
Journal of Intelligent & Fuzzy Systems 45 (2023) 407–420
DOI:10.3233/JIFS-223484
IOS Press

407

A. Meenakshi∗ and O. Mythreyi
Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology
Chennai, Tamil Nadu, India

1. Introduction

Graph theory, as a convenient mathematical tool,
has a broad spectrum of uses in computer science,
electrical engineering, system analysis, operations
research, economics, networking, and transportation.
The graph arises as a mathematical, graphical repre-
sentation of the practical, real-life problems in those
problems. A graph is a collection of sets (V, E), where
V is a non-empty set of vertices connected by E,
whose constituents are edges or links. Representing
a problem as a graph provides a significant perspec-
tive and clarifies the situation. A network is typically
a graph model with a set of nodes connected by
edges or links. Networks give us a flexible framework
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for identifying and observing complex systems. The
study of complex social networks is a crucial concept
that comprises several disciplines. Complex systems
network theory provides techniques for analyzing
system of interaction structure, represented as net-
works. These complex networks are generally defined
by simple graphs that consist of vertices represent-
ing the objects under exploration. For example, if a
group of people, clustered entities in organizations,
etc. are joined together by edges if they correspond,
there is some relationship between them. Lotfi Zadeh
introduced the fuzzy set theory in 1965 as a gen-
eralization of classical set theory that allows us to
represent imprecise and vague phenomena. Fuzzy is
an upper version of a crisp set, where every item
or element has a varying membership grade [9]. It
can illustrate that its elements have distinct member-
ship grades between 1 and 0. Membership degrees are
not like probability. Using the fuzzy relation, Kauf-
mann [1] presented the concept of a fuzzy graph.
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Rosenfeld introduced the concepts of fuzzy paths,
fuzzy cycles, fuzzy bridges, fuzzy connectedness and
fuzzy trees to a fuzzy graph and described some of
its characteristics in [12]. Several mathematicians,
like Rashmanlou and Pal [13], have done extensive
research on fuzzy graphs and their applications in
real-world problems. As a type 1 fuzzy set, Atanassov
introduced a new type of fuzzy set, the intuition-
istic fuzzy set [4]. Type 1 fuzzy sets have only a
single membership grade; however, the intuitionistic
fuzzy set always consider two independent member-
ship grades: membership grade and non-membership
grade for each element. Shannon and Atanassov [14]
have described the concept of intuitionistic fuzzy set
relationships and graphs for the first time. For further
study on intuitionistic fuzzy graphs, interested read-
ers may refer to [8]. Vague and Intuitionistic fuzzy
graphs represent many real-world problems. Never-
theless, uncertainty due to conflicting information
and vague information about real-world decisions
Problem creation cannot be handled accurately by
a fuzzy Graph or Intuitionistic fuzzy Graph. For this
reason, Experts need other new concepts to deal with
it scenario. Smarandachee explained Neutrosophic
aggregation by extending the idea of fuzzy set [18].
It can handle any real-world problem with undefined,
ambiguous, uncertain, and inconsistent data. Classi-
cal set, fuzzy set and Intuitionistic fuzzy sets are all
expanded by Neutrosophic set. Every element in a
Neutrosophic set has three membership grades: truth,
indeterminate and false, These three membership
grades are always distinct and fall within the range
[0, 1].Smarandache’s proposed neutrosophic sets [6].
This is a complex mathematical method of dealing
with imperfect, uncertain, and inconsistent data in
real-world problems. They are a type of fuzzy set the-
ory that includes intuitionistic fuzzy sets [8] as well
as interval-valued intuitionistic fuzzy sets. To char-
acterize Neutrosophic sets, the truth-membership
values(T), indeterminacy-membership values(I), and
falsity-membership values(F) are independent and lie
within the real standard or nonstandard unit inter-
val [0, 1]. Haibin Wang introduced the concept of
single-valued neutrosophic sets (SVNS), a subclass
of neutrosophic sets to make it easier to practice
real-world applications. Single-valued Neutrosophic
sets are generalizations of the intuitionistic fuzzy
sets that are independent and the membership val-
ues ranging from [0,1]. Single-valued Neutrosophic
sets are a subclass of neutrosophic sets, to make it
easier to practice Neutrosophic sets in real-world
applications. Related work in the extension of the

single-valued Neutrosophic network is found in [2,
13, 14]. Yahya et al. [17] defined the max product of
two intuitionistic fuzzy graphs. For the fundamental
concepts of fuzzy related terminologies, interested
readers may refer to [8]. We introduced the Max
product of three single-valued Neutrosophic graphs
and studied its characterization. Further extended our
study on its applications, finding the effective min-
imal spanning tree. Also done a comparitive study
with Broumi et al. [15] and enhanced the weight
of minimal spanning tree using edge score func-
tion is defined by us. We follow the terminologies
used in Broumi et al. [16], interested readers may
refer it.

2. Preliminaries

2.1. Single-valued Neutrosophic Graph (SVNG)
[16]

Let G = (V, E) be a finite graph with no self loop
and parallel edges, where V be the set of vertices
and E be the set of edges. Then, single valued neu-
trosophic graph of G is denoted by G

′ = (V′, σ′, μ′)
where σ′ = (Tσ

′, Iσ
′, Fσ

′) is a SVNG on V′ and
μ′ = (Tμ

′, Iμ
′, Fμ

′) is a single valued neutrosophic
symmetric relation on E′ ⊆ V′ × V′ where

Tσ
′ : V′ → [0, 1],

Iσ
′ : V′ → [0, 1],

Fσ
′ : V′ → [0, 1],

Tμ
′ : V′ × V′ → [0, 1],

Iμ
′ : V′ × V′ → [0, 1],

Fμ
′ : V′ × V′ → [0, 1], and is defined as follows

(i) Tμ
′′(s, r) ≤ Tσ

′′(s) ∧ Tσ
′′(r), ∀(s, r) ∈ V′ × V′;

(ii) Iμ
′′(s, r) ≥ Iσ

′′(s) ∨ Iσ
′′(r), ∀(s, r) ∈ V′ × V′;

(iii) Fμ
′′(s, r) ≥ Fσ

′′(s) ∨ Fσ
′′(r), ∀(s, r) ∈ V′ × V′

satisfying the condition
0 ≤ Tμ

′(s, r) + Iμ
′(s, r) + Fμ

′(s, r) ≤ 3
where Tμ

′(s, r) denote the degree of truth mem-
bership, Iμ

′(s, r) denote degree of indeterminancy
membership and Fμ

′(s, r) denote the degree of
falsity membership respectively.

2.2. Strong SVNG [16]

The SVNG G’ is called strong SVNG if
Tμ

′(s, r) = Tσ
′(s) ∧ Tσ

′(r)
Iμ

′(s, r) = Iσ
′(s) ∨ Iσ

′(r)
Fμ

′(s, r) = Fσ
′(s) ∨ Fσ

′(r) if ∀(s, r) ∈ E′

RETRACTED
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2.3. Complete SVNG [16]

The SVNG G’ is called complete SVNG if
Tμ

′(s, r) = Tσ
′(s) ∧ Tσ

′(r)
Iμ

′(s, r) = Iσ
′(s) ∨ Iσ

′(r)
Fμ

′(s, r) = Fσ
′(s) ∨ Fσ

′(r) if ∀s, r ∈ V ′

2.4. Regular SVNG [16]

The SVNG G’ is called regular SVNG if∑
s′ /= r′ Tμ

′((s′, r′))= constant;∑
s′ /= r′ Iμ

′((s′, r′))= constant;∑
s′ /= r′ Fμ

′((s′, r′))= constant;

2.5. Degree of a vertex of SVNG [7]

Let G′ = (V, σ′, μ′) be the SVNG. The
degree of a vertex v ∈ V ′ is denoted by
dG′ (v) = ((dT )G′ (v), (dI )G′ (v), (dF )G′ (v)).
Here (dT )G′ (v) = ∑

ab∈E′ Tμ′ (ab), (dI )G′ (v) =∑
ab∈E′ Iμ′ (ab) and (dF )G′ (v) = ∑

ab∈E′ Fμ′ (ab)
The total degree of a vertex v ∈ V ′ is denoted by
tdG′ (v) = (tdT )G′ (v), (tdI )G′ (v), (tdF )G′ (v)). Here
(tdT )G′ (v) = ∑

ab∈E′ Tμ′ (ac) + Tσ′ (c)(tdI )G′ (v)
=
∑

ab∈E′ Iμ′ (ac) + Iσ′ (c)(tdF )G′ (v)
= ∑

ab∈E′ Fμ′ (ac) + Fσ′ (c)

2.6. Max product of two Intuitionistic fuzzy
graph [17]

Let N ′
1 = ((σ

′N ′
1

n1 , σ
′N ′

1
n2 ), (μ

′N ′
1

m1 , μ
′N ′

1
m2 )),

N ′
2 = ((σ

′N ′
2

n1 , σ
′N ′

2
n2 ), (μ

′N ′
2

m1 , μ
′N ′

2
m2 )) be two Intuitionis-

tic fuzzy graph.
The Max product of two Intuitionistic fuzzy graph
N ′

1, N
′
2 and is denoted by

N ′
1 ∗ N ′

2 (V ′′
1 ×M V ′′

2 , E′′
1 ×M E′′

2)
where E′′

1 ×M E′′
2 = {(o′′

1, t
′′
1 )((o′′

2, t
′′
2 )/ o′′

1 = o′′
2;

t′′1 t′′2 ∈ E′′
2 or t′′1 = t′′2 ; o′′

1o
′′
2 ∈ E′′

1}
σ

N ′
1∗N ′

2
n1 (o′′

1, t
′′
1 ) = σ

N ′
1

n1 (o′′
1) ∨ σ

N ′
2

n1 (t′′1 ) for all (o1, t1)
∈ (V ′′

1 ×M V ′′
2 )

σ
N ′

1∗N ′
2

n2 (o′′
1, t

′′
1 ) = σ

N ′
1

n2 (o′′
1) ∧ σ

N ′
2

n2 (t′′1 ) for all (o′′
1, t

′′
1 )

∈ (V ′′
1 ×M V ′′

2 ) and

μ
N ′

1∗N ′
2

m1 ((o′′
1, t

′′
1 )(o′′

2, t
′′
2 ))

= {σN ′
1

n1 (o′′
1) ∨ σ

N ′
2

n1 (t′′1 ) if o′′
1 = o′′

2; t′′1 t′′2 ∈ E′′
2

σ
N ′

1
n1 (o′′

1) ∨ μ
N ′

2
m1(t′′1 t′′2 ) if t′′1 = t′′2 ; o′′

1o
′′
2 ∈ E1′′

μ
N ′

1∗N ′
2

m2 ((o′′
1, t

′′
1 )(o′′

2, t
′′
2 ))

= {σN ′
1

n2 (o′′
1) ∧ σ

N ′
2

n2 (t′′1 ) if o′′
1 = o′′

2; t′′1 t′′2 ∈ E′′
2

σ
N ′

1
n2 (o′′

1) ∧ μ
N ′

2
m2(t′′1 t′′2 ) if t′′1 = t′′2 ; o′′

1o
′′
2 ∈ E′′

1}

3. Max product of three single valued
Neutrosophic graphs(MPTSVNG)

3.1. Definition

Let N ′
1 = ((σ

′N ′
1

l1 , σ
′N ′

1
l2 , σ

′N ′
1

l3 ), (μ
′N ′

1
m1 , μ

′N ′
1

m2 , μ
′N ′

1
m3 )),

N ′
2 = ((σ

′N ′
2

l1 , σ
′N ′

2
l2 , σ

′N ′
2

l3 ), (μ
′N ′

2
m1 , μ

′N ′
2

m2 , μ
′N ′

2
m3 )),

N ′
3 = ((σ

′N ′
3

l1 , σ
′N ′

3
l2 , σ

′N ′
3

l3 ), (μ
′N ′

3
m1 , μ

′N ′
3

m2 , μ
′N ′

3
m3 )) be

three SVNGs.
The Max product of three neutrosophic graph N ′

1, N
′
2

and N ′
3 is denoted by

N ′
1 ∗ N ′

2 ∗ N ′
3 (V ′′

1 ×MP V ′′
2 ×MP V ′′

3 , E′′
1 ×MP E′′

2
×MP E′′

3)
where E′′

1 ×MP E′′
2×MP E′′

3 = {(P′
1, Q′

1, R′
1)

(P′
2, Q′

2, R′
2)/ P′

1 = P′
2; Q′

1 = Q′
2; R′

1R′
2 ∈ E′′

3 or
P′

1 = P′
2; R′

1 = R′
2; Q′

1Q′
2 ∈ E′′

2 or Q′
1 = Q′

2; R′
1 =

R′
2; P′

1P′
2 ∈ E′′

1}
σ

N ′
1∗N ′

2∗N ′
3

l1 (P′
1, Q′

1, R′
1)= σ

N ′
1

l1 (P′
1) ∨ σ

N ′
2

l1 (Q′
1) ∨ σ

N ′
3

l1
(R′

1) for all (P′
1, Q′

1, R′
1) ∈ (V ′′

1 ×M V ′′
2 ×M V ′′

3 ) ;

σ
N ′

1∗N ′
2∗N ′

3
l2 (P′

1, Q′
1, R′

1) = σ
N ′

1
l2 (P′

1) ∧ σ
N ′

2
l2 (Q′

1) ∧
σ

N ′
3

l2 (R′
1) for all (P′

1, Q′
1, R′

1) ∈ (V ′′
1 ×M V ′′

2 ×M V ′′
3 )

and
σ

N ′
1∗N ′

2∗N ′
3

l3 (P′
1, Q′

1, R′
1) = σ

N ′
1

l3 (P′
1) ∧ σ

N ′
2

l3 (Q′
1) ∧

σ
N ′

3
l3 (R′

1) for all (P′
1, Q′

1, R′
1) ∈ (V ′′

1 ×M V ′′
2 ×M V ′′

3 )
and
μ

N ′
1∗N ′

2∗N ′
3

m1 ((P′
1, Q′

1, R′
1)(P′

2, Q′
2, R′

2))

= {σN ′
1

l1 (P′
1) ∨ σ

N ′
2

l1 (Q′
1) ∨ μ

N ′
3

m1(R′
1R′

2) if P′
1 = P′

2;
Q′

1 = Q′
2; R′

1R′
2 ∈ E′′

3

σ
N ′

1
l1 (P′

1) ∨ μ
N ′

2
m1(Q′

1Q′
2) ∨ σ

N ′
3

l1 (R′
1) if P′

1 = P′
2;

R′
1 = R′

2; Q′
1Q′

2 ∈ E2′′

σ
N ′

2
l1 (Q′

1) ∨ σ
N ′

3
l1 (R′

1) ∨ μ
N ′

1
m1(P′

1P′
2) if Q′

1 = Q′
2;

R′
1 = R′

2; P′
1P′

2 ∈ E′′
1}

μ
N ′

1∗N ′
2∗N ′

3
m2 ((P′

1, Q′
1, R′

1)(P′
2, Q′

2, R′
2))

= {σN ′
1

l2 (P′
1) ∧ σ

N ′
2

l2 (Q′
1) ∧ μ

N ′
3

m2(R′
1R′

2) if P′
1 = P′

2;
Q′

1 = Q′
2; R′

1R′
2 ∈ E′′

3

σ
N ′

1
l2 (P′

1) ∧ μ
N ′

2
m2(Q′

1Q′
2) ∧ σ

N ′
3

l2 (R′
1) if P′

1 = P′
2;

R′
1 = R′

2; Q′
1Q′

2 ∈ E′′
2

σ
N ′

2
l2 (Q′

1) ∧ σ
N ′

3
l3 (R′

1) ∧ μ
N ′

1
m3(P′

1P′
2) if Q′

1 = Q′
2;

R′
1 = R′

2; P′
1P′

2 ∈ E′′
1}

μ
N ′

1∗N ′
2∗N ′

3
m3 ((P′

1, Q′
1, R′

1)(P′
2, Q′

2, R′
2))
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Fig. 1. Graph N ′
1

= {σN ′
1

l3 (P′
1) ∧ σ

N ′
2

l3 (Q′
1) ∧ μ

N ′
3

m3(R′
1R′

2) if P′
1 = P′

2;
Q′

1 = Q′
2; R′

1R′
2 ∈ E′′

3

σ
N ′

1
l3 (P′

1) ∧ μ
N ′

2
m3(Q′

1Q′
2) ∧ σ

N ′
3

l3 (R′
1) if P′

1 = P′
2;

R′
1 = R′

2; Q′
1Q′

2 ∈ E′′
2

σ
N ′

2
l3 (Q′

1) ∧ σ
N ′

3
l3 (R′

1) ∧ μ
N ′

1
m3(P′

1P′
2) if Q′

1 = Q′
2;

R′
1 = R′

2; P′
1P′

2 ∈ E′′
1}

3.2. Definition

The Max Product of Three single-
valued Neutrosophic Graph is defined as
N ′

1 = (A1, B1); N ′
2 = (A2, B2) and N ′

3 = (A3, B3)
is denoted by N ′

1 ∗ N ′
2 ∗ N ′

3 is
(i) (O′

s1
∗ O′

s2
∗ O′

s3
)((l′, m′, o′)) =

∨ {O′
s1

(l′), O′
s2

(m′), O′
s3

(o′)}
(T′

s1
∗ T′

s2
∗ T′

s3
)((l′, m′, o′)) =

∧ {T′
s1

(l′), T′
s2

(m′), T′
s3

(o′)}
(R′

s1
∗ R′

s2
∗ R′

s3
)((l′, m′, o′)) =

∧ {R′
s1

(l′), R′
s2

(m′), R′
s3

(o′)}
∀(l′, m′, o′) ∈ V ′

1 ×M V ′
2 ×M V ′

3
(ii) (O′

s1
∗ O′

s2
∗ O′

s3
)((l′, q, r)(m′, q, r)) =

∨ {O′
s1

(l′m′), O′
s2

(q), O′
s3

(r)}
(T′

s1
∗ T′

s2
∗ T′

s3
)((l′, q, r)(m′, q, r)) =

∧ {T′
s1

(l′m′), T′
s2

(q), T′
s3

(r)}
(R′

s1
∗ R′

s2
∗ R′

s3
)((l′, q, r)(m′, q, r)) =

∧ {R′
s1

(l′m′), R′
s2

(q), R′
s3

(r)}
∀q ∈ V ′

2, z ∈ V ′
3 and l′m′ ∈ E′

1
(iii) (O′

s1
∗ O′

s2
∗ O′

s3
)((p, q, l′)(p, q, m′)) =

∨ {O′
s1

(p), O′
s2

(q), O′
s3

(l′m′)}
(T′

s1
∗ T′

s2
∗ T′

s3
)((p, q, l′)(p, q, m′)) =

∧ {T′
s1

(p), T′
s2

(q), T′
s3

(l′m′)}
(R′

s1
∗ R′

s2
∗ R′

s3
)((p, q, l′)(p, q, m′)) =

∧ {R′
s1

(p), R′
s2

(q), R′
s3

(l′m′)}
∀p ∈ V ′

1, q ∈ V ′
2 and l′m′ ∈ E′

3
(iv)(O′

s1
∗ O′

s2
∗ O′

s3
)((p, l′, r)(p, m′, r)) =

∨ {O′
s1

(p), O′
s2

(l′m′), O′
s3

(r)}
(T′

s1
∗ T′

s2
∗ T′

s3
)((p, l′, r)(p, m′, r)) =

∧ {T′
s1

(p), T′
s2

(l′m′), T′
s3

(r)}
(R′

s1
∗ R′

a2
∗ R′

s3
)((p, l′, r)(p, m′, r)) =

Fig. 3. Graph N ′
3

∧ {R′
s1

(p), R′
s2

(l′m′), R′
s3

(r)}
∀p ∈ V ′

1, l
′m′ ∈ E′

2 and r ∈ V ′
3

3.3. Example

Let N ′
1, N

′
2 and N ′

3 be three single valued neutro-
sophic graphs, which is shown in Figs. 1, 2 and 3
respectively. The Max-product of three single valued
neutrosophic graphs N ′

1 ∗ N ′
2 ∗ N ′

3 is shown in Fig. 4.

3.4. Edge score function of a SVNG

Indeterminancy value(I) does not depend on both
true(T) and falsity(F) value because I is not a com-
plement of T and F and the values of T, I, F are
independent of each other.
We defined a Edge Score Function (ESF) of Single-
valued Neutrosophic Graph is
ESF = 2+TA(x)−0.5IA(x)−FA(x)

3

3.5. Theorem

The MPTSVNGs N ′
1, N

′
2 and N ′

3 is a SVNSFG
proof: Let N ′

1 = (S1, T1), N ′
2 = (S2, T2) and

N ′
3 = (S3, T3) be three SVNSF graphs on

crisp graphs N ′
1 = (V′

1, E
′
1), N ′

2 = (V′
2, E

′
2) and

N ′
3 = (V′

3, E
′
3) respectively.

Case (i): For every vertex l′′ ∈ V ′
1 , m′′ ∈ V ′

2 and
o′′ ∈ V ′

3 and for every (l′′, m′′, o′′) ∈ V ′
1 × V ′

2 × V ′
3

(L′′
s1

∗ L′′
s2

∗ L′′
s3

)((s′, t′, u′)) =
∨ {L′′

s1
(s′), L′′

s1
(t′), L′′

s1
(u′)},[by defn 3.2 (i)]

(M ′′
s1

∗ M ′′
s2

∗ M ′′
s3

)((s′, t′, u′)) =
∧ {M ′′

s1
(s′), M ′′

s1
(t′), M ′′

s1
(u′)}, [by defn 3.2 (i)]

(O′′
s1

∗ O′′
s2

∗ O′′
s3

)((s′, t′, u′)) =
∧ {O′′

s1
(s′), O′′

s1
(t′), O′′

s1
(u′)}[by defn 3.2 (i)]

Case (ii): (L′′
s1

∗ L′′
s2

∗ L′′
s3

)((s′, m′′, o′′)(t′, m′′, o′′))
= ∨{L′′

s1
(s′t′), L′′

s2
(m′′), L′′

s3
(o′′)}[by defn 3.2 (ii)]

≤ ∨{min{L′′
s1

(s′), L′′
t1

(t′)}, L′′
s2

(m′′), L′′
s3

(o′′)}
[by 2.1 (i)]
= ∧{max{L′′

s1
(s′), L′′

s2
(m′′), L′′

s3
(o′′)},

Fig. 2. Graph N ′
2
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Fig. 4. Max product of three single-valued Neutrosophic network N ′
1 ∗ N ′

2 ∗ N ′
3.

max{L′′
s1

(t′), L′′
s2

(m′′), L′′
s3

(o′′)}
= ∧{(L′′

s1
∗ L′′

s2
∗ L′′

s3
)(s′, m′′, o′′), (L′′

s1
∗ L′′

s2
∗

L′′
s3

)(t′, m′′, o′′)}
(M ′′

s1
∗ M ′′

s2
∗ M ′′

s3
)((s′, m′′, o′′)(t′, m′′, o′′))

= ∧{M ′′
t1

(s′t′), M ′′
s2

(m′′), M ′′
s3

(o′′)},[by defn 3.2 (ii)]
= ∧{max{M ′′

s1
(s′), M ′′

t1
(t′)},

M ′′
s2

(m′′), M ′′
s3

(o′′)}[by 2.1 (ii)]
= ∨{min{M ′′

s1
(s′), M ′′

s2
(m′′), M ′′

s3
(o′′)},

min{M ′′
s1

(t′), M ′′
s2

(m′′), M ′′
s3

(o′′)}
= ∨{(M ′′

s1
∗ M ′′

s2
∗ M ′′

s3
)(s′, m′′, o′′), (M ′′

s1
∗ M ′′

s2
∗

M ′′
s3

)(t′, m′′, o′′)}
(O′′

s1
∗ O′′

s2
∗ O′′

s3
)((s′, m′′, o′′)(t′, m′′, o′′))

= ∧{O′′
t1

(s′t′), O′′
s2

(m′′), O′′
s3

(o′′)},
[by defn 3.2 (ii)]
∧{max{O′′

s1
(s′), O′′

t1
(t′)}, O′′

s2
(m′′), O′′

s3
(o′′)}

= ∨{min{O′′
s1

(s′), O′′
s2

(m′′), O′′
s3

(o′′)},

min{O′′
s1

(t′), O′′
s2

(m′′), O′′
s3

(o′′)}
= ∨{(O′′

s1
∗ O′′

s2
∗ O′′

s3
)(s′, m′′, o′′), (O′′

s1
∗ O′′

s2
∗

O′′
s3

)(t′, m′′, o′′)}
Case (iii): (L′′

s1
∗ L′′

s2
∗ L′′

s3
)((l′′, m′′, s′)(l′′, m′′, t′))

= ∨{L′′
s1

(l′′), L′′
s2

(m′′), L′′
t3

(s′t′)} [by defn 3.2 (iii)]
≤ ∨{L′′

s1
(l′′), L′′

s2
(m′′), min{L′′

t3
(s′), P ′

t3
(t′)}},

[by 2.1 (i)]
= ∧{max{L′′

s1
(l′′), L′′

t3
(s′), L′′

t3
(t′)},

max{L′′
s2

(m′′), L′′
t3

(s′), L′′
t3

(t′)}}
= ∧{(L′′

s1
∗ L′′

s2
∗ L′′

s3
)(s′, m′′, o′′), (L′′

s1
∗ L′′

s2
∗

L′′
s3

)(t′, m′′, o′′)}
(M ′′

s1
∗ M ′′

s2
∗ M ′′

s3
)((l′′, m′′, s′)(l′′, m′′, t′))

= ∧{M ′′
s1

(l′′), M ′′
s2

(m′′), M ′′
t3

(s′t′)}[by defn 3.2 (iii)]
= ∧{M ′′

s1
(l′′), M ′′

s2
(m′′), min{M ′′

t3
(s′), M ′′

t3
(t′)}}

[by 2.1 (ii)]
= ∨{min{M ′′

s1
(l′′), M ′′

t3
(s′), M ′′

t3
(t′),
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min{M ′′
s2

(m′′), M ′′
t3

(s′), M ′′
t3

(t′)}}
= ∨{(M ′′

s1
∗ M ′′

a2
∗ M ′′

s3
)(s′, m′′, o′′),

(M ′′
s1

∗ M ′′
s2

∗ M ′′
s3

)(t′, m′′, o′′)}
(O′′

s1
∗ O′′

s2
∗ O′′

s3
)((l′′, m′′, s′)(l′′, m′′, t′))

= ∧{O′′
s1

(l′′), O′′
s2

(m′′), O′′
t3

(s′t′)}[by defn 3.2 (iii)]
= ∧{O′′

s1
(l′′), O′′

s2
(m′′), max{O′′

t3
(s′), O′′

t3
(t′)}}

[by 2.1 (iii)]
= ∨{min{O′′

s1
(l′′), O′′

t3
(s′), O′′

t3
(t′)},

min{O′′
s2

(m′′), O′′
t3

(s′), O′′
t3

(t′)}}
= ∨{(O′′

s1
∗ O′′

s2
∗ O′′

s3
)(s′, m′′, o′′),

(O′′
s1

∗ O′′
s2

∗ O′′
s3

)(t′, m′′, o′′)}
Case (iv): (L′′

s1
∗ L′′

s2
∗ L′′

s3
)((l′′, s′, o′′)(l′′, t′, o′′))

= ∨{L′′
s1

(l′′), L′′
t2

(s′t′), L′′
t3

(o′′)} [by defn 3.2 (iv)]
= ∨{L′′

s1
(l′′), min{L′′

t2
(s′), L′′

b2
(t′)}, L′′

s3
(o′′)}

[by 2.1 (i)]
= ∧{max{L′′

s1
(l′′), L′′

t2
(s′), L′′

t2
(t′),

max{L′′
t2

(s′), L′′
t2

(t′), L′′
s3

(o′′)}}
= ∧{(L′′

s1
∗ L′′

s2
∗ L′′

s3
)(l′′, s′, o′′), (L′′

s1
∗ L′′

s2
∗

L′′
s3

)(l′′, t′, o′′)}
(M ′′

s1
∗ M ′′

s2
∗ M ′′

s3
)((l′′, s′, o′′)(l′′, t′, o′′))

= ∧{M ′′
s1

(l′′), M ′′
t2

(s′t′), M ′′
t3

(o′′)}[by defn 3.2 (iv)]
= ∧{M ′′

s1
(l′′), max{M ′′

t2
(s′), M ′′

t2
(t′)}, M ′′

s3
(o′′)}

[by 2.1 (ii)]
= ∨{min{M ′′

s1
(l′′), M ′′

t2
(s′), M ′′

t2
(t′),

min{M ′′
t2

(s′), M ′′
t2

(t′), M ′′
t3

(o′′)}}
= ∨{(M ′′

s1
∗ M ′′

s2
∗ M ′′

s3
)(l′′, s′, o′′), (M ′′

s1
∗ M ′′

s2
∗

M ′′
s3

)(l′′, t′, o′′)}
(O′′

s1
∗ O′′

s2
∗ O′′

s3
)((l′′, s′, o′′)(l′′, t′, o′′))

= ∧{O′′
s1

(l′′), O′′
t2

(s′t′), O′′
t3

(o′′)} [by defn 3.2 (iv)]
= ∧{O′′

s1
(l′′), max{O′′

t2
(s′), O′′

t2
(t′)}, O′′

s3
(o′′)}

[by 2.1 (iii)]
= ∨{min{O′′

s1
(l′′), O′′

t2
(s′), O′′

t2
(t′),

min{O′′
t2

(s′), O′′
t2

(t′), O′′
t3

(o′′)}}
= ∨{(O′′

s1
∗ O′′

s2
∗ O′′

s3
)(l′′, s′, o′′),

(O′′
s1

∗ O′′
s2

∗ O′′
s3

)(l′′, t′, o′′)}

3.6. Definition

Let H ′
1 = (A1, B1), H ′

2 = (A2, B2) and
H ′

3 = (A3, B3) be three SVNG of H ′
1, H

′
2

and H ′
3 respectively. The degree of a vertex

(a, b, c) ∈ V ′
1 × V ′

2 × V ′
3 in N ′

1 ∗ N ′
2 ∗ N ′

3 is defined
by

(dX)(N ′
1∗N ′

2∗N ′
3)(a, b, c) =∑

(a,x1)(b,y1)(c,z1)∈E′
1×E′

2×E′
3

(X′
b1

∗ X′
b2

∗ X′
b3

)((a, b, c)(x1, y1, z1))
= ∑

(a=x1)(b=y1)(cz1∈E3′ ) ∨{X′
a1

(x1), X′
a2

(y1), X′
a3

(cz1)}
+ ∑

(a=x1)(by1∈E′
2)(c=z1) ∨{X′

a1
(x1), X′

b2
(by1), X′

a3
(z1)}

+ ∑
(ax1∈E′

1)(b=y1)(c=z1) ∨{X′
b1

(ax1), X′
a2

(y1), X′
a3

(z1)}

(dY )(H ′
1∗H ′

2∗H ′
3)(a, b, c) = ∑

(a,x1)(b,y1)(c,z1)∈E′
1×E′

2×E′
3

(Y ′
b1

∗ Y ′
b2

∗ Y ′
b3

)((a, b, c)(x1, y1, z1))
= ∑

(a=x1)(b=y1)(cz1∈E′
3) ∧{Y ′

a1
(x1), Y ′

a2
(y1), Y ′

a3
(cz1)}

+ ∑
(a=x1)(by1∈E′

2)(c=z1) ∧{Y ′
a1

(x1), Y ′
b2

(by1), Y ′
a3

(z1)}
+ ∑

(ax1∈E′
1)(b=y1)(c=z1) ∧{Y ′

b1
(ax1), Y ′

a2
(y1), Y ′

a3
(z1)}

(dZ)(N ′
1∗N ′

2∗N ′
3)(a, b, c) = ∑

(a,x1)(b,y1)(c,z1)∈E′
1×E′

2×E′
3

(Z′
b1

∗ Z′
b2

∗ Z′
b3

)((a, b, c)(x1, y1, z1))
= ∑

(a=x1)(b=y1)(cz1∈E′
3) ∧{Z′

a1
(x1), Z′

a2
(y1), Z′

a3
(cz1)}

+ ∑
(a=x1)(by1∈E′

2)(c=z1) ∧{Z′
a1

(x1), Z′
b2

(by1), Z′
a3

(z1)}
+ ∑

(ax1E
′
1)(b=y1)(c=z1) ∧{Z′

b1
(ax1), Z′

a2
(y1), Z′

a3
(z1)}

3.7. Definition

Let N ′
1 = (P ′

1, Q
′
1), N ′

2 = (P ′
2, Q

′
2) and

N ′
3 = (P ′

3, Q
′
3) be three SVNSFG of N ′

1, N
′
2

and N ′
3 respectively. The total degree of a vertex

(p′, q′, r′) ∈ V1 × V2 × V3 in N ′
1 ∗ N ′

2 ∗ N ′
3 is

defined by
(TD

′
X)(N ′

1∗N ′
2∗N ′

3)(p
′, q′, r′) =∑

(p′,x1)(q′,y1)(r′,z1)∈E′
1×E′

2×E′
3

(X′′
q1

∗ X′′
q2

∗ X′′
q3

)((p′, q′, r′)(x1, y1, z1))
+(X′′

q′
1
∗ X′′

q′
2
∗ X′′

q′
3
)(p′, q′, r′)

= (D′
X)(N ′

1∗N ′
2∗N ′

3)(p
′, q′, r′) +

∨{X′′
p′

1
(x), X′′

p′
2
(y), X′′

p′
3
(z)}

(TD
′
Y )(N ′

1∗N ′
2∗N ′

3)(p
′, q′, r′) =∑

(p′,x1)(q′,y1)(r′,z1)∈E′
1×E′

2×E′
3

(Y ′′
q′

1
∗ Y ′′

q′
2
∗ Y ′′

q′
3
)((p′, q′, r′)(x1, y1, z1))

+(Y ′′
q′

1
∗ Y ′′

q′
2
∗ Y ′′

q′
3
)(p′, q′, r′)

(D′
Y )(N ′

1∗N ′
2∗N ′

3)(p
′, q′, r′) +

∧{Y ′′
p′

1
(x), Y ′′

p′
2
(y), Y ′′

p′
3
(z)}

(TD
′
Z)(N ′

1∗N ′
2∗N ′

3)(p
′, q′, r′) =∑

(p′,x1)(q′,y1)(r′,z1)∈E′
1×E′

2×E′
3

(Z′′
q′

1
∗ Z′′

q′
2
∗ Z′′

q′
3
)((p′, q′, r′)(x1, y1, z1))

+(Z′′
q′

1
∗ Z′′

q′
2
∗ Z′′

q′
3
)(p′, q′, r′)

= (D′
Z)(N ′

1∗N ′
2∗N ′

3)(p
′, q′, r′) +

∧{Z′′
p′

1
(x), Z′′

p′
2
(y), Z′′

p′
3
(z)}

In the above example, Degree of each vertex in the
max product network is D

′
(N ′

1∗N ′
2∗N ′

3) (P′
1, Q′

1, R′
1)

= (D′
X)(N ′

1∗N ′
2∗N ′

3)(P′
1, Q′

1, R′
1),

(D′
Y )(N ′

1∗N ′
2∗N ′

3) (P′
1, Q′

1, R′
1),

(D′
Z)(N ′

1∗N ′
2∗N ′

3)(P′
1, Q′

1, R′
1);

(D′
X)(N ′

1∗N ′
2∗N ′

3) (P′
1, Q′

1, R′
1) = 0.6

(D′
Y )(N ′

1∗N ′
2∗N ′

3)(P′
1, Q′

1, R′
1) = 0.7

(D′
Z)(N ′

1∗N ′
2∗N ′

3)(P′
1, Q′

1, R′
1) = 0.3

Hence D
′
(N ′

1∗N ′
2∗N ′

3)(P′
1, Q′

1, R′
1) = (0.6, 0.7, 0.3).
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Similarly,
D

′
(N ′

1∗N ′
2∗N ′

3)(P′
1, Q′

1, R′
2) = (0.7, 0.7, 0.3);

D
′
(N ′

1∗N ′
2∗N ′

3)(P′
2, Q′

1, R′
2) = (0.6, 0.7, 0.7)

D
′
(N ′

1∗N ′
2∗N ′

3)(P′
1, Q′

2, R′
2) = (1.1, 1.1, 0.4);

D
′
(N ′

1∗N ′
2∗N ′

3)(P′
1, Q′

2, R′
1) = (0.7, 0.8, 0.3);

D
′
(N ′

1∗N ′
2∗N ′

3)(P′
2, Q′

1, R′
1) = (0.5, 0.7, 0.7) ;

D
′
(N ′

1∗N ′
2∗N ′

3)(P′
2, Q′

2, R′
1) = (1.3, 1.1, 0.9);

D
′
(N ′

1∗N ′
2∗N ′

3)(P′
2, Q′

2, R′
2) = (1.1, 1.1, 0.8)

D
′
(N ′

1∗N ′
2∗N ′

3)(P′
1, Q′

3, R′
2) = (1.2, 0.8, 0.5);

D
′
(N ′

1∗N ′
2∗N ′

3)(P′
2, Q′

3, R′
1) = (0.9, 0.8, 0.8)

D
′
(N ′

1∗N ′
2∗N ′

3)(P′
2, Q′

3, R′
2) = (1, 0.8, 0.7);

D
′
(N ′

1∗N ′
2∗N ′

3)(P′
1, Q′

3, R′
1) = (0.9, 0.7, 0.5)

Total degree of each vertex in the max prod-
uct network is (TD

′)(N ′
1∗N ′

2∗N ′
3)(P′

1, Q′
1, R′

1) =
(0.8, 0.9, 0.4).
Similarly,
(TD

′)(N ′
1∗N ′

2∗N ′
3)(P′

1, Q′
1, R′

2) = (0.9, 0.9, 0.4);

(TD
′)(N ′

1∗N ′
2∗N ′

3)(P′
2, Q′

1, R′
2) = (0.8, 0.9, 0.1)

(TD
′)(N ′

1∗N ′
2∗N ′

3)(P′
1, Q′

2, R′
2) = (1.3, 1.4, 0.5);

(TD
′)(N ′

1∗N ′
2∗N ′

3)(P′
1, Q′

2, R′
1) = (0.9, 1.1, 0.4);

(TD
′)(N ′

1∗N ′
2∗N ′

3)(P′
2, Q′

1, R′
1) = (0.6, 0.9, 1) ;

(TD
′)(N ′

1∗N ′
2∗N ′

3)(P′
2, Q′

2, R′
1) = (1.5, 1.4, 1.1);

(TD
′)(N ′

1∗N ′
2∗N ′

3)(P′
2, Q′

2, R′
2) = (1.5, 1.4, 1.1);

(TD
′)(N ′

1∗N ′
2∗N ′

3)(P′
1, Q′

3, R′
2) = (1.6, 1.1, 0.6);

(TD
′)(N ′

1∗N ′
2∗N ′

3)(P2, Q3, R1) = (1.3, 1.1, 1.1)

(TD
′)(N ′

1∗N ′
2∗N ′

3)(P′
2, Q′

3, R′
2) = (1.4, 1.1, 1);

(TD
′)(N ′

1∗N ′
2∗N ′

3)(P′
1, Q′

3, R′
1) = (1.3, 1, 0.6).

The advantage of using the Max product of three
single-valued Neutrosophic graphs in a business net-
work relates to the ease of information sharing and
speed with which an understanding of data can be por-
trayed effectively by individuals with unique aspects
in every field of work among them. however, their
limitations occur in the operations of two networks
in the max product of graphs comparatively to three
max product of single-valued Neutrosophic graphs.
When two networks are maximized, the aspects of
sharing information to fewer particular members in
the network. whereas in a Max product of three
single-valued Neutrosophic networks, the informa-
tion sharing is maximized and not limited to a few
aspects. It is essential to know how to improve the
number of edges in social networks to increase the
flow of information.

Let NSVNG1 = (M1, P1) and NSVNG2 = (M2, P2)
be two single-valued Neutrosophic graphs, then the
maximal product of NSVNG1 and NSVNG2 is denoted

by

NSVNG1 ∗ NSVNG2 = (M1 ∗ M2, P1 ∗ P2)

The number of vertices and edges present in
NSVNG1 ∗ NSVNG2 is |M1 ∗ M2| and |M1||P2| +
|M2||P1| respectively.

We proposed the Max product of three
graphs, which is a more effective than two. Let
N ′

SVNG1 = (M1, P1), N ′
SVNG2 = (M2, P2) and

N ′
SVNG3 = (M3, P3) be three single-valued Neutro-

sophic graphs. Then the maximal product is denoted
by
N ′

SVNG = (M1 ∗ M2 ∗ M3, P1 ∗ P2 ∗ P3)

i) (a, b, c), (a′, b, c) are adjacent in N ′
SVNG if

aa′ ∈ P1, b ∈ M2, c ∈ M3
Therefore, the number of edges present in this case
is |P1||M2||M3|.

ii) (a, b, c), (a, b′, c) are adjacent in N ′
SVNG if

a ∈ M1, bb′ ∈ P2, c ∈ M3
Therefore, the number of edges present in this case
is |M1||P2||M3|.

iii) (a, b, c), (a, b, c′) are adjacent in N ′
SVNG if

a ∈ M1, b ∈ M2, cc
′ ∈ P3

Therefore, the number of edges present in this case
is |M1||M2||P3|.

The number of vertices and edges present in
N ′

SVNG is |M1 ∗ M2 ∗ M3| and |M1||P2||P3| +
|M2||P1||P3| + |M3||P1||P2| respectively. Hence,
the number of vertices and edges present in N ′

SVNG is
more than the number of vertices and edges present
in NSVNG.

4. Applications

Social networks are platforms where users share
their experiences and interact with each other. Unlike
traditional web pages, users are not only passive con-
sumers but also content producers and spreaders.
Thus, it is necessary to benefit from the interactions
between users in order to spread the information in
the shortest and most effective way in social media
networks. This research explores the idea of prioriti-
zation of social network connections by representing
a social media network as single valued Neutrosophic
network.
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Nowadays, the use of social networks are progress-
ing very fast. Social networks can be used for many
purposes. Many types of social networks are avail-
able. These social networks are prepared to grow their
business rapidly, and hence the providers of social
networks try to increase their networks. Over the past
few years, online social networking has exploded in
popularity as a means for people to share information
and build connections with others. For communi-
cation, marketing, and spreading of news, etc., it
becomes a vital instrument. In the social network mar-
ket, there is a substantial competitive situation, so all
social network organizations are trying to enhance
their networks in the maximization. So maximiza-
tion of networks directly depends on how many users
and edges or relationship are there between users.
In social networks, it is essential to know how to
improve the number of edges. A user of a social net-
work wants to connect to another user by nature.
Therefore, it is necessary to connect to the right
persons of other network to increase the flow of infor-
mation. However, the given data in social networks
are not precise all the times. Therefore, Neutrosophic
network systems capture these uncertainties with a
degree of memberships.

4.1. Example

Social networks are crucial to fostering company
culture, collaboration and information flow. Let us
consider a three group of networks of an organization
namely N ′

1,N ′
2, N ′

3. Each network of organizations
has a concern of persons (nodes) that has a flow of
information generally arising from their knowledge,
intelligence, personality or skills. When an informa-
tion shared from one network to another, the nodes of
each network connect to every other node of the net-
work. Hence there increases the flow of information
and thus there is a rise of the profit of the organization.

Let us assume that the network N ′
1consists of

members a1(General Manager) and a2(Executive
Director), N ′

2 of members b1(Digital Marketer),
b2(Chief Operating Officer) and b3(Information Offi-
cer), and N ′

3 of members c1(Proactive individual)
and c2(Chief Financial Officer) respectively, which
is shown in Table 1.

The roles of each node is different from one
another, when these nodes are maximized into a max
product, the above network H is obtained from the
small three networks N ′

1, N ′
2 and N ′

3 respectively.
Suppose a firm does all other functions except its
own core competency, it can have a clearer focus on

Table 1
Responsibilities of nodes

Nodes Respective position of nodes

a1(0.2, 0.3, 0.1) General Manager
a2(0.1, 0.2, 0.4) Executive Director
b1(0.2, 0.3, 0.1) Digital Marketer
b2(0.2, 0.3, 0.1) Chief Operating Officer
b3(0.2, 0.3, 0.1) Information Officer
c1(0.2, 0.3, 0.1) Proactive Individual
c2(0.2, 0.3, 0.1) Chief Financial Officer

what it does the best. A maximized network organi-
zational structure allows doing so. Flexibility is one
of the main reasons why firms pursue network orga-
nizational structure in the first place. By outsourcing
work, an organization is in a flexible position. This
allows them to complete the tasks in a minimal dura-
tion of time without facing any major problems. For
example, if the second organization network N ′

2 spe-
cializes in marketing,it would not be a concern in
the marketing department; they will certainly do their
work in marketing. If those links are interconnected
with the other two network nodes, the chances of
overall firm success are significantly high for the
entire organisation that spent the vast majority of its
time doing what it does best. As an outcome, each
node of N ′

1 cooperates with every other node, and
each time it serves a critical role that is efficient for an
organisation and makes it more flexible to accomplish
work in the shortest period of time.

For example if a1(0.2,0.3,0.1) is the general man-
ager of the network N ′

1 , b1(0.1,0.2,0.3) is the digital
marketer of the second networkN ′

2 and c1(0.1,0.3,0.4)
is the proactive individual of the organization net-
work N ′

3, so when these group of people are been
together to the development of marketing in the orga-
nization to achieve the maximum positive outcomes
in a short period of time. Hence they result in the
maximum yield as a1b1c1(0.2,0.2,0.1) of the three
organizations. Then the following members such as
a1, a2, b1, b2, b3, c1 and c2 who are skilful in different
fields of service of each and every network can be col-
laborated in making a partnership with one another to
make critical goals in a way more compactible. The
role of each node is mentioned in the table below.

Therefore, making a collaboration with every node
of the network maximizes the output to improve on
the organization’s development. These small network
of organizations N ′

1, N ′
2 and N ′

3 are been maximized
to the Max product as N ′

1 ∗ N ′
2 ∗ N ′

3 resulting in a
connected to drive the flow of information among
organizations with an effective time management.
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The maximized single-valued Neutrosophic net-
work H that consists of collaboration of N ′

1, N
′
2

and N ′
3 with 12 nodes and 17 links between them,

where each node is a combination of every node in
other networks that plays a resultant of typical role
to make their tasks completed in a minimal time
with greater reliability in organization. The max-
imized network nodes are linked to one another
for the flow of information in less time to other
nodes. The truth-membership degree of each node
indicates the better productivity in the organization.
The indeterminacy-membership degree of each node
demonstrates how much the productivity is uncertain.
The falsity-membership degree of each node tells the
less productivity gained by the organization.

The flow of information from one node to another
node in the maximized network takes place in a
effective time management. The truth-membership
degree, the indeterminacy-membership degree and
the falsity-membership degree of each link are given
by an effective time management of the node in col-
laboration.

From the above maximized single-valued Neutro-
sophic network model we find the minimal spanning
tree to make the network more flexible with the
minimum possible weights of the edges with score
function are found and thus the minimal cardinality
of edges increase in the profits of financial marketing
of the organizations.

4.2. Minimal spanning tree algorithm

In this section, we provide an another application
of Max product using minimal spanning tree algo-
rithm for single valued neutrosophic undirected graph
(network) by edge cardinality score function (ECSF).
Input: Adjacency matrix for max product weighted
network (MPWN)
Output : Minimal Spanning tree network of MPWN
Step 1 : Frame the adjacency matrix for the given
MPWN using edge cardinalitty of score function
Step 2: Since the MPWN is an undirected graph,
the adjacency matrix is a symmetric matrix. Hence
consider the upper triangular entries of the adjacency
matrix. In this entries, identify the smallest positive
non zero ECSF value. Name it as x1 and mark the cor-
responding edge name it as e1 in the MPWN. Next
in all unmarked values, identify the smallest positive
non zero ECSF value. Name it as x2 and mark the
corresponding edge name it as e2 in the MPWN.
Step 3: Proceed the iteration until all elements are
either marked as zero or all the non zero elementes

are marked. If any edge ei of MPWN produces a cycle
with all previously marked edges then mark the cor-
responding ECSF value of ei is 0. In this case exclude
the edge ei in the network.
Step 4: At last, we received (n − 1) edge minimal
spanning tree network of MPWN from the marked
edges of MPWN

Let H be the max product of three single valued
neutrosophic networks N ′

1, N
′
2 andN ′

3. It consists of
12 nodes and 20 edges. Form the max product of
neutrosophic weighted network using edge cardinal-
ity of score function , which is shown in Fig. 5. Find
the adjacency matrix for the MPSVWN

A =
{

w
(
xixj

)
, ∈ E

0, otherwise
(1)

which is shown in the above matrix. Find the small-
est non zero score function value 0.5166 and is
highlighted in the following matrix and mark the
corresponding edge e1 (a2b1c1 - a2b2c1 ) in the
MPSVWN. Find the smallest non zero score value
0.5666 and is highlighted in the following matrix and
mark the corresponding edge e2 (a2b1c1 - a2b1c2 ) in
the MPSVWN. Find the smallest non zero score value
0.5666 and is highlighted in the following matrix and
mark the corresponding edge e3 (a2b1c1 -a1b1c1) in
the MPSVWN.

Find the next smallest non-zero score function
value 0.5833 which is highlighted in the follow-
ing matrix and mark the corresponding edge e4
(a2b2c2- a2b1c2 ) in the MPSVWN. Find the next
non-zero score value 0.5833(is equal to the previ-
ous value) and is highlighted in the following matrix
and mark the corresponding edge e5 (a2b3c1 - a2b2c1
) in the MPSVWN. Find the next non-zero score
value 0.5833 (is equal to the previous value) and
is highlighted in the following matrix and mark
the corresponding edge e6 (a2b2c2 - a2b3c2) in the
MPSVWN. Find the next smallest non-zero score
function value 0.6 which is highlighted in the fol-
lowing matrix and mark the corresponding edge e7
(a1b1c2 -a2b1c2) in the MPSVWN. Find the next
smallest non-zero score function value 0.6166 which
is highlighted in the following matrix and mark
the corresponding edge e8 (a1b2c1 - a2b2c1) in the
MPSVWN. Find the next smallest non-zero score
function value 0.6166 (is equal to the previous value)
and is highlighted in the following matrix and mark
the corresponding edge e9 (a1b2c2 - a2b2c2) in the
MPSVWN.Find the next smallest non zero score
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Fig. 5. Single valued Neutrosophic network with minimum score function.

function value 0.6166 and its score value is reduced to
0, since the corresponding edge (a2b2c1- a2b2c2) cre-
ated a cycle with all marked edges in the MPSVWN.

Find the next smallest non-zero score function
value 0.65 which is highlighted in the following
matrix and its score value is reduced to 0 since the
corresponding edge (a1b1c1- a1b2c1) created a cycle
with all marked edges in the MPSVWN. Find the non-
zero score function value 0.65(is equal to the previous
value) and is highlighted in the following matrix and
its score value is reduced to 0 since the corresponding
edge (a1b1c1- a1b2c2) created a cycle with all marked
edges in the MPSVWN. Find the next smallest non-
zero score function value 0.65 which is highlighted in

the following matrix and its score value is reduced to
0 since the corresponding edge (a1b2c1- a1b2c2) cre-
ated a cycle with all marked edges in the MPSVWN.
Find the next smallest non-zero score function value
0.65 which is highlighted in the following matrix and
its score value is reduced to 0 since the corresponding
edge (a1b2c1- a1b3c1) created a cycle with all marked
edges in the MPSVWN. Find the smallest non-zero
score value 0.65 which is highlighted in the following
matrix and mark the corresponding edge e10 (a1b2c2
– a1b3c2 ) in the MPSVWN. Find the next non-zero
score value 0.65 which is highlighted in the following
matrix and mark the corresponding edge e11 (a2b3c1
- a1b3c1 ) in the MPSVWN. As we received the min-
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Fig. 6. Identification of minimal spanning tree.

imal spanning tree with 11 edges, rest of the score
values will not be used further. The selection of min-
imal spanning tree from H is shown in Fig. 6. Finally,
the minimal spanning tree is depict in Fig. 7.

4.3. Comparative study

In this section, we do the comparative study with
Broumi et al[15] presented algorithm to find the min-
imal spanning tree of the following single-valued
neutrosophic undirected graph which is shown in
Fig. 8.

We defined a edge score function using our pro-
posed algorithm, we get the same minimal spanning
tree with minimum weight,

0.55+0.3333+0.5166+0.6666+0.3833 = 1.7666 as
shown in Fig. 10. But using the algorithm pro-
posed by Broumi et al[15] with their score function
minimum weight of the minimal spanning tree is
0.5+0.2+0.433+0.6+0.267=2 shown in Fig. 9.

Comparatively, we get the improved minimum
weight of the minimal spanning tree using the score
function defined in this work.

5. Conclusion

Single valued Neutrosophic Network gives more
enhanced structure than Neutrosophic Networks
which helps to deal with more ambiguous conditions.
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Fig. 7. Minimal spanning tree N ′
1 ∗ N ′

2 ∗ N ′
3.

Table 2
Adjacency matrix of Fig. 5

a1b1c1 a1b1c2 a2b1c1 a2b1c2 a1b2c1 a1b2c2 a2b2c1 a2b2c2 a2b3c1 a1b3c2 a2b3c2 a1b3c1

a1b1c1 — 0.6666 0.5666 0 0.65 0 0 0 0 0 0 0
a1b1c2 0.6666 — 0 0.6666 0 0.65 0 0 0 0 0 0
a2b1c1 0.5666 0 — 0.5666 0 0 0.5166 0 0 0 0 0
a2b1c2 0 0.6666 0.5666 — 0 0 0 0.5833 0 0 0 0
a1b2c1 0.65 0 0 0 — 0.65 0.6166 0 0 0 0 0.65
a1b2c2 0 0.65 0 0 0.65 — 0 0.6166 0 0.65 0 0
a2b2c1 0 0 0.5166 0 0.6166 0 — 0.6166 0.5833 0 0 0
a2b2c2 0 0 0 0.5833 0 0.6166 0.6166 — 0 0 0.5833 0
a2b3c1 0 0 0 0 0 0 0.5833 0 — 0 0.65 0.65
a1b3c2 0 0 0 0 0 0.65 0 0 0 — 0.65 0.7166
a2b3c2 0 0 0 0 0 0 0 0.5833 0.65 0.65 — 0
a1b3c1 0 0 0 0 0.65 0 0 0 0.65 0.7166 0 —

The authors studied the max product of a single-
valued neutrosophic graph structure and discussed
the real-world application of the maximized network
with a minimum spanning tree algorithm which is

generated to achieve the minimum efficient time to
complete the tasks in a social network. In the future,
the study will be extended to other operations of three
single-valued neutrosophic Graphs.
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Table 3
Adjacency matrix of Fig. 6

a1b1c1 a1b1c2 a2b1c1 a2b1c2 a1b2c1 a1b2c2 a2b2c1 a2b2c2 a2b3c1 a1b3c2 a2b3c2 a1b3c1

a1b1c1 — 0.6666 0.5666 0 ———0.65 0 0 0 0 0 0 0 0
a1b1c2 0.6666 — 0 0.6 0 ———0.65 0 0 0 0 0 0 0
a2b1c1 0.5666 0 — 0.5666 0 0 0.5166 0 0 0 0 0
a2b1c2 0 0.6 0.5666 — 0 0 0 0.5833 0 0 0 0
a1b2c1 0.65 0 0 0 — ———0.65 0 0.6166 0 0 0 0 ———0.65 0
a1b2c2 0 0.65 0 0 0.65 — 0 0.6166 0 0.65 0 0
a2b2c1 0 0 0.5166 0 0.6166 0 — ——————0.6166 0.5833 0 0 0
a2b2c2 0 0 0 0.5833 0 0.6166 0.6166 — 0 0 0.5833 0
a2b3c1 0 0 0 0 0 0 0.5833 0 — 0 ———0.65 0 0.65
a1b3c2 0 0 0 0 0 0.65 0 0 0 — 0.65 0.7166
a2b3c2 0 0 0 0 0 0 0 0.5833 0.65 0.65 — 0
a1b3c1 0 0 0 0 0.65 0 0 0 0.65 0.7166 0 —

Fig. 8. Broumi et al. Neutrosophic graph.

Fig. 9. Broumi et al. minimal spanning tree.

Fig. 10. Broumi et al. minimum spanning tree by edge score func-
tion.
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