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Abstract. COVID-19 is an epidemic, causing an enormous death toll. The mutational changing of an RNA virus is causing
diagnostic complexities. RT-PCR and Rapid Tests are used for the diagnosis, but unfortunately, these methods are ineffective
in diagnosing all strains of COVID-19. There is an utmost need to develop a diagnostic procedure for timely identification. In
the proposed work, we come up with a lightweight algorithm based on deep learning to develop a rapid detection system for
COVID-19 with thorax chest x-ray (CXR) images. This research aims to develop a fine-tuned convolutional neural network
(CNN) model using improved EfficientNetBS5. Design is based on compound scaling and trained on the best possible feature
extraction algorithm. The low convergence rate of the proposed work can be easily deployed into limited computational
resources. It will be helpful for the rapid triaging of victims. 2-fold cross-validation further improves the performance. The
algorithm proposed is trained, validated, and testing is performed in the form of internal and external validation on a self-
collected and compiled a real-time dataset of CXR. The training dataset is relatively extensive compared to the existing ones.
The performance of the proposed technique is measured, validated, and compared with other state-of-the-art pre-trained
models. The proposed methodology gives remarkable accuracy (99.5%) and recall (99.5%) for biclassification. The external
validation using two different test dataset also give exceptional predictions. The visual depiction of predictions is represented
by Grad-CAM maps, presenting the extracted features of the predicted results.
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1. Introduction The circumstances in this pandemic badly affect
many individuals’ social and financial states. Sev-
eral countries around the globe are also facing solid
economic crises.

The early symptoms are fever, cough, body aches,

COVID-19 is a zoonotic originated disease named
SARS-Cov-2, which was initially diagnosed as a
pneumonia virus in the city of China named Wuhan

in2019. Uptill January 2022, 349,641,119 confirmed
cases had been reported worldwide, out of which
around 300 plus million people are recovered from
this life-threatening virus, and approximately 5.5
million deaths have been reported. A statistical anal-
ysis of COVID-19 in different countries is shown in
Table 1.

*Corresponding author. Tehreem Awan, E-mail: tehreemawan
@nfciet.edu.pk.

and some respiratory complications [2]. The virus
belongs to the betacoronavirus genus, an enveloped
RNA virus. The mutation rate of RNA viruses is con-
spicuously high, and it is believed that it is a million
times higher than its host [3]. RNA mutations lack
the proofreading capability, so developing a vaccine,
antiviral drugs, and diagnosis becomes incredibly
challenging. The variations in the virus create a chal-
lenging situation for medical specialists and affectees

ISSN 1064-1246 © 2023 — The authors. Published by IOS Press. This is an Open Access article distributed under the terms

of the Creative Commons Attribution License (CC BY 4.0).


mailto:tehreemawan{penalty -@M }@nfciet.edu.pk
https://creativecommons.org/licenses/by/4.0/

7888 T. Awan et al. / Compact CNN. F. Recog. COVID-19 TXR.

Table 1

Statistical Analysis of COVID-19[1]

Country Total Cases Deaths/ Million Transmission
Classification
USA 31,350,025 561,921 Colony Spread
Brazil 13,943,071 373,335 Colony Spread
France 5,214,493 100,536 Colony Spread
UK 4,390,787 127,274 Colony Spread
Turkey 4,323,596 36,267 Colony Spread
Spain 3,428,354 77,102 Colony Spread
Germany 3,163,308 80,303 Colony Spread
Poland 2,704,571 62,734 Colony Spread
Argentina 2,694,014 59,228 Colony Spread
Colombia 2,652,947 68,328 Colony Spread
Mexico 2,305,602 212,339 Colony Spread
Iran 2,261,435 67,130 Colony Spread
Ukraine 1,961,956 40,367 Colony Spread
Peru 1,704,757 57,230 Colony Spread
Indonesia 1,609,300 43,567 Colony Spread
Czechia 1,606,030 28,640 Colony Spread
South Africa 1,567,513 53,757 Colony Spread
Netherlands 1,410,950 16,938 Colony Spread
Chile 1,131,340 25,277 Colony Spread
Canada 1,121,498 23,623 Colony Spread
Romania 1,031,072 26,381 Colony Spread
Iraq 984,950 15,026 Colony Spread
Belgium 951,626 23,782 Colony Spread
Philippines 945,745 16,048 Colony Spread
Sweden 900,138 13,788 Colony Spread
Pakistan 761,437 16,316 Colony Spread
India 15,321,089 180,530 Bunch of cases
Italy 3,878,994 117,243 Bunch of cases
Portugal 831,221 16,946 Bunch of cases
Russia 4,718,854 106,307 Bunch of cases

[4]. When the COVID-19 virus enters the body, it
starts infecting the epithelial layer of the lungs. A
person who has symptoms of COVID-19 must be
given proper medication and isolation as soon as pos-
sible, so a strong need for early diagnosis technique
is required, which will give relief to medical pro-
fessionals working under this pandemic stress [2].
Although the screening methods improve daily, they
are still liable to medical professionals and helpers.
Real-time fluorescent RT-PCR is a commonly used
procedure for identifying COVID-19, but unfortu-
nately, its false positive and false negative detection
ratio is high [5]. The RT-PCR is a three-step pro-
cess: RNA Extraction, RNA transcription, and lastly,
amplification of PCR of DNA. The patient’s sample
has been taken from any source, including nasopha-
ryngeal swabs or aspirates, oropharyngeal swabs,
bronchoalveolar lavage fluid (BALF), sputum, saliva,
serum, urine, rectal or faecal samples, [6]. After that,
the swab must be extracted for RNA retrieval. Inap-
propriate sample collection is the main reason for
the false-positive and false-negative results. As the
VTM sample should be kept between 25 to 27 degrees

Celsius, the collection of the sample and its climatic
conditions are sometimes inappropriate, leading to
false results. Secondly, RT-PCR is a time taking pro-
cess. Its sensitivity also depends on the swab type
used for taking samples [7]. The countries with a
higher rate of COVID-19 victims are trying to arrange
rapid detection kits or focusing on developing antigen
kits for COVID-19, called Rapid Test kits. Although
the Rapid Tests are not as reliable as the RT-PCR test,
they are helpful at a point of care level. Rapid tests for
COVID-19 work similarly to the pregnancy strip test.
This Rapid Test is not time-consuming as it only takes
10 to 30 min and identifies symptomatic individuals.
This test can detect the presence of a virus if the expo-
sure was in the past or is present now. The serological
tests follow the same principle as immuno-assays.
However, the difference is that it does not detect any
viral antigen but the existence of antibodies against
the virus in the sample liquid. A significant drawback
in both serological and antigen tests is that there is
a change of cross-reaction of antibodies, and the test
will be declared false positive even with some other
mutation. Other techniques for detecting COVID-
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19 include Immunoglobin M (IgM), Immunoglobin
G (IgG), and Immunochromatographic fluorescence
assay.

As the etiology and clinical manifestation of the
infection are similar to other viral epidemics, such
as middle east respiratory syndrome and severe
acute respiratory syndrome, understanding these res-
piratory diseases can assist in the diagnosis of
COVID-19 [8-12] . However, radiographical imag-
ing like Chest Computed Tomography (CT) Scan and
Chest x-ray are essential in early diagnosis and man-
agement of treatment. This is a well-explored field
of research [13—-16]. Some advantages of using x-
rays are triaging, accessibility, potable equipment
and, most importantly, cost efficiency compared to
CT scans and RT-PCR. Radiographs have the edge
over expensive PCR testing for COVID-19 diagno-
sis; however, it needs a radiologist who can examine
the radiograph and generate authenticated diagnos-
tic results. CXR is mainly used to analyze patients
with traditional pulmonary diseases, but this tech-
nique is not successful in the case of COVID-19
due to poor image characteristics. The x-ray image
seems normal to the naked eye in the early/mild stage
of disease [17]. There is a strong need to develop
a computer-aided diagnosis system that can help
radiologists promptly diagnose COVID-19. Recently,
deep learning algorithms have been very accommo-
dating in diagnosis and changed the stance, especially
in biomedical imaging. These algorithms perform
machine learning tasks using artificial neural net-
works, which extract information using high-level
processing. Their applications are widespread in
segmentation, regeneration, and classification. They
account for a significant step in the biomedical
CAD assisting system. Convolutional neural net-
works CNN are the most popular among these
because they have excellent performance in most
image-processing applications. CNN'’s are developed
to overcome the problem of limited resources, as
they perform the task with parameter sharing and
employ distinct convolution and pooling functions.
Any device can efficiently complete the procedure.
By increasing layers, accuracy can be improved, but
the cost would also increase. Conventional CNNs
mostly scale width, depth, and resolution as per
the availability of resources. CNNs are used in dif-
ferent disease identifications with high-performance
results compared with other techniques like SVM
and RF. However, scaling up the CNN to broader,
more profound, or at higher resolution will bring
better accuracy and the cost of bringing in more

parameters, which results in a high cost for train-
ing and testing. Researchers are busy developing
condensed CNN and maintaining a good balance of
accuracy and computational cost. Still, the perfor-
mance of such a technique needs improvement. In
CNN, the most helpful task was reducing the num-
ber of parameters compared to classical ANN. It has
three layers: input layer, hidden layers, and output
layer; the hidden layers have a subdivision of a con-
volutional layer, ReLU layer, pooling layer, and fully
connected layer. The pooling operation is performed
after convolution because it plays a significant role in
parameter reduction. It reduces the height and width
of layers individually. So a considerable amount of
weight parameters are required to generate a com-
plete connection. To build a model in less time, we
take the help of transfer learning, an approach in
which we can grasp the knowledge and skills like the
number of features and weights from former trained
models. In transfer learning, the knowledge gained
by a network in solving one problem can be con-
sumed by another problem, which will help overcome
the problem of fewer data for training the model,
ultimately performing the desired task using fewer
resources.

In this article, we proposed a transfer learning
technique using the base model of EfficientNet, a
deep learning architecture for identifying COVID-
19-positive and normal cases. The X-ray images
consisting of COVID-19 disclosure are used to
develop the CXR model, which uses deep learning
to identify COVID-19. In images, there are areas of
ground glass patterning that indicate a COVID-19
infection. It affects the lower lobes of both lungs,
particularly the posterior segments, with a mainly
peripheral and subpleural distribution. The X-ray can
identify the infection if it shows a progression of
lesions, septal thickening, or a Crazy Paving Pattern
of opacities [15]. The performance was compared
with other illustrious techniques like VGG16 and
VGG19. The main contributions are highlighted as
follows:

- Albumentation transforms, and intensity nor-
malization is wused in preprocessing for
transforming CXR images.

- The combination of EfficientNets and dense
layers is used to accomplish the target of a
lightweight deep learning model. The Reducel.-
RonPlateau function controls the learning rate
of the model if the matrix value lacks improve-
ment.
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- Collection of annotated CXR images from
all available open-access resources and self-
collected images. CXR images are compiled
as dataset named COVID-19 Thorax x-ray
freely available at Kaggle [18]. COVID-19
Thorax x-ray is an open-access repository con-
taining 13500 CXR with front and side views.
It is freely available for researchers who want
to create innovations in this field.

The paper is organized into sections to ponder all
aspects. There is introduction in Section 1, literature
survey in Section 2, methodology and dataset details
are given in Section 3, the experimental setup, details
and evaluation parameters are elaborated in Section 4.
Lastly, the conclusion and future work are in Section 6
and 7.

2. Literature Survey

Researchers are putting their best efforts into help-
ing front-line health workers by developing detection,
classification, and segmentation algorithms using
both x-ray and CT Scan Images of COVID-19 vic-
tims.

A few investigations in published research claimed
the pattern variations in chest x-ray beam pictures
prior to the presence of dominant highlights of
COVID-19 [19-22]. Huge revelations have been
made in examinations by exploring x-ray results. As
Kong et al. [20] guaranteed light opacities in the
infrahilar space found in patients with COVID-19. Zu
etal. [19] Chung et al. demonstrate that 33% of CT fil-
ters of the thorax have detailed round lung opacities.
Zhao et al. [21] found blended ground-glass opacities
(GGO) in many affectees with vascular enlargement
and solidification. Also, Yoon et al. [22] introduced
that 3% patients under examination had solitary nodu-
lar obscurity in the left side of the lung area, and the
others had four to five unpredictable opacities in both
lungs.

The authors of some recent research examined
CXR images to identify COVID-19 at an early
stage of infection. Authors in [23] gave a detailed
review of deep learning techniques used to iden-
tify COVID-19. They have given comparisons based
on data augmentation and deep learning networks.
The five comparisons made on the processing with
augmentation concluded that algorithms with aug-
mentation before training provide better results than
those without augmentation. They have also com-

pared deep learning techniques used to identify
COVID-19 from CXR. They compared fifteen publi-
cations and analyzed their accuracy and the network
used in identification. They concluded that deep neu-
ral networks give higher efficiency but at the cost
of complexity and time. Researchers in [24] have
proposed a compact classifier for COVID-19 detec-
tion using a convolutional support estimator network
(CSEN) and achieved a sensitivity of 97% and speci-
ficity of 95.5%. They have generated a comparison
with a pre-trained deep neural network DenseNet-
121 and attained a sensitivity of 95% and specificity
of 99.74%. They have also generated a dataset of
1065 annotated images named Early-QaTa-COVID-
19, available on Kaggle. The limitation of their work
is not attaining an up-to-mark value of sensitivity.
In [25] the authors have developed a tool using
the machine learning algorithm SVM to attain instant
results for the victim, and they achieved an accuracy
of 98.93%. GE Antonio in [26] the study presents
an approach based on fuzzy logic using deep learn-
ing to identify whether the image is a Covid-19
pneumonia image or an interstitial pneumonia image
from a CXR. They developed an algorithm named
CovNNet, which fuses fuzzy images with extracted
features and concluded results. They used a small
dataset comprising 121 images of both classes and
achieved an accuracy of 81%. TanvirMahmud in [27]
also experimented on CXR images and developed a
multiclassifier, i.e., Normal, COVID-19, viral pneu-
monia, and bacterial pneumonia, using CovXNet.
They used 5856 CXR images; 1583 were normal,
1493 were non-COVID viral pneumonia, 2780 were
bacterial pneumonia, and 305 were COVID-positive.
Their results give an accuracy of 97.4%. The results
of another multiclassification were published in [28]
in which 21057 CXR images were used to classify
COVID, Pneumonia viral and bacterial, and nor-
mal. They proposed a multi-branch fusion auxiliary
learning method and achieved an overall accuracy
of 95.61%. The proposed method also classifies the
specific types of Pneunomia

Authors in [29] have presented an integrated
stacked deep convolution network InstaCovNet-19.
They compiled the proposed model by combining
many pre-trained models using ResNet101, Xcep-
tion, InceptionV3, MobileNet, and NASNet. They
tried to develop compensation for a small amount
of training data. The proposed model achieved
an accuracy of 99.08% for three classes, namely
COVID-19, Pneumonia, and Normal. An accu-
racy of 99.53% is achieved on bi-classification,
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including COVID-19 and Non-COVID classifica-
tion. They used two repositories for the dataset,
both freely available on Kaggle, containing 219
and 142 COVID-19 x-ray images. The authors are
using minimal data from COVID-positive patients for
classification.

In another research, [30], the uncertainty of the
model has been estimated using a bayesian deep
Learning classifier, trained using the transfer learn-
ing method on COVID-19 x-ray images. The results
of this research show a vital connection between
the uncertainty of the model and its accuracy of
prediction, which would be helpful for radiologists
in estimating uncertainty. In deep learning, esti-
mated uncertainty yields more reliable predictions,
which will alert radiologists to false predictions, so
the chances of deep learning acceptance in disease
detection increase. This research work was carried
out using COVID-chest x-ray-dataset, a publically
available dataset,!. However, again among them,
original COVID-19 CXRs are limited in number,
which is a significant concern. Narin et al. [32] pro-
posed 5 pre-trained CNN models namely ResNet50,
ResNet101, ResNet152, InceptionV3 and Inception-
ResNetV2. They performed experiments on samples
of x-ray images from confirmed COVID-19 patients.
The pre-trained model ResNet50 provides the high-
est results and accuracy of 0.952. COVID-chest
x-ray-dataset is used in this work? [31]. The main
limitation of their work is that their dataset con-
tains only 68 positive x-ray scans of COVID-19
victims, which is insufficient for training a neural
network.

Zhang et al. [33] used a 14-layered residual CNN
and used 100 images of COVID-19 confirmed cases
available at GitHub repository.> They achieved the
sensitivity of 96.00% and specificity of 70.65%. The
major limitation is the sensitivity; it should be on
the higher side, especially in contagious diseases
like COVID-19. Nayak et al. [34] also used Trans-
fer learning and evaluated the results on 8 pre-trained
models which are AlexNet, VGG-16, GoogleNet,
MobileNet-V2, SqueezeNet, ResNet-34, ResNet-50,
and Inception-V3 have been used for classifica-
tion of COVID-19 from normal cases. Their results
showed that the ResNet-34 model has the high-

Thttps://github.com/ieee8023/COVID-chestxray-
dataset/tree/master/images [31]

Zhttps://github.com/ieee8023/covid-chestxray-
dataset/tree/master/images [31]

3 (https://github.com/ieee8023/covid-chestxray-dataset)

est performance and achieves a precision value of
96.77%, specificity of 96.67%, F1-score of 0.9836,
accuracy of 98.33%, and 0.9836 is the area under
the curve (AUC). The second best is AlexNet for
the prediction of COVID-19 and gives a precision
value of 96.72%, a sensitivity of 98.33%, a speci-
ficity of 96.67%, an F1-score of 0.9752, an accuracy
of 97.50%, and 0.9642 as AUC. They have used
203 frontal view Chest X-rays obtained from dif-
ferent available sources. Their dataset is limited;
secondly, the recall value is not appreciable. Aminu
et al. [35] used CovNet Neural Network for clas-
sification of COVID-19. they used seven four-layer
blocks in CovNet architectural Layering. They per-
formed multiclass identification of x-ray images
from COVID-19, Pneumonia, and Normal. They also
extracted features using CovNet from CT images.
Their proposed network can achieve an accuracy of
96.84% for multiclass and 100% for binary-class.
Their dataset includes 321 chest x-ray images with
COVID-19, 500 with Pneumonia, and 445 normal,
obtained from freely available resources. They are
achieving outstanding accuracy in classification, but
this study’s problem of limited datasets persists.
A.Shamila Ebenezer [36] used image enhancement
techniques on CT scans to improve the classifica-
tion process. They used CLAHE in image processing
steps. The final classification is done using Efficient-
Net algorithm. They achieve the accuracy of 94.56%
, precision of 95%, recall of 95% and F1 of 93%.
Horry et al. [37] presented the diagnosis procedure
using pre-trained model in x-ray radiographs, using
four popular transfer learned models VGG, Inception,
Xception, and ResNet. VGG19 shows the highest
performance. Results are attained in the form of pre-
cision 83%, sensitivity 80%, and F1-score 80%. They
used a dataset of 100 COVID-19 CXRs, 100 pneumo-
nia, and 200 normal. Again, this research’s limitations
are lower sensitivity and limited annotated data on
COVID-19.

3. Materials and Methods

The pre-trained architectures of the neural net-
work EfficientNet are used in this proposed model
for COVID-19 detection. The layout of the over-
all methodology is presented as a block diagram
in Figure 1. The steps are further explained in this
section.
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Fig. 1. Flow Process of Proposed Methodology.

3.1. Datasets

COVID-19 is a new virus playing the game of
mutational variant strain creation. As most countries
are facing pandemic situations, there is a critical need
for annotated x-ray images in this area. By keep-
ing this fact in mind, the authors gathered the most
comprehensive annotated dataset of CXR images of
COVID-19-positive patients. Dataset_1 is collected
from all the open access data sources; among them,
[38], and [31] are significant sources, Dataset_1 com-
prises 13500 images; among them, 6950 belong to
the class COVID-19, and 6550 belong to the Nor-
mal class. External validation Data 1 (EVD_1) is
the folder of self-collected images, and it is used
for external validation of the trained network. These
CXR images, after the necessary consent, are col-
lected from Nishtar Hospital Multan and Al-Khidmat
diagnostics Multan and annotated by experienced
radiologists. In total, collected CXR images are 150;
among them, 42 are used in the proposed network for
external validation testing. EVD_2 has been down-
loaded from [39]. It has 59 CXR images in total;
among them, 34 are COVID-19-positive, and 25 are
normal CXR images. It is also used for external val-
idation of the proposed network. The composition
details of datasets are given in Table 2.

Figure 2 represents the sample of COVID-19 pos-
itive CXR images used in this work, containing front
and side view thorax CXR images. Row 1 and 2
in Figure 2 represent front view CXR images, and
Row 3 represents side view representation. We have
shared the complete dataset on the Kaggle website as
a COVID-19 thorax x-ray for use in research work. In
the proposed algorithm, Dataset_1 is used for train-
ing before applying preprocessing. Data is divided
into two parts, 80% for training and 20 % for inter-
nal validation. The detail of the dataset is given in
Table 3. The internal validation is carried out along
with external validation. The proposed algorithm has
been externally validated on two different datasets:
EVD_1 and EVD_2. These datasets are obtained from
external sources and have not been included during
training. Details are given in Table 4.

3.2. Preprocessing

The initial work before preprocessing is the
division of Dataset_1, such as 80%, placed in a
train/validation folder. The remaining 20% in the test
folder for internal validation. The first step of the pro-
posed model is preprocessing the training/validation
part of COVID-19 thorax x-ray images. This process
freezes all the weights of network layers the clas-
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Table 2
Composition of datasets used for experiments
Total images Image format Source Reference
Dataset_1 13500 png, jpg, jpeg NIH [31, 38]
EVD_1 42 png, jpg, jpeg  Nishtar Medical Hospital self-collected
Alkhidmat Diagnostics
EVD_2 59 png, jpg, jpeg Figshare [39]

()

(h)

Fig. 2. Thorax x-ray of COVID-19 Positive.

Table 3
The CXR Dataset_1 details used for Training, Validation and Testing
Class Number of Images Number of Test Total Images
for images for internal
Training/Validation Validation
COVID-19 6297 600 6897
Normal 5889 600 6489
Table 4
Details of EVD_1 and EVD_2 datasets
Class EVD_1 EVD_2 Total Images
COVID-19 17 34 51

Normal 25 25 50
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sification layer remains active. The image cropping
is applied to reduce extra dark space from the CXR
images. The Albumentation [40] and ImageDataAug-
mentor libraries [41] have been imported from the
GitHub repositories. Albumentation is highly recom-
mended to perform segmentation and detection tasks
in biomedical imaging; it reduces overfitting, which
decreases execution time and ultimately increases
accuracy [42]. ImageDataAugmentor library in Keras
is used for data generation. The two parameters used
by data generator are rescaling and augment [43].
Different operations are performed in data augmen-
tation before passing to CNN to reduce overfitting.
The copies of each image are produced by apply-
ing rotation, adding noise, shifting, scaling, flipping,
zooming in/out and contrast limiting and equalizing
[44]. Figure 3 visually depicts the augmented version
of a single image from our dataset. There is no over-

(@)

lapping of images. The preprocessed data has been
trained and validated on fine tuned network using
two-fold cross-validation. Cross-validation is like a
repeated random sampling method, but the groups
are generated so that no two groups overlap. The
folds represent the number of groups the data has
been divided into [45]. The thorax x-rays are variant
in size, so for further transformation, these images
are resized into a standard size of 224 for further pro-
cessing. The next step is intensity normalization, so
min-max normalization [46] is applied to shift the
intensity to [0 1]. Intensity normalization is computed
using Equation 1.
P, — min(P)

out, = X e
max(P) — min(P)

where out, is the normalized output value against
input position P, (a=1,2,3...n), the maximum and

Fig. 3. Data Augmentation (a)Original CXR (b)(c) Rotated (d) Horizontally Flipped (e) Zoomedout (f) Zoomedin (g) Shifted (h) Gaussian

Noise (i) CLAHE enhanced.
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Fig. 4. Architecture of EfficientNetBO0.

minimum intensity values are max(P) and min(P)
across the whole image.

3.3. The Proposed Neural Network Model

The basic aim of the proposed fine-tuned neural
network is to develop a lightweight network. The
transfer learning approach is used in the form of the
improved EfficientNetB5 module. This architecture
of B5 came into existence with the addition of layers
in base model BO. It has 30M parameters and 9.9B

flops. Figure 5 depicts its architecture. EfficientNet
[47] is a family of models ranging from BO to B7.
The layers in EfficientNets range from 237 to 813,
and trainable parameters are 11 million. BO is the
base model designed by Neural Architecture Search
[48]. Depending on the application, this model used
the compound scaling method to achieve better accu-
racy and efficiency in higher models. The empirical
study used by developers of this network smartly bal-
ances width, depth, and resolution by simply scaling
each of these with a constant ratio. A coefficient ¢ is
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e P % 2

Block 5 Block 6 Block 7

Module 2 Module 2 Module 2 Final layers

x5

Fig. 5. Architecture Design of EfficientNetB5 [49].

used to uniformly scale width, depth, and resolution
per given resource. The FLOPS of this network can
be attained using Equation (2).

FLOPS = («.B*.y*)?
(2

where a.ﬂz.yz ~ 2

o represents depth, S represents width and y rep-
resents resolution. The value of (x.p>.y? ~ 2)
because in case of any new change in the value of
¢ the FLOPS will increase by 2¢ approximately [48].
It is a lightweight model which can be easily used
with low computational resources. The basic layout
of EfficientNetBO0 is shown in Figure 4.

The addition of layers in the base model upgrades
the model. The architectural design of EfficientNetB5
is represented in Figure 5. The upgraded design of
EfficientNetB5 used in this proposed model is pre-
sented in Figure 6.

The next step during the training process is to
update weights, so the general equation set 11 is used
to perform this task. Lets consider Wy as the weight
at s iteration of layer y and consider ¢’ as mini-batch
cost, weights can be updated as:

SN
s m

V=Y

/
B =nvy 4yt 3)
y

s+1 __ s s+1
Wit = ws + v

The next task is the optimization and adaptive opti-
mization algorithm, Adam optimizer, which is used
as a solver to minimize the loss and improve accu-
racy. It precisely controls the step size and updates the
neural network weights accordingly [50]. The global

average pooling layer is used to reduce overfitting.
In addition, three dense inner layers accompanied by
dropout and ReLU activation functions, formulated
in Equation 4 and 5, have been used to complete the
first iteration. Consider a layer y, which has a neuron
named r. The layer y is going to take a neuron z from
y — 1 layer [51]. The equation used to calculate the
input neuron would be as follows.

n
= Wix. +b )
z=1

where b, is bias and W}, is the weight of y layer.
The output is formulated in Equation 5 with the help
of rectified linear activation function (ReLU).

O} = max(0, I)) 5)

30% dropout layer was added to reduce training
time and overfitting before classification. The soft-
max layer will finally classify the images that can be
performed using Equation 6.

el

Dok %

Where the K x K is a square window used by the
pooling layer to slide on the J x J feature map, and
an average or maximum value has been selected,
reducing the map’s spatial dimensions.

The exact process is repeated for the second fold.
The results obtained in both folds were compared for
best performance. The best parameters were selected
for validation by comparing the results, and the final
results were generated. The layout of the complete
flow is depicted in Figure 1. The Layering of the
proposed model is elaborated in Figure 6.

0) = ©)
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EfficientNet
(Pretrained)
COVID-19
Normal

Fig. 6. Structure of Proposed Modified Algorithm.

4. Experiments
4.1. Experimental Setup

We have developed a diagnostic algorithm in the
proposed setup using improved EfficientNetBS5 archi-
tecture. The top layer of the network is replaced by
two output neuron layers, as our modal will clas-
sify two types of images normal CXR and COVID
CXR. The remaining layers are unchanged as they
are well-trained on ImageNet. In addition, a combi-
nation of dropout and dense layers is introduced to
enhance the performance further. To manage the val-
ues of weights and how many times the value of the
weight should be revised is defined by the optimizer,
so we have used the Adam optimizer in the next step
to perform experimentation. We have also compared
the Stochastic Gradient Decent SGD optimizer with
ADAM, but because of built-up momentum, Adam
performed better than SGD with a learning rate of
0.0001. To check the improvement in the learning
rate, we have taken help from early stopping criteria
if the system is not showing improvements by set-
ting the patience value to 3. The batch size is set to
16. Table 5 shows some important parameter. The
proposed models are compiled using an online tool
named Google Colaboratory in a GPU environment,
which is a product of Google Research. It is an online
free platform used to train Deep Learning Models.
All codes were formulated in Keras Python 3.7.11
version with 12GB NVIDIA Tesla K80 GPU. The
functional Layout of the prescribed model is depicted
in Figure 7.

Table 5
Parameters used for proposed
model training: EfficientNets and VGG

Parameters Value
Learning Rate 0.001
Batch size 16
Dropout 30%
Optimizer Adam

4.2. Performance Metrics

To evaluate the performance of the proposed bi-
classification algorithm for COVID-19 detection,
numerous evaluation metrics are used to estimate the
performance, like True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN)
Rates. TP is the number of times the prescribed model
will predict a positive value as positive, and TN is the
number of identification of a negative value correctly.
Similarly, when the model depicts the positive value
as a negative value, it is FP; when a negative value
is depicted as positive, it is FN. The other classifi-
cation parameters like Accuracy, Precision, Recall,
and Fl-score can be calculated using TP, TN, FP,
and FN. Equations (7 to 10) state the mathemati-
cal representation of these metrics. Precision is the
ratio of accurately predicted positive values and the
total number of predicted positive values, formulated
in Equation 9; on the other hand, Recall/Sensitivity
can be defined as the accurate prediction of positive
cases. Equation 8 elaborates the mathematical nota-
tion of recall/sensitivity. In uneven class distribution,
F1-Score is a very useful parameter as it considers
FP and FN along with true values [52], formulated in
Equation 10.

TP+ TN

Accuracy = @)
TP+ TN + FP + FN
TP
Recall = —— (®)
TP + FP
TP

Precision = ——— ©)]

TP+ FN

Precisi Recall
F1 — Score =2 % rec.ls.lon * eed (10)
Precision + Recall

4.2.1. Gradient-weighted Class Activation
Mapping (Grad-CAM)

The results are also presented as heat maps to
depict the localized area graphically. Grad-CAM is
a localization technique used to generate these maps.
It provides a visual explanation of any neural network
model depictions. In order to accomplish the localiza-
tion map, the gradient information from CNN’s last
layer will be used to observe all image information
for each class of images. As referred in [53] Lets
assume that L, ;-4 belongs to RELU"* with
v representing height and u as width, for any class
c. In order to obtain the gradient score of the last
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Fig. 7. Functional Layout of prescribed EfficientNetBS model.

convolutional layer A% with respect to feature map has been divided into two parts, 80% is used for
k, the value of neuron importance weight should be training/validation of the network, remaining 20% is
calculated using Equations 11 and 12 used for testing of the trained network. The transfer

learning approach is proposed. Pretrained networks

significantly reduce training time; the Softmax is an

of = 1 Z Z oy (11 activation function in the output 'layer for detection.
N 5 aAifj Dense layers used ReLU activation, and a Dropout

of 30% was used to reduce overfitting. The opti-

mizer used for both pre-trained networks is the

) (12) Adam optimizer with 0.0001 sets as the learning rate.
The main library of ImageDataAugmentor has been

imported to create a data generator that reduces the

LL(‘}rad7CAM = ReLU <Z akCAk
k

4.3. Training execution time. The library in Python Keras trans-
forms images randomly. Images are re-scaled by
The self-generated Dataset_1, including COVID- 1/255 so that images get normalized from range

19 and Normal x-ray images detailed in Table 1, [0, 255] to [0, 1].
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Table 6
Performance Metrics of proposed EfficientNetB5 Network
Accuracy Precision Recall F1-Score Support

COVID-19 - 0.9983 0.9916 0.9950 600

Normal - 0.9917 0.9983 0.9950 600

Bi-classification 0.995 0.9950 0.9950 0.9950 1200

Table 7
Classification Report of Deep learning models in the form of performance metrics
Network Model Time/epoc Accuracy Precision Recall F1-Score Support
EfficientNetBO 098s 0.986 0.98680 0.98666 0.98666 1200
EfficientNetB1 100s 0.985 0.98606 0.98583 0.98583 1200
EfficientNetB2 108s 0.983 0.98359 0.98333 0.98333 1200
EfficientNetB3 110s 0.987 0.98780 0.98750 0.98749 1200
EfficientNetB4 103s 0.989 0.98933 0.98916 0.98916 1200
EfficientNetB5 104s 0.995 0.99502 0.99500 0.99499 1200
EfficientNetB6 134s 0.986 0.98675 0.98666 0.98666 1200
EfficientNetB7 127s 0.990 0.99099 0.99083 0.99083 1200
VGG16 098s 0.986 0.98667 0.98666 0.98666 1200
VGG19 094s 0.978 0.97833 0.97833 0.97833 1200
Table 8 these models, as shown in the first column of Figure

Evaluation on Loss matrix of all EfficientNets and VGG 8 and 9. In that case. it is observed that the conver-

Network Model Average Loss gence in terms of the epoch is efficient in the case
EfficientNetBO 0.22200 of lightweight EfficientNets [55] and lower in VGG.
EfficientNetB1 0.22430 The convergence rate of EfficientNets is smooth and
EfficientNetB2 0.22275 . . . . .

EfficientNetB3 0.22215 less time-consuming due to its scaling coefficient
EfficientNetB4 0.22600 technique [48]. Secondly, the loss of trained mod-
EfficientNetB5 0.22305 els, which show the false prediction rate during the
ggzizgtgzgs 8'5??@8 training/testing session, is shown in the second col-
VGG16 0.01827 umn. In terms of loss, EfficientNets, preferably BS,
VGG19 0.21220 performs better as its loss decreases with time. The

training and testing are performed based on image
splitting defined in Table 3. The comparison of accu-

5. Results and Discussion

This section comprises results obtained after exper-
imentation on the proposed model for the detection
of COVID-19. The comparative analysis is also per-
formed on EfficientNet BO, B1, B2, B3, B4, B6, and
B7 models. We also compared our model with pre-
trained VGG16 and VGG19. The attained results of
the proposed model are presented in Tables 7 and 8.

The results clearly define improved EfficientNetB5
best in terms of accuracy and time/epoch. Table 6
shows that our experimentation has attained accuracy
and time/epoch values. The other state of art models,
especially the EfficientNet models other than BS, is
also showing significant results, but VGG 16 and 19
have attained the lowest accuracy in our diagnosis.

The Networks of deep learning models converge at
different times because of their parameter variations
and architectural differences [54]. Suppose we look
at the graphical response of training and testing of

racy attained by networks is also depicted in Figure
10, which clearly defines improved EfficientNetBS5 as
working best in terms of accuracy, having the highest
values of cross-validation accuracy as compared to
other networks.

To further investigate the behaviour of each net-
work, authors have generated classification reports
in the form of Precision, Recall, F1-Score, and
Support. These performance parameters are cal-
culated based on the existence of True Positive
(TP), True Negative(TN), False Positive (FP), and
False Negative (FN) parameters. The Confusion
Matrix of EfficientNet Model classification and
VGG models classification are graphically depicted
in Figure 9 and 11 respectively. Looking at the
details given in Table 7 regarding classification, B5
has achieved the highest results compared to other
state-of-the-art algorithms. EfficientNets below pro-
duce the overall results generated from VGG16 and
VGGI19.
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Fig. 9. Accuracy comparison bar graph of deep learning models
used in the proposed model.

In the case of COVID-19 classification, the most
crucial parameter is the FP value because negatively
diagnosed COVID patients are a source of real dan-
ger for society. The best algorithm among all should
be the one that gives the minimum number of FP
scores. In our case, improved EfficientNetB5 has the
lowest value of FP, 5 out of 600 images. Similarly,
the classification parameter Recall has an FP param-
eter in the denominator, elaborated in Equation 8.
The higher the value of Recall more accurate our
algorithm predicts the result. The Recall value in the
case of improved EfficientNetB5 is 0.995, which is
higher as compared to other algorithms. All algo-
rithms’ average losses are also calculated, and in

Table 8 it can be seen that EfficientNetBS5 has a lower
loss than B6 and B7. It is evident that EfficientNetB5
achieves high accuracy and low loss compared to
other networks. The comparison of predicted values
of improved EfficientNetB5 with other state-of-the-
art algorithms during the cross-validation process is
shown in Table 9. It clearly distinguishes the result
of predictions.

This section presents a comparative analysis
of previously published classification results for
COVID-19 detection in CXR images. It is observed
that most of the experiments are performed using a
limited number of CXR images of COVID-19 vic-
tims. Secondly, very few among them have a low
training time. They are also not paying much atten-
tion to limiting the number of parameters. Most of the
authors have not validated their work using a cross-
validation approach. Lastly, very few among them
have generated experimental comparisons of results
with other models. The comparison is generated in
Table 10.

5.1. Overall Results of Algorithm

The results of eight models of EfficientNet and
two models of VGGs are depicted in figures and
tables. Their performance depicts that as the com-
plexity of trainable parameters increases, the results
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Fig. 10. Results of VGG16 and VGG19.
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Table 9
Evaluation matrix of all EfficientNets and VGG
Network Model TP FP FN TN
EfficientNetBO 587 13 03 597
EfficientNetB 1 585 15 02 598
EfficientNetB2 583 17 03 597
EfficientNetB3 585 15 00 600
EfficientNetB4 588 12 01 599
EfficientNetB5 595 05 01 599
EfficientNetB6 588 12 04 596
EfficientNetB7 594 06 11 589
VGGl16 591 06 07 593
VGG19 587 13 13 587

get more modified. The Confusion Matrix in Figure
9 and 11 shows that the accuracy increases as the
model number increases but on the cost of more time
for convergence and an increase in the number of
parameters. So using the improved EfficientNetB5
is the best choice as there is less time difference
from the base model EfficientNetBO, but the accu-
racy is approaching 99.5% on low parameter cost.
The efficiency of VGG models is less as compared to
EfficientNet models.

5.1.1. Testing the proposed network

The internal and external validation of our pro-
posed model is performed on three different sets of
data which were not included in the training. Their
prediction is represented in a confusion matrix in Fig-
ure 11 for internal validation, and Table 6 gives results
in the form of performance metrics. Figure 12 shows
results for external validation. EVD_1 shows an accu-
racy of 97.6% and an F1-score of 97.5%, whereas
EVD_2 shows an accuracy of 98.3% and an F1-score
of 98.2%.

5.1.2. Graphical Localization

Grad-CAM localization is used in the proposed
work; it uses the gradients of COVID-19 consolida-
tions and passes on to the last convolution layer. The
localization map is generated, which enhances and
highlights the infected regions in the CXR image.
Grad-CAM activation Maps offer a way to enhance
the specific regions that can be learned from the
trained parameters by highlighting the appropriate
regions that can be used to predict the results [16].
In the procedure, the average value of all channels is

Table 10
Comparison of literature used deep learning network models with network models, dataset, and classification report
Reference Network Model Epoch Dataset Classification Accuracy
parameters
[56] Ensemble - COVID-1000 Sensitivity-0.968 0.881
network Other-3000 Specificity-0.987
InceptionV3+ F1-Score-0.9845
MobileNetV2
[57] COVID- 10 COVID-400 Sensitivity-0.998 0.999
CheXNet Normal-400 Specificity-1.000
Precision-1.000
F1-Score-0.999
[58] CXRVN - COVID-221 Sensitivity-0.978 0.967
Other-234 Specificity-0.955
Precision-0.957
F1-Score-0.967
[59] nCOVnet 80 COVID-142 Sensitivity-0.976 0.881
Normal-142 Specificity-0.785
[60] MobileNet 200 COVID-320 Sensitivity-0.878, 0.986
Other-5928 Specificity-0.993
Precision-0.878
F1-Score-0.878
[61] ResNet50 - COVID-135 - 0.892
VGG16 Other- 208 0.900
[62] CovNet-CXR-S - COVID-183 - 0.926
CovNet-CXR-L Other- 13617 0.944
[63] VGGl6 50 COVID-202 - 0.880
ResNet50 Other-600 0.900
EfficientNetBO 0.965
Our Proposed Model Modified 9 COVID- 6297 Sensitivity- 0.9916 0.995
EfficientNetB5 Normal- 5889 Precision- 0.9983

F1-Score-0.9949
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Fig. 12. Confusion Matrix of predictions generated from EfficientNetB5 for External Validation.

also collected to attain the saliency maps. The final
output is in visual form, presented in Figure 13. In
the proposed bi-classification, features are extracted
in a matrix form of both classes. The other class is
evaluated with reference to the first class, and a final
prediction is derived. The colors of the heat map show
the specific area where high radiant colors indicate the
most affected part.

5.2. Discussions

The EfficientNet and VGG models are used for
all experiments. Achieving excellent efficiency in
utilizing fewer resources is the main task of our
research, the proposed Networks are trained on nine
epochs, and two-fold cross-validation data-splitting
method is used. All the results attained are graphi-
cally and numerically depicted in the experimental
results mentioned in Section 5.1. Using the basic
CNN architecture, the problem of vanishing gradi-
ent arises. Skip connection has resolved this problem
in more complex versions of the Deep Learning Net-
works. Increasing the layers in the network leads to
an increase in the parameters; hence higher compu-
tational resources are required, which automatically
leads to an increase in cost. The prescribed Effi-
cientNet model is a light weight model with low
parameters and higher computational efficiency. In
the case of a smaller dataset, common in medical
imaging, a bigger network will create the problem
of overfitting. The results in the prescribed fine-
tuned algorithm show that all models achieve good
efficiency in fewer resources, so improved Efficient-
NetB5 achieves an accuracy of 99.5% in 104s per
epoch and Recall of 99.5%. These are excellent
results at a reasonable cost. The reason behind the
low statistic results of B6 and B7, as compared

to BS, is the occurrence of aliasing [64]; as the
number of parameters increases in B6 and B7 the net-
work will start learning the unwanted information so
that the accuracy will decrease and false prediction
will increase. Further, the pre-trained VGG models
compared with the proposed model; they give low
accuracy and Recall compared to the improved Effi-
cientNetB5 model.

The interpretability of the model is depicted using
heat and saliency maps shown in Figure 13 of our pro-
fessional network[53]. They will give a clear insight
into predicted results. It can be observed in Figure
13 that our model has generated localized heat maps
as per opacity present in the diseased Image. The
consolidations are present on the lower lobes of the
Image.

6. Conclusion

The work in this article introduces the complex task
of automated detection of COVID-19 from thorax x-
ray images. The proposed tasks include collecting
class annotated images of COVID-19 and Normal
X-rays and generating a low-cost, fine-tuned deep
learning-based detection algorithm using Efficient-
NetsB5. The reason behind generating an algorithm
with a lightweight deep learning model is that it
can efficiently work on handheld devices. It is a
lightweight, highly efficient model that can collab-
orate with humans. The most significant feature of
the model is the recall value of 0.9916, which is best
per the author’s knowledge. The proposed technique
will give deeper insight into all necessary formali-
ties associated with COVID-19 identification through
thorax x-ray. The procedure considers all the changes
associated with CXR compared to normal CXR and
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Fig. 13. Graphical depiction of features extracted by network: Original CXR, Heat Map and Saliency Maps.

generates the final decision. The developed model can
detect COVID-19 with up to 99% accuracy. Detec-
tion of COVID-19 through x-ray is more beneficial
as x-ray scanners are easily accessible even in remote
areas. Secondly, radiation exposure in the x-ray is 70
times less than CT scan.

7. Future Work

The algorithm presented in this paper can be inno-
vated and used for detecting other diseases like
tuberculosis and pneumonia on the same platform.
The multiple-diseases identification on the same
CXR image can also be a future task. The proposed
work can be expanded and improved by adding anno-
tated CXR images to the existing dataset and working
on disease severity levels along identification. This
research is fundamental in the present scenario and
can help medical professionals handle this pandemic.

References

[1] D.T.A. Ghebreyesus, WHO, 2021.

[2] S. Manigandan, M.-T. Wu, VK. Ponnusamy, V.B.
Raghavendra, A. Pugazhendhi and K. Brindhadevi, A sys-
tematic review on recent trends in transmission, diagnosis,
prevention and imaging features of COVID-19, Process Bio-
chemistry (2020).

[3] S.Dufty, Why are RNA virus mutation rates so damn high?
PLoS Biology 16(8) (2018), 3000003.

[4]

[5]

(6]

[7]

[8]

[9]

[10]

(11]

[12]

M. Pachetti, B. Marini, F. Benedetti, F. Giudici, E. Mauro,
P. Storici, C. Masciovecchio, S. Angeletti, M. Ciccozzi,
R.C. Galloetal., Emerging SARS-CoV-2 mutation hot spots
include a novel RNA-dependent-RNA polymerase variant,
Journal of Translational Medicine 18 (2020), 1-9.

S. Manigandan, M.-T. Wu, V.K. Ponnusamy, V.B.
Raghavendra, A. Pugazhendhi and K. Brindhadevi, A sys-
tematic review on recent trends in transmission, diagnosis,
prevention and imaging features of COVID-19, Process Bio-
chemistry (2020).

N. Islam, J.-P. Salameh, M.M. Leeflang, L. Hooft, T.A. Mc-
Grath, C.B. Pol, R.A. Frank, S. Kazi, R. Prager, S.S. Hare, et
al., Thoracic imaging tests for the diagnosis of COVID-19,
Cochrane Database of Systematic Reviews 11 (2020).

Y. Li, L. Yao, J. Li, L. Chen, Y. Song, Z. Cai and C. Yang,
Stability issues of RT-PCR testing of SARS-CoV-2 for
hospitalized patients clinically diagnosed with COVID-19,
Journal of Medical Virology (2020).

K.M. Das, E.Y. Lee, R. Singh, M.A. Enani, K. Al Dossari,
K. Van Gorkom, S.G. Larsson and R.D. Langer, Follow-
up chest radiographic findings in patients with MERS-CoV
after recovery, Indian Journal of Radiology and Imaging
27(03) (2017), 342-349.

M. Cascella, M. Rajnik, A. Aleem, S.C. Dulebohn and R. Di
Napoli, Features, evaluation, and treatment of coronavirus
(COVID-19), Statpearls [internet] (2022).

J.F.-W. Chan, K.-H. Kok, Z. Zhu, H. Chu, K.K.-W. To, S.
Yuan and K.-Y. Yuen, Genomic characterization of the 2019
novel human-pathogenic coronavirus isolated from a patient
with atypical pneumonia after visiting Wuhan, Emerging
Microbes & Infections 9(1) (2020), 221-236.

L. Ketai, N.S. Paul and T.W. Ka-tak, Radiology of
severe acute respiratory syndrome (SARS): the emerg-
ing pathologic-radiologic correlates of an emerging
disease, Journal of Thoracic Imaging 21(4) (2006),
276-283.

F.Song, N. Shi, F. Shan, Z. Zhang, J. Shen, H. Lu, Y. Ling, Y.
Jiang and Y. Shi, Emerging 2019 novel coronavirus (2019-
nCoV) pneumonia, Radiology (2020).



7906

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

T. Awan et al. / Compact CNN. F. Recog. COVID-19 TXR.

K. Purohit, A. Kesarwani, D. Ranjan Kisku and M.
Dalui, Covid-19 detection on chest x-ray and ct scan
images using multi-image augmented deep learning model,
in: Proceedings of the Seventh International Conference
on Mathematics and Computing, Springer, (2022), pp.
395-413.

G.E. Antonio, K.T. Wong, E.L. Tsui, D.P. Chan, D.S. Hui,
A.W.Ng, K.K. Shing, E.H. Yuen, J.C. Chan and A.T. Ahuja,
Chest radiograph scores as potential prognostic indicators
in severe acute respiratory syndrome (SARS), American
Journal of Roentgenology 184(3) (2005), 734-741.

A. Ehab and R.I. Braga, The Clinical Significance of a —
on Chest Radiology, European Journal of Case Reports in
Internal Medicine 5(12) (2018).

R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D.
Parikh and D. Batra, Grad-cam: Visual explanations from
deep networks via gradient-based localization, in: Proceed-
ings of the IEEE international conference on computer
vision, (2017), pp. 618-626.

F. Shi, J. Wang, J. Shi, Z. Wu, Q. Wang, Z. Tang, K. He, Y.
Shi and D. Shen, Review of artificial intelligence techniques
in imaging data acquisition, segmentation and diagnosis for
covid-19, IEEE reviews in biomedical engineering (2020).
Kaggle Dataset. https://www.kaggle.com/.

E. Hussain, M. Hasan, M.A. Rahman, I. Lee, T. Tamanna
and M.Z. Parvez, CoroDet: A deep learning based classifi-
cation for COVID-19 detection using chest X-ray images,
Chaos, Solitons & Fractals 142 (2021), 110495.

E. Hussain, M. Hasan, M.A. Rahman, I. Lee, T. Tamanna
and M.Z. Parvez, CoroDet: A deep learning based classifi-
cation for COVID-19 detection using chest X-ray images,
Chaos, Solitons & Fractals 142 (2021), 110495.

W. Zhao, Z. Zhong, X. Xie, Q. Yu and J. Liu, Rela-
tion between chest CT findings and clinical conditions of
coronavirus disease (COVID-19) pneumonia: a multicenter
study, American Journal of Roentgenology 214(5) (2020),
1072-1077.

S.H. Yoon, K.H. Lee, J.Y. Kim, Y.K. Lee, H. Ko, K.H. Kim,
C.M. Park and Y.-H. Kim, Chest radiographic and CT find-
ings of the 2019 novel coronavirus disease (COVID-19):
analysis of nine patients treated in Korea, Korean Journal
of Radiology 21(4) (2020), 494.

H.M. Shyni and E. Chitra, A comparative study of x-ray
and CT images in COVID-19 detection using image pro-
cessing and deep learning techniques, Computer Methods
and Programs in Biomedicine Update (2022), 100054.

M. Ahishali, A. Degerli, M. Yamac, S. Kiranyaz, M.E.
Chowdhury, K. Hameed, T. Hamid, R. Mazhar and M. Gab-
bouj, Advance warning methodologies for covid-19 using
chest x-ray images, [EEE Access 9 (2021), 41052-41065.
N. Absar, B. Mamur, A. Mahmud, T.B. Emran, M.U. Khan-
daker, M. Faruque, H. Osman, A. Elzaki and B.A. Elkhader,
Development of a computer-aided tool for detection of
COVID-19 pneumonia from CXR images using machine
learning algorithm, Journal of Radiation Research and
Applied Sciences 15(1) (2022), 32-43.

C. Ieracitano, N. Mammone, M. Versaci, G. Varone, A.-
R. Ali, A. Armentano, G. Calabrese, A. Ferrarelli, L.
Turano, C. Tebala, et al., A fuzzy-enhanced deep learning
approach for early detection of Covid-19 pneumonia from
portable chest Xray images, Neurocomputing 481 (2022),
202-215.

T. Mahmud, M.A. Rahman and S.A. Fattah, CovXNet:
A multi-dilation convolutional neural network for auto-
matic COVID-19 and other pneumonia detection from chest

(28]

[29]

[30]

(31]

[32]

(33]

(34]

[35]

[36]

[37]

[38]
(39]

[40]

[41]

[42]

[43]

[44]

[45]

X-ray images with transferable multi-receptive feature opti-
mization, Computers in Biology and Medicine 122 (2020),
103869.

J. Liu, J. Qi, W. Chen and Y. Nian, Multi-branch fusion
auxiliary learning for the detection of pneumonia from
chest Xray images, Computers in Biology and Medicine 147
(2022), 105732.

A. Gupta, S. Gupta, R. Katarya, et al., InstaCovNet-19:
A deeplearning classification model for the detection of
COVID-19 patients using Chest X-ray, Applied Soft Com-
puting 99 (2021), 106859.

B. Ghoshal and A. Tucker, Estimating uncertainty and inter-
pretability in deep learning for coronavirus (COVID-19)
detection, arXiv preprint arXiv:2003.10769 (2020).

J.P. Cohen, P. Morrison, L. Dao, K. Roth, T.Q. Duong and
M. Ghassemi, Covid-19 image data collection: Prospective
predictions are the future, arXiv preprint arXiv:2006.11988
(2020).

A. Narin, C. Kaya and Z. Pamuk, Automatic detec-
tion of coronavirus disease (covid-19) using x-ray images
and deep convolutional neural networks, arXiv preprint
arXiv:2003.10849 (2020).

J. Zhang, Y. Xie, Y. Li, C. Shen and Y. Xia, Covid-
19 screening on chest x-ray images using deep learning
based anomaly detection, arXiv preprint arXiv:2003.12338
(2020).

S.R. Nayak, D.R. Nayak, U. Sinha, V. Arora and R.B.
Pachori, Application of deep learning techniques for detec-
tion of COVID-19 cases using chest X-ray images: A
comprehensive study, Biomedical Signal Processing and
Control 64 (2021), 102365.

M. Aminu, N.A. Ahmad and M.H.M. Noor, Covid-19 detec-
tion via deep neural network and occlusion sensitivity maps,
Alexandria Engineering Journal (2021).

A.S. Ebenezer, S.D. Kanmani, M. Sivakumar and S.J. Priya,
Effect of image transformation on EfficientNet model for
COVID-19 CT image classification, Materials Today: Pro-
ceedings 51 (2022), 2512-2519.

M.J. Horry, S. Chakraborty, M. Paul, A. Ulhaq, B. Prad-
han, M. Saha and N. Shukla, X-ray image based COVID-19
detection using pre-trained deep learning models (2020).
Covid-19 Xray Images, 2021, (Accessed on 1/05/2021).
H. Winther, H. Laser, S. Gerbel, S. Maschke, J. Hinrichs,
J. Vogel-Claussen, F. Wacker, M. Hoper and B. Meyer,
COVID-19 image repository, Figshare (Dataset) (2020).
A. Buslaev, V.I. Iglovikov, E. Khvedchenya, A. Parinov, M.
Druzhinin and A.A. Kalinin, Albumentations: fast and flex-
ible image augmentations, Information 11(2) (2020), 125.
A.B.Jung, K. Wada, J. Crall, S. Tanaka, J. Graving, C. Rein-
ders, S. Yadav, J. Banerjee, G. Vecsei, A. Kraft, Z. Rui, J.
Borovec, C. Vallentin, S. Zhydenko, K. Pfeiffer, B. Cook,
I. Fernandez, F.-M. De Rainville, C.-H. Weng, A. Ayala-
Acevedo, R. Meudec, M. Laporte, et al., imgaug, 2020,
Online; accessed 01-Feb-2020.

A. Buslaev, V.I. Iglovikov, E. Khvedchenya, A. Parinov, M.
Druzhinin and A.A. Kalinin, Albumentations: fast and flex-
ible image augmentations, Information 11(2) (2020), 125.
M.D. Bloice, C. Stocker and A. Holzinger, Augmentor: an
image augmentation library for machine learning, arXiv
preprint arXiv:1708.04680 (2017).

H. Zhang, W. Liang, C. Li, Q. Xiong, H. Shi, L. Hu and G.
Li, DCML: Deep contrastive mutual learning for COVID-
19 recognition, Biomedical Signal Processing and Control
77 (2022), 103770.

D. Berrar, Cross-Validation., 2019.


https://www.kaggle.com/

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

T. Awan et al. / Compact CNN. F. Recog. COVID-19 TXR.

Z.N.K. Swati, Q. Zhao, M. Kabir, F. Ali, Z. Ali, S. Ahmed
and J. Lu, Brain tumor classification for MR images using
transfer learning and fine-tuning, Computerized Medical
Imaging and Graphics 75 (2019), 34-46.

J. Guang and Z. Xi, ECAENet: EfficientNet with efficient
channel attention for plant species recognition, Journal of
Intelligent & Fuzzy Systems (2022), 1-13.

M. Tanand Q. Le, Efficientnet: Rethinking model scaling for
convolutional neural networks, in: International Conference
on Machine Learning, PMLR, (2019), pp. 6105-6114.

V. Agarwal, Complete Architectural Details of all
EfficientNet Models, Towards Data Science, 2020.
https://towardsdatascience.com/.

Z. Zhang, Improved adam optimizer for deep neural net-
works, in: 2018 IEEE/ACM 26th International Symposium
on Quality of Service (IWQoS), IEEE, (2018), pp. 1-2.

F. Ahmad, M.U.G. Khan and K. Javed, Deep learning
model for distinguishing novel coronavirus from other chest
related infections in X-ray images, Computers in Biology
and Medicine 134 (2021), 104401.

D.M. Powers, Evaluation: from precision, recall and
F-measure to ROC, informedness, markedness and corre-
lation, arXiv preprint arXiv:2010.16061 (2020).

R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D.
Parikh and D. Batra, Grad-cam: Visual explanations from
deep networks via gradient-based localization, in: Proceed-
ings of the IEEE International Conference on Computer
Vision, (2017), pp. 618-626.

M. Valiuddin, Using the EfficientNet convolutional neural
network architecture for skin lesion analysis and Melanoma
detection.

A. Suphalakshmi, A. Ahilan, A. Jeyam and M. Subrama-
nian, Cervical cancer classification using efficient net and
fuzzy extreme learning machine, Journal of Intelligent &
Fuzzy Systems, 1-10.

F. Ahmad, M.U.G. Khan and K. Javed, Deep learning
model for distinguishing novel coronavirus from other chest
related infections in X-ray images, Computers in Biology
and Medicine 134 (2021), 104401.

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

7907

A.S. Al-Waisy, S. Al-Fahdawi, M.A. Mohammed, K.H.
Abdulkareem, S.A. Mostafa, M.S. Maashi, M. Arif and B.
Garcia-Zapirain, COVID-CheXNet: hybrid deep learning
framework for identifying COVID-19 virus in chest X-rays
images, Soft Computing (2020), 1-16.

O.M. Elzeki, M. Shams, S. Sarhan, M. Abd Elfattah and A .E.
Hassanien, COVID-19: a new deep learning computeraided
model for classification, PeerJ Computer Science 7 (2021),
358.

H. Panwar, P. Gupta, M.K. Siddiqui, R. Morales-Menendez
and V. Singh, Application of deep learning for fast detection
of COVID-19 in X-Rays using nCOVnet, Chaos, Solitons
& Fractals 138 (2020), 109944.

R. Sethi, M. Mehrotra and D. Sethi, Deep learning based
diagnosis recommendation for COVID-19 using chest x-
rays images, in: 2020 Second International Conference on
Inventive Research in Computing Applications (ICIRCA),
IEEE, (2020), pp. 1-4.

L.O. Hall,R. Paul, D.B. Goldgof and G.M. Goldgof, Finding
covid-19 from chest x-rays using deep learning on a small
dataset, arXiv preprint arXiv:2004.02060 (2020).

H. Hirano, K. Koga and K. Takemoto, Vulnerability of
deep neural networks for detecting covid-19 cases from
chest xray images to universal adversarial attacks, Plos One
15(12) (2020), 0243963.

T. Zebin and S. Rezvy, COVID-19 detection and disease
progression visualization: Deep learning on chest X-rays for
classification and coarse localization, Applied Intelligence
51(2) (2021), 1010-1021.

H. Nahas, J.S. Au, T. Ishii, B.Y. Yiu, A.J. Chee and C.
Alfred, A deep learning approach to resolve aliasing artifacts
in ultrasound color flow imaging, IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control 67(12)
(2020), 2615-2628.


https://towardsdatascience.com/

