
Journal of Intelligent & Fuzzy Systems 44 (2023) 8103–8117
DOI:10.3233/JIFS-223960
IOS Press

8103

BGRF: A broad granular random forest
algorithm

Xingyu Fua, Yingyue Chenb,∗, Jingru Yanb, Yumin Chena and Feng Xuc

aSchool of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
bSchool of Economics and Management, Xiamen University of Technology, Xiamen, China
cBeijing Srit Software Technology Co., Ltd., Beijing, China

Abstract. The random forest is a combined classification method belonging to ensemble learning. The random forest is also
an important machine learning algorithm. The random forest is universally applicable to most data sets. However, the random
forest is difficult to deal with uncertain data, resulting in poor classification results. To overcome these shortcomings, a broad
granular random forest algorithm is proposed by studying the theory of granular computing and the idea of breadth. First,
we granulate the breadth of the relationship between the features of the data sets samples and then form a broad granular
vector. In addition, the operation rules of the granular vector are defined, and the granular decision tree model is proposed.
Finally, the multiple granular decision tree voting method is adopted to obtain the result of the granular random forest. Some
experiments are carried out on several UCI data sets, and the results show that the classification performance of the broad
granular random forest algorithm is better than that of the traditional random forest algorithm.
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1. Introduction

Ensemble learning is a machine learning algo-
rithm, which is widely used in intrusion detection
[1], network security [2], emotion recognition [3],
image denoising [4], and so on. The ensemble
classifier establishes multiple training models on
the data set and constructs multiple independent or
related base classifiers. The ensemble classifier will
integrate the results of various base classifiers to
improve the model’s classification performance and
running time [5].

The random forest is an ensemble learning algo-
rithm proposed by Breiman in 2001 [6]. The
algorithm uses the bagging [7] ensemble to combine
multiple decision trees into a forest. At the same time,
the random subspace theory is introduced into the
training data set and the characteristics of the data
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set. So random forest solves the overfitting problem
of decision trees. In recent years, many scholars have
improved the random forest to enhance the perfor-
mance of the algorithm. Yates [8] et al. improved the
processing speed of random forests while maintain-
ing accuracy. Sun [9] et al. proved the consistency
of the algorithm by combining the random forest and
the Shapley value. Han [10] et al. proposed the dou-
ble random forest to further improve the prediction
accuracy. Random forest is suitable for large data sets,
which makes it develop rapidly. Random forest algo-
rithm has been widely used in many fields, such as
image classification [11], speech emotion recognition
[12], fault diagnosis [13], face recognition [14], and
risk assessment [15].

The number of decision trees will greatly affect the
classification effect of random forests. If the number
of decision trees is too small, the fitting ability is not
enough, which will reduce the accuracy of classifica-
tion. However, if the number of decision trees is too
large, the generalization ability is not enough, which
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leads to the reduction of the classification effect. In
2021, Pavlov [16] studied the maximum number of
decision trees in a random forest. How to choose the
appropriate number of decision trees is also a hot
topic in random forest research.

The random forest improves the classification
effect of the decision tree algorithm in large data
sets. However, the random forest algorithm has poor
classification accuracy in the face of data sets with
small dimensions. To solve this problem, a granu-
lar classifier is established on granular computing
theory. Granular computing is a new concept and
method in the field of artificial intelligence. Gran-
ular computing is mainly used to deal with uncertain
information and solve complex problems. Granular
computing transforms complex problems into several
simple problems and abstracts information granules
from information or data according to a certain char-
acteristic. In 1997, Zadeh [17] first proposed a general
framework for the study of fuzzy information granule
theory. In response to Zadeh’s point of view, many
researchers have joined the research work of infor-
mation granules. In 2013, Yao [18] et al. discussed
and sorted out the application fields and research
directions of granular computing theory. The main
models of granular computing are fuzzy sets [19,
20], rough sets [21, 22], concept-cognitive learning
[23, 24], three-way decision [25, 26], and so on. With
the rapid development in recent years, granular com-
puting has been successfully applied in many fields.
Zhang [27] et al. combined granular computing with
multi-label active learning to improve the accuracy
of the algorithm. Fu [28] et al. proposed a granu-
lar computing framework for hierarchical community
detection. Wei [29] et al. used information granula-
tion to improve the ReliefF algorithm. Wang [30] et
al. modeled the multi-granularity decision problem
from the perspective of uncertainty.

Data granulation is the basis of data analysis based
on granular computing theory. Data granulation is
the process of breaking down complex data into
smaller data granules. The methods of data gran-
ulation include fuzzy granulation [31], knowledge
granulation [32], neighborhood granulation [33, 34],
and so on. In 2018, Chen [35] et al. proposed a
broad learning system and designed a planar network.
Because the traditional classifier is not easy to deal
with uncertain data. To improve the performance of
the traditional classifier, a broad granulation method
is proposed based on the broad structure. The struc-
ture of granules is designed to be flat, which reduces
the complexity of the granule’s operation. The gran-

ules are essentially a set, so granular computing is
a set of operations. Data granulation is a common
technology and method in granular computing, but
there are a few examples of the combination of gran-
ulation and a classifier. This paper proposes a new
granular random forest algorithm based on broad
granulation. The samples form the broad granules
through the granulation of the relationship between
the features, and the broad granules constitute a broad
granular vector. The new features of broad granules
and granular vectors are defined, and then the gran-
ular decision tree model is constructed. The bagging
and random strategies are further designed, and a
granular random forest algorithm is proposed. From
the perspective of binary classification and multi-
classification, the effect of the size of the granular
random forest on the performance of the algorithm is
discussed. By designing the broad granular random
forest algorithm, the classification of the data is suc-
cessfully realized. Finally, the experimental analysis
verifies the correctness and effectiveness of the broad
granular random forest algorithm.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the particle and particle vectors.
Then we propose the broad granulation, and how the
granules operate. In Section 3, the granular random
forest algorithm is introduced, and then we propose a
granular decision tree, which serves as the base classi-
fier of a granular random forest. In addition, we com-
bine the proposed broad granulation technique with
the idea of random forest classification to propose
the broad granulation random forest algorithm, which
helps to improve the classification effect in binary
and multi-classification problems. In Section 4, some
experiments are conducted to show the effectiveness
of our proposed method. Finally, the results of the
study and future work are discussed in Section 5.

2. Broad granulation

A granule is an orderly collection, while a granular
vector is made up of granules. The operators related
to granular vectors are easy to be restricted and are
not easy to be extended and applied. The broad learn-
ing system is to transform the deep network of deep
learning into a plane network. In this paper, we design
flat granules to form a flat granular vector through the
relationship between the data features. Broad granu-
lation changes the dimensionality of the original data
and forms new features. Furthermore, the granular
features related to the broad granules and granular
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vectors are defined, and the granular classifier is con-
structed.

2.1. Granules and granular vectors

Definition 1. Let the set ga = {z1, z2, ..., zn}, where
zi ∈ Z, then the set is defined as the granule, and the
set cardinality of the granule is its dimension, then
the n-dimensional granule is represented as

g = ga = {z1, z2, ..., zn} = {zi}ni=1 (1)

Definition 2. Let ga = {zi}ni=1 be a granule, then the
m-dimensional granular vector is expressed as

G = [g1, g2, ..., gm

] = [ga

]m
a=1 (2)

The granular vector is composed of granules, and
the granules are an orderly set. Thus, the elements of
a granular vector are also orderly sets.

2.2. Broad granulation and broad granules

The elements in the granular vectors are arranged
in order. To better handle granular vectors, we use
lateral thinking to granulate. A feature is selected
from the data set, and then multiple features are
extracted from the data set as the reference features
for granulation. The sample is broadly granulated in
the reference features to form broad granules. All
data are broadly granulated, and the broad granules
of the same sample are combined into broad granular
vectors.

Let the information learning system be
U = (X, C ∪ B, f ), where the data set is
X = {x1, x2, ..., xm} and the characteristic set
is C = {c1, c2, ..., cn}. The reference feature set is
B = {b1, b2, ..., bk}, B � C, and k ≤ n. The f is an
information function.

Definition 3. Let the information learning system be
U = (X, C ∪ B, f ), where the reference is a feature
subset B � C. The granule is ga = {z1, z2, ..., zn},
and n = k. Then the broad feature set of the granule
can be expressed as

B = {b1, b2, ..., bk} = {bi}ki=1 (3)

Definition 4. Let the information learning system be
U = (X, C ∪ B, f ). For the training sample x ∈ X. A
single feature c ∈ C and a broad feature b ∈ B, then
the breadth of x over c and b is

wB (x) = 1 − |v (x, c) − v (x, b)| (4)

Definition 5. Let the information learning system
be U = (X, C ∪ B, f ), a single sample x ∈ X, a
single feature c ∈ C and a broad feature set B =
{b1, b2, ..., bk}, then the breadth of x in the feature
c and the broad feature is granulated, and the broad
granule formed is defined as

g = gB (x) = {zi}ki=1 = {z1, z2, ..., zk} (5)

where zi = wB (x) represents the breadth of the sam-
ple x at features c and bi. It is easy to know wB (x) ∈
Z, so zi ∈ Z. The broad granule is composed of the
broad granular nucleus, and g is called the broad gran-
ule, then zi is called the i-th broad granular nucleus.

Definition 6. Let the information learning system
be U = (X, C ∪ B, f ), a single sample x ∈ X, the
broad granule g = {z1, z2, ..., zk} of x, and C =
{c1, c2, ..., cn}, then the broad granular vector of x
is defined as

G = GC (x) = (gc1 (x) , gc2 (x) , ..., gcn (x)
)

(6)

where gcn is then the broad granule of the sample x

over the feature cn. For convenience, the feature set
C = {c1, c2, ..., cn} is labeled with an integer, and the
broad granular vector can be expressed as

G (x) = (g1 (x) , g2 (x) , ..., gn (x)) (7)

The broad granular vector is the broad granular
nucleus composition. Therefore, the broad granular
vector can be in the form of a broad granular kernel
matrix, which is expressed as

G (x) = {[z11, z12, ..., z1k] , [z21, z22, ..., z2k] ,

..., [zn1, zn2, ..., znk]}
(8)

Definition 7. Let the information learning system
be U = (X, C ∪ B, f ), where the broad feature set
B � C and the broad granular vector is G(x) =
{[z11, z12, ..., z1k], [z21, z22, ..., z2k], ..., [zn1, zn2, ...,

znk]}, then the granular features set of the information
learning system can be expressed as

CB = {[b11, b12, ..., b1k] , [b21, b22, ..., b2k] ,

..., [bn1, bn2, ..., bnk]}
(9)

Broad granulation is the process of building
broad granules and broad granular vectors. The
process of broad granulation is shown in Fig. 1.
For a data set X, each sample has a feature set
C = {c1, c2, ..., cn}. For convenience, the feature
set C is labeled with an integer, then the sample
vector is x = {x1, x2, ..., xn}. The sample is broadly
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Fig. 1. A process of broad granulation.

Table 1
An information learning system

U a b c

x1 0.2 0.7 0.5
x2 0.1 0.2 0.4
x3 0.5 0.6 0.1

granulated between features through w, where w

is the broad formula of Definition 4. Then, the
constructed broad granules g = {z1, z2, ..., zk}
are merged into a broad granular vector G. The
broad feature set is B = {b1, b2, ..., bk}, and a
new feature is formed after the sample feature and
the feature of the granules are recombined and
adjusted. The last broad granular vector is G(x) =
{[z11, z12, ..., z1k], [z21, z22, ..., z2k], ..., [zn1, zn2, ...,

znk]}.
The advantage of broad granulation is that it is sim-

ple and easy to construct granular vectors. The broad
granular vectors are input to a granular classifier to
improve the performance of the granular classifier
and obtain better results.

Example 1. Let the information learning system be
U = (X, C ∪ B, f ), as shown in Table 1. Suppose
B = C, the broad granulation is as follows.

The broad granules after the broad granulation of
the sample x1 are g1 (x1) = {1, 0.5, 0.7}, g2 (x1) =
{0.5, 1, 0.8}, g3 (x1) = {0.7, 0.8, 1}, respectively.

The broad granules after the broad granulation of
the sample x2 are g1 (x2) = {1, 0.9, 0.7}, g2 (x2) =
{0.9, 1, 0.8}, g3 (x2) = {0.7, 0.8, 1}, respectively.

The broad granules after the broad granulation of
the sample x3 are g1 (x3) = {1, 0.9, 0.6}, g2 (x3) =
{0.9, 1, 0.5}, g3 (x3) = {0.6, 0.5, 1}, respectively.

The broad granular vector of the sample x1 is
G (x1) = {[1, 0.5, 0.7] , [0.5, 1, 0.8] , [0.7, 0.8, 1]}.

The broad granular vector of the sample x2 is
G (x2) = {[1, 0.9, 0.7] , [0.9, 1, 0.8] , [0.7, 0.8, 1]}.

The broad granular vector of the sample x3 is
G (x3) = {[1, 0.9, 0.6] , [0.9, 1, 0.5] , [0.6, 0.5, 1]}.

2.3. Calculations of broad granules

The operations of the real numbers are closed on
the real numbers, then the operations of the defined
broad granules should also be closed on the broad
granules.

Definition 8. Let z = {zi}ki=1 and r = {ri}ki=1 be two
broad granules, then the operations of addition, sub-
traction, multiplication and division of two broad
granules are defined as

z ± r = {z1 ± r1, z2 ± r2, ..., zk ± rk} (10)

z × r = {z1 × r1, z2 × r2, ..., zk × rk} (11)

z ÷ r = {z1 ÷ r1, z2 ÷ r2, ..., zk ÷ rk} (12)

Definition 9. Let z = {zi}ki=1 and r = {ri}ki=1 be two
broad granules, then the ≤, < and == operations for
two broad granules are defined as

z ≤ r =
{{

1, if zi ≤ ri

0, if zi > ri

} k

i=1

(13)

z < r =
{{

1, if zi < ri

0, if zi ≥ ri

} k

i=1

(14)

z == r =
{{

1, if zi = ri

0, if zi /= ri

} k

i=1

(15)

Definition 10. Let G = [g1, g2, ..., gB

]
be the broad

granular vector, wheregb = {zi}ki=1 denotes the broad
granule. Let P = [p1, p2, ..., pB

]
be a probability
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granular vector, where pb is a probability granule
expressed as

pb = gb∑B
b=1 gb

(16)

The broad granules need to be calculated in a gran-
ular classifier, so the calculation method of the broad
granules is defined. Addition, subtraction, multipli-
cation, and division of two broad granules result
in one broad granule. After comparing the size of
broad granules, the result is also broad granules.
Broad granules can also calculate probabilities, and
the probabilities of broad granules need to be added,
subtracted, multiplied, and divided.

3. The granular random forest algorithm

The granular classifier inputs the granular vector
and granular feature and outputs a granular decision
tree or the confidence of the category after gran-
ular computation. Therefore, the granular classifier
can handle both binary and multi-class classification
problems. The granular decision trees are paralleliz-
able granular classifiers. The broad granules are a
structured representation, and the components of the
broad granules operate independently and are fully
parallelizable. According to the characteristics of
the broad granules, the granular random forest is
designed. Broad granules can be separated and com-
bined, which is the essence of a granular random
forest.

3.1. Granular decision trees

A granular decision tree is an algorithm that clas-
sifies granular vectors according to specified rules.
A granular decision tree consists of granular nodes,
leaf nodes, and directed edges. The broad granular
node represents the granular features attribute of the
granular vectors and can be divided into a root node
and an intermediate node. The leaf node represents
the class value of the granular vectors obtained by
classifying the path of the granular vectors from the
root node to the leaf node from top to bottom. A
directed edge is a line connecting nodes from top to
bottom. The goal of granular decision tree learning is
to create a granular classifier through granular vector
training. The granular classifier can effectively clas-
sify unknown granular vectors using a set of known
granular vectors.

The granular decision tree learning method is
mainly granular feature selection. The granular deci-
sion tree algorithm recursively selects the best
features, resulting in the best classification process
for each granule. In general, as the granular vectors
continue to be split, it is required that the branching
nodes of the granular decision tree contain as many
granules from the same class as possible. That is, the
node confusion degree of the granular decision tree
becomes low. The granular Gini index is a key index
to measure the disorder of granular vectors.

Definition 11. Let the information learning sys-
tem be U = (X, C ∪ B, f ), where the broad feature
set is B � C, the broad granular vector is G (x) =[
g (x)1 , g (x)2 , ..., g (x)B

]
. The ratio of the granu-

lar vector of type c is pb (b = 1, 2, ..., |yb|), then the
granular Gini index of G is

GGini (G) =
|yb|∑
b=1

∑
b′ /= b

pbpb′ =

1 −
|yb|∑
b=1

(
gb∑B

b=1 gb

)2
(17)

The lower the chaos degree of G is, the smaller
GGini (G) is. Because different branch granular
nodes contain granules of different granular vectors,
the weight

∣∣GC
∣∣ / |G| for the branch granular node is

weighted, then the granular Gini index can be calcu-
lated as

GGiniindex (G, g) =
C∑

c=1

|Gc|
(g1, g2, ..., gB)

GGini
(
Gc
) (18)

The granular decision tree is used as the base clas-
sifier of a granular random forest to improve the
classification performance of a granular random for-
est. The granular decision tree algorithm is described
in Algorithm 1.

The condition for the algorithm to stop computing
is that the granular Gini index is less than a prede-
termined threshold or that there are no more granular
features.

3.2. The broad granular random forest algorithm

A granular random forest is an ensemble learning
method based on a tree-shaped granular structure.
Granular random forest is a powerful nonparamet-
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Algorithm 1 Granular Decision Tree Algorithm (
GDT )
Input: The information learning system is U =
(X, C ∪ B, f );
Output:Granular decision tree.

1: X is normalized;
2: The broad granulation of x on the broad features

is gbi (x);
3: The broad granular vector forming x is GB (x) ={

gb1 (x) , gb2 (x) , ..., gbi (x)
}

;
4: Granular vector nodes are generated, and the

granular Gini index of the existing granular fea-
ture pair G is calculated;

5: The granular feature with the smallest granular
Gini index is selected as the cutting point to gen-
erate two granular nodes;

6: Repeat steps 4–5 for the granular nodes;
7: Generate a granular decision tree.

ric granular computing method. Granular random
forests can exert powerful performance in classi-
fication problems involving complex data sets. A
granular random forest consists of many individ-
ual granular decision trees. These granular decision
trees are grown by recursively performing binary
segmentation on granular vectors. The granular ran-
dom forest can reduce the variance of single granular
decision tree classification and the deviation of classi-
fication results by averaging the classification results
of a large number of granular decision trees. To ensure
that there is a large enough variance in the granu-
lar decision tree to achieve this variance reduction,
a granular randomness process is introduced into the
tree growth process. Each granular decision tree is
grown from different broad granules of the granular
vectors. For each split, randomly selected granules
are considered, not all granules. The principle of the
granular random forest algorithm is shown in Fig. 2.

Definition 12. Let the information learning system
be U = (X, C ∪ B, f ) and the broad granular vector
be G (x) = [g (x)1 , g (x)2 , ..., g (x)B

]
, then the gran-

ules are voted, and the formula for determining the
classification is as follows

G (X) = arg max
Y

B∑
b=1

C (gb (x) = Y ) (19)

Adjusting the parameters is an important part of
using the granular random forest method, which can
control the complexity of the random forest model.

Fig. 2. The principle of a granular random forest algorithm.

In a granular random forest, the number of granular
decision trees needs to be set carefully. The advan-
tage of particle random forest is that it can increase
features and effectively ensure the classification accu-
racy of the model when there is a sample imbalance.

The granular feature selection method currently
used is the granular Gini index. The granular decision
tree in the granular random forest algorithm uses the
granular Gini index probability model for granular
feature selection. The principle of the particle Gini
index is that the chaos degree of each particle node in
the binary tree is the lowest. When all granular nodes
belong to the same class, the granular Gini index value
is the smallest. That is to say, the chaos degree of
granular nodes is the lowest and the uncertainty of
granular feature selection is small.

The combination of broad granulation and ran-
dom forest can effectively improve the classification
effect. A detailed description of the broad granular
random forest algorithm is shown in Algorithm 2.

4. Experimental analysis

The experiment uses 8 sets of standard data sets in
the UCI database [36] for verification, and the specific
information is shown in Table 2.

To test the classification effect of the granular ran-
dom forest, each data set is randomly divided into
two-thirds of the training set and one-third of the test
set. According to the characteristics of the parame-
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Algorithm 2 Broad Granular Random Forest Algo-
rithm ( BGRF )
Input: The information learning system is U =
(X, C ∪ B, f ), and the number of granular decision
trees is T ;
Output:The strong learner is f (x).

1: X is normalized;
2: The broad granulation of x on the broad features

is gbi (x);
3: The broad granular vector forming x is GB (x) ={

gb1 (x) , gb2 (x) , ..., gbi (x)
}

;
4: Performing t times of random sampling with the

replacement on the broad granular vectors, and
acquiring n times in total to obtain a granule set
Gt containing n-th granules;

5: Train the t-th granular decision tree model Gt (x)
with the granular set Gt ;

6: Train the granular nodes of GDT;
7: Select a portion of the features from all the gran-

ular features on the granular node of the binary
tree;

8: Determine an optimal granular feature from the
selected partial granular features by definition
11;

9: As the left and right subtrees of the granular
decision tree, the optimal granular features are
traversed and segmented continuously;

10: Set the number of iterations T ;
11: Repeat steps 4–9 until the loop is stopped at the

iteration number t = T ;
12: The output is one or more categories with the

maximum probability counted by T granular
decision trees.

Table 2
The UCI data sets used in the experiment

Data sets Number of Number of Number of
sets samples features categories

Ionosphere 351 34 2
Sonar 208 60 2
Heart 270 13 2
Bupa 345 6 2
Vowel 990 13 11
Newthyroid 215 5 3
Ecoli 336 7 8
Glass 214 9 6

ters of the granular random forest, this experiment
sets the number of trees to verify the classification
effect. The start value is 50 trees, the end value is 500
trees, and the interval is set to 50 trees.

Fig. 3. F1 values for the data set Ionosphere on different numbers
of trees.

To test the effectiveness of the algorithm, the
experiment is divided into two parts. One is a
binary classification experiment, and the other is a
multi-classification experiment. Therefore, different
experimental results use different classification eval-
uation indicators. The dichotomous experiment was
evaluated using F1 and AUC values. Multiple clas-
sification experiments were evaluated in terms of
accuracy.

4.1. Bi-classification experiments

4.1.1. Number of trees affects
The F1 value is the harmonic average of preci-

sion and recall. It solves the contradiction between
precision and recall and is a commonly used evalua-
tion index in machine learning. Then the F1 value is
calculated as follows

F1 = 2 × (precision × recall)

precision + recall
(20)

The classification results of four UCI data sets
evaluated by F1 value are shown in Figs. 3–6:

As can be seen from Fig. 3, for the Ionosphere data
set, the F1 value of the BGRF algorithm is better than
that of the RF algorithm. When the number of trees is
300, the maximum F1 value of the BGRF algorithm
reaches 0.9445. When the number of trees is 500,
the maximum F1 value of the RF algorithm reaches
0.9251. The BGRF algorithm improves the F1 value
of the random forest by 2.10%.

As can be seen from Fig. 4, the F1 value of the
BGRF algorithm is better than that of the RF algo-
rithm for the Sonar data set. When the number of trees
is 400, the maximum F1 value of the BGRF algorithm
reaches 0.8399. When the number of trees is 150, the
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Fig. 4. F1 values of the data set Sonar on different numbers of
trees.

Fig. 5. The F1 values of the data set Heart on different numbers
of trees.

minimum F1 value of the BGRF algorithm is 0.8033.
The change in the number of trees improves the F1
value of the BGRF algorithm by 4.56%. When the
number of trees is 100, the maximum F1 value of the
RF algorithm reaches 0.7691. The BGRF algorithm
improves the F1 value of the random forest by 9.21%.

It can be seen from Fig. 5 that the F1 value of
the BGRF algorithm is better than that of the RF
algorithm for the Heart data set. The F1 value of the
BGRF algorithm decreases and then increases with
the number of trees. When the number of trees is
50, the maximum F1 value of the BGRF algorithm
reaches 0.7727. When the number of trees is 250, the
minimum F1 value of the BGRF algorithm is 0.7471.
The change in the number of trees improves the F1
value of the BGRF algorithm by 3.43%. However,
the RF algorithm is not sensitive to the change of the
number of trees, and the fluctuation of the F1 value
is small.

It can be seen from Fig. 6 that the F1 value of the
BGRF algorithm is better than that of the RF algo-

Fig. 6. The F1 values of the data set Bupa on different numbers of
trees.

Fig. 7. AUC values for the dataset Ionosphere on different numbers
of trees.

rithm for the Bupa data set. BGRF and RF algorithms
show an overall upward trend. When the number of
trees is 300, the maximum F1 value of the BGRF
algorithm reaches 0.7927. When the number of trees
is 250, the F1 value of the BGRF algorithm is 0.7821.
When the number of trees is between 250 and 300,
the BGRF algorithm improves the fastest by 1.36%.

The calculation method of the AUC value consid-
ers the classification ability of granular random forest
for both positive and negative examples. In the case
of unbalanced particles, it can still make a reasonable
evaluation of the particle random forest. The classifi-
cation results of the four UCI data sets evaluated by
AUC values are shown in Figs. 7–10:

It can be seen from Fig. 7 that the AUC value of the
BGRF algorithm is better than that of the RF algo-
rithm for the Ionosphere data set. When the number of
trees is 400, the maximum AUC value of the BGRF
algorithm reaches 0.9856. It shows that the BGRF
model works very well. When the number of trees is
400, the maximum AUC value of the RF algorithm
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Fig. 8. AUC values for the data set Sonar on different numbers of
trees.

Fig. 9. AUC values for the data set Heart on different numbers of
trees.

reaches 0.9717. The BGRF algorithm improves the
AUC value of the random forest by 1.43%.

It can be seen from Fig. 8 that the AUC value of the
BGRF algorithm is better than that of the RF algo-
rithm for the Sonar data set. When the number of trees
is 250, the maximum AUC value of the BGRF algo-
rithm reaches 0.9160. When the number of trees is 50,
the minimum AUC value of the BGRF algorithm is
0.8994. The change in the number of trees improves
the F1 value of the BGRF algorithm by 1.85%. When
the number of trees is 500, the maximum AUC value
of the RF algorithm reaches 0.8634. The BGRF algo-
rithm improves the AUC value of the random forest
by 6.09%.

It can be seen from Fig. 9 that for the Heart data set,
the AUC values of the BGRF and RF algorithms are
close. But the AUC value of the BGRF algorithm is
better than that of the RF algorithm. When the number
of trees is 250, the maximum AUC value of the BGRF
algorithm reaches 0.8936. The BGRF and RF algo-

Fig. 10. AUC values for the data set Bupa on different numbers of
trees.

rithms are relatively stable concerning the number of
trees.

It can be seen from Fig. 10 that the AUC value
of the BGRF algorithm is better than that of the RF
algorithm for the Bupa data set. When the number of
trees is 300, the maximum AUC value of the BGRF
algorithm reaches 0.7635. When the number of trees
is 500, the maximum AUC value of the RF algorithm
reaches 0.7381. The BGRF algorithm improves the
AUC value of the random forest by 3.44%.

From the experimental analysis of Figs. 3 to 10, it
can be seen that the change in the number of trees has a
greater impact on the F1 value. The BGRF algorithm
is better than the RF algorithm under the evaluation
index of F1 value and AUC value. The model of
BGRF is more stable and can provide greater help
for solving the binary classification problem. If too
many or too few trees are selected, the fitting effect
of the BGRF algorithm will be affected and the per-
formance of the model will be reduced. Therefore,
the classification effect of the BGRF algorithm can
be improved by selecting the appropriate number of
trees.

4.1.2. Data visualization
In binary classification problems, the confusion

matrix is a visual display tool to evaluate the quality
of the binary classification model. Each column of
the matrix represents the sample situation predicted
by the model; each row of the matrix represents the
real situation of the sample. The confusion matrix of
BGRF is shown in Figs. 11–14.

As you can see from Fig. 11, for the data set Iono-
sphere, the true positive is 39. The true negative is
77. The false negative is 0. The false positive is 1. As
can be seen from Fig. 12, for the data set Sonar, the
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Fig. 11. Confusion matrix of data set Ionosphere.

Fig. 12. Confusion matrix of data set Sonar.

Fig. 13. Confusion matrix of data set Heart.

Fig. 14. Confusion matrix of data set Bupa.

Fig. 15. ROC curve for the data set Ionosphere.

true positive is 27. The true negative is 33. The false
negative is 6. The false positive is 4. As can be seen
from Fig. 13, for the data set Heart, the true positive
is 31. The true negative is 42. The false negative is 9.
The false positive is 8. As can be seen from Fig. 14,
for the data set Bupa, the true positive is 27. The true
negative is 58. The false negative is 22. The false pos-
itive is 8. the BGRF has a high true positive and true
negative. the BGRF has a low false negative and false
positive. Therefore, the BGRF has better robustness.

The ROC curve is also a visualization method,
and the ROC curve is used for visual discrimination
through graphics. The area under the ROC curve is
the AUC value. The ROC curves for the BGRF are
shown in Figs. 15–18.

From Fig. 15, the AUC value is equal to 0.9859
for the data set Ionosphere. From Fig. 16, the AUC
value is equal to 0.9161 for the data set Sonar. From
Fig. 17, the AUC value is equal to 0.8934 for the data
set Heart. From Fig. 18, the AUC value is equal to
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Fig. 16. ROC curve for the data set Sonar.

Fig. 17. ROC curve for the data set Heart.

Fig. 18. ROC curve for the data set Bupa.

0.7635 for the data set Bupa. The BGRF has a high
AUC value. The ROC curve of the BGRF is closer
to the upper left corner. Therefore, the BGRF is a
relatively stable classifier.

4.1.3. Comparison of traditional algorithms
The number of trees in a granular random forest

affects the classification performance of a granu-
lar classifier. The experiment in this section mainly
compares the difference between the granular ran-
dom forest and the traditional classification algorithm
under different evaluation indexes. The number
of trees in the forest is selected as the number
with the best classification effect in the experi-
ment in Section 4.1.1. The classification results
of the four UCI data sets are shown in Tables 3
and 4.

It can be seen from Table 3 that in the data set Iono-
sphere, the SVM has the largest F1 value of 0.9342
in the traditional algorithm, while the F1 value of the
BGRF is 0.9445. In the data set Sonar, the SVM has
the largest F1 value of 0.8056 in the traditional algo-
rithm, while the F1 value of the BGRF is 0.8399. In
the data set Heart, the LR, KNN, and SVM have the
largest F1 value of 0.7429 in the traditional algorithm,
while the F1 value of the BGRF is 0.7727. In the data
set Bupa, the RF has the largest F1 value of 0.7737
in the traditional algorithm, while the F1 value of the
BGRF is 0.7925. The BGRF algorithm has a larger
F1 value than the traditional algorithm on the Iono-
sphere, Sonar, Hear, and Bupa data sets [36]. It shows
that the BGRF algorithm has better binary classifi-
cation performance than the traditional algorithm on
these data sets. In the comparison of the experimental
results of the Ionosphere data set, it can be seen that
the BGRF algorithm has the maximum value in the
F1 evaluation index. The results show that the BGRF
algorithm has the highest harmonic average of preci-
sion and recall, and has the best binary classification
effect.

It can be seen from Table 4 that the AUC value
of RF in the traditional algorithm is the highest on
the Ionosphere, Heart, and Bupa data sets. But the
RF algorithm is slightly low than the BGRF algo-
rithm proposed in this pap. On the Sonar data set,
the AUC value of SVM is the highest among the
traditional algorithms. However, the AUC value of
the BGRF algorithm is 0.031 higher than that of
SVM. On the whole, the performance of the proposed
BGRF algorithm is better than the other six traditional
algorithms. The higher the AUC of the BGRF algo-
rithm is, the better the binary classification model
is.

In general, the BGRF classification algorithm pro-
posed in this paper has a better binary classification
effect and a more stable binary classification model
on each standard data sets.
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Table 3
Comparison of the results of each algorithm on different data sets with F1 value as the performance evaluation index

Data sets BGRF CART RF GBDT LR KNN SVM

Ionosphere 0.9445 0.9093 0.9251 0.9305 0.9032 0.8805 0.9342
Sonar 0.8399 0.7251 0.7691 0.7437 0.7467 0.7632 0.8056
Heart 0.7727 0.6212 0.7203 0.7222 0.7429 0.7429 0.7429
Bupa 0.7925 0.7211 0.7737 0.7124 0.7356 0.6809 0.7532

Table 4
Comparison of the results of each algorithm on different data sets with AUC value as the performance evaluation index

Data sets BGRF CART RF GBDT LR KNN SVM

Ionosphere 0.9856 0.8811 0.9717 0.9627 0.8798 0.8594 0.9686
Sonar 0.9160 0.6802 0.8634 0.8563 0.8106 0.8805 0.8850
Heart 0.8936 0.6815 0.8867 0.8646 0.8718 0.8175 0.8766
Bupa 0.7635 0.6488 0.7381 0.7000 0.6652 0.5986 0.7078

Fig. 19. Accuracy of data set Vowel on different numbers of trees.

4.2. Multi-classification experiments

4.2.1. Number of trees affects
Accuracy is a common evaluation index for multi-

classification. The accuracy rate is well understood,
the number of correctly predicted samples divided by
the total number of samples. The classification results
of the four UCI data sets evaluated by accuracy are
shown in Figs. 19–22:

As can be seen from Fig. 19, for the Vowel data
set, the RF algorithm is higher than the BGRF algo-
rithm only once. When the number of trees is greater
than 50, the BGRF algorithm outperforms the RF
algorithm. When the number of trees is 450, the
maximum accuracy of the BGRF algorithm reaches
0.9709. It shows that the classification effect of the
BGRF model is very good. The accuracy of the BGRF
algorithm is 0.9467 when the number of trees is 50.
As the number of trees changes, the BGRF algorithm
improves its accuracy by 2.56%.

It can be seen from Fig. 20 that the accuracy of the
BGRF algorithm is better than that of the RF algo-

Fig. 20. Accuracy of the data set Newthyroid over different num-
bers of trees.

rithm for the Newthyroid data set. When the number
of trees is 500, the maximum accuracy of the BGRF
algorithm reaches 0.9750. It is shown that the BGRF
algorithm is suitable for this classification. When the
number of trees is 100, the maximum accuracy of the
RF algorithm reaches 0.9708. When the number of
trees is 100, the RF algorithm has reached its max-
imum and cannot continue to increase accuracy by
changing the number of trees.

As can be seen from Fig. 21, for the Ecoli data
set, the RF algorithm has only one higher accuracy
than the BGRF algorithm. When the number of trees
is 350, the maximum accuracy of the BGRF algo-
rithm reaches 0.8545. When the number of trees is
400, the maximum accuracy of the RF algorithm
reaches 0.8536, and the RF algorithm is higher than
the BGRF algorithm only once. The accuracy curves
of the BGRF and Random Forest are similar, but the
BGRF is slightly better than RF.

It can be seen from Fig. 22 that for the Glass data
set, the accuracy of the RF algorithm is equal to that
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Fig. 21. Accuracy of the data set Ecoli over different numbers of
trees.

Fig. 22. Accuracy of Data Set Glass on different numbers of trees.

of the BGRF algorithm only once. When the number
of trees is 300, the maximum accuracy of the BGRF
algorithm reaches 0.7514. When the number of trees
is 250, the accuracy of the RF algorithm is equal to
the BGRF algorithm. In general, the BGRF algorithm
is slightly better than the RF algorithm.

From the experimental analysis of Figs. 19 to 22, it
can be seen that the change in the number of trees will
affect accuracy. The BGRF algorithm is slightly bet-
ter than the RF algorithm under the evaluation index
of accuracy. In the multi-classification problem, the
BGRF model needs to choose the appropriate number
of trees to improve the accuracy of the algorithm.

4.2.2. Comparison of traditional algorithms
The number of trees in the forest is selected as the

value with the best classification effect in the exper-
iment in Section 4.2.1. The classification results of
the four UCI data sets are shown in Table 5.

It can be seen from Table 5 that in the comparison
of the experimental results of the Newthyroid data
set, the BGRF algorithm has the maximum value in
terms of the accuracy evaluation index. On the four
datasets, the BGRF algorithm proposed in this paper
has a slight improvement in accuracy compared with
the other six traditional algorithms. The results show
that the BGRF algorithm is very close to the true
value.

In general, the classification accuracy of the BGRF
classification algorithm proposed in this paper is rel-
atively high on each standard data set. The broad
granular random forest algorithm is different from
the traditional algorithm. The BGRF algorithm uses
width granulation technology to improve the struc-
ture so that the data can better meet the requirements
of the algorithm. The BGRF algorithm improves the
classification performance of the algorithm so that
the algorithm can be compatible with more types of
data sets. The BGRF has good AUC and F1 values in
binary classification problems, so the BGRF is robust.
In multi-classification problems, the BGRF has better
accuracy, so the BGRF has scalability.

5. Conclusion

To improve the performance of random forests in
dealing with classification problems, a broad granular
random forest algorithm is proposed in this paper. The
algorithm introduces the broad granulation method to
construct the broad granules and the broad granular
vectors in the data sets system. The decision rule of
the broad granules is defined, and the broad gran-
ular vectors are applied. A granular decision tree is
designed to effectively improve the overall classifica-
tion performance of the granular random forest. The
method of width granulation is an improved strategy
for the granular classifier. It can enhance the classifi-

Table 5
Comparison of the results of each algorithm on different data sets with accuracy as the performance evaluation index

Data sets BGRF CART RF GBDT LR KNN SVM

Vowel 0.9709 0.7915 0.9594 0.8561 0.5242 0.8000 0.8394
Newthyroid 0.9750 0.9222 0.9708 0.9444 0.8194 0.8889 0.9167
Ecoli 0.8545 0.8241 0.8536 0.8045 0.7857 0.8304 0.8393
Glass 0.7514 0.6583 0.7444 0.6778 0.5833 0.5694 0.6806
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cation performance of the original algorithm when it
is applied to the random forest algorithm.

The broad granular random forest algorithm pro-
posed in this paper has good accuracy in dealing
with multi-classification problems. In addition, the
BGRF also has better classification performance
for binary classification problems, and the BGRF
improves the AUC value and F1 value. The BGRF is
good at working with collection-type data. However,
the BGRF is not suitable for processing image and
video data. In future work, the granulation method
will be improved. Combining the granulation method
with the neighborhood rough set, a new granulation
method is proposed to generate granules that are more
suitable for the classifier. In future work, a new gran-
ular classifier is designed as the base classifier to
improve the robustness and flexibility of the ensemble
model. Future research will focus on the classification
of real complex data, and further expand the scope of
application of broad granular random forest.
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