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Abstract. In a recent work (Wang et al. 2020), a partial order �, a join operation � and a meet operation � of probabilistic
linguistic term sets (PLTSs) were introduced and it was proved that L1 � L2 � L1 � L1 � L2 and L1 � L2 � L2 � L1 � L2.
In this paper, we demonstrate that its join and meet operations are not satisfy the above requirement. To satisfy this requirement,
we modify its join and meet operations. Moreover, we define a negation operation of PLTSs based on the partial order �. The
combinations of the proposed negation, the modified join and meet operations yield a bounded, distributive lattice over PLTSs.
Meanwhile, we also define a new join operation and a new meet operation which, together with the negation operation, yield
a bounded De Morgan over PLTSs.
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1. Introduction

1.1. Related works

Many mathematical modelings have been pre-
sented recently to deal with randomness, fuzziness,
vagueness and uncertainty of decision environment.
To deal with the complexity of decision making, com-
bining different theories together has emerged as an
important trend, such as probabilistic rough sets [1,
2], rough graphs [3–5], fuzzy soft graphs [6, 7] and
Hesitant fuzzy linguistic term sets [8, 9].

Probabilistic linguistic term sets (PLTSs) was
introduced by Pang et al. [10] as a combination of
probability theory and linguistic term sets. In recent
years, PLTSs have been successful applied in several

∗Corresponding author. Songsong Dai, School of Electronics
and information engineering, Taizhou University, Taizhou 318000,
Zhejiang, China. E-mail: ssdai@tzc.edu.cn.

applications, such as supplier evaluation [11], sus-
tainability evaluation [12], shelter selection [13], and
online product selection [14]. Especially, evidence
theory is used widely as a group decision making
method.

In many theoretical and application studies of
PLTSs, operations play an important role. Several
operations were defined based on different models,
such as the symbolic linguistic model [10, 15, 16],
and semantic linguistic model [17, 18]. Some authors
used evidence theory to define PLTSs operations [19,
20]. Very recently, Wang et al. [21] introduced sev-
eral operations of PLTSs based on the stochastic
order of PLTSs. A reasonable operation of PLTSs is
closely related to the order of PLTSs. For example, a
join operation � and a meet operation � should sat-
isfy L1 � L2 � L1 � L1 � L2 and L1 � L2 � L2 �
L1 � L2 for the order � of PLTSs. However, we argue
that the join operation and meet operation in [21] do
not satisfy the above requirement. In a word, Theorem
4 in [21] is incorrect.
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1.2. Motivation of our research

The motivation of this paper comes from three
aspects as following:

1) As discussed above, the study on probabilistic
linguistic term set operations is a research topic
with important theoretical and practical effect.
That is why it has been an issue worth of cur-
rent research, and hence it deserves our further
pursuit.

2) The join operation � and meet operation �
are two fundamental operations. L1 � L2 �
L1 � L1 � L2 and L1 � L2 � L2 � L1 � L2
are their basic requirements. If the join opera-
tion and meet operation do not satisfy the basic
requirements, then we need to reconsider these
two fundamental operations.

3) The negation ¬ is another fundamental opera-
tion. We cannot ignore the negation operation
in the area of probabilistic linguistic term set
operations, and hence it deserves our further
pursuit.

Based on aforementioned consideration, in this
paper, as a supplement of these topics from the the-
oretical point of view, we first modify join and meet
operations in Wang et al [21], and then introduce the
negation operation which have not been studied in
details in the literature. Additionally, we introduce a
new pair of join and meet operations. The main results
of the paper are lattice properties of these probabilis-
tic linguistic term set operations. Comparatively, our
proposed operations have the following advantages.

1) The proposed operations are satisfactorily con-
sistent with Wang et al.’s partial order � of
PLTSs. This partial order is reasonable from
the point of the classical stochastic order in
probabilistic theory.

2) The combinations of the proposed negation,
join and meet operations yield De Morgan lat-
tices over PLTSs. This means, the proposed
operations are interconnected by an algebraic
structure.

1.3. Framework of the paper

The rest of this article is organized as follows.
Section 2 recalls necessary preliminaries regarding
PLTSs. In Section 3, we modify Wang et al.’s join
and meet operations, define some new operations and
study their lattice properties. In Section 4, an exam-

ple is given to show the effectiveness of our operators
applied in decision making. The article is concluded
in Section 5.

2. Preliminaries

Linguistic variables are effective to evaluate qual-
itative information of objects [22, 23]. In general, we
use a linguistic term set to contain all possible values
of a linguistic variable:

S = {s0, s1, · · · , sλ} (1)

where λ + 1 is the granularity of S, sα is generated by
a predefined syntactic rule and restricted by a fuzzy
set.

Definition 1. [10]. Let S = {s0, s1, · · · , sλ} be an lin-
guistic term set. A probabilistic linguistic term set L
on S is a subset of S in which each linguistic term is
associated with its probability:

L =
{

sk(pk)|sk ∈ S, pk ≥ 0, k = 0, 1, · · · , λ,

λ∑
k=0

pk ≤ 1
}

(2)

where pk is the probability of sk being the real value
of the linguistic variable.

Let us denote by LS the set of all probabilistic
linguistic term set on the linguistic term set S.

Remark 1. εS = 1 − ∑λ
k=0 pk is called ignorance,

which are useful in the incomplete evaluations. In
this paper, we assume that εS = 0.

For a probabilistic linguistic term set L, its cumu-
lative distribution function is defined as:

FL(x) =
∑
α≤x

Pr({sα}) =
∑
α≤x

pα, x ∈ R (3)

where R is the set of real numbers.

Definition 2. [21]. The partial ordering of LS

induced by the stochastic order is defined as follows
∀L1, L2 ∈ LS

L1 � L2 ⇔ FL1 (x) ≥ FL2 (x), ∀x ∈ R. (4)

They [21] also define the join and meet operations
as follow:

FL1�L2 (x) = max{FL1 (x), FL2 (x)}, ∀x ∈ R; (5)

FL1�L2 (x) = min{FL1 (x), FL2 (x)}, ∀x ∈ R. (6)



S. Dai and J. Zheng / On probabilistic linguistic term set operations 9995

Obviously, ∀x ∈ R

max{FL1 (x), FL2 (x)} ≥ FL1 (x) ≥ min{FL1 (x), FL2 (x)}. (7)

By the definition of �, we have

L1 � L2 � L1 � L1 � L2. (8)

This is obviously unreasonable. Theorem 4 in [21] is
incorrect.

3. Probabilistic linguistic term set operations

3.1. Join and meet operations

We first modify Wang et al.’s join and meet opera-
tions as follow:

FL1∪L2 (x) = min{FL1 (x), FL2 (x)}, ∀x ∈ R; (9)

FL1∩L2 (x) = max{FL1 (x), FL2 (x)}, ∀x ∈ R. (10)

Theorem 1. For any L1, L2, L3 ∈ LS ,

(i) L1 ∪ L2 and L1 ∩ L2 are PLTSs;
(ii)

L1 ∩ L2 � L1 � L1 ∪ L2,

L1 ∩ L2 � L2 � L1 ∪ L2;

(11)

(iii)

L1 ∩ (L2 ∪ L3) = (L1 ∩ L2) ∪ (L1 ∩ L3),

L1 ∪ (L2 ∩ L3) = (L1 ∪ L2) ∩ (L1 ∪ L3).

Proof. Omitted. �

3.2. Negation operations

First, we define a negation operation on LS based
on �.

Definition 3. A function ¬ : LS → LS is a negation
if

(i) ¬L� = L⊥,¬L⊥ = L� whereL� = {sλ(1)}
and L� = {s0(1)};

(ii) ¬ is an inverted order mapping, i.e.,

L1 � L2 ⇒ ¬L2 � ¬L1. (12)

In addition, a negation ¬ satisfies:

(iii) the continuity property if ¬ is a continuous
function;

(iv) the involutivity property if ¬ is an involution,
i.e., for any L ∈ LS

¬(¬L
) = L. (13)

Theorem 2. For any L =
{

sk(pk)|sk ∈ S, pk ≥
0, k = 0, 1, · · · , λ,

∑λ
k=0 pk = 1

}
∈ LS , define

¬L = {s0(pλ), s1(pλ − 1), · · · , sλ(p0)}. (14)

Then it is a negation of L. Moreover, it is an involu-
tion.

Proof. (i) and (iv) are clear.
(ii) Let L1 = {sk(pk)|k = 0, 1, · · · , λ} and L2 =

{sk(qk)|k = 0, 1, · · · , λ}. If L1 � L2, i.e., for any t ≥
0,

t∑
j=0

pj ≥
t∑

j=0

qj.

Then

1 −
t∑

j=0

pj ≤ 1 −
t∑

j=0

qj.

By
λ∑

j=0
pj =

λ∑
j=0

qj = 1, we have for any a ≤ λ,

λ∑
j=a

pj ≤
λ∑

j=a

qj.

This means F¬L1 (x) ≤ F¬L2 (x), ∀x ∈ R. We thus
get ¬L1 � ¬L2. �

Example 1. Given a linguistic term set S =
{s0, s1, s2}. Consider two PLTSs

L1 = (s0(0.1), s1(0.2), s2(0.7)), (15)

L2 = (s0(0.2), s1(0.5), s2(0.3)). (16)

Their cumulative distribution functions respectively
are

FL1 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.1, 0 ≤ x < 1,

0.3, 1 ≤ x < 2,

1, x ≥ 3.

(17)
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FL2 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.2, 0 ≤ x < 1,

0.7, 1 ≤ x < 2,

1, x ≥ 3.

(18)

Clearly, L1 � L2 because FL1 (x) ≤ FL2 (x), ∀x ∈
R.

By the definition of ¬ in Equation 14, we have

¬L1 = (s0(0.7), s1(0.2), s2(0.1)), (19)

¬L2 = (s0(0.3), s1(0.5), s2(0.2)). (20)

Then their cumulative distribution functions respec-
tively are

F¬L1 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.7, 0 ≤ x < 1,

0.9, 1 ≤ x < 2,

1, x ≥ 3.

(21)

F¬L2 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.3, 0 ≤ x < 1,

0.8, 1 ≤ x < 2,

1, x ≥ 3.

(22)

Clearly, ¬L1 � ¬L2 because F¬L1 (x) ≥
F¬L2 (x), ∀x ∈ R.

Now we consider the continuity of the negation
operation ¬. First, we need a distance measure for
LS .

Definition 4. A function d : LS × LS → [0, 1] is
called a distance measure of LS , if for any
L1, L2, L3 ∈ LS ,

(D1) 0 ≤ d(L1, L2) ≤ 1,
(D2) d(L1, L2) = 1 if and only if L1 = L2,
(D3) d(L1, L2) = d(L2, L1),
(D4) d(L1, L2) + d(L2, L3) ≥ d(L1, L3).

Theorem 3. For any L1, L2 ∈ LS , the following func-
tion

d(L1, L2) = sup
x∈R

|FL1 (x) − FL2 (x)| (23)

is a distance measure of LS .

Proof. (D1)-(D3) are clear.
(D4) For any L1, L2, L3 ∈ LS

d(L1, L3)

= sup
x∈R

|FL1 (x) − FL3 (x)|

= sup
x∈R

|FL1 (x) − FL2 (x) + FL2 (x) − FL3 (x)|

≤ sup
x∈R

(|FL1 (x) − FL2 (x)| + |FL2 (x) − FL3 (x)|)

≤ sup
x∈R

|FL1 (x) − FL2 (x)| + sup
x∈R

|FL2 (x) − FL3 (x)|

= d(L1, L2) + d(L2, L3).

�

Theorem 4. If L1 � L2 � L3 then d(L1, L3) ≥
d(L1, L2) and d(L1, L3) ≥ d(L2, L3).

Proof. Omitted. �

Theorem 5. For any L1, L2 ∈ LS ,

d(L1, L2) = d(¬L2, ¬L1)

Proof. Let

L1 =
{

s0(p0), s1(p1), · · · , sλ(pλ)
}

,

L2 =
{

s0(q0), s1(q1), · · · , sλ(qλ)
}

.

Then

¬L1 =
{

s0(pλ), s1(pλ−1), · · · , sλ(p0)
}

,

¬L2 =
{

s0(qλ), s1(qλ−1), · · · , sλ(q0)
}

.

By the definition of the diatance d, we have

d(L1, L2) = sup
t≥0

∣∣∣
t∑

j=0

pj −
t∑

j=0

qj

∣∣∣

= sup
t≥0

∣∣∣(1 −
t∑

j=0

pj) − (1 −
t∑

j=0

qj)
∣∣∣

= sup
t≥0

∣∣∣
λ∑

j=t+1

pj −
λ∑

j=t+1

qj

∣∣∣

= d(¬L1, ¬L2).

�
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Corollary 1. The negation operation ¬ in Equation
14 is continuous in the distance of Equation 23.

Example 2. Consider three PLTSs as follows:

L1 =
{

s0(0.4), s1(0.5), s3(0.1)
}

,

L2 =
{

s0(0.5), s1(0.4), s3(0.1)
}

,

L3 =
{

s0(0.3), s1(0.5), s3(0.2)
}

.

Then their cumulative distribution functions respec-
tively are

FL1 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.4, 0 ≤ x < 1,

0.9, 1 ≤ x < 2,

1, x ≥ 3.

(24)

FL2 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.5, 0 ≤ x < 1,

0.9, 1 ≤ x < 2,

1, x ≥ 3.

(25)

FL3 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.3, 0 ≤ x < 1,

0.8, 1 ≤ x < 2,

1, x ≥ 3.

(26)

It is clear that FL3 (x) ≤ FL1 (x) ≤ FL2 (x), ∀x ∈ R

,i.e., L2 � L1 � L3.

d(L1, L2) = supx |FL1 (x) − FL2 (x)| = 0.1,

d(L1, L3) = supx |FL1 (x) − FL3 (x)| = 0.1,

d(L2, L3) = supx |FL2 (x) − FL3 (x)| = 0.2.

Clearly, we have d(L1, L2) < d(L2, L3) and
d(L1, L3) < d(L2, L3).

3.3. Lattice properties

The negation ¬, join ∪ and meet ∩ operations on
LS have the following properties.

Theorem 6. For any L1, L2, L3 ∈ LS , the following
properties hold:

(1) L1 ∩ L1 = L1, L1 ∪ L1 = L1,
(2) L1 ∩ L2 = L2 ∩ L1, L1 ∪ L2 = L2 ∪ L1,
(3) L1 ∪ L� = L� and L1 ∩ L� = L1,

(4) L1 ∩ L⊥ = L⊥ and L1 ∪ L⊥ = L1,
(5) (L1 ∩ L2) ∩ L3 = L1 ∩ (L2 ∩ L3),

(L1 ∪ L2) ∪ L3 = L1 ∪ (L2 ∪ L3),
(6) ¬(L1 ∩ L2) = ¬L1 ∪ ¬L2,

¬(L1 ∪ L2) = ¬L1 ∩ ¬L2.

Proof. (1)-(5) are clear. We only give the proof of (6).
Let

L1 =
{

s0(p0), s1(p1), · · · , sλ(pλ)
}

,

L2 =
{

s0(q0), s1(q1), · · · , sλ(qλ)
}

.

FL1∩L2 (x) = max(FL1 (x), FL2 (x)), ∀x ∈ R

Then

L1 ∩ L2 =
{

s0(g(0)), s1(g(1)), · · · , sλ(g(λ))
}

where

g(y) = FL1∩L2 (y) − FL1∩L2 (y − 1), y = 0, 1, · · · , λ.

Then

¬(L1 ∩ L2) =
{

s0(f (0)), s1(f (1)), · · · , sλ(f (λ))
}

where

f (x) = g(λ − x)

= FL1∩L2 (λ − x) − FL1∩L2 (λ − x − 1),

for x = 0, 1, · · · , λ.

Because

¬L1 =
{

s0(pλ), s1(pλ−1), · · · , sλ(p0)
}

,

¬L2 =
{

s0(qλ), s1(qλ−1), · · · , sλ(q0)
}

.

For any x = 0, 1, · · · , λ

F¬L1∪¬L2 (x)

= min(F¬L1 (x), F¬L2 (x)
)

= min
( λ∑

j=λ−x

pj,

λ∑
j=λ−x

qj

)

= min
(

1 −
λ−x−1∑

j=0

pj, 1 −
λ−x−1∑

j=0

qj

)

= 1 − max
( λ−x−1∑

j=0

pj,

λ−x−1∑
j=0

qj

)
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= 1 − max
(
FL1 (λ − x − 1), FL2 (λ − x − 1)

)

Then

¬L1 ∪ ¬L2 =
{

s0(h(0)), s1(h(1)), · · · , sλ(h(λ))
}

where

h(x) =
(

1−max
(
FL1 (λ − x − 1), FL2 (λ − x−1)

))

−
(

1 − max
(
FL1 (λ − x), FL2 (λ − x)

))

= max
(
FL1 (λ − x), FL2 (λ − x)

)

− max
(
FL1 (λ − x − 1), FL2 (λ − x − 1)

)

= FL1∩L2 (λ − x) − FL1∩L2 (λ − x − 1)

= f (x)

for x = 0, 1, · · · , λ.

We thus get ¬(L1 ∩ L2) = ¬L1 ∪ ¬L2. We can
prove ¬(L1 ∪ L2) = ¬L1 ∩ ¬L2 in a similar man-
ner. �

Example 3. Consider two PLTSs as follows:

L1 =
{

s0(0.7), s1(0.1), s3(0.2)
}

,

L2 =
{

s0(0.6), s1(0.3), s3(0.1)
}

.

Then their cumulative distribution functions
respectively are

FL1 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.7, 0 ≤ x < 1,

0.8, 1 ≤ x < 2,

1, x ≥ 3.

(27)

FL2 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.6, 0 ≤ x < 1,

0.9, 1 ≤ x < 2,

1, x ≥ 3.

(28)

Then

FL1∪L2 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.6, 0 ≤ x < 1,

0.8, 1 ≤ x < 2,

1, x ≥ 3.

(29)

FL1∩L2 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.7, 0 ≤ x < 1,

0.9, 1 ≤ x < 2,

1, x ≥ 3.

(30)

Thus

L1 ∪ L2 = {
s0(0.6), s1(0.2), s3(0.2)

}
, (31)

L1 ∩ L2 = {
s0(0.7), s1(0.2), s3(0.1)

}
. (32)

Then

¬(L1 ∪ L2) = {
s0(0.2), s1(0.2), s3(0.6)

}
, (33)

¬(L1 ∩ L2) = {
s0(0.1), s1(0.2), s3(0.7)

}
. (34)

By the concept of ¬, then

¬L1 =
{

s0(0.2), s1(0.1), s3(0.7)
}

, (35)

¬L2 =
{

s0(0.1), s1(0.3), s3(0.6)
}

. (36)

And their cumulative distribution functions respec-
tively are

F¬L1 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.2, 0 ≤ x < 1,

0.3, 1 ≤ x < 2,

1, x ≥ 3.

(37)

F¬L2 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.1, 0 ≤ x < 1,

0.4, 1 ≤ x < 2,

1, x ≥ 3.

(38)

Then

F¬L1∩¬L2 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.2, 0 ≤ x < 1,

0.4, 1 ≤ x < 2,

1, x ≥ 3.

(39)

F¬L1∪¬L2 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.1, 0 ≤ x < 1,

0.3, 1 ≤ x < 2,

1, x ≥ 3.

(40)

Thus

¬L1 ∩ ¬L2 = {
s0(0.2), s1(0.2), s3(0.6)

}
, (41)

¬L1 ∪ ¬L2 = {
s0(0.1), s1(0.2), s3(0.7)

}
. (42)
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Clearly, ¬(L1 ∪ L2) = ¬L1 ∩ ¬L2 and ¬(L1 ∩
L2) = ¬L1 ∪ ¬L2.

Theorem 7. (LS, ∩, ∪, ¬, L⊥, L�) is a bounded De
Morgan lattice.

Theorem 8. (LS, ∩, ∪, ¬, L⊥, L�) is a distributive
lattice.

We give a connection between ∩, ∪ and Wang et
al’s order � in Definition 2.

Corollary 2. Let L1, L2 ∈ LS , the following are
equivalent:

(1) L1 � L2;
(2) L1 ∩ L2 = L1;
(3) L1 ∪ L2 = L2.

Note that, this relationship between Wang et al’s
�, � and � is not violated .

3.4. New join and meet operations

We define a new pair of join and meet operations
on LS .

Definition 5. For any two PLTSs L1 and L2,

L1 =
{

s0(p0), s1(p1), · · · , sλ(pλ)
}

,

L2 =
{

s0(q0), s1(q1), · · · , sλ(qλ)
}

.

the join and meet of L1 and L2 are, respectively, given
by

L1 ∨ L2 =
(
s0(p0 ∧ q0), · · · , sλ−1(pλ−1 ∧ qλ−1) (43)

, sλ

(
1 − ( λ−1∑

j=0

pj ∧ qj

)))
,

L1 ∧ L2 = (44)

(
s0

(
1 − ( λ∑

j=1

pj ∧ qj

))
, s1(p1 ∧ q1), · · · , sλ(pλ ∧ qλ)

)
.

Lemma 1. For any two PLTSs L1 and L2,

(1) L1 ∧ L2 and L1 ∨ L2 are weighting vectors,
(2) L2 � L1 ∨ L2 and L1 � L1 ∨ L2,
(3) L1 ∧ L2 � L1 and L1 ∧ L2 � L2.

Proof. (1) First, we have p0 ∧ q0, · · · , pλ−1 ∧
qλ−1 ∈ [0, 1] and 0 ≤ ( λ−1∑

j=0
pj ∧ qj

) ≤ ( λ−1∑
j=1

pj

) ≤

1, then 1 − ( λ−1∑
j=0

pj ∧ qj

) ∈ [0, 1]. Second,

p0 ∧ q0 + · · · + pλ−1 ∧ qλ−1 + 1 − ( λ−1∑
j=0

pj ∧

qj

) = ( λ−1∑
j=0

pj ∧ qj

) + 1 − ( λ−1∑
j=0

pj ∧ qj

) = 1.

Thus L1 ∧ L2 is a PLTS. Similarly, we can show
that L1 ∨ L2 is a PLTS.

(2) First, we give the proof of L1 ∨ L2 � L1. For
any j = 0, 1, · · · , λ − 1, pj ∧ qj ≤ pj , then for any
x = 0, 1, · · · , λ − 1,

x∑
j=1

pj ∧ qj ≤
x∑

j=1

pj,

We thus get FL1∨L2 (x) ≤ FL1 (x), i.e., L1 ∨ L2 � L1.
Similarly, we can get L1 ∨ L2 � L2.

(3) Second, we give the proof of L1 ∧ L2 � L1.
For any j = 1, 2, · · · , n − 1, pj ∧ qj ≤ qj , then for
any x = 1, · · · , λ,

λ∑
j=x

pj ∧ qj ≤
x∑

j=1

pj,

This means ¬(L1 ∧ L2) � ¬(L1). By the involutivity
of ¬, we have L1 ∧ L2 � L1.

Similarly, we can get L1 ∧ L2 � L2. �
Moreover, the negation ¬, conjunction ∧ and

disjunction ∨ operations have the following
properties.

Theorem 9. For any three PLTSs

L1 =
{

s0(p0), s1(p1), · · · , sλ(pλ)
}

,

L2 =
{

s0(q0), s1(q1), · · · , sλ(qλ)
}

,

L3 =
{

s0(q0), s1(q1), · · · , sλ(rλ)
}

.

the following properties hold:

(1) L1 ∧ L1 = L1, L1 ∨ L1 = L1,
(2) L1 ∧ L2 = L2 ∧ L1, L1 ∨ L2 = L2 ∨ L1,
(3) L1 ∨ L� = L� and L1 ∧ L� ={

s0(1 − pλ), sλ(pλ)
}

,

(4) L1 ∧ L⊥ = L⊥ and L1 ∨ L⊥ ={
s0(p0), sλ(1 − p0)

}
,
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(5) (L1 ∧ L2) ∧ L3 = L1 ∧ (L2 ∧ L3),
(L1 ∨ L2) ∨ L3 = L1 ∨ (L2 ∨ L3),

(6) ¬(L1 ∧ L2) = ¬L1 ∨ ¬L2,
¬(L1 ∨ L2) = ¬L1 ∧ ¬ ∨ L2.

Proof. (1)-(5) are clear. We only give the proof of (6):

¬L1 ∨ ¬L2

=
{

s0(pλ), s1(pλ−1), · · · , sλ(p0)
}

∨
{

s0(qλ), s1(qλ−1), · · · , sλ(q0)
}

=
{

s0(pλ ∧ qλ), · · · , sλ−1(p1 ∧ q1),

sλ(1 − ( λ∑
j=1

pj ∧ qj

)
)
}

=¬(L1 ∧ L2).

¬L1 ∧ ¬L2

=
{

s0(pλ), s1(pλ−1), · · · , sλ(p0)
}

∧
{

s0(qλ), s1(qλ−1), · · · , sλ(q0)
}

=
{

s0(1 − ( λ−1∑
j=0

pj ∧ qj

)
), sλ−1(pλ−1 ∧ qλ−1),

· · · , sλ(p0 ∧ q0)
}

=¬(L1 ∨ L2).

�

Example 4. Consider two PLTSs as follows:

L1 =
{

s0(0.7), s1(0.1), s3(0.2)
}

,

L2 =
{

s0(0.6), s1(0.3), s3(0.1)
}

.

Their cumulative distribution functions respectively
are

FL1 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.7, 0 ≤ x < 1,

0.8, 1 ≤ x < 2,

1, x ≥ 3.

(45)

FL2 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.6, 0 ≤ x < 1,

0.9, 1 ≤ x < 2,

1, x ≥ 3.

(46)

Clearly, FL1 (x) /≤ FL2 (x) and FL2 (x) /≤ FL1 (x).
Thus L1 /� L2 and L1 /� L2.

By the concepts of ∧ and ∨ in Definition 5, then

L1 ∨ L2 =
{

s0(0.6), s1(0.1), s3(0.3)
}

,

L1 ∧ L2 =
{

s0(0.8), s1(0.1), s3(0.1)
}

.

Their cumulative distribution functions respectively
are

FL1∨L2 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.6, 0 ≤ x < 1,

0.7, 1 ≤ x < 2,

1, x ≥ 3.

(47)

FL1∧L2 (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

0.8, 0 ≤ x < 1,

0.9, 1 ≤ x < 2,

1, x ≥ 3.

(48)

Then

FL1∨L2 (x) ≤ FL1 (x) ≤ FL1∨L2 (x), ∀x ∈ R, (49)

FL1∨L2 (x) ≤ FL2 (x) ≤ FL1∨L2 (x), ∀x ∈ R. (50)

Thus we have

L1 ∨ L2 � L1 � L1 ∧ L2, (51)

L1 ∨ L2 � L2 � L1 ∧ L2. (52)

By the concept of ¬, then

¬L1 =
{

s0(0.2), s1(0.1), s3(0.7)
}

,

¬L2 =
{

s0(0.1), s1(0.3), s3(0.6)
}

.

Moreover, we have

(¬L1 ∧ ¬L2) =
{

s0(0.3), s1(0.1), s3(0.6)
}

,

(¬L1 ∨ ¬L2) =
{

s0(0.1), s1(0.1), s3(0.8)
}

,

and

¬(L1 ∨ L2) =
{

s0(0.3), s1(0.1), s3(0.6)
}

,
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¬(L1 ∧ L2) =
{

s0(0.1), s1(0.1), s3(0.8)
}

,

(53)

Clearly, (¬L1 ∧ ¬L2) = ¬(L1 ∨ L2) and (¬L1 ∨
¬L2) = ¬(L1 ∧ L2).

Theorem 10. (LS, ∧, ∨, ¬, L⊥, L�) is a bounded De
Morgan lattice.

We also give a connection between ∧, ∨ and Wang
et al’s order � in Definition 2.

Corollary 3. Let L1, L2 ∈ LS , the following are
equivalent:

(1) L1 � L2;
(2) L1 ∧ L2 = L1;
(3) L1 ∨ L2 = L2.

Theorem 11. (LS, ∧, ∨, ¬, L⊥, L�) is not a dis-
tributive lattice.

Proof. Consider three PLTSs as follows:

L1 =
{

s0(0.4), s1(0.3), s3(0.3)
}

,

L2 =
{

s0(0.5), s1(0.1), s3(0.4)
}

,

L3 =
{

s0(0.3), s1(0.5), s3(0.2)
}

.

Then

(L1 ∧ L2) ∨ (L1 ∧ L3)

= (
(s0(0.4), s1(0.3), s3(0.3))

∧ (s0(0.3), s1(0.5), s3(0.2))
)

∨(
(s0(0.7), s1(0.1), s3(0.2))

∧ (s0(0.6), s1(0.3), s3(0.1))
)

= (s0(0.5), s1(0.3), s3(0.2))

∨ (s0(0.8), s1(0.1), s3(0.1))

= (s0(0.5), s1(0.1), s3(0.4)).

and

L1 ∧ (L2 ∨ L3)

= (s0(0.4), s1(0.3), s3(0.3))

∧(
(s0(0.5), s1(0.1), s3(0.4))

∨ (s0(0.3), s1(0.5), s3(0.2))
)

= (s0(0.4), s1(0.3), s3(0.3)

∧ (s0(0.7), s1(0.1), s3(0.2)

= (s0(0.7), s1(0.1), s3(0.2).

Thus (L1 ∧ L2) ∨ (L1 ∧ L3) /= L1 ∧ (L2 ∨ L3).
�

From above theorems, we can see that
(LS, ∧, ∨, ¬, 0, 1) does not satisfy the condi-
tion of distributivity. So we consider the modularity
condition which is weaker than the distributivity
condition.

Theorem 12. (LS, ∧, ∨, ¬, L⊥, L�) does not satisfy
the condition of modularity.

Proof. If it satisfies the condition of modularity.
Then (L1 ∧ (L2) ∨ (L1 ∧ (L3) = L1 ∧ (L2 ∨ (L1 ∧
L3)) for any L1, L2 and L3.

Here, we present a counter-example on the modu-
larity. Consider L1, L2 and L3 in the above Theorem,
then

L1 ∧ (L2 ∨ (L1 ∧ L3))

= (s0(0.4), s1(0.3), s3(0.3))

∧
(

(s0(0.5), s1(0.1), s3(0.4))

∨ (
(s0(0.4), s1(0.3), s3(0.3))

∧ (s0(0.3), s1(0.5), s3(0.2))
))

= (s0(0.4), s1(0.3), s3(0.3))

∧
(

(s0(0.5), s1(0.1), s3(0.4))

∨ (
s0(0.5), s1(0.3), s3(0.2)

))

= (s0(0.4), s1(0.3), s3(0.3))

∧ (s0(0.5), s1(0.1), s3(0.4))

= (s0(0.6), s1(0.1), s3(0.3)).

Thus (L1 ∧ (L2) ∨ (L1 ∧ (L3) /= L1 ∧ (L2 ∨
(L1 ∧ L3)) for this example of L1, L2 and L3. �

4. Multi-attribute group decision making

In this section, our operators are applied to decision
making with probabilistic linguistic information.

Let X = {x1, x2, ..., xn} be the set of n alternatives,
and A = {a1, a2, ..., am} be the set of m attributes and
S = {s0, s1, ..., sλ} the linguistic term set. Assume
that D = {d1, d2, ..., dp} is the set of decision makers

and R(i) = (s(i)
(ajk))(p×n) is their probabilistic linguis-

tic decision matrix, where each s
(i)
(ajk) is a PLTSs on S

and represents the linguistic assessment of the alter-
native xk ∈ X with respect to the attributes aj ∈ A

obtained by the decision maker di ∈ D.
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Table 1
The probabilistic linguistic decision matrix provided by the first

decision maker

a1 a2

x1 {s0(0.2), s1(0.1), s2(0.7)} {s0(0.3), s1(0.1), s2(0.6)}
x2 {s0(0.1), s1(0.3), s2(0.6)} {s0(0.1), s1(0.4), s2(0.5)}
x3 {s0(0.1), s1(0.1), s2(0.8)} {s0(0.1), s1(0.3), s2(0.6)}

Applying the min ∩ operator on PLTSs, our selec-
tion method of the alternatives is given as follows:

Seep 1: We utilize the min operator to aggregate all
s

(i)
(ajk)(i = 1, 2, ..., p) for each decision maker di ∈ D,

s(ajk) = s
(1)
(ajk) ∩ s

(2)
(ajk) ∩ · · · ∩ s

(p)
(ajk). (54)

Then we get a probabilistic linguistic decision matrix
R = (s(ajk))(p×n).

Seep 2: We utilize the min operator to aggregate
all s(ajk)(k = 1, 2, ..., m) for each attribute ai ∈ A,

sj = s(aj1) ∩ s(aj2) ∩ · · · ∩ s(aj3). (55)

Then we get a probabilistic linguistic decision vector
V = (sj)(n).

Seep 3: We calculate the distance between each
alternative and the positive ideal solution (PIS) of
alternatives by using Equation 23.

Seep 4: Rank all the alternatives. Obviously, the
smaller the distance, the better the alternative.

Note that in this case, the decision makers are pes-
simistic. If they are optimistic, then we have max ∪
operator instead of min ∩ operator in Equations 54
and 55.

In the following, we illustrate the operation of the
decision making with an example.

Suppose that there are three possible products
xi(i = 1, 2, 3) to be evaluate. It is necessary to com-
pare these products so as to select the best one as
well as order the taking into account two attributes:
a1 quality perspective and a2 service perspective. The
three decision makers utilize the following LTS:

S = {s0 = low, s1 = medium, s2 = high}

to evaluate the products xi(i = 1, 2, 3) by means of
PLTSs. The probabilistic linguistic decision matrix
of the decision makers are given in Tables 1–3.

Step 1. By using Equation 54, the probabilistic
linguistic decision matrix of the group is shown in
Table 4.

Table 2
The probabilistic linguistic decision matrix provided by the

second decision maker

a1 a2

x1 {s0(0.1), s1(0.1), s2(0.8)} {s0(0.3), s1(0.1), s2(0.6)}
x2 {s0(0.1), s1(0.2), s2(0.7)} {s0(0.4), s1(0), s2(0.6)}
x3 {s0(0.2), s1(0.2), s2(0.6)} {s0(0.1), s1(0), s2(0.9)}

Table 3
The probabilistic linguistic decision matrix provided by the third

decision maker

a1 a2

x1 {s0(0.1), s1(0.2), s2(0.7)} {s0(0.2), s1(0.2), s2(0.6)}
x2 {s0(0), s1(0.1), s2(0.9)} {s0(0.2), s1(0.1), s2(0.7)}
x3 {s0(0.2), s1(0.2), s2(0.6)} {s0(0), s1(0.4), s2(0.6)}

Table 4
The probabilistic linguistic decision matrix of the group

a1 a2

x1 {s0(0.2), s1(0.1), s2(0.7)} {s0(0.3), s1(0.1), s2(0.6)}
x2 {s0(0.1), s1(0.3), s2(0.6)} {s0(0.4), s1(0.1), s2(0.5)}
x3 {s0(0.2), s1(0.2), s2(0.6)} {s0(0.1), s1(0.3), s2(0.6)}

Step 2. By using Equation 55, the probabilistic
linguistic decision vector of the group is

⎛
⎜⎝

{s0(0.3), s1(0.1), s2(0.6)}
{s0(0.4), s1(0.1), s2(0.5)}
{s0(0.2), s1(0.2), s2(0.6)}

⎞
⎟⎠ .

Step 3. The positive ideal solution of alternatives
L∗ = {s0(0), s1(0), s2(1)}, we calculate the distance
between each alternative and the positive ideal solu-
tion,

d(x1, L
∗) = 0.7, d(x2, L

∗) = 0.6, d(x3, L
∗) = 0.8.

Step 4. Rank the alternatives xi(i = 1, 2, 3) accord-
ing to the distances d(xi, L

∗)(i = 1, 2, 3): x2 � x1 �
x3 and thus, the best alternative is x2.

5. Conclusion

In this paper, we improved the theories introduced
by Wang et al. [21]. Our contributions can be sum-
marized as follow.

1. We modified Wang et al.’s join and meet oper-
ations to satisfy the requirement L1 ∩ L2 �
L1 � L1 ∪ L2 and L1 ∩ L2 � L2 � L1 ∪ L2.
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2. We defined an involution negation operation and
a distance of PLTSs based on Wang et al.’s par-
tial order �. The proposed negation operation
is continuous in the proposed distance.

3. We demonstrate that (LS, ∩, ∪, ¬, L⊥, L�) is
a bounded De Morgan lattice and also is a dis-
tributive lattice.

4. We demonstrate that (LS, ∧, ∨, ¬, L⊥, L�) is
a bounded De Morgan lattice, but it is not a
distributive lattice. Moreover, it does not satisfy
the condition of modularity.
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