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Financial derivative features based
integrated potential fishing zone (IPFZ)
Future forecast
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Abstract. In India, around 7 million people depend on fishing for their livelihoods. They are assisted with a reliable and
fast brief forecast for the areas of fish aggregations. Habitat mapping is critical in supporting strategic choices on fish usage
and protection. In conjunction with techniques for machine learning, remote control has made comprehensive fish mapping
on relevant scales possible. In machine learning, supervised algorithms are utilized to make forecasts from datasets, when
data is accessible without relating output factors. In this research work, Ocean Surface Temperature (OST) and Satellite
derived Chlorophyl material are the basic inputs to generating the information of Potential Fishing Zone (PFZ). The 16
features and additional financial derivative features are used for accurate future prediction of PFZ. The unwanted and missing
data are removed using effective pre-processing techniques. Among the various methods available for forecasting nonlinear
phenomena, the Neural Network is the best and the efficient method to get a forecast. Therefore, the Function Fitting Neural
Network (FFNN) technique is mainly used to predicting the Integrated Potential Fishing Zone (IPFZ). The practical analyses
are performed by analysing the 80%-20%, 60%-40% and future data in terms of various parameters. From the results, it is
proved that the suggested FFNN achieved 90% of accuracy, where the existing neural network achieved 86% of accuracy by
implementing with financial derivative features for the 80%-20% of available dataset.

Keywords: Fishing activities, function fitting neural network technique, future data prediction, machine learning, sea surface
temperature

1. Introduction

Fishery development is subject on availability
of natural resources, appropriate funding, adequate
novel technology, fishing unit growth, fishing exten-
sion, government policies, Morden technologies, and
grassroots technical information. In terms of the
makeup and dynamics of its species, the marine
environment is complicated. With the rises in fish-
ing fleets, the traditionally known fishing grounds
are under enormous pressure and fishing per unit
effort (CPUE) decline [1] per unit effort. Through
remote sensing techniques, it is therefore necessary
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to distract some fishing efforts from other relevant
potentially fishing regions. The prediction of struc-
tures and functions in the marine eco system requires
on an in-depth appreciative of the physical and nat-
ural process that regulates organisms’ great quantity
distribution and output and a wide diversity of time
and wide diversity of time space levels [2].

In order to study chlorophy’s link to sea sur-
face temperature with employed Coast Zone Colour
Scanner (CZCS) and (OST) [3]. The water mass clas-
sification seems to be linked to various biological
and physical processes. In 1989-90, the prediction for
Potential Fishing Zones (PFZs), with NOAA AVHRR
OST computed in India, was launched [4] With the
emergence and quick spread of satellite remote sens-
ing that leads to the deployment of remote sensors for
specific parameters, OST, CHL and PAR data col-
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lected from satellites are available as Global Area
Coverage (GAC) for the previous two decades [5]. In
this context it has become an important data source
to explain the linkages between exploited marine ani-
mals and their habitat for the availability of world,
daily, systemic images taken from satellites. To exam-
ine the distribution, abundance and migratory of
fishes, continual archiving of remotely sensed satel-
lite parameters in a particular region is necessary.
Remote sensing has played an essential role in marine
fisheries management and use since 1978. Neural net-
work approaches are used [6, 7] to anticipate fishing
zones.

Brain networks are simple nonlinear computing
components that imitate the neural system of the
human being. Brain networks are named between
input and output layers as hidden layers and often
called neurons [8]. When loading data into the ANN
(Artificial Neural Network), it must be pre-processed
into the numerical range with which the ANN can
handle the efficiency of the learning results effi-
ciently. The advantages of using PFZ advisories to
the Indian fishing community were described in this
research. A quantitative study of the net profit gains
gained by the reduction in the time for the search
and better catches and the percentage of success in
PFZ-led fishing is presented.

The remains of this document are follows: The
associated works for the IPFZ prediction are dis-
cussed in Section 2. The recommended methodology
employed in this paper was outlined in Section 3. The
study concludes with its future work in Section 4 and
Section 5 to provide the outcomes and discuss the
results.

2. Related works

In the most Economic Zone inedible the eastern
coastline of Malaysia, MODIS satellite pictures with
fishery catch data of 2008 have been generated by
[9] in the Rastrelliger Kanagurte PAFZ, Rastrelliger
Kanagurta (Cuvier 1817). The photos were classed
with appropriate scores and integrated to produce
a prospective map using GIS based on the selected
ranges. The results showed a preferred CHL range of
0.27 ± 0.030 mg/m3 for the greatest catch and OST
of 29.91 ± 0.33 ◦C. In the mapping of possible fish-
ing grounds, a total accuracy of 75% was attained.
This study shows how the Satellite Images and GIS
can map R. Kanagurta’s possible fishing areas as well
as how the biophysical characteristics are related to
fishing data.

In order to discover the relationships among their
spatiotemporal distribution and the ecological fac-
tors, [10] developed the HSI model to identify
possible fishing surroundings for sword fishes in the
southern Atlantic with long-water fishery and dis-
tance sensing data for the years 1998-2007 in Taiwan.
With most CPUE-defined variations explained by
OST, all environmental considerations such as OST,
assorted layer depth (ALD, SSHA), Ocean surface
and height are abnormality and ocean Bathymetric
(BAH) were extremely significant. In locations with
OST 27–28 C, SSHA -0.05 - 0.05 m, CHLs 0.1-0.2
mgm-3 and BAH 4000 to 4500 m, the most opti-
mal habitat has been found (i.e. hotspot). According
to the calculation of numerous pragmatic HSI mod-
els in grouping with various ecological conditions,
the arithmetical average model with five ecologi-
cal variables was shown to be most acceptable. The
biweekly maps in the projected HSI measurements
were checked by the experiential catch per unit effort
and suggested that this model may be utilized as
a tool to trustworthy forecast for probable fishing
grounds.

A short period of time association between skip-
jack tuna and ocean surface conditions was outlined
using fisheries data from [11]. The remote sensing of
OST and CHL (MODIS) were used to illustrate the
expected high capture zones. The highest skipjack
CPUEs were recorded mostly during the 2007 and
2009 study period in the coastal regions of Palopo
and Kolaka. The high tuna levels were well equiva-
lent to 0.15-0.40 mg mg3 CHL and 29.0-31.5◦C OST.
OST was good. The preferred ranges are a good indi-
cator to locate possible fishing sites for skipjacks at
first.

With the use of MODIS data on periodic spatial
sharing to the Ocean surface salinity (OSS), OST
and CHL in sea waters off the coast of Semporna,
Malaysia, [12] have shown to be projected by a poten-
tial fishery map. The OSS was evaluated with the
multi-linear regression analysis and the Brown and
Minnet algorithms were employed for the OST. The
parameters obtained have been validated by means
of in situ Hydro-Lab equipment measurement. The
factors are retrieved from adequate resolution imag-
ing spectro-radiometer (MODIS) photos indicate the
monogram values establishing the links among these
strictures, thus outlining the PFZ map. The Rô was
calculated at 0.93, and the larger fish catching areas
correlated with the greater PFZ levels, which means
the technique are ready to be used for near-real-time
fish predictions.
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Fig. 1. Proposed Financial Derivative Features based IPFZ Future Forecast Architecture.

The Developed a Decision Support System to fore-
cast the fishing ground of short Mackerel employing
MODIS satellite images [13]. The input data for the
development of Potential Fishing Zone is Sea Surface
Temperature, CHL and fish catch data with fishing
locations. The results displayed that OST and CHL
– circulations have a nearby connection to the shar-
ing of the fishing location of the short Mackerel to
regulate the association among catcher and oceano-
graphic parameters of linear regression. The range
of Sea Surface Temperature from 26 C to 29 C and
CHL - a from 1.19 mg/m3 to 1.25 mg/m3 identified
as the fishing location for short Mackerel in Makassar
strait.

Stimulated by artificial neural network features.
This research suggested alternative IPFZ predic-
tion approaches based on the Neural Network. As
described below, our key contributions include:

❖ Four models for learning Neural Networks with
the ability to accurately predict IPFZ were pro-
posed.

❖ The accuracy of the Better classification was
achieved by applying FFNN.

❖ Furthermore, we calculate the characteristics
with the compliance of the natural time order of
the data instead of selecting variables that ignore
the time order.

3. Proposed system

Most of the research articles are not supporting for
this Potential Fishing Zones (PFZs) future forecast,
so we have referred some of the rainfall detection

related articles because of the type of the input raw
data’s are maximum related to this work. From that
analysis we find [14] which leads improve the num-
ber of features information’s based on the Financial
Derivatives and geometrical features. This Economic
Derivatives features and geometric structures are sup-
port the Function Fitting Neural Network to predict
the future PFZs accurately. The Architecture of the
proposed Financial Derivative Features based IPFZ
Future Forecast is shows in the Fig. 1.

3.1. Dataset

Ocean Surface Temperature data (OSTs), chloro-
phyll, and Ocean Sat II - India (Fig. 2) Optical
Communication Band, and MODIS Aqua (US) are
used to detect potential fishing zones all over the place
of the Indian coastline, which are regularly together
by NOAA-AVHRR thermal-infrared frequencies and
Eumetsat (ESA) Met-OP satellites. For each sector
PFZ Announcements are produced in the form of PFZ
Maps and Texts, and where PFZ are positioned (lati-
tude and longitude data). Because of the sea’s lively
atmosphere, the selected place could be progressed
by recognised fishing zones on the atlases. The wind
speediness and route information is also incorporated
into the PFZ maps to guide fisherman on the likely
shifts in PFZ. This fact allows the fishermen to trace
the PFZ in the maps; on the other hand after a day
they will reach the site. The PFZ maps and text for the
accessibility of fisherman are also obtained in each
sector’s with their local languages. The PFZ text gives
data about exact position of (length, latitude), depth
at the PFZ site and the distance from important places



3640 R. Vinston Raja and K. Ashok Kumar / Financial derivative features based integrated potential fishing zone

Fig. 2. Retrieved Oceansat-2 Satellite Data Chlorophyl Image.

Table 1
Feature description

Number of Description
Features

1 Landing Center (LC)
2 UPDATED DATE (UD)
3 DIRECTION (DIR)
4 ANGLE
5 DISTANCE FROM (DIF)
6 DISTANCE TO (DIT)
7 DEPTH FROM (DEF)
8 DEPTH TO (DET)
9 LONGITUDE DEGREE
10 LONGITUDE MINUTE
11 LONGITUDE SECOND
12 LONGITUDE DIRECTION
13 LATITUDE DEGREE
14 LATITUDE MINUTE
15 LATITUDE SECOND
16 LATITUDE DIRECTION

on the coastlines (fishing landing stage centre, light
erections) clearly identifiable.

3.2. Pre-processing & normalization

The unused data and the missing datas are cleaned
using pre-processing methods. In addition, the shape
of the data are altered during normalization method.
In the beginning, the total number of the input
uncooked data is around 151031 with 16 features.
The whole raw datas are taken as training data and
Table 1 describes the total number of features.

Among the 16 features UPDATED DATE is use
as targeted data to training the suggested model. The
input information is taken from 15-5-2013 to 18-
7-2018, where the main aim of the objective is to
predict the potential fishery zone by giving future

data. Hence, only 15 unique features are used in
this research, however, only 13 unique features are
used for training the system. The reason is that the
feature LONGITUDE DIRECTION (East) and LAT-
ITUDE DIRECTION (North) has same information
for 151031 data, which is not useful for training the
proposed model. In order to training the projected
network and attain improved classification preci-
sion, the “-“ between the date is removed for the
period of pre-processing. The DIRECTION feature
has seven directions as Southern East (SE), Southern
West (SW), Northern East (NE), Southern (S), East
(E), Northern (N) and Western (W). This datas are
cannot be use openly to train the projected model,
hence these characters are rehabilitated into variable.
In addition, the Landing Center attribute are in an
floating format, which is altered into double layout for
improved prediction. Hence, 13 features are known
as input to the FFNN for predicting the PFZ. More-
over, in order to accurately predict the future PFZ, this
research study uses more quantity of features such
as Economic Derivatives and geometrical metrics,
which is described as follows.

3.3. Financial derivative features

The way the dataset are deal with is another delib-
eration, as it is uncommon for raw data values to
be give back to an algorithm to be used. The data
should consequently be revised to fit our challenging
domain. The aim of this research work is to predict the
IPFZ over the well-defined region based on the col-
lected fish capacity. An important factor that needs to
be considered is the need to come to an end of future
agreements, usually up to one year in advance, and the
indenture period might take any length. In addition,
given the unique character of the PFZ projections,
there is an even higher need for data transformation.
Therefore, we employ an Economic Derivative fea-
ture (Table 2) to give the data more understandable
and more appropriate for the problem area. The result
looks to be much less altered, which is why financial
derivatives are applied, with adding, volatility on a
daily basis appears to be lesser and a pattern is ease
to recognize in PFZ predicting. This approach of pre-
dicting IPFZ is extremely flexible and may be altered
to any length of interest.

3.4. Classification

The more number of features are set as input to the
proposed FFNN technique for forecasting the PFZ,
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Table 2
List of financial derivative and geometrical features used

S. No Financial Derivative Features

1 Autocorrelation
2 Mean Standard
3 Contrast
4 Deviation Sum
5 Correlation
6 Difference Adjacent
7 Cluster Prominence
8 Difference Moving
9 Cluster Shade
10 Average Standard
11 Dissimilarity
12 Deviation across MA
13 Energy
14 Last Maximum
15 Entropy
16 Last Minimum
17 Homogeneity
18 Maximum probability
19 Time Last Maximum
20 Sum variance
21 Time Last Minimum
22 Magnitude of Minimum
23 Magnitude of Maximum
24 Minimum Last Contract Length
25 Maximum Last Contract Length
26 Modification of Minimum over Last Contract Length
27 Modification of Maximum over Last Contract Length

where the different types of neural networks are used
to validate the presentation of the projected ideal.
These neural networks include ENN, RNN and CFN
are also discussed as in Comparative Techniques.

3.4.1. Proposed Function Fitting Neural
Network (FFNN)

A neural network associates a number of levels
of processing, engaging basic, simultaneous and bio-
logically nervous-inspired parts. It encompasses of a
layer of input, one or numerous hidden layers and a
layer of output. In every layer, the input of each layer
involves of a number of nodes, or neurons, so that
neurons join the different layers. Typically every neu-
ron has weights modified during the learning process
and modifies the strength of the signal of this neuron

Fig. 4. FFNN with one hidden layer.

as the weight decreases or grows. The structure of a
FFNN is defined in the Fig. 3.

The inputs of the neuron xk, k = 1, . . . k, and the
continuous bias term θi are multiplying and added up.
The result of n i shall be the g-enabled input. Initially,
however, a hyperbolic tangent (tanh) or a sigmoid
function is the most common activation function for
the mathematical accessibility. Tangent is defined as
hyperbolic

tanh(x) = 1 − e−x

1 + e−x
(1)

The node i becomes

yi = gi = g

⎛
⎝ K∑

j=1

wji + xj + θi

⎞
⎠ (2)

Linking many nodes in parallel and series, a FFNN
network is intended. A typical network for single
hidden layer is shown in Fig. 4.

The output, yi i = 1 and 2, of the FFNN network
becomes

yi = g

⎛
⎝ 3∑

j=1

w2
jig
(
n1

j

)
+ θ2

j

⎞
⎠

Fig. 3. Single node in a FFNN network.
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Fig. 5. The Proposed MATLAB FFNN Architecture.

= g

⎛
⎝ 3∑

j=1

w2
jig

(
K∑

k=1

w1
kj + θ1

j

)
+ θ2

j

⎞
⎠ (3)

From (3) we may deem a non-linear map from the
input space x to the output space (m = 3), the FFNn
is a non-linear parameterised map (here m = 3). The
weights of Wji and biases are parameters of θk

j . In
general, the g active functions are presumed to be the
same and known in every layer beforehand. The g
function is used for all layers in the figure.

When you use data (xi, yi) i = 1, . . . .N, it is a data
fitting issue to discover the optimal FFNN network.

The parameters
(
wk

ji, θ
k
j

)
to be determined are.

This is the procedure. The designer must first f
the architecture of the FFNN network: the number
of layers and neurons concealed in each layer. Fig-
ure 5 shows the total architecture. At this point, too,
the activation functions for each layer are expected

to be known. The weights and biases
(
wk

ji, θ
k
j

)
are

unknown parameters to be calculated.
After procurement the results from FFNN, the

post-processing is passed out. In this strategy, the
twofold organize of LC include is changed over into
characters. The factors of DIR are adjusted into seven
directions. Subsequently, the comes about will be in
an appropriate arrange, for occasion in case an client
allow a future information as input, the location label
name, its flow direction, latitude and longitude bear-
ings are shown as yield of FFNN show [15].

3.5. Comparison neural network models

3.5.1. Elman neural network
A feedback neural system improved by Elman in

1990 can be characterized as the Elman Neural Net-
work (ENN). ENN focuses on the training of the
neural background network (BPNN). The Elman neu-
ral network architecture is usually divided into 4
layers. The undertaking layer function is to save the
output of the cached layer. The output of the hid-
den layer connections its entrance through the delay

Fig. 6. Architecture of ENN.

and the storage of the undertaking layer [16] since
it is focused on the background of a neural network.
ENN Architecture is illustrated in Fig. 6.

The output of the hidden components of its input by
delaying and storing the company layer are based on
the BP network. This joining is sensitive to past infor-
mation and the network for interior input can increase
the dynamic data management capacity. The internal
state memorization allows for a dynamic planning
method, which allows the system to adapt to temporal
alterations across interval. [17].

The weight of the hidden layer input is w 1, the
weight of the hidden layer in the layer is w2, the
weight of the hidden layer to the output layer is w3;
u (k − 1) is the input for the neural network; x (k) is
the output for the hidden layer; y (k) is an output for
a hidden layer, xc (k) is the output of the undertaking
layer and y(k) is the output of that hidden layer. xc (k)
is the output of the undertaking layer and

x (k) = f (w2xc (k) + w1 (u (k − 1))) (4)

Where

xc (k) = x (k − 1) (5)

F is the transfer function hidden layer, which is usu-
ally used in S-type function; that is:

f (x) = (1 + e−x
)−1

(6)
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Fig. 7. RNN Architecture.

g is the output layer transfer function, which is often
a linear function; that is:

y (k) = g (w2x (k)) (7)

To revise weights and the error of network is:

E =
m∑

k=1

(tk − yk)2 (8)

where tk is represent as the output vector of the object.

3.6. Recurrent Neural Network (RNN)

Because of its extra feedback from the created layer
output between input and output layers, RNN is an
exclusive class of neural network.his layer is the con-
text layer that retains data between observations [18].
In the present period, the results of the processing in
the previous phase can be carried over and employed.
Iparticular in real time applications, the fundamen-
tal characteristic of RNN offers an extremely large
advantage. In adding to learning via all current inputs,
RNN can have an unbounded memory level, and can
thus learn connections over time [19]. The RNN is
showed in Fig. 7.

Hidden layer of Input is stated as in (9) as:

ht = gn (WxhXt + Whhht−1 + bn) (9)

Here ht is represented as the hidden layer at the
instance tth, Xt is represented as the input at instance
tth, moreover, gn is represented as the function, and
Wxh is represented as the input to hidden layer of
weight matrix Equation (10) which characterizes the
concealed to output layer is stated as:

Zt = gn (Whzht + bz) (10)

where the output vector is signified as Zt , and bz is the
bias or threshold, the unseen to output layer weight
matrix is Whz.

Fig. 8. Cascade FNN.

3.6.1. Cascade forward network
The Cascade Forward Network (CFN), which uses

back propagation to update weights, has similarities
with the FFNN. The primary dtinction ithat the con-
nection between the individual level and the input
at the next level is weighted [20]. In many cir-
cumstances, it has been thought that some cascade
bpropagation can perform better than FFNN [21].
An important feature of this CFN is that each neu-
ron layer is linked to the whole preceding neuron
layer [22].The pictographic representation of CFN is
in Fig. 8.

The CFN mathematical equation is specified as:

y =
n∑

i=1

f i (wixi) + fo

⎛
⎝ K∑

j=1

wo
jf

h
j

(
n∑

i=1

wh
jixi

)⎞⎠
(11)

Input layer activation function is provided in the
output layer as a f i, whereas input layer weight to
output layer is wi

i. In the event of the combination
of bias and an input layer, the activation function of
each neuron within the covered up level is written as
fh, in order to express equation (11) as

y =
n∑

i=1

f i (wixi) + fo

⎛
⎝wb +

k∑
j=1

wo
jf

h(wb
j +

n∑
i=1

wh
ijxi

⎞
⎠ (12)

The next section will show the performance anal-
ysis of proposed model.
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4. Results and discussion

MLAB R2021a and Intel i5 processor, with 1Tera
Byte hard disk and 8GB of RAM, is being explored
with the projected system.

4.1. Evaluation metrics

The challenge evaluation measurements are uti-
lized tsurvey our method’s execution in division and
classification. The assessment criteria for division
incorporate sensitivity (SE), specificity (SP), accu-
racy (AC), and false measures. The presentation
requirements are as follows:

accuracy = (tp + tn) /N (13)

sensitivity = tp rate (14)

specificity = tn rate (15)

precision = tp/ (tp + fp) (16)

recall = tp

tp + fn
(17)

f measure = 2 ∗ ((precision ∗ recall) /

(precision + recall)) (18)

gmean = sqrt (tp rate ∗ tn rate) (19)

Where tp, tn, fp and fn signify the true nega-
tive, false positive, number of a true positive TP, and
false negative FN, N describes the total number of
elements.

4.2. Performance study of proposed FFNN
model for 80%-20% of dataset

In this section, two different types of analysis are
carried out by considereing with and without finan-
cial derivative features to validate the performance of
proposed FFNN model with various neural networks.

Table 4
Evaluation of FFNN model Without Having Financial Derivative

Features

Classification Accuracy F Measure
Models

ENN 0.8381 0.1100
RNN 0.8178 0.0989
CFNN 0.8008 0.0912
FFNN 0.8586 0.1239

Initially, the available data is splits into 80%-20%,
i.e. 80% of data is used for training procedure and
remaining 20% of data is used for testing process.
Table 3 provides the experimental value of different
neural networks without financial derivative features
for the analysis of 80%-20% in available dataset.

The above Table 3 validate the performance of
projected model in terms of precision, specificity,
recall, sensitivity and gmean. The sensitivity and
recall are same for the all techniques, i.e. the ENN
model achieved 1.000 of sensitivity and recall, where
the proposed FFNN model achieved 1.000 of sensi-
tivity and recall. In the specificity experiments, the
ENN, RNN, CFNN and FFNN achieved 83%, 81%,
79% and 85%, which proves that the proposed FFNN
achieved better performance than other neural net-
works. The ENN and RNN achieved nearly 91% of
gmean, CFNN achieved 89% of gmean, but the pro-
posed FFNN achieved 92% of gmean and high value
of precision (i.e.0.0660). However, the existing neu-
ral network achieved only 0.0550 of precision value.
From this study, the proposed FFNN model attained
better presentation even without financial derivative
features. Table 4 and Fig. 9 shows the performance of
FFNN model in terms of accurateness and F-measure.

In the accuracy analysis of without having the
financial derivative features, the ENN, RNN, CFNN
and proposed FFNN achieved the 83%, 81%, 80%
and 85%. As well as, these techniques achieved the
f-measure of 0.11, 0.09, 0.09 and 0.12. From these
analysis, it is clearly proved that without financial
derivative features also, the proposed FFNN model
achieved better performance for 80%-20% of avail-
able dataset. The next Table 5 shows the validation

Table 3
Perfomance evaluation without financial derivative features

Classification Sensitivity Specificity Precision Recall Gmean
Technique

ENN 1.0000 0.8365 0.0582 1.0000 0.9146
RNN 1.0000 0.8160 0.0520 1.0000 0.9033
CFNN 1.0000 0.7988 0.0478 1.0000 0.8937
FFNN 1.0000 0.8572 0.0660 1.0000 0.9258
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Fig. 9. Accuracy and F-measure Evaluation of FFNN Without
Having Financial Derivative Features.

of proposed FFNN model with existing models by
considering the financial derivative features for the
80%-20% of available dataset.

In the specificity analysis, the ENN, RNN, CFNN
and FFNN achieved 86%, 88%, 85% and 90%,
where the sensitivity and recall of all techniques are
1.000, when implementing with financial derivative
features. In the precision experiments, the FFNN
achieved high performance (i.e. 0.0994), where the
ENN and CFNN achieved nearly 0.0670. The ENN,
RNN, CFNN and FFNN achieved gmeans of 92%,
94%, 92% and 95% that shows that the projected
FFNN model achieved better presentation than other
techniques. However, the FFNN achieved less per-
formance, when it is not implemented with Financial
Derivative features. This proves that these added fea-
tures plays a major role for predicting the future IPEZ
accurately. Table 6 and Fig. 10 shows the experimen-
tal investigation of proposed FFNN model in terms
of accuracy and F-measure for the 80%-20% of avail-
able dataset.

In the accuracy analysis, the ENN and CFNN
achieved low accuracy (i.e. nearly 86%), RNN
achieved 88% and proposed FFNN achieved 90%.
The ENN, RNN, CFNN and FFNN achieved the f-
measure of 0.12, 0.15, 0.12 and 0.18 that proves

0
0.1
0.2
0.3
0.4
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0.6
0.7
0.8
0.9

1

ENN RNN CFNN FFNN
Classification Technique

Accuracy F-measure

Fig. 10. Performance Evaluation of Proposed FFNN With Finan-
cial Derivative Features for 80%-20% of available dataset.

Table 6
Performance evaluation of proposed FFNN with financial

derivative features

Classification Accuracy F-measure
Models

ENN 0.8652 0.1292
RNN 0.8875 0.1509
CFNN 0.8600 0.1250
FFNN 0.9094 0.1808

FFNN achieved better performance than other neural
techniques. Without financial derivative features, the
proposed FFNN achieved less performance, which
is proven in Tables 3 and 4. The next section will
explain the experimental analysis for 60%-40% of
existing dataset.

4.3. Performance study of proposed FFNN
model for 60%-40% of dataset

Here, the performance of projected FFNN tech-
nique is validated with the 60% of training data and
40% of testing statistics. Table 7 shows the analysis of
FFNN in terms of several metrics without considering
the financial derivative features.

Table 5
Perfomance evaluation with financial derivative features

Classification Sensitivity Specificity Precision Recall Gmean
Technique

ENN 1.0000 0.8638 0.0690 1.0000 0.9294
RNN 1.0000 0.8864 0.0816 1.0000 0.9415
CFNN 1.0000 0.8586 0.0667 1.0000 0.9266
FFNN 1.0000 0.9085 0.0994 1.0000 0.9531
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Table 7
Perfomance evaluation of propsoed FFNN with financial derivative features

Classification Sensitivity Specificity Precision Recall Gmean
Models

ENN 1.0000 0.8027 0.0487 1.0000 0.8959
RNN 1.0000 0.8217 0.0536 1.0000 0.9065
CFNN 1.0000 0.7443 0.0380 1.0000 0.8627
FFNN 1.0000 0.8674 0.0708 1.0000 0.9314

Table 8
Performance evaluation of proposed FFNN with financial

derivative features

Classification Accuracy F-measure
technique

ENN 0.8047 0.0929
RNN 0.8234 0.1017
CFNN 0.7469 0.0732
FFNN 0.8688 0.1322

The above table validate the performance of pro-
posed model in terms of s ensitiveness, specificity,
precision, recall and gmean. The sensitivity and recall
are same for the all techniques, i.e. the RNN, CFNN
model achieved 1.000 of sensitivity and recall, where
the proposed FFNN model achieved 1.000 of sen-
sitivity and recall. In the specificity experiments,
the ENN, RNN, CFNN and FFNN achieved 80%,
82%, 74% and 86%, which proves that the proposed
FFNN achieved better performance than other neu-
ral networks. The ENN and RNN achieved nearly
90% of gmean, CFNN achieved 86% of gmean, but
the proposed FFNN achieved 93% of gmean and
high value of precision (i.e.0.0708). However, the
existing neural network achieved only 0.0450 of pre-
cision value. From this analysis, the proposed FFNN
model achieved improved performance with financial
derivative features. Table 8 and Fig. 11 shows the per-
formance of FFNN model in terms of accurateness
and F-measure with additional financial derivative
features.

In the accurateness analysis of with the financial
derivative features, the ENN, RNN, CFNN and pro-
posed FFNN achieved the 80%, 82%, 74% and 86%.
As well as, these techniques achieved the f-measure
of 0.09, 0.10, 0.07 and 0.13. From these analysis,
it is clearly proved that with financial derivative fea-
tures also, the proposed FFNN model achieved higher
performance for 60%-40% of available dataset. The
next section will presents the analysis of future data
prediction using proposed FFNN with other neural
networks.
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0.6

0.8

1

ENN RNN CFNN FFNN
Classification Technique

Accuracy F-measure

Fig. 11. Evaluation of FFNN With Financial Derivative Features
in terms of accurateness and F-measure.

Table 9
Perfomance evaluation with financial derivative features

Classification Sensitivity Specificity Precision Recall Gmean
models

ENN 1.0000 0.5833 0.0237 1.0000 0.7638
RNN 1.0000 0.5423 0.0216 1.0000 0.7364
CFNN 1.0000 0.5013 0.0199 1.0000 0.7080
FFNN 1.0000 0.6449 0.0277 1.0000 0.8030

4.4. Performance analysis of future data
prediction

By using the available datasets, the proposed
FFNN tries to predict the future IPFZ accurately in
terms of exactness, recollection, sensitivity, speci-
ficity and gmean. This analysis is taken for 80% of
training data and 20% of testing data and the experi-
mental values are given in Table 9.

The sensitivity and recall are same for the all tech-
niques, i.e. the ENN, RNN, CFNN model achieved
1.000 of sensitivity and recall, where the proposed
FFNN model achieved 1.000 of sensitivity and recall.
In the specificity experiments, the ENN, RNN, CFNN
and FFNN achieved 58%, 54%, 50% and 64%, which
proves that the proposed FFNN achieved better per-
formance than other neural networks. The ENN, RNN
and CFNN achieved nearly 75% of gmean, but the
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Table 10
Evaluation of proposed FFNN with financial derivative features

for future data

Classification Accuracy F-measure
modules

ENN 0.5875 0.0462
RNN 0.5469 0.0423
CFNN 0.5062 0.0389
FFNN 0.6484 0.0538
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Fig. 12. Evaluation of proposed FFNN With Financial Derivative
Features for future data.

proposed FFNN achieved 80% of gmean and high
value of precision (i.e.0.0277) than other neural net-
works (i.e.0.022 of precision). However, the CFNN
achieved only 0.0199 of precision value. From this
analysis, the projected FFNN model attained bet-
ter performance with financial derivative features.
Table 10 and Fig. 12 shows the performance of FFNN
model in terms of accurateness and F-measure with
additional financial derivative features.

In the accuracy analysis of with the financial
derivative features, the ENN, RNN, CFNN and pro-
posed FFNN achieved the 58%, 54%, 50% and 64%.
As well as, these techniques achieved the f-measure
of 0.04, 0.04, 0.03 and 0.05. From this analysis, it is
clearly proved that with financial derivative features

also, the proposed FFNN model achieved higher per-
formance for future data. However, the performance
is less when compared with the analysis of 80%-20%
and 60%-40% of data. The reason is that the layers of
FFNN model is needs to improve for the prediction
of future data.

4.5. Comparative analysis of Proposed FFNN
with various Existing approach

The above table clearly proves that the proposed
FFNN model achieved better accuracy than various
existing techniques. For example, the data mining
approach [23] and HMM [24] achieved nearly 83% of
accuracy, where SVM [25], RF [26] achieved nearly
79% of accuracy. But, the FFNN model achieved
90.94% of accuracy due to the usage of additional
financial derivative features as input for predicting
the future IPFZ accurately [27]. However, the perfor-
mance needs improvement by modifying the layers
of FFNN.

5. Conclusion

Satellites assist detect environmental elements that
affect fish habitat. Satellite observations Surface
temperature, water colour, wind and current data
comprise environmental characteristics that are well
measured using satellite sensor data. Fern sensing
data are used to obtain information on chlorophyl
content, primary productivity, coastal and estuarine
bio optical qualities and ocean traffic characteris-
tics. In this research study, OST dataset is used for
future prediction. Initially, 13 features are used as
input and after that financial derivative features are
added with those 13 features for accurate future pre-
diction of IPFZ. These more number of features are
given as input to FFNN and compared with ELN,
RNN and CFNN. The validation results proves that

Table 11
Comparative analysis of with various existing approach

Author Year Approach Data used Accuracy averaged

Natteshan et al [22] 20161 Data mining approach Fishery, SSC, OST data
from 2000-2004

87.11

Natteshan et al [22] 20162 Heuristic Rule approach SSC, OST and turbidity 84.71
de Souza et al 2016 [23] A Hidden Markov Model (HMM) S-AIS 83
da Silveira et al 2021 [24] SVM – 79
Naghibi et al. 2016 [25] Regression tree, and random forest

machine learning models
— 78.03

Proposed 2021 FFNN with Financial Derivative
Features

OST 90.94



3648 R. Vinston Raja and K. Ashok Kumar / Financial derivative features based integrated potential fishing zone

the FFNN achieved better performance than other
neural network techniques and less performance for
future data analysis. From this analysis, it is proved
that more of the research articles are not support-
ing for this PFZs future forecast (Table 11). In this
work we are major concentrated on the PFZs future
forecast, which leads the average accuracy of FFNN
model. In future, the performance can be improved by
implementing the ensemble classifiers with financial
derivative features.
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