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Quantitative reachability analysis of
generalized possibilistic decision processes
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Abstract. The verification of reachability properties of fuzzy systems is usually based on the fuzzy Kripke structure or
possibilistic Kripke structure. However, fuzzy Kripke structure or possibilistic Kripke structure is not enough to describe
nondeterministic and concurrent fuzzy systems in real life. In this paper, firstly, we propose the generalized possibilistic
decision process as the model of nondeterministic and concurrent fuzzy systems, and deduce the possibilities of sets of paths
of the generalized possibilistic decision process relying on defining of schedulers. Then, we give fuzzy matrices calculation
methods of the maximal possibilities and the minimal possibilities of eventual reachability, always reachability, constrained
reachability, repeated reachability and persistent reachability. Finally, we propose a model checking approach to convert the
verification of safety property into the analysis of reachabilities.
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1. Introduction

Reachability is one of the central problems in
model checking [1, 2], program analysis [3] and ver-
ification [3], which is about whether a system in one
state can reach other states [4]. Reachability is widely
applied in urban transportation planning [5], human
geography [6], regional economics and computer sci-
ence [7]. In computer science, the use of reachability
decision algorithm can avoid the loop detection of
useless state space, save the memory occupancy of
the algorithm, and improve the efficiency of the algo-
rithm. The use of reachability optimization algorithm
can reduce the complexity of the algorithm [4].

Reachability problems based on classical model
checking were proposed in [8]. Classical model
checking is to verify the qualitative characteristics
of systems. Qualitative reachability aims at obtaining
exact values of certain events. However, in real life,
there are some randomness, uncertainties and incon-
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sistencies that classical model checking is unable
to express those information, such as a 90 percent
probability of system crashing during operation [12].
To embed uncertain information into the model,
quantitative model checking methods are proposed,
including probabilistic model checking [4], possi-
bilistic model checking [17], multi-valued model
checking [10, 11] and fuzzy model checking [2, 12,
18]. Quantitative reachability is to find the maxi-
mum probability [15] or the minimum probability
[17].

This study extends the existing approach of the
generalized possibilistic model checking to solve
quantitative reachability problems. Li et al. [17, 18,
21, 22] propose possibility model checking and gen-
eralized possibility model checking in combination
with measure theory, providing a solution to the exist-
ing problems of fuzzy model checking. In [17], the
reachability problem based on the possibility mea-
sure is given, and the reachability problem is studied
by using a possibilistic Kripke structure as a model. In
the existing generalized possibilistic model checking,
the generalized possibilistic Kripke structure is the
formal model of the representation system. However,
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in real life, a generalized possibilistic Kripke struc-
ture cannot describe nondeterministic and concurrent
fuzzy systems. For example, suppose three experts
want to formulate treatment schemes for a new bacte-
rial infection. Because different experts have different
understandings of the disease, each expert has a dif-
ferent scheme. We use a generalized possibilistic
Kripke structure K = (S, P, I, AP, L) to model the
patient’s treatment process respectively. It describes
three treatment processes given by three experts(α ,
β and γ) in Fig. 1(a), (b), (c). However, the general-
ized possibilistic Kripke structure can only represent
the treatment process of a scheme, cannot describe the
joint consultation of three experts. To solve this prob-
lem, we propose a generalized possibilistic decision
process to describe nondeterministic and concurrent
fuzzy systems.

In this paper, we mainly study the maximum
possibility problem and the minimum possibility
problem of eventual reachability, always reachability,
constrained reachability, repeated reachability and
persistent reachability under a generalized possibilis-
tic decision process. First, we propose a generalized
possibilistic decision process as the model of fuzzy
systems, and deduce the possibilities of sets of
paths of the generalized possibilistic decision process
relying on defining of schedulers. Then, the fuzzy
matrices calculation methods of reachability under a
generalized possibilistic decision process are given,
and the results show that the compositional operations
of the fuzzy matrix is polynomial time, which is bet-
ter than the exponential level of existing algorithms.
Finally, we propose a model checking approach to
convert the verification of safety property into the
analysis of reachabilities.

The rest of this paper is organized as follows. Sec-
tion 2 gives some preliminary knowledge. In Section
3, we define generalized possibilistic decision pro-
cesses. In Section 4, we present the fuzzy matrix
calculation methods of eventual reachability, always
reachability, constrained reachability, repeated reach-
ability and persistent reachability. In Section 5, we
use good prefixes to analyze the possibilistic regu-
lar safety property. Section 6 is the conclusion. The
proofs of some theorems of this paper can be found
in the Appendix.

2. Preliminaries

To model and verify fuzzy systems, we provide
some necessary knowledge including the fuzzy set,

Fig. 1. The treatment processes by three experts.
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fuzzy set operation, fuzzy matrix operation, closure
and others.

Definition 1. [23, 26, 28] Let X be a universal set .
A fuzzy set A of X is an function which associates
each element in X a value in the interval [0, 1] , i.e.,
A : X −→ [0, 1]. For x ∈ X , A(x) is the membership
of x in the fuzzy set A.

We use F(X) to represent all fuzzy sets in X , i.e.
F(X) = {A | A : X −→ [0, 1]}.

Definition 2. [26, 28] Let A, B ∈ F(X), we use A ∪
B, A ∩ B, Ac to represent the union, intersection and
complement of A and B. The definition is as follows.
(A ∪ B)(x) = A(x) ∨ B(x) = max{A(x), B(x)},
(A ∩ B)(x) = A(x) ∧ B(x) = min{A(x), B(x)},
Ac(x) = 1 − A(x).

Definition 3. [26, 28] Let R and S be two fuzzy matri-
ces with m rows and n columns, i.e., R = (rij)m×n,
S = (sij)m×n. We introduce some set operators.
R = S if and only if rij = sij for all i, j.
R ⊆ S if and only if rij ≤ sij for all i, j.
R ∪ S = (rij ∨ sij)m×n.
R ∩ S = (rij ∧ sij)m×n.
Rc = (1 − rij)m×n.

Definition 4. [26, 28] Let R be a fuzzy matrix with
m rows and n columns, and S be a fuzzy matrix
with n rows and l columns, i.e., R = (rij)m×n and
S = (sij)n×l. The composition operation of R and S

is R ◦ S = (tij)m×l, where tij = n∨
k=1

(rik ∧ skj), (i =
1, 2, ..., m, j = 1, 2, ..., l). For fuzzy matrices R, S,
T , the composition operation has some operation
laws.
(R ◦ S) ◦ T = R ◦ (S ◦ T );
(R ∪ S) ◦ T = (R ◦ T ) ∪ (S ◦ T ).

Let X be a universal set. For the fuzzy matrix
R = (R(s, t))s,t∈X, we use R+ to denote its transitive
closure. When X is finite, X has | X | elements, then
R+ = R ∪ R2 ∪ ... ∪ R|X| , where Rk+1 = Rk ◦ R

for any positive integer number k. The Kleene closure
R∗ = R0 ∪ R+, for each 1 ≤ s, t ≤| S |, R0(s, t) ={

1 s = t

0 s /= t
. Possibility measure theory is a kind

of uncertainty theory, which mainly deals with
incomplete information and uncertain information.
In addition, the possibility measure does not require
additivity, which is more applicable to deal with prac-
tical application systems.

Definition 5. [21] Let X be a nonempty set,and �

be a set composed of some subsets of X elements.
We call � a σ- algebra, which is closed to countable
and take complement set operations. The possibility
measure on σ- algebra � is a mapping POS : � →
[0, 1], which satisfies the following conditions:

(1) POS(∅) = 0;
(2) POS(X) = 1;

(3) If Ei ∈ �, i ∈ I, then POS

(⋃
i∈I

Ei

)
=∨

i∈I

POS(Ei)

If only conditions(1) and (3), then POS is called a
generalized possibility measure. If POS is a general-
ized possibility measure on the power set 2X,for any
A ⊆ X, there is POS (A) = ∨

a∈A

POS ({a}).

Definition 6. [18] A Generalized possibilistic Kripke
structure(GPKS) is a tuple K = (S, P, I, AP, L),
where

(1) S is a countable, nonempty states set;
(2) P : S × S → [0, 1] is the possibility transition

distribution, for any states s, there is a state t,
such that P(s, t) > 0;

(3) I : S → [0, 1] is the initial distribution of pos-
sibility and there exists a state s, such that
I(s) > 0;

(4) AP is a set of atomic propositions;
(5) L : S × AP → [0, 1] is a label function,

L(s, a) represents the true value of atomic
proposition a in state s.

For a GPKS K, its path is defined as an infinite
sequence of states π = s0s1s2 · · · ∈ sω, for any i so
that P (si, si+1) > 0. Let Paths (s) and Pathsfin (s)
represent the set of all infinite and finite paths starting
from the state s in K. Paths (K) represents the set of
all infinite paths in K, Pathsfin (K) represents the set
of all finite paths in K, such as π̂ = s0s1 · · · sn.

3. Generalized Possibilistic Decision Processes

In this section, first, we give the notion of the
generalized possibilistic decision process. Then, the
definition of the scheduler is proposed to solve
the nondeterministic the generalized possibilistic
decision process. Finally, we solve the generalized
possibility measure problems.
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Fig. 2. Treatment process by three experts’ consultation.

Nondeterminism is absent in GPKS. The general-
ized possibilistic decision process can be viewed as
a variant of GPKS that permits both possibility and
nondeterministic choices.

Definition 7. A Generalized possibilistic decision
process(GPDP) is a tuple M = (S, Act, P, I, AP, L),
where

(1) S is a countable, nonempty set of states;
(2) Act is a set of actions;
(3) P : S × Act × S −→ [0, 1] is a function,

called possibilistic transition distribution func-
tion. For all states s ∈ S and actions α ∈ Act,
there exits a state t ∈ S such that P(s, α, t) > 0;

(4) I : S −→ [0, 1] is a function, there exits states
s such that I(s) > 0;

(5) AP is a set of atomic propositions;
(6) L : S × AP −→ [0, 1] is a possibilistic label-

ing function, which can be viewed as function
mapping a state s to the fuzzy set of atomic
proposition, L(s, a) denotes the possibility or
truth value of atomic proposition a which is
hold in state s.

Furthermore, if the set S, Act and AP are finite
sets, then M is a finite GPDP. In this paper, we always
assume that GPDPs are finite. A GPDP has a unique
initial distribution I. For all states s, t ∈ S and actions
α ∈ Act, P(s, α, t) denotes the possibility from state

s under action α to state t. An action α is enabled in
state s if and only if P(s, α, t) > 0. Let Act(s) denote
the set of enabled actions in state s. For any states
s ∈ S, it is required that Act(s) /= ∅. Each state t for
which P(s, α, t) > 0 is called an α−successor of s.
The set of direct α−successors of s is defined as:

Post(s, α) = {t ∈ S | P(s, α, t) > 0}.
The set of α−predecessors of s is defined by:
Pref (t) = {(s, α) ∈ S × Act(s) | P(s, α, t) > 0}.
We also use the P(s, α, T ) to denote the possibility

from the state s under the action α to the set T of
states, that is, P (s, α, T ) = ∨

t∈T
P (s, α, t).

Paths in GPDP M are defined as infinite alter-
nating sequences π = s0α0s1α1s2 · · · ∈ (S × Act)ω

such that P(si, αi, si+1) > 0 for all i ∈ I. Paths(s)
denotes the set of all infinite paths in M that start in
state s. Similarly, Pathsfin(s) denotes the set of all
finite path fragment π̂ = s0α0s1α1s2 · · · αn−1sn such
that s0 = s. Paths(M) and Pathsfin(M) denote the set
of all infinite paths and finite paths in M respectively.
The trace of the infinite path fragment π = s0s1 · · ·
is defined as trace(π) = L(s0)L(s1) · · · . The trace of
the finite path fragment π̂ = s0s1 · · · sn is defined as
trace(π̂) = L(s0)L(s1) · · · L(sn).The trace of all infi-
nite paths starting from state s is defined as Traces(s)
= trace(Paths(s)).

Example 1. Let us consider the joint consult of three
experts in Fig. 1(a),(b),(c). GPDP in Fig. 2, where
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states are represented by ovals and transitions by
labeled edges, and state names are depicted outside
the ovals, and labeling functions of the states are
depicted inside the ovals.

S = {s0, s1, s2}, Act = {α, β, γ}, AP =
{P, G, E}. P indicates that the patient is in
“bad” health, G indicates that the patient is in
“normal” health, E indicates that the patient is in
“good” health.

For state s0, the labeling functions are L(s0, P) =
0.85, L(s0, G) = 0.3, L(s0, E) = 0.2. L(s0, P) =
0.85 indicates that the degree of “bad” health in state
s0 is 0.85. L(s0, G) = 0.3 indicates that the degree
of “normal” health in state s0 is 0.3. L(s0, E) = 0.2
indicates that the degree of “good” health in state s0
is 0.2.

Act(s0) = {α, β, γ}, α, β, γ indicate three different
treatment indicates. P(s0, α, s1) = 0.8 indicates that
the possibility of the patient’s health condition chang-
ing from state s0 to state s1 is 0.8 after the expert treats
the patient with the α scheme. P(s0, β, s1) = 0.6
indicates that the possibility of the patient’s health
condition changing from state s0 to state s1 is 0.6
after the expert treats the patient with the β scheme.
P(s0, γ, s1) = 0.2 indicates that the possibility of the
patient’s health condition changing from state s0 to
state s1 is 0.2 after the expert treats the patient with
the γ scheme.

Post(s0, α) = {s1, s2},Post(s0, α) indicates all α

successor states of state s0.
Pref (s0) = {(s0, α), (s0, β), (s0, γ), (s1, α), (s1, β),
(s1, γ), (s2, α), (s2, β), (s2, γ)}, Pref (s0) indicates

all predecessor states of state s0.
For the GPKS K, 2Paths(K) is the algebra

that is generated by {Cyl(π̂) | π̂ ∈ Pathsfin(K)} on
Paths(K), but the GPDPs are not augmented with a
unique possibility measure. Instead, deducing pos-
sibilities of sets of paths of a GPDP rely on the
resolution of nondeterminism. This resolution is per-
formed by a scheduler. A scheduler chooses in any
state s one of the actions set A ⊆ Act(s). It does not
impose any constraint on the possibilistic choice that
is resolved once α ∈ A has been chosen.

Definition 8. Let M = (S, Act, P, I, AP, L) be a
GPDP, a scheduler for M is a function Adv : S →
2Act so that Adv(s) ⊆ Act(s) for all s ∈ S.

Let PathAdv(s) and Path
fin
Adv(s) denote the set

of paths and finite paths from state s under the
decision of the scheduler Adv. Let PathAdv(M)
and Path

fin
Adv(M) denote the set of paths and finite

paths in the M under the decision of the scheduler
Adv.

Given a GPDP M = (S, Act, P, I, AP, L), α ∈
Act, possibility distribution function P : S × α ×
S −→ [0, 1] can be represented by a fuzzy matrix.
For convenience, the fuzzy matrix is written as Pα,
so that Pα = (P (s, α, t))s,t∈S , called the fuzzy transi-
tion matrix of M corresponding to scheduler α. Using

fuzzy matrix Pmax =
n∨

i=0
Pαi denotes the maximal

possibility transition matrix, so that

(Pmax (s, t))s,t∈S =
⎛
⎝ ∨

α∈Act(s)

P (s, α, t)

⎞
⎠

s,t∈S

.

Using fuzzy matrix Pmin =
n∧

i=0
Pαi denotes the

minimal possibility transition matrix, so that

(Pmin (s, t))s,t∈S =
⎛
⎝ ∧

α∈Act(s)

P (s, α, t)

⎞
⎠

s,t∈S

.

The GPKS Kmax = (S, Pmax, I, AP, L) and GPKS
Kmin = (S, Pmin, I, AP, L) can be constructed from
matrix Pmax and matrix Pmin respectively.

Example 2. As shown in the Example 1, the order of
s0→s1→s2 is used to give the fuzzy matrices Pmax,
Pmin.

Pmax =

⎛
⎜⎝

0.8 0.8 0.3

0.5 0.9 0.9

0.3 0.8 1

⎞
⎟⎠, Pmin =

⎛
⎜⎝

0.3 0.2 0.1

0.2 0.5 0.4

0.1 0.3 0.7

⎞
⎟⎠,

Figure 3(a) shows the result of GPKS with respect
to Pmax, Fig. 3(b) shows the result of GPKS with
respect to Pmin.

Although GPDP can induce the GPKS under the
consideration of some schedulers, reasoning about
quantitative reachabilities requires a formalization of
the possiblities for sets of paths. This formalization is
based on possibility measure theory, in particular pos-
sibility spaces and generalized possibility measure
theory.

Definition 9. Given a GPDP M = (S, Act, P, I,

AP, L), let π̂ = s0α0s1α1s2 · · · sn−1αn−1sn ∈
Paths

fin
Adv (M) and Adv be the max or min scheduler,
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Fig. 3. GPKS with respect to Pmax and Pmin.

then the cylinder set of the finite path π̂ is defined as

Cyl(π̂) = {π ∈ PathsAdv (M ) | π̂ ∈ Pref (π )},
(1)

where Pref (πAdv) = {π′ ∈ Paths
fin
Adv (M) | π

′
is a

finite prefix of πAdv }.
The cylinder set spanned by the finite adv-paths

π̂ consists of all infinite adv-paths that start with π̂.
The cylinder sets serve as basis events of the mea-
surable space 2PathsAdv (M) associated with M. From
classical concepts of possibility theory, it follows that
there exists a unique possibility measure GPo on the
measurable space 2PathsAdv (M) associated with M are
given by Definition 10.

Definition 10. Let M = (S, Act, P, I, AP, L) be a
finite GPDP, the function GPo : PathsAdv (M ) →

[0, 1] is defined:

GPo(π) = I(s0) ∧ ∧
i≥0

PAdv(si, αi, si+1) (2)

where π = s0α0s1α1s2 · · · ∈ PathsAdv (M ). Fur-
thermore, we define GPo(E) = ∨{GPo(π) | π ∈ E},
for any E ⊆ PathsAdv (M ), then we have the func-
tion

GPo : 2PathsAdv (M ) → [0, 1]

is called generalized possibility measure over � =
2PathsAdv(M).

Let M = (S, Act, P, I, AP, L) be a GPDP, s ∈
S, αi ∈ Act, i ≥ 0, rAdv : S → [0, 1] is defined as
following, which denotes the maximal possibility
measure of all Adv-paths from state s in M :

rAdv(s) =
∨ { ∧

i≥0

PAdv(si, αi, si+1) | s1

= s, si ∈ S, αi ∈ Act
}
. (3)

The role of the function rAdv is to help us to calcu-
late the possibility of Adv-paths in M. The Theorem
1 gives a fuzzy matrix calculation for rAdv.

Theorem 1. Let M = (S, Act, P, I, AP, L) be a finite
GPDP, for any s ∈ S, then we have

rAdv(s) =
∨
t∈S

(
P+

Adv(s, t) ∧ P+
Adv(t, t)

)
. (4)

In particular, PAdv is normal iff rAdv(s) = 1 for any
states s.

Proof. See the Appendix. �
In the matrix notation, we have

rAdv = P+
Adv ◦ DAdv, (5)

where DAdv = (
P+

Adv (t, t)
)
t∈S

.
The computational complexity of rAdv (s) mainly

depends on the time of computational possibilis-
tic transition closure. In [30], they gave an optimal
algorithm to calculate DAdv, then we get the time
complexity is O

(
n2 log n

)
, where n =| S |.

Example 3. According to the GPDP in Example 1,
for any s ∈ S,rmax and rmin corresponding to the max-
imal scheduler and the minimal scheduler are given,
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Dmax = (
P+

max (t, t)
)
t∈S

=

⎛
⎜⎝

0.8

0.9

1

⎞
⎟⎠ ,

Dmin = (
P+

min (t, t)
)
t∈S

=

⎛
⎜⎝

0.3

0.5

0.7

⎞
⎟⎠ ,

P+
max =

⎛
⎜⎝

0.8 0.8 0.8

0.5 0.9 0.9

0.5 0.8 1

⎞
⎟⎠ ,

P+
min =

⎛
⎜⎝

0.3 0.2 0.1

0.2 0.5 0.4

0.2 0.3 0.7

⎞
⎟⎠ ,

rmax = P+
max ◦ Dmax =

⎛
⎜⎝

0.8

0.9

1

⎞
⎟⎠ ,

rmin = P+
min ◦ Dmin =

⎛
⎜⎝

0.3

0.5

0.7

⎞
⎟⎠ .

rmax (s0) = 0.8 indicates that under the maximal
possibilistic scheduler. That is, the maximal possibil-
ity of all paths from state s0 is 0.8. rmin (s0) = 0.3
indicates that under the minimal possibilistic sched-
uler. That is, the maximal possibility of all paths from
state s0 is 0.3.

Based on Theorem 1, we can get Theorem 2, which
can convert the calculation of generalized possibil-
ity measure of infinite path into the calculation of
possibility of finite path.

Theorem 2. Let M = (S, Act, P, I, AP, L) be a
finite GPDP, then the generalized possibility mea-
sure of cylinder set π̂ = s0α0s1α1 · · · αn−1sn ∈
Paths

fin
Adv(M) is :

GPo (Cyl(s0α0s1α1 · · · αn−1sn))

= I(s0) ∧ n−1∧
i=0

PAdv (si, αi, si+1) ∧ rAdv (sn) ,

where GPo (Cyl(s0)) = I (s0) ∧ rAdv (s0).

Proof. See the Appendix. �

Example 4. According to the GPDP of Example 1,
under the maximal possibilistic measure and the min-
imal possibilistic measure, the generalized possibility
measure of cylinder set of the corresponding finite
paths π̂ = s0α0s1 are respectively,

GPomax

(
Cyl(s0α0s1)

)
= I(s0) ∧ P(s0, α0, s1) ∧

rmax(s1)
= 0.8
GPomin(Cyl(s0α0s1)) = I(s0) ∧ P(s0, α0, s1) ∧
rmin(s1)
= 0.5.

4. Reachability possibility

A typical task for the quantitative analysis of
GPDPs is to compute the minimum or the maximum
possibility for some reachabilities under considera-
tion of the min or the max scheduler. This corresponds
to the worst-case or best-case analysis possibility
of GPDPs. Let M = (S, Act, P, I, AP, L) be a finite
GPDP and B be a fuzzy set of target states. The fuzzy
setB may represent a set of certain bad states that shall
be visited with the minimum possibility, or dually,
a set of good states that shall be visited with the
maximum possibility. Some special reachabilities,
such as eventual reachability, always reachability,
constrained reachability, repeated reachability and
persistent reachability are considered in this section.

4.1. Eventual reachability possibility

The event of eventual reachability is denoted ♦B.
We use the B : S −→ [0, 1] to represent the fuzzy set
of states. For the given GPDP M, π = s0α0s1 . . . ∈
PathsAdv(M), || ♦B(π) ||= ∨

i≥0
B(si). In the follow-

ing, the quantitative analysis of eventual reachability
is reduced to the computational range for all strate-
gies of the minimum possibility or the maximum
possibility of reaching a certain fuzzy set B of states.

Theorem 3. Let M = (S, Act, P, I, AP, L) be GPDP,
max corresponds to the maximum possibility sched-
uler and min corresponds to the minimum possibility
scheduler, then we have,

GPomax(♦B) =
(
GPomax(s |= ♦B)

)
s∈S

= P∗
max ◦ DB ◦ rmax

(6)

GPomin(♦B) =
(
GPomin(s |= ♦B)

)
s∈S

= P∗
min ◦ DB ◦ rmin.

(7)
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Proof. See the Appendix. �

Example 5. Based on Example 1, consider the gener-
alized possibility of eventual reachability event ♦B.
Given the fuzzy state set B = (L(s, E))s∈S , only the
reachability of the event is considered at this point,
and the label function in GPDP is defined as L(s) = s.

Then the maximum possibility and minimum pos-
sibility of the event ♦≤7B are respectively:

GPomax(♦≤7B) = P∗
max ◦ DB ◦ rmax

=

⎛
⎜⎝

0.8 0.8 0.3

0.5 0.9 0.9

0.3 0.8 1

⎞
⎟⎠

∗

◦

⎛
⎜⎝

0.2 0 0

0 0.7 0

0 0 0.9

⎞
⎟⎠ ◦

⎛
⎜⎝

0.8

0.9

1

⎞
⎟⎠

=

⎛
⎜⎝

0.8

0.9

0.9

⎞
⎟⎠ ,

GPomin(♦≤7B) = P∗
min ◦ DB ◦ rmin

=

⎛
⎜⎝

0.2 0.3 0.1

0.2 0.5 0.4

0.1 0.3 0.7

⎞
⎟⎠

∗

◦

⎛
⎜⎝

0.2 0 0

0 0.7 0

0 0 0.9

⎞
⎟⎠ ◦

⎛
⎜⎝

0.3

0.5

0.7

⎞
⎟⎠

=

⎛
⎜⎝

0.2

0.5

0.7

⎞
⎟⎠ .

‖GPo(♦≤7B)‖max(s0) = 0.8,
‖GPo(♦≤7B)‖min(s0)
= 0.2, describes the maximum possibility of the
patient’s final state of health with the maximum
possibility of “good” being 0.8 and the minimum
possibility of “good” being 0.2 after 7 days treatment
from state s0.

4.2. Always reachability possibility

The event of always reachability is denoted
�B. We use the B : S −→ [0, 1] to represent the
fuzzy set of states. For the given GPDPs M,
π = s0α0s1 . . . ∈ PathsAdv(M), �B(π) = ∧

i≥0
B(si).

Under the maximum possibility scheduler and the
minimum possibility scheduler, the methods of com-
puting GPomax(s |= �B) and GPomin(s |= �B) are
given.

GPomax(s |= �B)

=
∨

π∈Pathsmax(s)

(
GPomax(π) ∧ ‖�B‖(π)

)

=
∨ (

GPomax(π) ∧
∧
i≥0

B(si)
)
.

GPomin(s |= �B) =
∨ (

GPomin(π) ∧ ‖�B‖(π)
)

=
∨ (

GPomin(π) ∧
∧
i≥0

B(si)
)
.

From these results, we can get Theorem 4.

Theorem 4. Let M = (S, Act, P, I, AP, L) be
GPDPs, max corresponds to the maximum possibil-
ity scheduler and min corresponds to the minimum
possibility scheduler, then we have

GPomax(�B) = (GPomax(s |= �B))s∈S

= υ.fBmax(Z),
(8)

GPomin(�B) = (GPomin(s |= �B))s∈S

= υ.fBmin(Z),
(9)

where fBmax(Z) = B ∧ Pmax ◦ DZ ◦
rmax, fBmin(Z) = B ∧ Pmin ◦ DZ ◦ rmin.
υ.fBmax(Z) denotes the maximal fixed point of
the operator fBmax(Z), υ.fBmin(Z) denotes the
minimal fixed point of the operator fBmin(Z). We
have given the solution to the maximal fixed point in
[18].

Example 6. Based on Example 1, considering the
generalized possibility of always reachability event
�≤7B, given the fuzzy state set B = (L(s, E))s∈S , the
maximum possibility and the minimum possibility of
all states in M satisfied event �≤7B are respectively:

f (z1) = B ∧ (P∗
max ◦ Dz ◦ rmax)

=

⎛
⎜⎝

0.2

0.7

0.9

⎞
⎟⎠ ∧

⎛
⎜⎝

⎛
⎜⎝

0.8 0.8 0.3

0.5 0.9 0.9

0.3 0.8 1

⎞
⎟⎠

∗

◦

⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠ ◦

⎛
⎜⎝

0.8

0.9

1

⎞
⎟⎠

⎞
⎟⎠
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=

⎛
⎜⎝

0.2

0.7

0.9

⎞
⎟⎠ ,

f (z2) = B ∧ (P∗
max ◦ Dz1 ◦ rmax)

=

⎛
⎜⎝

0.2

0.7

0.9

⎞
⎟⎠ ∧

⎛
⎜⎝

⎛
⎜⎝

0.8 0.8 0.3

0.5 0.9 0.9

0.3 0.8 1

⎞
⎟⎠

∗

◦

⎛
⎜⎝

0.2 0 0

0 0.7 0

0 0 0.9

⎞
⎟⎠ ◦

⎛
⎜⎝

0.8

0.9

1

⎞
⎟⎠

⎞
⎟⎠

=

⎛
⎜⎝

0.2

0.7

0.9

⎞
⎟⎠ .

f z1 = fz2, Therefore

GPomax(�≤7B) =

⎛
⎜⎝

0.2

0.7

0.9

⎞
⎟⎠ .

Calculated by the same method

GPomin(�≤7B) =

⎛
⎜⎝

0.2

0.5

0.7

⎞
⎟⎠ .

‖GPo(�E)‖max(s0) = 0.2,
‖GPo(�E)‖min(s0) = 0.2, it shows that from
the state s0, it is unlikely that the patient’s health
always reach a “good” state after 7 days treatment.

4.3. Constrained reachability possibility

Given the GPDP M, and the fuzzy set of states
B, C : S −→ [0, 1], consider the event of reaching B

via a finite path fragment which ends in a fuzzy state
s ∈ B, and visits only states in set of fuzzy states C

prior to reaching fuzzy states s. This event is denoted
by C � B. For n ≥ 0, the event C �≤n B has the same
meaning as C � B, and it is required to reach B(via
fuzzy state C) within n steps. Formally, C �≤n B is
the union of the basic cylinders spanned by path frag-
ments s0α0s1α1 . . . sm so that m ≤ n with possibility
C(si) for all 0 ≤ i ≤ m with possibility B(sk).

Theorem 5. Let M = (S, Act, P, I, AP, L) be a
GPDP, max corresponds to the maximum possibil-

ity scheduler and min corresponds to the minimum
possibility scheduler, then we have

GPomax(C �≤n B) = GPomax(C � B)

= (DC ◦ Pmax)∗ ◦ DB ◦ rmax,
(10)

GPomin(C �≤n B) = GPomin(C � B)

= (DC ◦ Pmin)∗ ◦ DB ◦ rmin.
(11)

Proof. See the Appendix. �

Example 7. Next, let’s continue to consider the gen-
eralized possibility of constrained reachability event
C �≤7 B. Given the fuzzy state set C = (L(s, P))s∈S ,
B = (L(s, E))s∈S , the maximum possibility and the
minimum possibility of all states in M satisfying
event C �≤7 B are respectively:

GPomax(C �≤7 B) = (DC ◦ Pmax)∗ ◦ DB ◦ rmax

=

⎛
⎜⎝

⎛
⎜⎝

0.85 0 0

0 0.4 0

0 0 0.1

⎞
⎟⎠ ◦

⎛
⎜⎝

0.8 0.8 0.3

0.5 0.9 0.9

0.3 0.8 1

⎞
⎟⎠

⎞
⎟⎠

∗

◦

⎛
⎜⎝

0.2 0 0

0 0.7 0

0 0 0.9

⎞
⎟⎠ ◦

⎛
⎜⎝

0.8

0.9

1

⎞
⎟⎠

=

⎛
⎜⎝

0.7

0.7

0.9

⎞
⎟⎠ ,

GPomin(C �≤7 B) = (DC ◦ Pmin)∗ ◦ DB ◦ rmin

=

⎛
⎜⎝

⎛
⎜⎝

0.85 0 0

0 0.4 0

0 0 0.1

⎞
⎟⎠ ◦

⎛
⎜⎝

0.2 0.3 0.1

0.2 0.5 0.4

0.1 0.3 0.7

⎞
⎟⎠

⎞
⎟⎠

∗

◦

⎛
⎜⎝

0.2 0 0

0 0.7 0

0 0 0.9

⎞
⎟⎠ ◦

⎛
⎜⎝

0.3

0.5

0.7

⎞
⎟⎠

=

⎛
⎜⎝

0.2

0.5

0.7

⎞
⎟⎠ .

‖GPo(C �≤7 B)‖max(s0) = 0.7, ‖GPo(C �≤7

B)‖min(s0)
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= 0.2, which means that the patient’s health state is
“bad” at state s0. The expert adopts three treatment
schemes after 7 days of treatment, the maximum
possibility that a patient’s health states turn to a
“good” state is 0.7 and the minimum possibility is
0.2.

4.4. Repeated reachability possibility

Let B : S −→ [0, 1] be a set of fuzzy states
in GPDPs. For the event of repeated reachability,
we use the �♦B to represent it. The set of all
paths that visit B infinitely is often measurable.
Let π = s0α0s1α1 . . . ∈ PathsAdv(s0), ‖�♦B‖(π) =
∞∨
i≥0

∞∧
j≥i

B(sj), we consider to calculate GPoAdv(s |=
�♦B) under a scheduler Adv.

Theorem 6. Let M = (S, Act, P, I, AP, L) be a
GPDP, B : S −→ [0, 1] is a fuzzy set of states, max

corresponds to the maximum possibility scheduler
and min corresponds to the minimum possibility
scheduler. Then we have,

GPomax(�♦B) = P+
max ◦ diag(P+

max(t, t))t∈S ◦ B,

(12)

GPomin(�♦B) = P+
min ◦ diag(P+

min(t, t))t∈S ◦ B.

(13)

Proof. See the Appendix. �

Example 8. Next, let’s continue to consider the gen-
eralized possibility of the repeated reachability event
�♦B. Given the fuzzy state set B = (L(s, P))s∈S , the
maximum possibility and the minimum possibility of
all states in M satisfying event �♦B are respectively:

GPomax(�♦B) = P+
max ◦ diag(P+

max(t, t))t∈S ◦ B

=

⎛
⎜⎝

0.8 0.8 0.3

0.5 0.9 0.9

0.3 0.8 1

⎞
⎟⎠

+

◦

⎛
⎜⎝

0.8 0 0

0 0.9 0

0 0 1

⎞
⎟⎠ ◦

⎛
⎜⎝

0.85

0.4

0.1

⎞
⎟⎠

=

⎛
⎜⎝

0.8

0.4

0.1

⎞
⎟⎠ ,

GPomin(�♦B) = P+
min ◦ diag(P+

min(t, t))t∈S ◦ B

=

⎛
⎜⎝

0.2 0.3 0.1

0.2 0.5 0.4

0.1 0.3 0.7

⎞
⎟⎠

+

◦

⎛
⎜⎝

0.3 0 0

0 0.5 0

0 0 07

⎞
⎟⎠ ◦

⎛
⎜⎝

0.85

0.4

0.1

⎞
⎟⎠

=

⎛
⎜⎝

0.3

0.4

0.1

⎞
⎟⎠ .

When the state is s0, ‖GPo(�♦B)‖max(s0) =
0.8, ‖GPo(�♦B)‖min(s0) = 0.3, indicates that the
patients in this state are more likely to relapse.
When the state is s2, ‖GPo(�♦B)‖max(s2) = 0.1,
‖GPo(�♦B)‖min(s0) = 0.1, indicates that once the
patient’s disease in this state is cured, and it basically
will not recur.

4.5. Persistent reachability possibility

Let us consider persistent reachability properties
events of the form ♦�B. Let π = s0α0s1α1 . . . ∈
PathsAdv(s0) and B : S −→ [0, 1] be a fuzzy set of

states in GPDPs. Thus, ‖♦�B‖(π) =
∞∧
i≥0

∞∨
j≥i

B(sj).

Let us calculate GPoAdv(s |= ♦�B) under the
maximum possibility scheduler and the minimum
possibility scheduler.

Theorem 7. Let M = (S, Act, P, I, AP, L) be a
GPDP, B : S −→ [0, 1] is the fuzzy set of states,
max corresponds to the maximum possibility sched-
uler and min corresponds to the minimum possibility
scheduler.

GPomax(♦�B) = P∗
max ◦ rDB◦Pmax , (14)

GPomin(♦�B) = P∗
min ◦ rDB◦Pmin . (15)

Proof. See the Appendix. �

Example 9. Next, continue to consider the general-
ized possibility of persistent reachability event ♦�B.
Given the fuzzy state set B = (L(s, E))s∈S , the max-
imum possibility and the minimum possibility of all
states in M satisfied event ♦�B are respectively,

DB ◦ Pmax =

⎛
⎜⎝

0.2 0 0

0 0.7 0

0 0 0.9

⎞
⎟⎠ ◦

⎛
⎜⎝

0.8 0.8 0.3

0.5 0.9 0.9

0.3 0.8 1

⎞
⎟⎠
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=

⎛
⎜⎝

0.2 0.2 0.2

0.5 0.7 0.7

0.3 0.8 0.9

⎞
⎟⎠ ,

GPomax(♦�B) = P∗
max ◦ rDB◦Pmax

=

⎛
⎜⎝

0.8 0.8 0.3

0.5 0.9 0.9

0.3 0.8 1

⎞
⎟⎠

∗

◦

⎛
⎜⎝

0.2

0.7

0.9

⎞
⎟⎠ =

⎛
⎜⎝

0.2

0.7

0.9

⎞
⎟⎠ ,

DB ◦ Pmin =

⎛
⎜⎝

0.2 0 0

0 0.7 0

0 0 0.9

⎞
⎟⎠ ◦

⎛
⎜⎝

0.2 0.3 0.1

0.2 0.5 0.4

0.1 0.3 0.7

⎞
⎟⎠

=

⎛
⎜⎝

0.2 0.2 0.1

0.2 0.5 0.4

0.1 0.3 0.7

⎞
⎟⎠ ,

GPomin(♦�B) = P∗
min ◦ rDB◦Pmax

=

⎛
⎜⎝

0.2 0.3 0.1

0.2 0.5 0.4

0.1 0.3 0.7

⎞
⎟⎠

∗

◦

⎛
⎜⎝

0.2

0.5

0.7

⎞
⎟⎠ =

⎛
⎜⎝

0.2

0.5

0.7

⎞
⎟⎠ ,

where DB =
{

L(s, E) s = t

0 otherwise
.

The possibility that the patient’s health continue
to be “good” after the expert adopts the combi-
nation of three schemes. When the state is s0,
‖GPo(♦�B)‖max(s0) = 0.2, ‖GPo(♦�B)‖min

(s0) = 0.2, which indicates that the patient is in
a bad state of health and is already in a state of
illness. For state s2, ‖GPo(♦�B)‖max(s2) = 0.9,
‖GPo(♦�B)‖min(s2) = 0.7, which indicates that
the patient’s state health has been in a “good” state.

5. Reachability in the safety properties

The analysis of safety properties and the tech-
niques for checking safety properties are closely
related to reachability. Safety properties are often
characterized as “nothing bad should happen”. In
classic model checking, safety properties are defined
as linear property which does not include a bad prefix,
and analyses the eventual reachability and repeated
reachability. Since it is difficult to define the notion
of a bad prefix in fuzzy logic or possibility logic, Li
[21] uses the good prefixes to define the fuzzy safety
property, and computes the always reachability pos-
sibility and persistent reachability possibility. In the

following section, we use the good prefixes to analyze
the possibilistic of regular safety property.

For a GPDP M = (S, Act, P, I, AP, L), we assume
the alphabet 
 = lAP for some finite subset l ⊆ [0, 1]
in the following.

Definition 11. For the safety property Psafe, we define
a possibilistic language Gref (Psafe) : 
∗ −→ [0, 1]

as Gpref (Psafe)(θ) = ∨ {
Psafe(θσ) | σ ∈ 
ω

}
. For

all θ ∈ 
∗, Gpref (Psafe) is called the good prefixes
of Psafe.

Psafe is called possibilistic regular safety

property if Psafe(σ) = ∧ {
Gpref (Psafe)(θ) | θ ∈

Gpref (σ)
}

, for all σ ∈ 
ω, Pref (σ) =
{

θ ∈ 
∗ |
σ = θσ′, σ′ ∈ 
ω

}
is called the set of prefixes of σ.

We call Psafe a generalized possibilistic regular
safety property if Psafe is a generalized possibilistic
safety property and Gpref (Psafe) is a fuzzy regular
language over 
.

Definition 12. [22] A fuzzy finite automata is a five
tuple A = (Q, 
, δ, Q0, F ), where

(1) Q is a finite nonempty set of states;
(2) 
 a finite nonempty set of input symbols;
(3) δ : Q × 
 × Q −→ [0, 1] is a fuzzy transition

function. For any p, q ∈ Q, a ∈ 
, δ(p, a, q)
denotes the possibility of state p reaching state
Q under the action of input letter a;

(4) Q0 : Q −→ [0, 1] represent the fuzzy initial
state of fuzzy automata A,for q ∈ Q ,Q0 (q)
denotes q is the possibility of the initial state;

(5) F : Q −→ [0, 1] represent the fuzzy accep-
tance state of fuzzy automata A,F (q) denotes
q is the possibility of the acceptance state;

For a GPDP M = (S, Act, P, I, AP, L) and a fuzzy
finite automata A = (Q, 
, δ, Q0, F ), the product of
M and A is defined as follows.

Definition 13. Let M = (S, P, Act, I, AP, L) be
a GPDP, A = (Q, 
, δ, Q0, F ) be a fuzzy finite
automata, M ⊗ A = (S × Q, P ′, Act′, I ′, AP ′, L′),
where P ′(< s, q >, α, < s′, q′ >) = P(s, α, s′) ∧
δ(q, L(s′), q′); Act′(< s, q >) = Act(s);
I ′(< s, q >) = I(s) ∧ ∨

q0∈Q

Q0(q0) ∧ δ(q0, L(s), q);

for all < s, q >∈ S × Q, AP ′ = S × Q ;
L′(< s, q >) =< s, q >.

For each path π = s0α0s1α1s2α2 . . . ∈ PathsAdv

(M) in M, TraceAdv(π) = L(s0)L(s1)L(s2) . . ., the



8368 Z. Ma et al. / Quantitative reachability analysis of generalized possibilistic decision processes

fuzzy automata A has a unique run q0q1q2 . . . and in
M ⊗ A there exists π+ =< s0, q1 > α0 < s1, q2 >

α1 . . . corresponding to them.Similarly, the path in
M ⊗ A with state < s0, δ(q0, L(s)) > also corre-
sponds to the path in M and the run in A.

Theorem 8. Let M = (S, Act, P, I, AP, L) be a
GPDP, Psafe is the generalized possibilistic regu-
lar safety property accepted by a deterministic fuzzy
finite automata A = (Q, 
, δ, Q0, F ), and Adv is the
set of all strategies begin state s. We have:

GPoM
Adv(s |= Psafe) = GPoM⊗A

Adv (< s, qs >|= �B),
(16)

where qs = δ(q0, L(s)), B = S × F =∑
s∈S,q∈Q F (q)/ < s, q >, which means that

B(< s, q >) = F (q), for all < s, q >∈ S × Q.

Proof. See the Appendix. �
Let GPoAdv(�B) = GPoAdv(s |= �B)s∈S , then

GPoAdv(�B) can be solved by the maximum fixed
point, where the maximum fixed point of the operator
is fB(Z) = B ∧ PAdv ◦ DZ ◦ rAdv. For the scheduler
Adv taking the maximum possibility scheduler max

and the minimum possibility scheduler min, the max-
imum possibility and the minimum possibility that
the state s satisfies the generalized possibilistic regu-
lar safety property P are respectively:

GPomax(�B) = (GPomax(s |= �B))s∈S

= υZ.fBmax(Z), (17)

GPomin(�B) = (GPomin(s |= �B))s∈S

= υZ.fBmin(Z), (18)

where

fBmax(Z) = B ∧ Pmax ◦ DZ ◦ rmax,

fBmin(Z) = B ∧ Pmin ◦ DZ ◦ rmin.

Example 10. We use Example 1 as a sample. To
discuss the generalized possibility measure of gen-
eralized possibilistic regular safety property in the
alphabet 
 = lAP , in which

l = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.
Generalized possibilistic regular safety property
Psafe = {A0, A1, . . . ∈ 
ω | ∀i ≥ 0, Ai(E) > 0} a
describes the patient’s health states is good (E).
Because the safety property Psafe has a good prefix
Gref (Psafe) = {A0, A1, . . . , An ∈ 
∗ | n ≥ 0, ∀i ≥

Fig. 4. Finite automata A corresponding to Gref (Psafe).

0, Ai(E) > 0}, and for any infinite words δ ∈ 
ω,
if w ∈ Pref (δ), w ∈ Gref (Psafe), then δ ∈ Psafe.
Gref (Psafe) can be accepted by the definite finite
fuzzy automata shown in the Fig. 4. Therefore, Psafe

is generalized possibilistic regular safety property,
where the letter E in the automata A denotes
the atomic proposition for any A ∈ 
 such that
A(E) > 0 is an atomic proposition.

Given a GPDP M and generalized possibilistic
regular safety property Psafe = {A0, A1, . . . ∈ 
ω |
∀i ≥ 0, Ai(E) > 0}, Adv is the scheduler defined in
M. The solution processes of GPomax(s0 |= Psafe)
and GPomin(s0 |= Psafe) corresponding to Adv is the
maximum scheduler and the minimum scheduler are
given.

The product M ⊗ A of a GPDP M and Psafe good
prefix Gref (Psafe) corresponding to a finite automata
A is shown in Fig. 5. According to formulas 17 and
18, there B = S × {q1} = {1, 1, 1} is

f (z1) = B ∧ (P∗
max ◦ Dz ◦ rmax)

=

⎛
⎜⎝

1

1

1

⎞
⎟⎠ ∧

⎛
⎜⎝

⎛
⎜⎝

0.8 0.8 0.3

0.5 0.9 0.9

0.3 0.8 1

⎞
⎟⎠

∗

◦

⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠ ◦

⎛
⎜⎝

0.8

0.9

1

⎞
⎟⎠

⎞
⎟⎠

=

⎛
⎜⎝

0.8

0.9

1

⎞
⎟⎠ ,

f (z2) = B ∧ (P∗
max ◦ Dz1 ◦ rmax)

=

⎛
⎜⎝

1

1

1

⎞
⎟⎠ ∧

⎛
⎜⎝

⎛
⎜⎝

0.8 0.8 0.3

0.5 0.9 0.9

0.3 0.8 1

⎞
⎟⎠

∗

◦

⎛
⎜⎝

0.8 0 0

0 0.9 0

0 0 1

⎞
⎟⎠ ◦

⎛
⎜⎝

0.8

0.9

1

⎞
⎟⎠

⎞
⎟⎠
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Fig. 5. Product GPDPs M ⊗ A.

=

⎛
⎜⎝

0.8

0.9

1

⎞
⎟⎠ ,

f z1 = fz2, Therefore

GPomax(�B) =

⎛
⎜⎝

0.8

0.9

1

⎞
⎟⎠ .

Calculated by the same method

GPomin(�B) =

⎛
⎜⎝

0.3

0.5

0.7

⎞
⎟⎠ .

GPomax(s0 |= Psafe) = 0.8,GPomin(s0 |=
Psafe) = 0.3 are obtained, which shows that
the maximum possibility and minimum possibility
of generalized possibilistic regular safety property
Psafe in GPDPs M are 0.8 and 0.3.

6. Conclusion

In this paper, firstly, we propose GPDPs as the
models of nondeterministic and concurrent fuzzy
systems. Then, we give fuzzy matrices calculation
methods of the maximal possibilities and the minimal
possibilities of reachabilities. Finally, we propose a

model checking approach to convert the verification
of safety property into the analysis of reachabilities.
We have given the method of optimization algorithm
for reachability. In the future, we will investigate the
optimization algorithm for reachability to solve the
verification of other properties, such as liveness and
fairness in fuzzy systems.
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Appendix

Proof. [Proof of Theorem 1]
Since S and Act is finite, given the scheduler Adv,

the possibility transition matrix PAdv is also finite.
Obviously, the fuzzy meet operator ∧ does not gen-
erate new element,so the set { ∧

i≥0
PAdv(si, αi, si+1) |

si ∈ S,αi ∈ Act} is finite.Since S and Act is finite,
for any states s ∈ S under consideration of the sched-
uler Adv, there exits t ∈ S and i < j so that si =
sj = t.

In this case, PAdv(s, α0, s1) ∧ PAdv(s1, α1, s2) ∧
· · ·

= PAdv(s, α0, s1) ∧ · · · ∧ PAdv(si−1, αi−1, t) ∧
(PAdv(t, αi, si+1)

∧ · · · PAdv(sj−1, αj, t)) ∧ · · ·
≤ PAdv(s, α0, s1) ∧ · · · ∧ PAdv(si−1, αi−1, t) ∧

(PAdv(t, αi, si+1)
∧ · · · ∧ PAdv(sj−1, αj, t))
≤ P+

Adv(s, Act(s), t) ∧ P+
Adv(t, Act(t), t).

Hence, rAdv(s) ≤ P+
Adv(s, Act(s), t) ∧ P+

Adv(t, Act

(t), t).
Conversely, for any t ∈ S and schedulers Adv, by

the definition of P+
Adv, there exists ss1 · · · si = t ∈ S

and si+1 · · · sj such that
P+

Adv (s, t) = PAdv(s, s1) ∧ · · · ∧ PAdv (si−1, t)
P+

Adv (t, t) = PAdv(t, s1) ∧ · · · ∧ PAdv

(
sj, t

)
.

Let πAdv = s0α0s1α1 · · · si−1αi−1tαi

(
si+1 · · · sj

αjt
)ω,then P+

Adv (s, t) ∧ P+
Adv (t, t) = PAdv(s, s1) ∧

PAdv(s1, s2) ∧ · · · .

Hence, P+
Adv (s, t) ∧ P+

Adv (t, t) ≤ rAdv (s),
∨

{P+
Adv (s, t) ∧ P+

Adv (t, t) | t ∈ S} ≤ rAdv (s) .

Therefore, rAdv (s) = ∨{P+
Adv (s, t) ∧ P+

Adv (t, t) |
t ∈ S}.

Proof. [Proof of Theorem 2]
From Cyl(π̂) = {π ∈ PathsAdv (M ) | π̂ ∈

Pref (π )}, we have Cyl(s0α0s1α1 · · · αn−1sn) =⋃{πAdv ∈ PathsAdv(M) | s0α0 · · · αn−1sn ∈
Pref (πAdv)}.

Therefore, GPo

(
Cyl (s0α0 · · · αn−1sn)

)
= ∨{GPo(πAdv) | s0α0 · · · αn−1sn ∈

Pref (πAdv)}
= ∨ {

I(s0) ∧ ∧
i≥0

PAdv(si, αi, si+1) |

s0α0s1 · · · αn−1sn ∈ Pref (πAdv)
}

=
{

I(s0) ∧
n−1∧
i=0

PAdv(si, αi, si+1)} ∧

∧{ ∧
j≥n

PAdv(sj, αj, sj+1)
}

= I(s0) ∧
n−1∧
i=0

PAdv(si, αi, si+1)} ∧ rAdv(sn).

Proof. [Proof of Theorem 3]
GPomax(s |= ♦B)

= ∨
π∈Pathsmax(s)

(
GPomax(π) ∧ ‖♦B‖(π)

)

= ∨ ( ∞∧
i=0

∨
αi∈Act

P(si, αi, si+1) ∧
∞∨

j=0
B(sj)

)

= ∨ ∞∨
i=0

(
Pmax(s, s1) ∧ . . . ∧ Pmax(si−1, si) ∧

B(si)
)

∧ ∨ ∞∧
j=i

Pmax(sj, sj+1)

=
∞∨
i=0

∨ (
Pmax(s, s1) ∧ . . . ∧ Pmax(si−1, si) ∧

B(si) ∧ rmax(si)
)

=
∞∨
i=0

(Pi
max ◦ DB ◦ rmax)(s)

= ((
∞∨
i=0

Pi
max) ◦ DB ◦ rmax)(s)

= (P∗
max ◦ DB ◦ rmax)(s)

where Pmaxis the maximum possibility tran-
sition matrix under the max scheduler, Kleene
closure of Pmax is P∗

max , DB is the diago-
nal matrix diag(B(s))s∈S , rmax = P+

max ◦ D, P+
max =

Pmax ∨ P∗
max, D = (P+

max(t, t))t∈S .
GPomin(s |= ♦B)

= ∨
π∈Pathsmin(s)

(
GPomin(π) ∧ ‖♦B‖(π)

)

= ∨ ( ∞∧
i=0

∧
αi∈Act

P(si, αi, si+1) ∧
∞∨

j=0
B(sj)

)

= ∨ ∞∨
i=0

(
Pmin(s, s1) ∧ . . . ∧ Pmin(si−1, si) ∧

B(si)
)

∧ ∨ ∞∧
j=i

Pmin(sj, sj+1)

=
∞∨
i=0

∨ (
Pmin(s, s1) ∧ . . . ∧ Pmin(si−1, si) ∧

B(si) ∧ rmin(si)
)

=
∞∨
i=0

(Pi
min ◦ DB ◦ rmin)(s)

= ((
∞∨
i=0

Pi
min) ◦ DB ◦ rmin)(s)

= (P∗
min ◦ DB ◦ rmin)(s),

where Pmin is the minimum possibility transition
matrix under the min scheduler.
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Proof. [Proof of Theorem 5]
GPomax(s |= C �≤n B)

= ∨
π∈Pathsmax(s)

(
GPomax(π) ∧ ‖C �≤n B‖(π)

)

= ∨ ( ∨
α0∈Act(s0)

P(s0, α0, s1) ∧∨
α1∈Act(s1)

P(s1, α1, s2)

∧ . . . ∧
( n∨

j≥0
B(sj) ∧ ∧

i≤j

C(si)
))

= ∨ (
Pmax(s0, s1) ∧ Pmax(s1, s2) ∧ . . . ∧( n∨

j≥0
B(sj) ∧ ∧

i≤j

C(si)
))

=
(
B(s0) ∧ rmax(s0)

)
∨

( n∨
j≥0

C(sj) ∧∧
i≤j

Pmax(si−1, si) ∧ C(si) ∧ Pmax(sj−1, sj) ∧

B(sj) ∧ rmax(sj)
)

= (
n∨

i=0
(DC ◦ Pmax)i ◦ DB ◦ rmax)(s).

GPomin(s |= C �≤n B)

= ∨
π∈Pathsmin(s)

(
GPomin(π) ∧ ‖C �≤n B‖(π)

)

= ∨ ( ∧
α0∈Act(s0)

P(s0, α0, s1) ∧
∧

α1∈Act(s1)
P(s1, α1, s2) ∧ . . . ∧

( n∨
j≥0

B(sj) ∧
∧
i≤j

C(si)
))

= ∨ (
Pmin(s0, s1) ∧ Pmin(s1, s2) ∧ . . . ∧( n∨

j≥0
B(sj) ∧ ∧

i≤j

C(si)
))

=
(
B(s0) ∧ rmin(s0)

)
∨

( n∨
j≥0

C(sj) ∧∧
i≤j

Pmin(si−1, si) ∧ C(si) ∧ Pmin(sj−1, sj) ∧

B(sj) ∧ rmin(sj)
)

= (
n∨

i=0
(DC ◦ Pmin)i ◦ DB ◦ rmin)(s).

Proof. [Proof of Theorem 6]

GPoAdv(s |= �♦B) = ∨
π∈PathsAdv(s)

(
GPo(π) ∧

‖�♦B‖(π)
)

. Let π = s0α0s1α1 . . . ∈ PathsAdv(s0),

inf (π) denotes the set of states that occur
infinitely many times on the path π, then

‖�♦B‖(π) ≤ ∨
t∈inf (π)

B(t). Furthermore, for any

t ∈ inf (π), π |= �♦t, we can get GPoAdv(π) ≤
GPoAdv

(
{π ∈ Pathsfin(s) | π |= �♦t}

)
, thus

GPoAdv(π) ∧ ‖�♦B‖(π) ≤ ∨
t∈inf (π)

(
B(t) ∧

GPoAdv(s |= �♦t)
)

≤ ∨
t∈S

(
B(t) ∧ GPoAdv(s |=

�♦t)
)
. Therefore, GPoAdv(s |= �♦B) ≤∨

t∈S

(
B(t) ∧ GPoAdv(s |= �♦t)

)
.

Conversely, for any state t ∈ S, and any
path π ∈ PathsAdv(s) that satisfies the event
�♦t ,we have B(s) ≤ ‖�♦B‖(π). It fol-

lows that
∨
t∈S

(
B(t) ∧ GPoAdv(s |= �♦t)

)
≤

∨
t∈S

(
B(t) ∧ GPoAdv(s |= �♦t)

)
, therefore,

∨
t∈S

(
B(t) ∧ GPoAdv(s |= �♦t)

)
≤ GPoAdv(s |=

�♦B).
In conclusion, GPoAdv(s |= �♦B) = ∨

t∈S

B(t)∧
GPoAdv(s |= �♦t).
We can get the method to calculate GPoAdv(s |=

�♦t) from these results, that is GPoAdv(s |= �♦t) =
P+

Adv(s, t) ∧ P+
Adv(t, t). Then we obtain GPoAdv(s |=

�♦B) = ∨
t∈S

B(t) ∧ P+
Adv(s, t) ∧ P+

Adv(t, t).

When the Adv is the maximum possibility sched-
uler and the minimum possibility scheduler, we can
get Theorem 6.

Proof. [Proof of Theorem 7]
GPomax(s |= ♦�B)

= ∨
π∈Pathsmax(s)

(
GPomax(π) ∧ ‖♦�B‖(π)

)

= ∨ (
GPomax(π) ∧

∞∨
i=0

∞∧
j=i

B(sj)
)

= ∨ ∞∨
i=0

( ∨
α0∈Act

P(s, α0, s1) ∧∨
α1∈Act

P(s1, α1, s2) ∧ . . . ∧∨
αi−1∈Act

P(si−1, αi−1, si) ∧ B(si) ∧∨
αi∈Act

P(si, αi, si+1)

∧B(si+1) ∧ ∨
αi+1∈Act

P(si+1, αi+1, si+2) ∧

B(si+2) ∧ . . .
)

= ∨ ∞∨
i=0

(
Pmax(s, s1) ∧ Pmax(s1, s2) ∧ . . . ∧

Pmax(si−1si) ∧ B(si) ∧ Pmax(si, si+1) ∧ B(si+1) ∧
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Pmax(si+1, si+2)∧
B(si+2) ∧ . . .

)
= ∨ ∞∨

i=0

(
Pmax(s, s1) ∧ Pmax(s1, s2) ∧ . . . ∧

Pmax(si−1si)
∧(Dmax ◦ Pmax)(si, si+1) ∧ (Dmax ◦

Pmax)(si+1, si+2)

∧ . . .
)

= ∨ ∞∨
i=0

(
Pmax(s, s1) ∧ Pmax(s1, s2) ∧ . . . ∧

Pmax(si−1si)

∧rDB◦Pmax (si)
)

=
∞∨
i=0

( ∨
si∈S

(
Pmax(s, s1) ∧ Pmax(s1, s2) ∧ . . .

)
∧

Pmax(si−1si) ∧ rDB◦Pmax (si)

)

=
∞∨
i=0

(
Pi

max ◦ rDB◦Pmax (s)
)

= (
∞∨
i=0

Pi
max) ◦

rDB◦Pmax (s)
= P∗

max ◦ rDB◦Pmax (s),
GPomin(s |= ♦�B)

= ∨
π∈Pathsmin(s)

(
GPomin(π) ∧ ‖♦�B‖(π)

)

= ∨ (
GPomin(π) ∧

∞∨
i=0

∞∧
j=i

B(sj)
)

= ∨ ∞∨
i=0

( ∧
α0∈Act

P(s, α0, s1) ∧∧
α1∈Act

P(s1, α1, s2) ∧ . . . ∧∧
αi−1∈Act

P(si−1, αi−1, si) ∧ B(si) ∧∧
αi∈Act

P(si, αi, si+1) ∧ B(si+1) ∧
∧

αi+1∈Act

P(si+1, αi+1, si+2) ∧ B(si+2) ∧ . . .
)

= ∨ ∞∨
i=0

(
Pmin(s, s1) ∧ Pmin(s1, s2) ∧ . . . ∧

Pmin(si−1si) ∧ B(si) ∧ Pmin(si, si+1) ∧ B(si+1) ∧
Pmin(si+1, si+2) ∧ B(si+2) ∧ . . .

)
= ∨ ∞∨

i=0

(
Pmin(s, s1) ∧ Pmin(s1, s2) ∧ . . . ∧

Pmin(si−1si) ∧ (Dmin ◦ Pmin)(si, si+1) ∧ (Dmin ◦
Pmin)(si+1, si+2) ∧ . . .

)

= ∨ ∞∨
i=0

(
Pmin(s, s1) ∧ Pmin(s1, s2) ∧

. . . ∧ Pmin(si−1si) ∧ rDB◦Pmin (si)
)

=
∞∨
i=0

( ∨
si∈S

(
Pmin(s, s1) ∧ Pmin(s1, s2) ∧ . . .

)
∧

Pmin(si−1si) ∧ rDB◦Pmin (si)

)

=
∞∨
i=0

(
Pi

min ◦ rDB◦Pmin (s)
)

= (
∞∨
i=0

Pi
min) ◦

rDB◦Pmin (s) = P∗
min ◦ rDB◦Pmin (s).

Proof. [Proof of Theorem 8]
GPoM

Adv(s |= Psafe)

= ∨
π∈PathsAdv(s)

(
GPoAdv(π) ∧

Psafe(TraceAdv(π))
)

= ∨ (
GPoAdv(π) ∧ ∧

j≥0

{
L(A)(θ) | θ ∈

Pref (TraceAdv(π))
})

= ∨ (
GPoAdv(π) ∧ ∧

j≥0

{
F (qj) |

qjδ
∗(q0, L(s)L(s1) . . . L(sj))

})
∨ (

GPoAdv(π) ∧ ∧
i≥0

F (qi)
)
.

For π = sα0s1α1 . . . ∈ PathsAdv(s), we define the
run sequence q0q1q2 . . . of the deterministic fuzzy
finite automata by qi+1 = δ(qi, L(si)). Vice versa, for
the same run sequence q0q1q2 . . . of the deterministic
fuzzy finite automata, we have

GPoM⊗A
Adv (< a, qs >|= �B)

= ∨
π+∈PathsAdv(<s,qs>)

(
GPoAdv(π+) ∧

∧
i≥0

B(π+[i])
)

= ∨
π∈PathsAdv(s)

(
GPoAdv(π) ∧ ∧

i≥0
F (qi)

)
,


