dynamic failure
analysis of ship energy systems using an adaptive machine
learning formalism, Journal of Computational and Cogni-
tive Engineering (2022), 1-10.

[3] C.Y. Yao, C.Y. Wang, D.N. Chen, et al., Continuous-time T-
S dynamic fault tree analysis method, Journal of Mechanical
Engineering 56(10) (2020), 244-256.

[4] C.Y. Yao, L.Q. Rao, D.N. Chen, et al., T-S dynamic fault
tree analysis method, Journal of Mechanical Engineering
55(16) (2019), 17-32.

[5] D. Ge, M. Lin, Y.H. Yang, et al., Quantitative analysis of
dynamic fault trees using improved sequential binary deci-
sion diagrams, Reliability Engineering & System Safety 142
(2015), 289-299.

[6] D.N. Chen, J.G. Zhang, C.Y. Yao, et al., Dynamic
fault tree analysis of hydraulic heightening system based
on DTBN, Machine Tool & Hydraulics 49(13) (2021),
183-189.

[7] D.N. Chen, J.Y. Xu, C.Y. Yao, et al., Continuous time
multi-dimensional T-S dynamic fault tree analysis method,
Chinese Journal of Mechanical Engineering 57(10) (2021),
231-244.

[8] E. Mahmoudi, R.S. Meshkat and H. Torabi, Copula-based
reliability for weighted-k-out-of-n systems having ran-
domly chosen components of m different types, IEEE
Transactions on Reliability 71(2) (2021), 630-639.

[9] E.W. Frees and E.A. Valdez, Understanding relationships
using copulas, North American Actuarial Journal 2(1)
(1998), 1-25.

[10] F. Bistouni and M. Jahanshahi, Analyzing the reliability of
shuffle-exchange networks using reliability block diagrams,
Reliability Engineering & System Safety 132 (2014), 97-
106.

[11] F. Ding, Y. Wang, G. Ma, et al., Correlation reliability assess-
ment of artillery chassis transmission system based on CBN
model, Reliability Engineering & System Safety 215 (2021),
107908.

[12] F. Safaei, E. Châtelet and J. Ahmadi, Optimal age replace-
ment policy for parallel and series systems with dependent
components, Reliability Engineering & System Safety 197
(2020), 106798.

[13] F. Zhang, L. Cheng, Y. Gao, et al., Fault tree analysis of
a hydraulic system based on the interval model using latin
hypercube sampling, Journal of Intelligent & Fuzzy Systems
37(6) (2019), 8345-8355.

[14] H. An, H. Yi and F.K. He, Analysis and application of
mechanical system reliability model based on copula func-
tion, Polish Maritime Research 23(S1) (2016), 187-191.

[15] H. Boudali, A temporal Bayesian network reliability model-
ing and analysis framework, Ph.D. Dissertation, University
of Virginia, 2005.

[16] H. Song, H.Y. Zhang and C.W. Chan, Fuzzy fault tree
analysis based on T-S model with application to INS/GPS
navigation system, Soft Computing 13(1) (2009), 31-40.

[17] H.H. Sun, L.P. Xu, G.J. Jiang, et al., Reliability analysis of
tape winding hydraulic system based on continuous-time
T-S dynamic fault tree, Mathematical Problems in Engi-
neering 2022 (2022), 1-12.

[18] J. Kawahara, K. Sonoda, T. Inoue, et al., Efficient construc-
tion of binary decision diagrams for network reliability with
imperfect vertices, Reliability Engineering & System Safety
188 (2019), 142-154.

[19] J.B. Dugan, S.J. Bavuso, M.A. Boyd, Fault trees and
sequence dependencies, Microelectronics Reliability 31(5)
(1991), 286-293.

[20] J.Y. Tang, P. He, Q. Wang, Copulas model for reliability cal-
culation involving failure correlation, In 2009 International
Conference on Computational Intelligence and Software
Engineering Wuhan, China (2009), 1-4.

[21] L. Xu, Y. Liu and H.B. Liu, Linguistic interval-valued
intuitionistic fuzzy copula power aggregation operators for
multiattribute group decision making, Journal of Intelligent
& Fuzzy Systems 40(1) (2021), 605-624.

[22] L.P. He, H.Z. Huang, Y. Pang, et al., Importance identi-
fication for fault trees based on possibilistic information
measurements, Journal of Intelligent & Fuzzy Systems 25(4)
(2013), 1013-1026.

[23] L.Q. Sun, K. Jiang, Q.L. Zeng, et al., Influence of drum cut-
ting height on shearer cutting unit vibration by co-simulation
method, International Journal of Simulation Modelling
20(1) 2021, 111-122.

[24] P. Luo and X.Y. Wang, Research on the resource allocation
algorithm based on forecasting in mobile cloud computing,
Journal of Intelligent & Fuzzy Systems 35(2) (2018), 1315-
1324.

[25] R.B. Nelsen, An introduction to copulas, Springer Series in
Statistics, Springer Verlag, 2007, pp. 17-34.



8296 D. Chen et al. / Multi-dimensional T-S dynamic fault tree analysis method involving failure correlation

[26] T.J. Cui and S.S. Li, Deep learning of system reliability
under multi-factor influence based on space fault tree, Neu-
ral Computing and Applications 31(9) (2019), 4761-4776.

[27] T.J. Cui and S.S. Li, Study on the construction and applica-
tion of discrete space fault tree modified by fuzzy structured
element, Cluster Computing 22(3) (2019), 6563-6577.

[28] W. Li, C.M. Luo, H. Yang, et al., Memory cutting of adja-
cent coal seams based on a hidden Markov model, Arabian
Journal of Geosciences 7(12) (2014), 5051-5060.

[29] X. Feng, J.C. Jiang and Y.G. Feng, Reliability evaluation of
gantry cranes based on fault tree analysis and Bayesian net-
work, Journal of Intelligent & Fuzzy Systems 38(3) (2020),
3129-3139.

[30] Z. Saberzadeh and M. Razmkhah, Reliability of degrading
complex systems with two dependent components per ele-
ment, Reliability Engineering & System Safety 222 (2022),
108398.




