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Airline flight delays using artificial
intelligence in COVID-19 with perspective
analytics
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Abstract. This study envisages assessing the effects of the COVID-19 on the on-time performance of US-airlines industry in
the disrupted situations. The deep learning techniques used are neural network regression, decision forest regression, boosted
decision tree regression and multi class logistic regression. The best technique is identified. In the perspective data analytics,
it is suggested what the airlines should do for the on-time performance in the disrupted situation. The performances of all
the methods are satisfactory. The coefficient of determination for the neural network regression is 0.86 and for decision
forest regression is 0.85, respectively. The coefficient of determination for the boosted decision tree is 0.870984. Thus
boosted decision tree regression is better. Multi class logistic regression gives an overall accuracy and precision of 98.4%.
Recalling/remembering performance is 99%. Thus multi class logistic regression is the best model for prediction of flight
delays in the COVID-19. The confusion matrix for the multi class logistic regression shows that 87.2% flights actually not
delayed are predicted not delayed. The flights actually not delayed but wrongly predicted delayed are12.7%. The strength
of relation with departure delay, carrier delay, late aircraft delay, weather delay and NAS delay, are 94%, 53%, 35%, 21%,
and 14%, respectively. There is a weak negative relation (almost unrelated) with the air time and arrival delay. Security
delay and arrival delay are also almost unrelated with strength of 1% relationship. Based on these diagnostic analytics, it is
recommended as perspective to take due care reducing departure delay, carrier delay, Late aircraft delay, weather delay and
Nas delay, respectively, considerably with effect of 94%, 53%, 35%, 21%, and 14% in disrupted situations. The proposed
models have MAE of 2% for Neural Network Regression, Decision Forest Regression, Boosted Decision Tree Regression,
respectively, and, RMSE approximately, 11%, 12%, 11%, respectively.
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1. Introduction

COVID 19 has drastically affected every walk
of life. The air transportation infrastructure is no
exception. Numerous regions adopted travel restric-
tions initiatives in response to the pandemic situation
arising from the spread of corona disease 2019
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(COVID-19), which was caused by the extreme acute
respiratory syndrome coronavirus 2 (SARS-CoV-2).
This affected both domestic and international travel-
ing across the world [1]. After imposing a preliminary
initiative constraining the northern territory of Lodi
on February 21st 2020, Italy became the first coun-
try to impose a nationwide lockdown on March 9th
2020, [2]. On March 11th, 2020, two days after
Italy announced its lockdown, the US barred non-US
travelers from entering the country who had visited
China, Iran, or any of the EU’s 26 member states. On

ISSN 1064-1246/$35.00 © 2023 – IOS Press. All rights reserved.

mailto:faiza@phd.must.edu.my
mailto:khairir@must.edu.my


6632 Faiza and K. Khalil / Flight delays using AI in COVID-19

March 16th, 2020, the restriction was expanded to
non-US visitors who had toured the Great Britain and
Ireland [1]. Later on, the EU formally sealed the bor-
ders for all its member nations to almost all non-EU
citizens. The US State department released a Level 4
Global Health Travel Advisory on March 19, 2020,
cautioning all US people against foreign travel. Such
devastating series of incidents becomes the thread in
opposition to the air transportation industry forced to
gradually put itself into a semi-comatose state in order
to overcome the rapidly rising hygienic and economic
issues [3].

The information from the Customs and Border
Protection (CBP) website’s “Airport Wait Times,”
depicts the passengers’ arrival at US immigration
through entrance via all the airports [4]. Mon-
mousseau et al., [5] presents a comprehensive
overview of the accessible CBP dataset, as well as a
study of the wait times at the US airport immigration
facilities from Jan 2013 to Jan 2019.

The air transportation infrastructure is critical to
comprehend and research in pandemic circumstances
from different viewpoints, such as disease transmis-
sion within planes [6], outbreak transmission through
flights [7], and the impact of travel bans on airline
business [8]. The impact of the outbreak on traveller
attitudes against airlines remained the main subject of
the studies throughout the pandemic circumstances.
Throughout 2019, people on twitter mentioned thirty-
four main US airports services in a median of 13,255
tweets referring an airport and 295,904 tweets dis-
cussing an airline, suggesting the need for better
flights and airports services.

Flight bans and other initiatives implemented by
the number of countries around the world are hav-
ing a massive effect on the airline industry. The data
collected by US Department of Bureau of Trans-
portation Statistics depicts the several foreign and
domestic flights affected during March 1st to April
22nd 2020, based on BTS and CBP statistics since
June 24th 2020. The daily internal flights declines
by 50% in the second half of March 2020, accord-
ing to the dataset. Although not technically sleeping,
numerous flights continued to be operated by airlines
for fear of losing their slots [9] or because they needed
to keep operating routes with intention of obtaining
financial help [10], a circumstance that were similar
to a sleep disorder known as “nightmare”.

The uncertainty in the COVID-19 situations makes
it difficult to predict the real future of air travel.
Truong [11] developed neural network models for
predicting international and domestic travel based on

daily travel by distance, economic status, COVID-
19 situation, and travel bans. The study concluded
that weekly economic index (WEI) contribute more
to air travel. Distance played important role in domes-
tic and international travel. Travel bans affected both
the international and domestic air travel. Moreover,
air travel will takes years to back to normal, even
after the restoration of the economy from the jerks of
COVID-19.

This study is organized as follows. After the intro-
duction the problem statement is presented in section
2. Related studies are presented in section 3. In
section 4 research gap is highlighted. In section 5 the-
oretical frameworks is presented. Section 6 provides
information about the dataset and factors. Formula-
tion of the problem is presented in section 7. Results
and discussion are in section 8. Responses to hypoth-
esis are recorded in section 9 and the study concluded
in section 10.

2. Problem statement

Critical analysis is required to know the affect of
COVID 19 on the air transportation. It is required to
know the effect on important issues, such as disease
transmission within planes, transmission through
flight, and the impact of travel bans on overall airline
industry. Although, flight bans are required for con-
trolling the spread of the COVID 19, they drastically
affect the airline industry business. Due to COVID
19 a large amount of flight schedule disruption have
been reported. The result is in the form of negative
affect on the on-time performances of the airlines
with long flight delays. Whereas the passengers are
increasingly becoming services quality sensitive; the
drastic change in the airline schedule with long flight
delays negatively affect the airline good name, pas-
senger satisfaction, time and money. However, since
the flight ban has been strictly implemented, a com-
mon query is to know how much the flight is delayed?
One possible answer is indefinite time delay or can’t
say anything, but such a response is going to create
more curiosity and confusion among the passengers.
Moreover, a response of such type sounds low while
living in a modern advanced era. Thus, it is needed
to predict correctly how much the flight is delayed in
the disruption situations? Furthermore, the accuracy
and reliability of the prediction is inevitably impor-
tant in pandemic situations. It is required to choose
proper, correct, reliable and accurate method of pre-
diction in such disrupted situations. It is reported that
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the modern techniques of the artificial intelligence
and machine learning possess extraordinary predic-
tion capabilities. Thus in this research the techniques
of artificial intelligence and machine learning are uti-
lized for prediction of flight delays in the COVID 19
pandemic situations.

Due to the outbreak of the COVID 19, many flights
were delayed causing a major disruption in the flight
traffic control. To predict the correct status of the
flight is important information for an airline business
and better passenger service in the pandemic situa-
tion. This knowledge can save time, money, energy
and result in better passenger service. It is reported
that artificial intelligence and machine learning tech-
niques have tremendous prediction capabilities. Thus
the problem of the proposed research problem is
“How to exploit the prediction capabilities of the arti-
ficial intelligence and machine learning techniques
for predicting flight delays in COVID-19 pandemic
situations?” The proposed research has the following
objectives.

1. To study the pandemic effect on the flight delays
with the help of the modern AI tools.

2. To use neural network regression, decision for-
est regression, boosted decision tree regression
and multiclass logistic regression for predicting
flight delay in COVID-19 pandemic situation.

3. To perform feature-target correlations for iden-
tifying most important feature contributing to
flight delays in pandemic situation.

The inputs-target correlation is computed to
response to the following hypothesis following Seok
et al., [12].

H1: The departure delay of the flight is directly
related to the arrival delay in the COVID 19 situ-
ations.

H2: The air time of the flight has a positive rela-
tionship to the arrival delay in the COVID 19
situations.

H3: The carrier delay of the flight is directly
related to the arrival delay in the COVID 19 situ-
ations.

H4: The weather delay of the flight has a positive
relationship to the arrival delay in the COVID 19
situations.

H5: The NAS delay of the flight is directly related
to the arrival delay in the COVID 19 situations.

H6: The security delay of the flight has a posi-
tive relation to the arrival delay in the COVID 19
situations.

H7: The late aircraft delay of the flight is posi-
tively related to the arrival delay in the COVID
19 situations.

3. Related studies

Airline flight delays in normal situations have been
previously addressed by studies, however, it has not
been properly addressed in the COVID 19 pandemic
situations. In the normal situation the flight delay /
cancellation can help provide important information
for decision making for airlines, airports, and air traf-
fic control. It can be an early information to airline
customers so that they can reschedule the itinerary
beforehand. The advance rescheduling can reduce the
loss of time, money and service. It is reported that
flight delays and cancellations have socio-economic
and environmental effects [13, 14]. Zhixing et al.,
[15] concluded that flight network characteristics,
resilience and flight delays are directly and indirectly
related to each other. Wang et al., [16] used struc-
tural properties of network to reduce flight delays and
compared the network structure of USA and China.
They used the data from 1 August 2012 to 31 August
2013 with 196 airports. Zhou et al., [17] analyzed the
impact of flight delays using the data of flight arrivals
and departures in China from December 1st to 31st
2000.

Predicting the flight delays and cancellations had
been the main theme of various major studies in
the past [18–21]. In [22], machine learning based
regression was used for flight delays hours ahead
of the flight operation. The flight delay states and
flight schedule information was taken as input fea-
tures to the regression model. The authors showed
that the on-time performance was largely effected by
the delay states of the flight. Ding [23] used multi-
ple linear regression model for prediction of airline
flight delays with 79.1 % accuracy. Kenan et al., [24]
addressed to reduce flight delays with optional flights.
Gui et al., [25] recommended random forest tech-
nique for flight delay prediction with 90.2% accuracy.
Lambelho et al., [26] used LightGBM, Multilayer
Perceptron, and Random Forests for flight delays
and cancellations in Heathrow airport. They used the
method of binary classification. StefanoviÂ¡c et al.,
[27] predicted deviation from the scheduled flight
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time using machine learning for lithuanian airports.
Yazdi et al., [28] used Levenberg-Marquart technique
for predicting flight delays.

Disease transmission in planes and outbreak
spreading with flights become the bases of flight
bans and air transport. Baspinar and Koyuncu [29]
addressed the issue of flight delays caused by spread
of epidemic. The authors studied two different epi-
demic models, one was flight-based model, whereas,
the second was airport-based model. The authors con-
sidered data form 10 busiest airports in Europe to
study the spread of infection in air traffic between
13:30 to 16:30 on June 02, 2015. Nowzari [30] com-
mented on the spread of epidemic in a network.
Perotti et al., [31] observed that network sparsity
(Low interaction time), slowdown the Suspectable-
Infectous SI spread of disease. Mou et al., [32]
pointed that the temporal sparsity (inter-event inter-
action time) and the time of flight slow down the
infection transmission rate. They used the data of
1,627 airline routes with14,268 flights for 2014 of
Chinese Aviation Network. Bussell et al., [33] uti-
lized control theory strategies to control the spreading
of informed humans, plants and animals diseases.
They addressed the disease management strategies,
to practically control the transmission of infectious
diseases. Alamo et al., [34], used a 3M strategy,
Monitor, Model and Manage to control COVID 19
transmission. Li et al., [35] studied delay propagation
model using an integrated airport-based Susceptible-
Infected-Recovered-Susceptible (ASIRS) epidemic
model. They used the flight data of the Civil Avia-
tion Administration of China (CAAC) from June to
December in 2015 with 93630 flights.

4. Gaps in the literature

Alla et al., [36] used multilayer perceptron neu-
ral network for predicting flight arrival delay of the
American airlines. The data used by the authors was
for the American airlines for the time space between
1st of January to the 31st of December 2018 with
total of 760000 flights. In our proposed model the
flight delay and cancellation data will be from Jan-
uary 2020 to Jun 2020, with 2745847 flights, covering
the time span of the advent of COVID-19 pandemic.
Thus there is a promising population gap. Secondly,
our data pertains to the advent of COVID 19. More-
over, the study [36] considers only 10 input features to
predict flight delay. In our proposed model we focus
on more important numerical features. Thus there are

promising methodological, evidence, empirical, pop-
ulation and practical knowledge types of gaps with
[36]. Zeng et al., [37] simulate data from 325 airports
in the United States from 2015 to 2018, portraying the
situation before the advent of COVID-19 situation.
This motivates there are promising methodologi-
cal, evidence, empirical, population and practical
knowledge types of gaps with [37]. Niu et al., [38]
used control theory approach for flight delays in
complex airline networks. Thus there are promising
methodological, evidence, empirical, population and
practical knowledge types of gaps with [38]. Zou-
tendijk and Mitici [39] used machine learning to
reduce the flight delay at Rotterdam The Hague Air-
port (RTM) between 1 January 2017 and 29 February
2020. A total of 17,365 departing and 17,336 arriv-
ing flights were taken into consideration. Because
in [39] only one airport with approximately 17365
flights were considered, whereas, the current model
will consider 2745847 flights information, depicting
promising methodological, evidence, empirical, pop-
ulation and practical knowledge types of gaps with
[39]. Bandyopadhyah et al., [40] utilized the data of
January 2019 to train a flight cancellation model and
test it with the data of January 2020. The proposed
study possess promising methodological, evidence,
empirical, population and practical knowledge types
of gaps with [40]. Thus we can refine the research
gap easily from these studies. The research gaps with
renowned studies are refined and presented in Table 1.
From a through literature review, we come to know
that no model has been trained for flight delay predic-
tion in the COVID 19 disruption situation. Thus the
proposed study envisages to train and test AI based
prediction models for airline flight delay prediction
in the COVID 19 disruption situation.

The Table 1 summaries that with most of
the renowned research, the proposed study have
methodological, evidence, empirical, population and
practical knowledge types of gaps. Thus there exist
promising gap to work on the proposed research
study.

5. Theoretical framework

Airline service quality and schedule disruption are
major factors affecting the airline business. Studies
have demonstrated that airline capacity reductions
disproportionately affect passengers, emphasizing
the discrepancies between quantifying aircraft delays
and cancellations and evaluating the real passenger
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Table 1
Identification of the gaps and its types

Research Population used / population quantity Method used Unit of analysis Variable
predicted

Type of gap

Proposed Research January 2020 to Jun 2020 Neural Network Regression US domestic
airline industry

Flight Delay self

2745847 Flight data Decision Forest Regression
Boosted Decision Tree Regression
Multi Class Logistic Regression

Alla et al., [36] 1st of January 2018 to the 31st Perceptron Neural Network US Airline
Industry

Flight Arrival
Delay

Methodological Gap (New Methods)

of December 2018 Evidence Gap as it was before COVID.
760000 flights Empirical Gap (New Experiments on new

predictors)
Population Gap (Big Population with COVID)
Practical Knowledge Gap (Impact of COVID 19)

Zeng et al., [37] 2015 to 2018 Deep-Graph LSTM US Airports Airport Delay Methodological Gap (New Methods)
325 Airports Evidence Gap as it was before COVID.

Empirical Gap (New Experiments on new
predictors)
Population Gap (Big Population with COVID)
Practical Knowledge Gap (Impact of COVID 19)

Niu et al., [38] 13 US Passenger Airlines in 2015 State Space of the Control Theory US Domestic
Passenger Airlines

Arrival Delay Methodological Gap (New Methods)
Evidence Gap as it was before COVID.
Empirical Gap (New Experiments on new
predictors)
Population Gap (Big Population with COVID)
Practical Knowledge Gap (Impact of COVID 19)

Zoutendijk and
Mitici [39]

1 January 2017 and 29 February 2020.
17,365 departing and 17,336 arriving
flights

Mixture Density Network
Random Forest Regression

Rotterdam The
Hague Airport
(RTM),
Netherlands.

Flight Delay
Prediction

Methodological Gap (New Methods)
Evidence Gap as it was before COVID.
Empirical Gap (New Experiments on new one
predictor)
Population Gap (Big Population with COVID)
Practical Knowledge Gap (Impact of COVID 19)

Bandyopadhyah et
al.,[40]

January 2019 for Training.
January 2020 for Testing.
1191331 Flights

Long-short term memory (LSTM)
Gated Recurrent Unit (GRU)

US Airlines
Industry

Flight
Cancellation

Methodological Gap (New Methods)
Evidence Gap as Bandyopadhyah et al., (2020)
was just at the start of COVID.
Empirical Gap (New Experiments on Flight
Delays)
Population Gap (Big Population with COVID)
Practical Knowledge Gap (Impact of COVID 19)
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delay [41–44]. According to statistics from a promi-
nent US airline, disrupted passengers, whose routes
were disrupted due to a capacity drop, account for
just 3% of overall passengers, but account for 39%
of entire passenger inconvenience.

The inclusions of passenger-centric strategies were
advocated in USA [45] and Europe [46] when assess-
ing the air transportation mechanism. Cook et al.,
[47] made the first effort at incorporating passenger-
oriented metrics. The ideas of Multimodal, Efficient
Transportation in Airports and Collaborative Deci-
sion Making (META-CDM) were established to
include passenger interests in airport procedure of
decision making [48–50]. Despite the fact that
these efforts offer passengers a prominent role, they
nonetheless rely significantly on flight-centric data
and hence suffer from the same latency limita-
tions. After multiple years, the desired move from
flight-centric to passenger-centric metrics has yet to
be adopted by regulatory authorities. EUROCON-
TROL and the FAA offered timeliness indicators
that combined airline and passenger perspectives
into a unified picture (EUROCONTROL and FAA
[51]). Lemer [52] called for integrated airport effi-
ciency indicators which would address the needs
of travelers, airlines, and airports, as well as the
demands of many other players (such as restau-
rants or governments). Many experiments have been
conducted to better understand the travel experi-
ence or at minimum the passenger expectation of
aviation and airline efficiency. Tsaur et al., [53] sug-
gested fuzzy theory to conduct surveys to assess
airline service efficiency. Hunter [54] conducted a
comprehensive survey of aviation perception stud-
ies from 1995 to 2006, highlighting the decline in
customer support across the airlines sector. De-Oña
and De-Oña [55] performed a study of survey-
based research of public transit system for more
detailed information. They concluded that while
researchers continue to attempt to boost the sophisti-
cation of models in order to better predict customer
comfort in public transportation, management and
practitioners use simplified models to achieve their
target of maximizing passenger perceived service
efficiency in exchange for money. Passenger assess-
ments undertaken for airports or airlines, indeed very
comprehensive, remained restricted to very specific
samples of passengers and brief time span, and may
not be representative. Tsaur et al., [53], for instance,
has a sampling data of 211 passengers, while Pakdil
and Aydın [56] has a sampling set of 385 passen-
gers in their survey studies. They are often costly and

time-consuming to introduce, rendering their usage
for assessing the impact of significant perturbations
on the air transportation environment, such as the
COVID-19 disease outbreak, inefficient and chal-
lenging to update.

The widespread availability of smartphones has
made it simpler to measure the performance of the
air transport industry utilizing passenger-generated
information. Passenger behavior at airports [57, 58]
and transit stations [59] is studied using information
from Wi-Fi hotspots and Bluetooth beacons, along
with historical data. Information created by passen-
gers’ smart phones and obtained by phone carriers,
if appropriate, can be used to evaluate passengers’
door-to-door activity under both nominal and dete-
riorated circumstances [60–62]. From this literature
it is clear that the airline passengers are increasingly
becoming service quality sensitive.

Artificial intelligence and machine learning tech-
niques have extraordinary capabilities of predicting
the occurrence of a future event. Minimum sched-
ule disruption and best passenger services affect
the airline business ([41–48, 50]). In the study,
Pakdil and Aydin [56], the authors emphasized the
need for preparedness in disruptions, emergency
and unexpected situations for the airline industry.
Reliable expectations need efficient and accurate pre-
diction mechanisms. The modern deep learning based
machine learning algorithm can memorize big data
for the purpose of predicting the future unexpected
situations. Thus in this study the memorizing power
of the modern deep learning algorithms are exploited
to predict the flight delays in the COVID 19 pandemic
situation. Thus AI based computer integrated systems
are developed to predict whether the flight will be
delayed or not? Moreover, it is important to know
which of the features contribute more towards flight
delays during the COVID-19 pandemic situations.
The theoretical framework can be presented graph-
ically as shown in Fig. (1). The framework depicts
that when the passengers are service quality sensi-
tive, the outbreak of the COVID 19, and the belief
that the disease transmit through planes, impose ban
on air travel. Due to the ban a huge flight schedule
disruption occurred and the passengers want to know
whether a certain flight is delayed or not? Thus the
powerful prediction tools of AI are used to response
to the event of flight delay prediction in the pandemic
situation.

Thus we memorize / train our model with 2196678
flight delay information. We further test the accuracy
of our proposed model with 549169 flight delay infor-
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Fig. 1. Graphical presentation of theoretical framework.

mation. In other words, we try to teach / memorize
/ learn our system 2196678 flight delay / cancella-
tion patterns. Then we test with 549169 flight delay
patterns, and let the system to check whether a flight
with specific features will be delayed?

Figure (2) shows the research design adopted in
this study for the predicting the flight delay during the
COVID 19 situation. The techniques of the artificial
intelligence used for prediction and interpretations of
flight delays are as under.

1. Neural network regression.
2. Decision forest regression.
3. Boosted decision tree regression.
4. Multi-class logistic regression.

6. Dataset and features

COVID-19 has severely crippled the global airline
industry. All the major air services were thoroughly
reduced throughout the year 2020. The data of
2745847 flights with 47 delays features were obtained
from Kaggle (2020). The data is further obtained by
(Kaggle, [63]) from The United States Department
of Transportation’s (DOT) Bureau of Transportation
Statistics ([64]). The department detail information
for the on-time performance of flights for major US
carriers. The data is from January - June 2020 con-
taining all the relevant flight information from the
Top 10 United States flight carriers with 2745847
flights during the pandemic time. The unit of anal-

ysis for this research is the US Airline industry. The
study will help to predict the airline flight delays
in COVID 19 pandemic situations. The system is
trained with 2196678 flight delay data during the
COVID 19 situation. The data of the 549169 flights
are used for testing to check the accuracy of the
model. The total dataset consists of 2745847 flights
delay information during the COVID 19 situation.
In all deep learning techniques the data is usually
subdivided into the training and testing data sam-
ple. It is common practice to allocate 80% of the
data to training sample and 20% to testing sample.
In other words 80% of the dataset is given to the
model for training / memorizing and the rest 20%
check how the model have memorized the dataset
for prediction. Thus the totality of dataset is subdi-
vided into training and testing samples having data of
2196678 and 549169 flights, respectively, during the
COVID 19 situation. The following features are used
for the prediction of flight delays in the COVID-19
situations.

AIR TIME: Total elapsed time the airplane
remains in air and measured in minutes.

ARR DELAY: Measured in minutes.
CARRIER DELAY: Measured in minutes. The

cancellation or delay due to circumstances within the
control of and airline. For example, crew unavailabil-
ity, maintenance, aircraft cleaning, fueling, baggage
loading, fueling, etc.

DEP DELAY: Measured in minutes.
DISTANCE: Measured in miles from the origin to

destination airport.
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Fig. 2. Research design of deep learning based flight delay prediction during COVID 19.

LATE AIRCRAFT DELAY: Measured in min-
utes. This type of delay is caused by a previous flight
arrived late, this situation causes the present flight to
departure late.

NAS DELAY: Measured in minutes. Delays and
cancellations due to national aviation system. For
example, airport operations, non-extreme weather
conditions, heavy traffic volume, air traffic control.

SECURITY DELAY: Measured in minutes.
Delays / cancellations caused by emergency evac-
uation of a terminal or concourse. Re-boarding of
aircraft caused by security breach, fault in security
screening equipment. Long waiting lines at security
screening areas exceeding 29 minutes.

WEATHER DELAY: Measured in minutes.
Extreme meteorological conditions causing delays /
cancellations of a flight. For example, winds, heavy
rains, hurricane, tornado, floods, blizzard.

7. Formulation of the Proposed Neural
Network Regression for Flight Delay
Prediction

A neural network is composed of interconnected
nodes and edges forming layers. The first and last
layers are termed as input layer and output layer,
respectively. There may be many hidden layers
between these two layers. Majority of the prediction
problems are solved by having one or a few hidden
layers. However, deep neural networks may have even
hundreds hidden layers. The interconnected layers
have higher levels of semantic depth. Training of the
network on the given data is performed to know the
relationship between inputs and outputs. The graph
starts from inputs to hidden and ends with output
layer. The nodes succeeding layers are connected to
next layer with the help of weighted edges. To com-
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pute the output for an input, an activation function is
used to calculate the value at nodes. Each layer cal-
culates a value based on the weighted sum of values
that is calculated at nodes of the preceding layer.

In the neural network, the inputs are multiplied
with the weights at the hidden layers to create node
“j”. For example the output of the first hidden layer
is given as (1). Here b1

j denote the bias. Here h1
j is

the output at the first hidden layer. In the first layer
f 1 is applied on the input parameters, to create h1

j at
neuron “j” of the first hidden layer Hagan et al., [65].

h1
j = f 1

⎛
⎝ N∑

j=1

w1
ijxj + b1

j

⎞
⎠ (1)

(1) For the second hidden layer the output is given
in (2). In the second layer f 2 is applied on the output
of h1

j , to create h2
j at neuron “j” of the second hidden

layer.

h2
j = f 2

⎛
⎝ N∑

j=1

w2
ijh

1
j + b2

j

⎞
⎠

= f 2

⎛
⎝ N∑

j=1

w2
ijf

1

⎛
⎝ N∑

j=1

w1
ijxj + b1

j

⎞
⎠+ b2

j

⎞
⎠

(2)

The output at the third hidden layer at node “j” can
be calculated (3). In the third layer f 3is applied on
the output of h2

j , to create h3
j at neuron “j” of the third

hidden layer [65].

h3
j = f 3

(
N∑

j=1

w3
ijh

2
j + b3

j

)

= f 3

(
N∑

j=1

w3
ijf

2

(
N∑

j=1

w2
ijf

1

(
N∑

j=1

w1
ijxj + b1

j

)
+ b2

j

)
+ b3

j

)
(3)

Finally the output at the “j” th node of the output
layer is given as (4). In the output layer θjis applied
on the output of h3

j , to create final output oj at neuron

“j” of the output layer.

oj = θj(h3
j ) = θj

(
f 3

(
N∑

j=1

w3
ijh

2
j + b3

j

))

= θj

(
f 3

(
N∑

j=1

w3
ijf

2

(
N∑

j=1

w2
ijf

1

(
N∑

j=1

w1
ijxj + b1

j

)
+ b2

j

)
+ b3

j

))
(4)

In case the network has “k” hidden layers, the out-
put at the k th hidden layer is given as (5).
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Finally the output at the output layer is given in
(6). In the output layer θj is applied on the output of
hk

j , to create final output at neuron “j” of the output
layer [65].
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The performance of neural network based models
are measured in the form of mean solution error (7),
root mean square error (8), relative absolute error (9),
relative squared error (10), and coefficient of deter-
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mination (11).

MAE =

n∑
i=1

|oi − ti|
n

(7)

Here, oi, ti denote the predicted target and the
actual target, respectively.

RMSE =

√√√√√
n∑

i=1
(oi − ti)2

n
(8)

RAE = |oi − ti|
ti

(9)

RSE =

√√√√√
n∑

i=1
(oi − ti)2

(t̄ − ti)2 (10)

COD = 1 − Residual Sum Square

Total Sum Square
= 1 − RSS

TSS

= 1 −

n∑
i=1

(ti − oi)2

n∑
i=1

(ti − t̄)2
(11)

Thus Equations 7–11 are used for performance
evaluation.

The machine learning techniques used in this study
are neural network aggression, decision forest regres-
sion, boosted decision tree regression and multiclass
logistic regression. The parameters of the models are
presented in Table (2). The neural network regression
uses a cross entropy loss function. The loss function
ensures how the prediction is close to the actual value.
Its value range from 0–1, with 0 representing the per-
fect match and 1 the completely mismatch. Learning
rate of the problem is 0.005. The learning rate is the
changing parameter, setting the step size at each itera-
tion to come close to the minimum loss function. The
network performed 100 iterations with minmax nor-
malizer. The normalizer transform the original data
into the (0, 1) range, it preserve the relationship of
the original data. The initial weights from which the
machine start learning is 0.1. The system perform
shuffling with random seed. A random seed is a initial
random number generator for the system to start the
iterative process. The method allow unknown level
to create groups of unknown values in training and

validation. This allows the method to better predict
the unknown values.

The decision forest set up 8 decision forests for the
proposed problem. The max depth is the depth of each
tree in the forest. Deep tree has more depth captur-
ing more information for a problem. The depth of the
tree range from 1–32. The minimum sample at each
leaf is 1 shows the minimum number of samples to
reach a leaf (decision). The method allow unknown
level to create groups of unknown values in train-
ing and validation. This allows the method to better
predict the unknown values. The resampling method
used is bagging starting with a random seed of 5. In
the process of bagging also known as bootstrapping
decision trees in the forest are grown on randomly
selected sample of the original dataset with replace-
ment and the process continues until a dataset of the
size of the original dateset is obtained. Bagging uses
voting its aggregation policy. Each tree score unnor-
malized histograms of labels, which are normalized
as probabilities. Trees with high probabilities have
greater change to be the decision of the ensemble.

The boosted decision tree method setup 100 deci-
sion trees. Ten samples are required to reach a leaf
(decision). The method allow unknown level to create
groups of unknown values in training and validation.
This allows the method to better predict the unknown
values. The resampling method used is boosting. In
boosting each tree is dependent on the prior trees. The
second tree corrects errors in first. Likewise the third
tree correct errors in second and first and so on.

The multiclass logistic regression use a com-
bination of L1 and L2 regularization techniques.
Regularization is a method used for penalizing mod-
els with extreme coefficient values. In this method a
penalty is charged with coefficient values to reduce
the errors. L1 is used for sparse models whereas
L2 for non sparse. Spare data is high dimensional
where the values are not exactly known. The opti-
mization convergence value for the multiclass logistic
regression is 0.0000007. The method allow unknown
level to create groups of unknown values in training
and validation, thus better predicting the unknown
values.

Simulation models and machine learning models
are opposite in characteristics. In this study machine
learning techniques are adopted thus the model may
not necessarily exhibit the characteristic properties
associated with simulation studies. The difference
between the two is that, in simulation study, the model
is known exactly but the unknown inputs are not.
On the other hand in machine learning the unknown
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Table 2
Methods and parameters

Neural network regression Decision forest regression Boosted decision tree Multiclass logistic regression
Loss Function CrossEntropy Ensemble Element Count 8 Number of Leaves 20 Optimization Tolerance 1E-07
Learning Rate 0.005 Max Depth 32 Minimum Leaf Instances 10 L1 Weight 1
Number Of Iterations 100 Random Split Count 128 Learning rate 0.2 L2 Weight 1
Is Initialized From String False Min Leaf Sample Count 1 Number of Trees 100 Memory Size 20
Is Classification False Class Count 1 Allow Unknown Levels True Use Threads True
Initial Weights Diameter 0.1 Resampling Method Bagging Random Number Seed True Allow Unknown Levels True
Momentum 0 Random Number Seed 5 Random Number Seed True
Neural Network Definition Allow Unknown Levels True
Data Normalizer Type MinMax
Number Of Input Features
Number Of Hidden Nodes

System.Collections.Generic.List‘1
[System.Int32]

Number Of Output Classes
Shuffle True
Allow Unknown Levels True
Random Number Seed True

Table 3
Arrival delay prediction with proposed neural network regression based on data [63, 64]

DEP
DELAY

ARR
DELAY

AIR
TIME

DISTANCE CARRIER
DELAY

WEATHER
DELAY

NAS
DELAY

SECURITY
DELAY

LATE
AIR-
CRAFT
DELAY

Scored
Labels

70 true 42 247 0 11 1 0 59 0.99169
3 true 40 204 0 0 0 0 0 0.98757
9 true 219 1488 0 0 0 0 0 0.98001
0 false 0 247 0 0 0 0 0 0.01368
75 true 133 946 62 0 0 0 0 0.97969
6 true 268 2585 0 0 0 0 0 0.95789
25 true 200 1521 0 0 0 0 0 0.97839
0 false 0 680 0 0 0 0 0 –0.00380
12 false 79 522 0 0 0 0 0 0.98431
3 true 97 770 0 0 0 0 0 0.99928
11 true 196 1501 11 0 15 0 0 0.98847

inputs are known exactly, but the model is not exactly
known [66, 67].

8. Results and discussions

After training the model on a set of 2196678 flight
data, it is tested on a data of 549169 to check the
performance of the learned model. The results of
the proposed neural network regression are shown
in Table 3. The Table 3 takes into consideration the
flight information data and predict whether a flight
with certain flight information is going to be delayed
or not? In the Table 3 the second column shows the
result that whether the flight is going to be delayed or
not? Moreover the last column named Scored Labels
shows the degree of assurance that the flight is going
to be delayed. In Table 3, only few flights out of
549169 are shown and their predictions are displayed.

Table 4 shows the results of testing for the deci-
sion forest regression for some flights out of 549169.
The Table 4 takes into consideration the flight infor-
mation data and predict whether a flight with certain
flight information is going to be delayed or not? In
the Table 4 the second column shows the flight arrival
delay status. Moreover the last two columns named
Scored Label Mean and Scored Label Standard Devi-
ation, respectively show the degree of assurance of
flight delay and the standard deviation of the predic-
tion. In Table 4, the predictions for some flights out
of 549169 are shown.

The testing results of the boosted decision tree are
shown in Table 5. Training the model on a set of
2196678 flight data and then testing on a data of
549169 flight information data. In the Table 5 the sec-
ond column shows the result that whether the flight is
going to be delayed or not? Moreover the last column
named Scored Labels shows the degree of assurance
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Table 4
Arrival delay prediction with proposed decision forest regression [63, 64]

DEP
DELAY

ARR
DELAY

AIR
TIME

DISTANCE CARRIER
DELAY

WEATHER
DELAY

NAS
DELAY

SECURITY
DELAY

LATE
AIR-
CRAFT
DELAY

Scored
Label
Mean

Scored
Label
Standard
Deviation

70 true 42 247 0 11 1 0 59 1 0.000296
3 true 40 204 0 0 0 0 0 1 0.000244
0 false 0 116 0 0 0 0 0 0 0.000036
0 true 198 1448 0 0 0 0 0 1 0.000216
9 true 219 1488 0 0 0 0 0 1 0.000275
0 false 0 247 0 0 0 0 0 0 0.00001
1 true 113 967 0 0 0 0 0 1 0.000215
75 true 133 946 62 0 0 0 0 1 0.000172
6 true 268 2585 0 0 0 0 0 1 0.000246
25 true 200 1521 0 0 0 0 0 0.9582 0.21251

Table 5
Arrival delay prediction with proposed boosted decision tree regression [63, 64]

DEP
DELAY

ARR
DELAY

AIR
TIME

DISTANCE CARRIER
DELAY

WEATHER
DELAY

NAS
DELAY

SECURITY
DELAY

LATE
AIR-
CRAFT
DELAY

Scored
Labels

70 true 42 247 0 11 1 0 59 1.002182
3 true 40 204 0 0 0 0 0 0.96821
0 false 0 116 0 0 0 0 0 0.000252
0 true 198 1448 0 0 0 0 0 0.975555
9 true 219 1488 0 0 0 0 0 0.957273
0 false 0 247 0 0 0 0 0 0.000097
1 true 113 967 0 0 0 0 0 0.975054
75 true 133 946 62 0 0 0 0 0.998

that the flight is going to be delayed. Table 5 shows the
predictions of only few flights out of 549169 tested
flights.

Moreover, the decision forest constructs hundred
decision trees. Two decision trees are shown in the
Fig. 3. By clicking on the edges of the trees, the pre-
diction probabilities of the certain decision tree can
be seen.

Table 6 shows the prediction results of the multi
class logistic regression. Table 6 shows that the logis-
tic regression predicts the status of the flight with
three parameters. The last three columns show predic-
tion of a flight with certain information. The scored
probabilities for class “False” and the scored proba-
bilities for the class “True”, shows the probabilities
of a certain flight in the delayed and not delayed cat-
egory. Table 6 shows the predictions for some flights
out of 549169 tested flights.

The performances of the three methods are com-
pared in Table 7. The performances of all the methods
used are satisfactory. From Table 7 it is clear that
the mean absolute error of the boosted decision tree
and decision forest regression is 0.02697. The coef-
ficient of determination for the boosted decision tree

is 0.870984. This shows that 87% of the variations
in the arrival delay are explained by the inputs in the
model. Thus the performance of the boosted decision
tree regression is best. Moreover, the graphs for the
errors in the neural network regression, decision for-
est regression and boosted decision forest regression
are shown in Fig. 4.

The Table 8 shows that multi class logistic regres-
sion gives an overall accuracy and precision of 98.4%.
Recalling/remembering performance is 99%. Thus
multi class logistic regression is the best prediction
model for prediction of flight delays in the COVID-19
situations. The confusion matrix for the multi class
logistic regression is shown in Fig. 5. The Fig. 5
shows that 87.2% flights which were not delayed
were predicted not delayed by the proposed model.
The flights which were actually not delayed but were
wrongly predicted as delayed by the model were
12.7%. There is no flight which was actually delayed
but wrongly predicted not delayed by the model.
All the flights which were delayed were predicted
delayed by the model.

The model is cross validated to assess the vari-
ability and reliability of the model. Cross validate
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Fig. 3. Two decision trees out of 100, by boosted decision tree regression.
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Table 6
Arrival delay prediction with proposed multi class logistic regression [63, 64]

DEP

DELAY

ARR

DELAY

AIR

TIME

DISTANCE CARRIER

DELAY

WEATHER

DELAY

NAS

DELAY

SECURITY

DELAY

LATE

AIR-

CRAFT

DELAY

Scored

Probabili-

ties for

Class

“False”

Scored

Probabili-

ties for

Class

“True”

Scored

Labels

70 true 42 247 0 11 1 0 59 0.02195 0.978041 true

3 true 40 204 0 0 0 0 0 0.03523 0.96476 true

0 false 0 116 0 0 0 0 0 0.56241 0.437588 false

0 true 198 1448 0 0 0 0 0 0.00077 0.999227 true

9 true 219 1488 0 0 0 0 0 0.00011 0.999887 true

0 false 0 247 0 0 0 0 0 0.85186 0.148131 false

1 true 113 967 0 0 0 0 0 0.05023 0.949761 Âtrue

Table 7
Comparisons of the performances of the three method for arrival delay prediction

Neural network
regression

Decision forest
regression

Boosted decision
tree regression

Mean Absolute Error 0.029241 0.026953 0.02697
Root Mean Squared Error 0.117822 0.124874 0.115933
Relative Absolute Error 0.140345 0.129362 0.129445
Relative Squared Error 0.133254 0.149685 0.129016
Coefficient of Determination 0.866746 0.850315 0.870984

Fig. 4. Errors of the three method for arrival delay prediction.

evaluates the performance of the model by consid-
ering a bigger data space. Instead of a part, it uses
the entire training dataset for training and evaluation.

In the process the model is subdivided into 10-folds
(samples), build new model for each fold, and finally
returns the accuracy metrics for each fold. The model
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Table 8
Results of the multi class logistic regression for arrival delay

prediction

Overall accuracy 0.98493
Average accuracy 0.98493
Micro-averaged precision 0.98493
Macro-averaged precision 0.991419
Micro-averaged recall 0.98493
Macro-averaged recall 0.936368

Fig. 5. Confusion matrix for multi class logistic regression for
arrival delay prediction.

set aside data in fold 1 for validation and the remain-
ing folds are used for training. For example, if the data
is divided into 10 folds, then it generates 10 models
so that one-tenth of the data is used for validation and
nine-tenth for training each fold.

The cross validation results for the neural network
regression are presented in Table (9). The entire train-
ing dataset is divided into ten fold i.e (0–9). The
results illustrate that the representative coefficient of
determination for all the folds is 0.86. Moreover, the
representative MAE, RMSE, RAE, RSE, are 0.043,
0.11, 0.20, 0.13, respectively.

The cross validation results for the decision forest
regression are presented in Table (10). Here the entire
training dataset is divided into ten fold i.e (0–9). The
results illustrate that the representative coefficient of
determination for all the folds is 0.85. Moreover, the
representative MAE, RMSE, RAE, RSE, are 0.026,
0.12, 0.12, 0.14, respectively.

The cross validation results for the boosted deci-
sion tree regression are presented in Table (11). The
entire training dataset is divided into ten fold i.e
(0–9). The results illustrate that the representative
coefficient of determination for all the folds is 0.87.
Moreover, the representative MAE, RMSE, RAE,
RSE, are 0.026, 0.11, 0.11, 0.12, respectively.

The cross validation results for the muti class logis-
tic regression are presented in Table (12). The entire
training dataset is divided into ten fold i.e (0–9). The
representative precision and recall for the false class
are 0.99 and 0.87, respectively. The representative
precision and recall for the true class are 0.98 and
0.99, respectively.

Time complexity is the total running time required
for a computational model to complete its opera-
tions.The time complexity of algorithms is expressed
using the big O notation. Model complexity can be
determined by many factors. For example, the num-
ber of training instances, the number of number of
features, the number of layers (depth) and the number
of neurons in hidden layers (width) in a given model,
as well as the linear, nonlinear nature of the problem.
There are sophisticated and automated methods to
control and reduce model complexity. These include
features and model selection, linear model, sub-
set selection, shrinkage methods and regularization.
Machine learning techniques take relatively less time
to train, ranging from a few seconds to a few hours.

Table 9
Cross validation for the neural network regression

Fold Number of Mean Root Relative Relative Coefficient
number examples absolute mean squared absolute squared of

in fold error error error error determination

0 219667 0.0451055 0.119064 0.216627 0.138234 0.861766
1 219668 0.044372 0.119087 0.213576 0.136521 0.863479
2 219668 0.045096 0.11914 0.216725 0.136435 0.863565
3 219668 0.045007 0.120127 0.215044 0.137898 0.862102
4 219667 0.044723 0.117794 0.215351 0.133628 0.866372
5 219668 0.044427 0.116975 0.211147 0.130063 0.869937
6 219668 0.04487 0.118122 0.214961 0.133688 0.866312
7 219668 0.044715 0.117787 0.213053 0.13221 0.86779
8 219668 0.045449 0.118005 0.218133 0.133668 0.866332
9 219668 0.030614 0.116594 0.146253 0.129888 0.870112
Mean 0.043438 0.11836 0.208087 0.134223 0.865777
Standard Deviation 0.004518 0.001188 0.021819 0.002998 0.002998
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Table 10
Cross validation for the decision forest

Fold Number of Mean Root Relative Relative Coefficient
number examples absolute mean squared absolute squared of

in fold error error error error determination

0 219667 0.027254 0.126509 0.130893 0.153729 0.846271
1 219668 0.027089 0.125322 0.13039 0.151194 0.848806
2 219668 0.026759 0.12487 0.128603 0.149873 0.850127
3 219668 0.027289 0.126551 0.130388 0.153041 0.846959
4 219667 0.026545 0.123656 0.127823 0.147258 0.852742
5 219668 0.026489 0.123109 0.125892 0.14406 0.85594
6 219668 0.026982 0.124434 0.129262 0.148358 0.851642
7 219668 0.026783 0.123797 0.127613 0.146045 0.853955
8 219668 0.026812 0.124172 0.128686 0.148003 0.851997
9 219668 0.026691 0.124185 0.127514 0.147353 0.852647
Mean 0.026869 0.124661 0.128706 0.148891 0.851109
Standard Deviation 0.000277 0.001162 0.001566 0.003063 0.003063

Table 11
Cross validation for the boosted decision tree regression

Fold Number of Mean Root Relative Relative Coefficient
number examples absolute mean squared absolute squared of

in fold error error error error determination

0 219667 0.027226 0.117096 0.130759 0.131704 0.868296
1 219668 0.027042 0.116277 0.130162 0.130156 0.869844
2 219668 0.026972 0.116074 0.129624 0.129503 0.870497
3 219668 0.027233 0.11722 0.130118 0.131305 0.868695
4 219667 0.026678 0.11469 0.128462 0.126678 0.873322
5 219668 0.026519 0.1139 0.126034 0.123313 0.876687
6 219668 0.026744 0.115044 0.128122 0.126812 0.873188
7 219668 0.026668 0.114688 0.127065 0.125345 0.874655
8 219668 0.026714 0.114782 0.128213 0.126465 0.873535
9 219668 0.026733 0.114903 0.127713 0.126149 0.873851
Mean 0.026853 0.115468 0.128627 0.127743 0.872257
Standard Deviation 0.000248 0.001125 0.001512 0.002766 0.002766

Table 12
Cross validation for the multiclass logistic regression

Fold number Number of
examples
in fold

Average
log loss for
class
“False”

Precision
for class
“False”

Recall for
class
“False”

Average
log loss for
class
“True”

Precision
for class
“True”

Recall for
class
“True”

0 219667 0.655964 0.999823 0.87096 0.022403 0.983022 0.999979
1 219668 0.653098 0.999778 0.871598 0.022303 0.983152 0.999974
2 219668 0.64043 0.999823 0.872173 0.02237 0.983193 0.999979
3 219668 0.655144 0.999692 0.871344 0.022356 0.982959 0.999964
4 219667 0.636245 0.999956 0.874478 0.022404 0.983533 0.999995
5 219668 0.61554 0.99974 0.878305 0.022485 0.983755 0.999969
6 219668 0.628393 0.999693 0.875293 0.022496 0.98353 0.999964
7 219668 0.631987 0.999826 0.876189 0.022373 0.983531 0.999979
8 219668 0.646356 0.999868 0.875183 0.022394 0.983555 0.999985
9 219668 0.629544 0.999956 0.87535 0.022441 0.983478 0.999995
Mean 0.63927 0.999815 0.874087 0.022402 0.983371 0.999978
Standard Deviation 0.013382 0.000094 0.002445 0.000059 0.000267 0.000011

Deep learning techniques have many parameters, big
data, many hidden layers thus taking longer time to
train. For example an algorithm, ResNet, takes around
two weeks to train. It is worth noting that time com-
plexity is important in real-time systems. For training

based systems, time complexity does not matter due
to availability of highly computational devices such
as GPU’s, Virtual Machines, TPU’s. Once trained,
they can be used as real-time systems with less com-
plexity.
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Let denote n = number of training examples,
m = number of features, k’ = number of trees. The
train time complexity of the neural network regres-
sion is O(n) and its test time complexity is O(m).
The train time complexity of the decision tree algo-
rithm is O(n*log(n)*m), its test time complexity
is O(m). Decision Forest has train time complex-
ity O(k’*n*log(n)*m) and test time complexity
O(m*k’). Moreover, Logistic Regression has train
time complexity O(n*m) and test time complexity
O(m) [68].

9. Response to hypothesis testing

The hypothesis testing help to identify which fea-
ture contribute more to the flight delays in the COVID
19 situations. Figure 6 and Table 13-14, show that
arrival delay has strong relationship with departure
delay, carrier delay, Late aircraft delay, weather delay
and Nas delay, respectively. Whereas, for the other
variables its relationship is random or unrelated/weak
related.

Based on the calculation in Tables 13-14, and
Fig. 6, the following deductions are drawn for the
formulated hypothesis.

H1: The departure delay of the flight is directly
related to the arrival delay in the COVID 19 situations.

The null hypothesis is accepted as there is a strong
relation 0.94% between the departure delay of the
flight and the arrival delay in the COVID 19 situa-
tions.

H2: The air time of the flight has a positive relation-
ship to the arrival delay in the COVID 19 situations.

The null hypothesis is rejected, as there is a minute
negative relation –0.0046% of the air time with the
arrival delay in the COVID 19 situations.

H3: The carrier delay of the flight is directly related
to the arrival delay in the COVID 19 situations.

Accept the null hypothesis as there is significant
relation 0.53% between carrier delay of the flight and
the arrival delay in the COVID 19 situations.

H4: The weather delay of the flight has a posi-
tive relationship to the arrival delay in the COVID 19
situations.

Accept the null hypothesis as there is significant
positive relationship between the weather delay and
arrival delay in the COVID 19 situations. The relation
is 0.21%.

H5: The NAS delay of the flight is directly related
to the arrival delay in the COVID 19 situations.

Accept the null hypothesis as there is positive rela-
tionship between the NAS delay and arrival delay and
the strength of the relation is 0.14%.

H6: The security delay of the flight has a posi-
tive relation to the arrival delay in the COVID 19
situations.

Reject the null hypothesis as the positive relation
between the security delay and arrival delay is weak
and its strength is 0.016%.

H7: The late aircraft delay of the flight is positively
related to the arrival delay in the COVID 19 situations.

Accept the null hypothesis, as the late aircraft delay
and arrival delay in the COVID 19 situations were
significantly positively related and the strength of the
relation 0.35%.

Figure 6 and Table 13-14, it is clear that the
arrival delay has relationship with departure delay,
carrier delay, Late aircraft delay, weather delay and
Nas delay, respectively. The strength of relation with
departure delay, carrier delay, Late aircraft delay,
weather delay and Nas delay, 94%, 53%, 35%, 21%,
and 14%, respectively. There was a weak negative
relation (almost unrelated) with the air time and
arrival delay. Security delay and arrival delay are
almost unrelated with strength of 1% relationship.

Finally compare the proposed model with the mod-
els presented in the existing literature. The model is
compared for MAE and RMSE with some studies
(Alla et al., [36]; Zoutendijk and Mitici [39]; Yu et al.,
[21]). Moreover, the proposed model is compared for
accuracy, precision and recall metrics with some stud-
ies (Yu et al., [21]; Bandyopadhyah et al., [40]). The
Table 15 depicts that the proposed model have MAE
of 2% for proposed Neural Network Regression,
Decision Forest Regression, Boosted Decision Tree
Regression, respectively. RMSE for Neural Network
Regression, Decision Forest Regression, Boosted
Decision Tree Regression are approximately, 11%,
12%, 11%, respectively. Table 15 summarizes that
the proposed techniques are better than studies (Alla
et al., [36]; Zoutendijk and Mitici [39]; Yu et al.,
[21]) in terms of MAE and RMSE. Furthermore, the
Multi Class Logistic Regression is better in accu-
racy, precision and recall, respectively from (Yu et
al., [21]; Bandyopadhyah et al., [40]). Figure 6 and
Table 13-14, illustrate the relationship of the arrival
delay with departure delay, carrier delay, Late air-
craft delay, weather delay and Nas delay, respectively.
The strength of relation with departure delay, car-
rier delay, Late aircraft delay, weather delay and Nas
delay, 94%, 53%, 35%, 21%, and 14%, respectively.
Weak negative relation (almost unrelated) with the
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Fig. 6. Relationship / correlation of the arrival delay with related factors.

Table 13
Strength relationship / correlation of the arrival delay with related factors

RowID DEP

DELAY

ARR

DELAY

CANCELLED AIR

TIME

CARRIER

DELAY

WEATHER

DELAY

NAS

DELAY

SECURITY

DELAY

LATE

AIR-

CRAFT

DELAY

DEP DELAY 1.0 0.94 9.3E-4 0.0046 0.59 0.23 0.087 0.019 0.39

ARR DELAY 0.94 1.0 3.7E-14 –0.0046 0.53 0.21 0.14 0.016 0.35

CANCELLED 9.3E-4 3.7E-14 1.0 –5.4E-14 –5.9E-14 –2.8E-14 –2.6E-14 –4.6E-15 –2.4E-14

AIR

TIME

0.0046 –0.0046 –5.4E-14 1.0 –0.0069 –0.015 0.018 6.8E-4 –0.024

CARRIER

DELAY

0.59 0.53 –5.9E-14 –0.0069 1.0 –0.037 –0.10 –0.0084 –0.069

WEATHER

DELAY

0.23 0.21 –2.8E-14 –0.015 –0.037 1.0 –0.018 –0.003 –0.023

NAS

DELAY

0.087 0.14 –2.6E-14 0.018 –0.10 –0.018 1.0 –0.008 –0.11

SECURITY

DELAY

0.01 0.01 –4.6E-15 6.8E-4 –0.008 –0.003 –0.008 1.0 –0.006

LATE

AIR-

CRAFT

DELAY

0.39 0.35 –2.4E-14 –0.02 –0.069 –0.02 –0.11 –0.006 1.0

air time and arrival delay exist. Security delay and
arrival delay are almost unrelated with strength of
1% relationship.

The proposed research can be extended in many
directions. It can be extended to predict flight delays
in other disrupted situations. AI based Flight delay
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Table 14
Correlation with probability of the arrival delay with related factors

First column name Second column name Correlation value p value

DEP DELAY ARR DELAY 0.94 0.0
DEP DELAY CANCELLED 9.3E-4 0.12
DEP DELAY AIR TIME 0.0046 8.4E-15
DEP DELAY CARRIER DELAY 0.59 0.0
DEP DELAY WEATHER DELAY 0.23 0.0
DEP DELAY NAS DELAY 0.08 0.0
DEP DELAY SECURITY DELAY 0.019 0.0
DEP DELAY LATE AIRCRAFT DELAY 0.39 0.0
ARR DELAY CANCELLED 3.7E-14 1.0
ARR DELAY AIR TIME –0.0046 1.3E-14
ARR DELAY CARRIER DELAY 0.53 0.0
ARR DELAY WEATHER DELAY 0.21 0.0
ARR DELAY NAS DELAY 0.14 0.0
ARR DELAY SECURITY DELAY 0.016 0.0
ARR DELAY LATE AIRCRAFT DELAY 0.35 0.0
CANCELLED AIR TIME –5.47E-14 1.0
CANCELLED CARRIER DELAY –5.9E-14 1.0
CANCELLED WEATHER DELAY –2.8E-14 1.0
CANCELLED NAS DELAY –2.6E-14 1.0
CANCELLED SECURITY DELAY –4.6E-15 1.0
CANCELLED LATE AIRCRAFT DELAY –2.48E-14 1.0
AIR TIME CARRIER DELAY –0.006 4.9E-31
AIR TIME WEATHER DELAY –0.015 8.2E-143
AIR TIME NAS DELAY 0.018 0.0
AIR TIME SECURITY DELAY 6.86E-4 0.25
AIR TIME LATE AIRCRAFT DELAY –0.02 0.0
CARRIER DELAY WEATHER DELAY –0.03 0.0
CARRIER DELAY NAS DELAY –0.10 0.0
CARRIER DELAY SECURITY DELAY –0.008 2.8E-44
CARRIER DELAY LATE AIRCRAFT DELAY –0.06 0.0
WEATHER DELAY NAS DELAY –0.018 2.02E-199
WEATHER DELAY SECURITY DELAY –0.003 1.5E-7
WEATHER DELAY LATE AIRCRAFT DELAY –0.023 0.0
NAS DELAY SECURITY DELAY –0.008 7.0E-49
NAS DELAY LATE AIRCRAFT DELAY –0.11 0.0
SECURITY DELAY LATE AIRCRAFT DELAY –0.006 3.1E-24

predictions can be implemented in situations such as
floods, snowfall, earthquake, winds, hurricane, bliz-
zards and agitated weather conditions. Moreover, the
various air transport issues can be addressed using the
techniques of the artificial intelligence and machine
learning. For example airline revenue maximization,
security checking, on-time operations, air traffic pre-
diction, flight to gate assignment, crew scheduling,
fleet scheduling, and flight operations.

10. Conclusions

Artificial intelligence techniques namely neu-
ral network regression, decision forest regression,
boosted decision tree regression and multi class
logistic regression are used for airline flight delay
prediction. The performances of all the methods
used are satisfactory. The mean absolute error of the

boosted decision tree and decision forest regression
is 0.02697. The coefficient of determination for the
neural network regression is 0.86 and for decision
forest regression is 0.85, respectively. The coeffi-
cient of determination for the boosted decision tree
is 0.870984. This shows that 87% of the variations
in the arrival delay are explained by the model. Thus
the performance of the boosted decision tree regres-
sion is better. Multi class logistic regression gives
an overall accuracy and precision of 98.4%. Recall-
ing/remembering performance is 99%. Thus multi
class logistic regression is the best prediction model
for prediction of flight delays in the COVID-19 situa-
tions. The confusion matrix for the multi class logistic
regression shows that 87.2% flights which are not
delayed and predicted not delayed by the proposed
model. The flights which are actually not delayed but
wrongly predicted as delayed by the model are 12.7%.
The proposed models have MAE of 2% for proposed
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Table 15
Comparisons of the proposed methods with literature

Research MAE RMSE Multi class logistic
regression

Comparisons and conclusions

Proposed Research Neural Network
Regression = 0.029241

Neural Network
Regression = 0.11782

Overall
accuracy = 98.49%

Self

Decision Forest
Regression = 0.02695

Decision Forest
Regression = 0.12487

Macro-averaged
precision = 99.14%

MAE of proposed Neural Network Regression, Decision Forest Regression, Boosted Decision Tree Regression
are approximately 2%. RMSE for Neural Network Regression, Decision Forest Regression, Boosted Decision
Tree Regression are approximately, 11%, 12%, 11%, respectively.

Boosted Decision Tree
Regression = 0.02697

Boosted Decision Tree
Regression = 0.1159

Micro-averaged
recall = 98.49%

For Multi Class Logistic Regression over all accuracy, precision and recall are 98.4%, 99.14% and 98.4%,
respectively.

Alla et al., [36] MLP = 12.40 18.48 MAE of the flight arrival delay of Alla et al., [36] are 12%, 16% and 19% for MLP, Decision Tree and Gradient
Boosting, respectively.

Decision Tree = 16.97 26.25 RMSE of the flight arrival delay of [36] are 18.48%, 26.25% and 29.93% for MLP, Decision Tree and Gradient
Boosting, respectively.

Gradient Boosting = 19.34 29.93 MAE of proposed Neural Network Regression, Decision Forest Regression, Boosted Decision Tree Regression
are approximately 2%. RMSE for Neural Network Regression, Decision Forest Regression, Boosted Decision
Tree Regression are approximately, 11%, 12%, 11%, respectively. Depicts that the MAE and RMSE are better
than Alla et al., [36].

Zoutendijk and Mitici
[39]

Mixture Density
Network = 15.62

Mixture Density
Network = 24.98

MAE for the Flight Delay for Mixture Density Network and Random Forest Regression are 15.62 and 14.99
respectively.

Random Forest
Regression = 14.99

Random Forest
Regression = 24.39

RMSE for the Flight Delay for Mixture Density Network and Random Forest Regression are 24.98 and 24.39,
respectively.
MAE of proposed Neural Network Regression, Decision Forest Regression, Boosted Decision Tree Regression
are approximately 2%. RMSE for Neural Network Regression, Decision Forest Regression, Boosted Decision
Tree Regression are approximately, 11%, 12%, 11%, respectively. Depicts that the MAE and RMSE are better
than Zoutendijk and Mitici [39].

Bandyopadhyah et al.,
[40]

Accuracy GRU = 98.7% Long-short term memory
(LSTM) Gated Recurrent Unit
(GRU)

Bandyopadhyah et al.,[40] accuracy of GRU and MLP are, 98.7% and 97.3%, respectively.
Accuracy MLP = 97.3% For proposed Multi Class Logistic Regression over all accuracy, precision and recall are 98.4%, 99.14% and

98.4%, respectively. Thus proposed model is better than Bandyopadhyah et al., [40].
Lambelho et al., [26] Accuracy = 79.1% Lambelho et al., [26] accuracy, precision and recall are 79.1%, 56% and 55%, respectively.

Precision = 56% For proposed Multi Class Logistic Regression over all accuracy, precision and recall are 98.4%, 99.14% and
98.4%, respectively.

Recall = 55% Thus proposed model is better than Lambelho et al., [26].
Yu et al., [21] Deep belief network-Support

Vector Regressor
(DBN-SVR) = 8.4

RMSE
12.65
16.01
16.15
20.20

MAE for flight delay prediction for DBN-SVR, kNN, SVM, and LR are 8.4%, 11.96%, 12.04%, and 15.56%,
respectively.

k- nearest neighbour
k-NN = 11.96

RMSE for flight delay prediction for DBN-SVR, kNN, SVM, and LR are 12.65%, 12.01%, 16.15%, and
20.20%, respectively.

SVM = 12.04 MAE of proposed Neural Network Regression, Decision Forest Regression, Boosted Decision Tree Regression
are approximately 2%. RMSE for Neural Network Regression, Decision Forest Regression, Boosted Decision
Tree Regression are approximately, 11%, 12%, 11%, respectively. Depicts that the MAE and RMSE are better
than Yu et al., [21].

Linear Regression LR = 15.56
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Neural Network Regression, Decision Forest Regres-
sion, Boosted Decision Tree Regression, respectively.
RMSE for Neural Network Regression, Decision For-
est Regression, Boosted Decision Tree Regression
are approximately, 11%, 12%, 11%, respectively.
The strength of relation with departure delay, car-
rier delay, Late aircraft delay, weather delay and Nas
delay, 94%, 53%, 35%, 21%, and 14%, respectively.
There is a weak negative relation (almost unrelated)
with the air time and arrival delay. Security delay
and arrival delay are almost unrelated with strength
of 1% relationship. The research can be extended in
many directions in future. Possible future proposals
may be the flight delays prediction in agitated weather
conditions for example heavy snow, flood, hurricane,
blizzards, and naturally disrupted situations. New
methods can be applied to explore dynamics of the
system. The model can be extended for coordinated
delays. The future models can address the uninformed
situations such as storms, strikes, security breaches.
Alternative flight plans should be sorted out for future
scheduling in disruptions.
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centric metrics for Air Transportation leveraging mobile
phone and Twitter data, In 2018 IEEE International Con-
ference on Data Mining Workshops (ICDMW). 2018,
Singapore. (2018).

[62] A. Marzuoli, E. Boidot, E. Féron and A. Srivastava, Imple-
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