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Abstract. A pandemic was declared in 2020 due to COVID-19. The most important way to deal with the virus is mass
vaccination which is a complex task in terms of fast transportation and process management. Hospitals and other health
centers are appropriate for vaccination process. In addition, in order to protect other patients from COVID-19 and provide
rapid access to vaccines, mobile vaccination clinics can also be considered. In this study, the location assignments of mobile
vaccination clinics that can serve some regions of three cities in Turkey are examined. The linear formulation of the problem
is given, and the multi-facility location problem for COVID-19 vaccination is investigated with Lagrange relaxation and
modified saving heuristic algorithm. For the proposed fuzzy MCDM integrated saving heuristic, the importance of candidate
locations is calculated with the aid of decision makers who give their views in spherical bipolar fuzzy information. The results
of different approaches are compared, and it is intended to guide future studies.
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location problem, mobile vaccination clinics

1. Introduction

Vaccinations are very important to control and
eliminate a variety of diseases which are vaccine
preventable such as Measles, Hepatitis B etc., and
therefore have a major impact on public health [1,
2]. While vaccination activities are intensified, the
locations where vaccination is performed are also
diversified. Traditional health care locations such as
doctor’s offices and hospitals are mostly preferred
for vaccination [3]. Additionally, during an epidemic
(e.g., influenza) alternative locations like pharmacies
can be also used for the same purpose [4]. These
places are easily accessible and provide vaccinations
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for people who are inconvenient to enter traditional
health care locations [5].

Since the beginning of 2020, the whole world has
been struggling with the pandemic caused by the
COVID-19 virus. Many people died due to the virus,
and more people are treated in pandemic hospitals for
this reason [6]. Numerous pharmaceutical companies
in various countries have produced COVID-19 vac-
cines that are claimed to be protective against the
virus. Accordingly, a large number of vaccination
centers are needed for these to be applied to peo-
ple all over the world. Although vaccination will take
place in traditional and non-traditional places such
as hospitals and pharmacies, these are not considered
sufficient to vaccinate all people.

It is possible to deal with an emerging epidemic or
pandemic with mass vaccination studies [7]. For the
vaccination of such a high number of people, different
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vaccination location alternatives can be considered in
addition to the fixed locations. One of the alternatives
used to increase and facilitate vaccination activities is
mobile vaccination clinic. Mobile vaccination clinics
can be set up anywhere for short or long periods. This
alternative was used for various diseases. In the past,
the Marion County Department of Health in West
Virginia, USA used a mobile vaccine clinic for the
HINI1 vaccine [8]. Hannings et al. [9] examined the
perceptions of the patients on the influenza mobile
vaccination clinic run by pharmacy students at 27
mobile points. Chen et al. [10] followed a mobile
clinic program in Houston, which provided for vac-
cination for children. It is thought that this alternative
can also be used in COVID-19 vaccination.

In the pandemic, it is necessary to quickly deter-
mine where the mobile vaccination clinics should be
located in a certain region. With a suitable assign-
ment program, authorities can be reached at less cost
and more effectively. It also contributes to manage
public resources correctly. These assignments can
be categorized as a multi-facility location problem
(MFLP).

The assignment problems are special cases of
transportation problems. Location assignment prob-
lems are widely discussed for medical services,
hospitals, ambulances in the literature such as assign-
ment problems for emergency medical services [11],
ambulances [12], hospital departments [13] etc.
These special problems can be solved by Branch and
Bound Algorithm [14], Hungarian Algorithm [15],
Wimmert [16] etc. In addition, heuristic algorithms
are also proposed. Heuristics acquire close to opti-
mum results in a short time for large-scale problems.
In the literature, many studies used heuristic meth-
ods for location-allocation problems. In one of these,
the heuristic algorithm assumes that all facilities are
initially open. Subsequently, it is aimed to determine
the facility to be closed. This is possible by using
approximate routing costs for open facilities [17]. A
version of the saving algorithm is introduced by Clark
and Wright [18]. They presented a saving concept to
the single depot vehicle routing problems and pro-
duced a greedy type heuristic to find a vehicle routing
structure that is close to the optimum structure. A
similar greedy approach for the uncapacitated facil-
ity location problem is to start with all facilities open
and then, one by one, close a facility whose closing
leads to the greatest increase in profit as stated in the
study of Kuehn and Hamburger [19]. Another saving
heuristic is proposed by Hansen et al. [20] but in a
model structure with multiple vehicles, capacitated

facilities and capacitated vehicles. Their solution is
based on decomposing the problem into three sub-
problems, and the heuristic stops when no further cost
improvements are possible. As multi-facility mobile
vaccination assignment problem is a capacitated
fixed charge location problem, studies of this prob-
lem are useful. To solve this problem, enumerative
search scheme [21], Branch and Bound Algorithm
[22], Branch and Bound Algorithm and Lagrange
relaxation [23], Lagrange relaxation Heuristic Algo-
rithm [24], an adaptive sampling algorithm using Ant
Colony Optimization [25], and so on.

The multi-facility location problem has also been
investigated in non-deterministic environments [26,
27]. New heuristics have been developed in stud-
ies based on stochastic processes [28]. Fuzzy logic
studies have also been carried out in uncertain
environments. Fuzzy criteria and fuzzy goal program-
ming are used to locate new facilities [29, 30]. Canos
et al. [31] categorized quantitative fuzzy models, and
they specifically discussed the classical p-median
problem as a fuzzy model. In addition, it is possi-
ble to find various studies in the literature seeking
solutions for facility location problems using fuzzy
logic [32-35].

To express uncertainty, chronologically, fuzzy set
theory by Zadeh [36] and intuitionistic fuzzy sets
by Atanassov [37] originally introduced. Based on
their ideas, Smarandache [38] proposed neutrosophic
fuzzy set which is generalization of fuzzy set the-
ory and intuitionistic fuzzy sets. As an extension
of fuzzy sets, spherical fuzzy numbers are pre-
sented [39]. These fuzzy sets differ from others in
that they are three-dimensional. “In spherical fuzzy
numbers, while the squared sum of membership,
non-membership and hesitancy parameters can be
between 0 and 1, each of them can be defined between
0 and 1 independently to satisfy that their squared
sum is at most equal to 1 [40]. Bipolar-valued fuzzy
sets, which is given to the fuzzy literature by Lee
[41, 42] is an extension of fuzzy sets whose member-
ship degree range is extended from the interval [0,1]
to [-1,1]. Princy and Mohana [43] are proposed the
spherical bipolar fuzzy methodology to handle fuzzy
multi-criteria decision making (MCDM) problems.

This study contributes to the literature by com-
bining fuzzy MCDM methods and multi-facility
location problem in addition to previous studies. For
the multi-facility location problem, existing heuristic
algorithms are considered and the linear expression
of the problem is expanded using Lagrange relaxation
to compare the effectiveness of the methodology. The
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saving heuristic algorithm is adapted for spherical
bipolar fuzzy information. The proposed algorithm is
applied for the first time in the assignment of mobile
vaccination clinics for the pandemic.

The remain of this paper is organized as follows.
Section 2 first gives preliminaries and definitions
of spherical bipolar fuzzy sets and multi-facility
location problem with Lagrange relaxation. Then,
proposed methodology is explained with a heuristic
algorithm. Section 3 solves the multi-facility loca-
tion problem of mobile vaccination clinics to make
optimum number of assignments within the candi-
date locations to serve some regions of three cities
in Turkey. The results and comparisons are discussed
in Section 4. Conclusions and future directions are
mentioned in Section 5.

2. Methodology

In this section, preliminaries and definitions of
spherical bipolar fuzzy sets are given. To present
the case based linear programming formulation,
general model of capacitated fixed charge facility
location problem is represented. Based on the gener-
alized model, linear expression of mobile vaccination
clinics assignment problem is proposed. Then, the
Lagrange relaxations formula is given. The modified
fuzzy saving heuristic algorithm is introduced step by
step.

2.1. Spherical bipolar fuzzy sets

This section gives the preliminaries and definitions
of the proposed method with spherical bipolar fuzzy
information:

Definition 1. [38] A spherical bipolar fuzzy set
(SBES) Ag of the universe of discourse U is given
by,

+

Ag={<u,(uf ,0] @, 7] @,p;
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For each u, the numbers /Ljis (n), 9;‘1 (u), nj{x (u)
are the positive membership, non-membership and
the hesitancy of u to Ag; and the numbers
,u;:x (u), 9;1_ (n), 71;1_ (u) are the negative degree of
membership, non-membership and hesitancy of u to

A, respectively.

Definition 2. [38] Let A, and B; are two SBFS with
positive crisp A, A > 0. The arithmetic operations
with these two SBFS are given as follows.
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Definition 3. [38] Spherical Bipolar Weighted
Arithmetic Mean (SBWAM) with respect to
n

wi €0, 1]; > w; =1,

i=1

w = wi, W2, ..., W 5

SBWAM is defined as,
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Definition 4. [38] The score function and accuracy
function for ranking SBFS are defined by,

~ 1 2 2
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_ \2 _ \2
+ (i3, - 7) = (05, - 73) ]

- 1
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)

2.2. Linear formulation of general capacitated
fixed charge facility location problem

The capacitated fixed charge facility location prob-
lem has a finite set of users with demand of service
and a finite set of potential locations for the facilities
that offer service to users.

Inputs:
cij = Assignment cost from i to j (i=1,2,... ,n)
(G=12,... . .m)

h; = Demand of customer i
fj = Cost of locating facility at location j
k;j = capacity of locating facility at location j

Decision variables:
Xij € Ramountof demand at node i thatis satisfied
by a facility at location j

1, if facility is assigned to location j
Yi= 0, otherwise

ilk,-, if G j) ¢ C
P2

0, ifG,jnecC

Qjj =

Equations:

n m

m
Zmin =Y _ Y ciiXij+ > fiyj ©
j=1

i=1 j=1

subject to:

m

S Xy=hii=12,....n 10)

n

ZXijfkij'(jzl,z,...,m) (11

i=1
Xij < o (12)

The objective function (9) minimizes the total costs
including demand-weighted assignment and locating
facilities. Constraint (10) states that each customer’s
demand must be assigned to locations. Constraint
(11) defines that the total assigned demand to the
location j cannot exceed the capacity of location j.
Constraint (12) defines that if the location i and loca-
tion j are conflicted, then the amount of demand at
node i that is satisfied by a facility at location j should
be zero.

2.3. Linear formulation of mobile vaccination
clinics assignment problem

Based on the general expression of capacitated
fixed charge facility location problem, the revised lin-
ear programming formulation of the fuzzy weighted
multi-facility location problem to assign mobile vac-
cination clinics is as follows:

Inputs:

cij =Assignment cost (distance or travel time) from
itoj(i=12,... n)(j=12,... ,m)

d; = Demand of customer i

fj = Cost of locating facility at location j

k=Number of facilities to locate

N = Maximum number of customers a location can
serve

W j = Weight of facility at location j

Decision variables:

Xjj € Rthe assignment rate of demand of customer
i to location j (consider d; = h; and d;x;j = X;j from
general formulation)
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1, if facility is assigned to location j
Yi= 0, otherwise

_fLif@pgc
Y%=N0,ifGj)eC

Equations:

n m

m
Znin =Y > _ s () cydixij + > fiyj  (13)
j:1

i=1 j=I

subject to:
m m
Zdix,'j =d; or ZXU =1(G=12,...,n)
j=1 j=1

(14)

n
injSN)’j (G=1,2,....m) (15
i=1

> vi=k (16)
=1
Xij < @jjyj (17

The objective function (13) minimizes the total
costs including demand-weighted assignment and
locating facilities. Constraint (14) states that each
customer’s demand must be assigned to locations.
Constraint (15) defines that the total rate of customer
demand assigned to these candidate locations cannot
exceed the number assigned customers. Constraint
(16) means that only k candidate locations must be
selected. Constraint (17) defines that if the location
i and location j are conflicted, then the assignment
rate of demand should be zero. Otherwise, this rate
depends only on whether the facility is opened at that
point.

2.4. Lagrange relaxation of mobile vaccination
clinics assignment problem

Lagrange relaxation is a relaxation method which
approximates a difficult problem of constrained opti-
mization by a simpler problem. A solution to the
relaxed problem is an approximate solution to the
original problem and provides useful information.
The method penalizes violations of inequality con-
straints using a Lagrange multiplier, which imposes a

cost on violations. These added costs are used instead
of the strict inequality constraints in the optimization.

To observe the total cost of ignoring not being able
to meet all the demands of a customer, constraint (14)
is relaxed. Thus, the linear formulation of the relaxed
fuzzy weighted multi-facility location problem is as
follows.

Inputs:

cij =Assignment cost (distance or travel time) from
itoj(i=12,...,n)(G=1.2,...,m)

d; =Demand of customer i

fj =Cost of locating facility at location j

k= Number of facilities to locate

N = Maximum number of customers a location can
serve

W ; =Weight of facility at location j

u; = lagrange multiplier

Decision variables:

Xjj € Rthe assignment rate of demand of customer
i to location j (consider d; = h; and d;x;j = X;j from
general formulation)

1, if facility is assigned to location j
Yi= 0, otherwise

_[LifGpgc
Yi=N0,ifG j)ecC

Equations:

n m

ZWhin =Y Y (s (®)) cijdi — ui) xi;

i=1 j=1
m n
T Sk u
Jj=1 i=1

subject to:

Constraints (15)—(16) and (17).

To observe the total cost of ignoring the conflic-
tion of locations, the constraint (17) is relaxed. Thus,
the linear formulation of the relaxed fuzzy weighted
multi-facility location problem is as follows.

(18)

Inputs:

cij =Assignment cost (distance or travel time) from
itoj(i=12,...,n)(j=12,...,m)

d; =Demand of customer i

fj =Cost of locating facility at location j

k=Number of facilities to locate

N = Maximum number of customers a location can
serve
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W ; =Weight of facility at location j
w; = lagrange multiplier

Decision variables:

X;jj € Rthe assignmentrate of demand of customer
ito location j (consider d; = h; and d;x;; = X;; from
general formulation)

1, if facility is assigned to location j

Yi= 0, otherwise
Equations:
n m
ZWhin = Y Y (s () cijdi — wi) xi

i=1 j=1
(19)

n

m
+D ity wi
j=1

i=1

subject to:
Constraints (14)-(15) and (16).

2.5. Heuristic Algorithm for mobile vaccination
clinics assignment problem

In this section, proposed algorithm is given to
multi-facility location problem with spherical bipo-
lar information. based on Clarke & Wright [18] and
Kuehn & Hamburger [19].

This algorithm consists of two main parts. The first
part is to weight the candidate locations by using
spherical bipolar MCDM method. In the second part,
the calculated weights affect the transportation costs
matrix. With the heuristic algorithm, the facilities
are assigned to candidate locations with minimum
cost. Maximum saving is calculated in each itera-
tion. When the saving is over, optimum assignment
number and assignment pairs are found. Figure 1
illustrates the flowchart of the proposed algorithm.

The steps of spherical bipolar fuzzy MCDM
approach [38] to calculate weights of candidate loca-
tions are described as follows:

Step 1: Set the problem.

Step 2: Select the DMs (decision makers) according
to the case and let E = {ej, ez..., ¢4} be a collec-
tion of DMs.

Step 3: Determine criteria and criteria weights
by DMs. Let C = {cy,¢2,...,c,} be the collec-
tion of criteria and a = {a;, ay,...,a,} be the

Start
Step 7: Create the initial
matrix with the given
v —»| information of candidate
location weights,
distance

Step 1: Set the problem

A

Step 8: Prepare the

Step 2: Select the DMs transportation cost table
according to b'y multipled wexgl?ted
the case distance (or travel time)
with demand of
customers, and calculate
the sum of columns.

Step 3: Determine
criteria and criteria
weights by DMs A
Step 9: Place (assign) a
facility at a candidate
location where has
minimum total cost.
Assigne all customers to
this location.

Step 4: Construct bipolar
spherical fuzzy pairwise
comparison matrix by
DMs.

A

Step 10: Evaluate the
relocation savings by

assigning customers to
other candidate
v locations.
Step 5: Aggregate all the
bipolar spherical fuzzy A
decision matrixes by
. Step 11: Calculate
using SBWAM. the column totals and

assign the next facility to
the column with the total
maximum savings.

Step 6: Evaluate the
bipolar spherical fuzzy
weights of nodes by
using SBWAM operator [—
and calculate scores of
weightsof candidate
locations.

Step 12: Is thede
any relocation
saving ?

Fig. 1. Flowchart of the proposed algorithm.

collection of weight vector of criteria set with a; €
n
[0, 11, > a; = 1.
j=1
Step 4: Construct spherical bipolar fuzzy

pairwise comparison matrix by DMs accord-
ing to determined criteria and locations. Let

sk _ (o 4k gtk 4k —k o=k _—k) ;
a;; = (“an O Tayy » Mayy » Oy » oy ) is an eval-
uation given by k”* DM, which it is expressed in
spherical bipolar fuzzy number for the alternative r;

with respect to the criterion c;.

Step 5: Aggregate all the spherical bipolar fuzzy

decision matrixes by using Elij = (,u~+ N A
dlj dl] dl]
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Y i 1 72 79 (i —
“a,-,’eai‘,»”af) = SBWAM(d};, d};, ..., dJ;) (i =1,
2,...,m) and the weights of decision makers are
determined by DMs.

Step 6: Evaluate the spherical bipolar fuzzy weights
of nodes by using SBWAM operator with d; =
SBWAM (d;1, dip, ....din) (i=1,2,...,m) and
calculate scores of weights (S (d;)) of candidate
locations by using the score function determined in
Equation (7).

After the weights of candidate locations are cal-
culated, the assignments are made. The heuristic
algorithm for multi-facility location problem is pro-
posed based on the studies [18] and [19]. In our
approach the first facility is placed in a minimum
cost location. The new location where each facility
is then placed should further improve the solution.
The optimum number and location of facilities that
give the minimum cost are determined. The steps of
heuristic algorithm is as follows:

Step 7: Create the initial matrix with the given infor-
mation of candidate location weights, distances (or
travel times) between customer and candidate loca-
tion, and demands of customers.

Step 8: Prepare the transportation cost table by multi-
plied weighted distance (or travel time) with demand
of customers, and calculate the sum of columns. (Ben-
efits are positive and costs are negative.)

Step 9: Place (assign) a facility at a candidate location
where has minimum total cost. Assign all customers
to this location.

Step 10: Evaluate the relocation saving by assigning
customers to other candidate locations.

Step 11: Calculate the column totals and assign the
next facility to the column with the total maximum
saving. Customers who have these saving is assigned
to that location.

Step 12: Revize the saving matrix. If there is saving,
then go to Step 11. Otherwise, end the algorithm.

This process is finished when the minimum total
cost is achieved. This is also the point where a new
facility to be established does not provide any addi-
tional saving.

3. Case study

This section aims to illustrate the proposed spheri-
cal bipolar fuzzy MCDM adapted heuristic algorithm

for multi-facility location problem on a mobile vacci-
nation center assigment case. According the proposed
algorithm mentioned in the previous section, the
problem has two main parts. The first part introduces
the spherical bipolar fuzzy MCDM method for cal-
culation of weights for candidate locations according
to the determined criteria and view’s of DMs. The
second part obtains the assignments with the aid of
heuristic algorithm for multi-facility location.

Step 1: In 2020, a pandemic was declared all over
the world due to COVID-19. Vaccination studies
started quickly. In Turkey, it was decided to use the
traditional fixed location of health centers for vac-
cination. In addition, mobile vaccination clinics can
be proposed to speed up immunization and to keep
COVID-19 processes separate from other diseases.
As a case study, the location assignments of mobile
vaccination clinics that can serve some regions of
three cities (istanbul, Ankara, izmir) in Turkey are
examined. For istanbul, 15 candidate locations are
determined by DMs and the city is divided into 20
regions. The DMs suggested 8 candidate locations
and 10 regions for Ankara, and 5 candidate locations
and 6 regions for Izmir. For illustrate the proposed
approaches, the data of Izmir region is shown step
by step. The problem of which candidate points to
establish a mobile vaccination clinic and which areas
benefit from these clinics is investigated.

Step 2: Five DMs are selected in health sector as
E={e1,er...,e5}.

Step 3: The DMs determined criteria as C =
{c1, c2, c3, c4} with ¢ : distance, ¢ : easy transporta-
tion, ¢3 : environmental conditions c4 : capacity. The
criteria weights w = {ay, a2, a3, a4} are determined
as aj :0.33,a:0.21, a3 :0.29, a4 :0.17 by DMs.

Step 4-5: According to determined criteria and can-
didate locations, spherical bipolar fuzzy pairwise
comparison matrixes are constructed by DMs, and
aggregated by using SBWAM. Collective spherical
bipolar fuzzy decision matrix is evaluated as follows.

Table 1
Spherical bipolar fuzzy weights of five candidate locations

Candidate d;

location

1 (0.355,0.369,0.413,-0.089,-0.687,-0.378)
2 (0.507,0.527,0.440,-0.085,-0.574,-0.398)
3 (0.609,0.472,0.401,-0.225,-0.691,-0.276)
4 (0.639,0.271,0.355,-0.150,-0.454,-0.411)
5 (0.324,0.599,0.490,-0.425,-0.510,-0.461)
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(41 2

3 Cq

A; [(0.3,0.3,0.4, 0.4, -0.8, -0.3) (0.5,0.8,0.3, —0.3, —0.7, —0.3) (0.3,0.2,0.5, —0.4, —0.6, —0.4) (0.3, 0.6, 0.4, —0.1, —0.4, —0.6)
A, |(0.5,0.6,0.6,—-0.4, -0.6,-0.2) (0.5,0.5,0.3, 0.6, —0.2, —0.6) (0.3,0.4,0.4, 0.1, —0.7, —0.4) (0.7,0.7,0.1 — 0.4, —0.5, —0.4)
A; | (0.4,0.6,0.5,—0.5, —0.8, —0.1) (0.4,0.6, 0.6, —0.6, —0.4, —0.5) (0.7,0.5,0.3, —0.3, —0.8, —0.3) (0.8,0.2,0.1, —0.7, —0.2, —0.1)
A4 |(0.8,0.2,0.2,-0.5,-0.4, -0.1) (0.5,0.2,0.6, —0.4, —0.4, —0.7) (0.4,0.3,0.2, 0.2, —0.6, —0.3) (0.6, 0.6, 0.4, —0.7, —0.2, —0.2)
As |(0.2,0.7,0.3,-0.7, -0.5, —-0.4) (0.4,0.6,0.5, —0.5, —0.5, —0.7) (0.2,0.5,0.6, —0.7, —0.6, —0.2) (0.5, 0.6, 0.5, —0.7, —0.3, —0.3)

Step 6: Spherical bipolar fuzzy weights and scores
of weights of candidate locations are represented in
Tables 1 and 2 by using Equation (7).

3.1. Izmir data

In lIzmir, the DMs select six regions
(i={A,B,C,D,EF}) and five candidate locations
(={1,2,3,4,5}). Each location can serve maximum
three regions. The travel times of the regions to the
candidate locations are given in Table 3. In tables,
the travel times of conflicted locations and regions
are marked (C={{B,3},{C,1},{D,2}}) with X.

The fixed clinic cost (c;j), demand (d;;) and
weighted travel times (s (i@;)c;;) are given in
Table 4.

locations are optimum, the assignments for this state-
ment are given in Table 6. The remainder of this
sub-section continues with optimum statement.

As mentioned in Section 2.4, constraint (14) is
relaxed, the assignment all demands is ignored. This
problem is solved by GAMS, and the total cost
decreased to 52.496,083 1 as it allowed not all
demands of a region to be assigned. Figure 2 shows
that the iterations of Lagrange relaxation with their
total cost results.

After, constraint (17) is relaxed, and conflictions
are ignored. The travel times of conflictions are
cp3 = 3, cc1 =4, cp2 = 3. This problem is solved
by GAMS, and the total cost decreased to 50,700
b as it allowed less costly assignments in conflicted
areas.

This problem is solved by GAMS using the linear Table 4
programming formulation in Section 2.3. The number Fixed cost, demand and Welightf%d travel times information of
. .. . zmir
of locations to be selected at minimum cost is three. :
Cost values for different numbers of selected loca- Candidate 1 2 3 4 5 Demand
. . . location (person)
tions are shown in the Table 5. Since three selected Region
A 4 8 5 1 7 3000
Table 2 B 7 5 X 4 3 4000
Scores of weights of candidate locations C X 9 2 4 6 2000
- D 6 X 9.5 5 7 2400
Candidate s (a) Normalised E 4 12 4 2 9 2000
location (= w)) F 10 17.8 6 9 3 1500
1 0.130 0.323 Fixed clinic 5000 3000 6000 7000 2000
2 0.101 0.249 cost (B
3 0.029 0.073
4 0.109 0.271
5 0.034 0.085 Table 5
Cost values for different selected locations for Izmir
Number of 1 2 3 4 5
Table 3 selected
Travel times information (minutes) of Izmir data locations
Candidate 1 2 3 4 5 Total Cost infeasible 56,500b 54,5008 62,9000 62,500b
location wi: wy: w3t wy: ws:
Region 0.323 0.249 0.073 0.271 0.085
A 124 32.09 68.71 3.7 82.64 Table 6
B 21.7 20.05 X 14.78 35.42 Results of assignment problem for Izmir
c X 36.10 27.48 14.78 70.83 Selected locations 3 4 5
D 18.6 X 130.55 18.48 82.64 - -
E 124 4813 5497 339 10625 Assigned Region C ADE B.F
F 30.99 71.39 82.45 33.26 35.42 Total Cost 54,500 T
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Fig. 2. Iteration results of Lagrange relaxation for constraint (14) of Izmir data.
Table 7 Table 9
Transportation cost matrix Revised saving matrix
Candidate locations 1 2 3 4 5 Candidate locations In 2 3 4 5
Region Region
A 12000 24000 15000 3000 21000 A - - A* -
B 28000 20000 X 16000 12000 B - X - B*
C X 18000 4000 8000 12000 C X - 4000 C -
D 14400 X 22800 12000 16800 D - X - D* -
E 8000 24000 8000 4000 18000 E - - - E* -
F 15000 26700 9000 13500 4500 F - - - - F*
Clinic cost (b) 5000 3000 6000 7000 2000 Clinic cost (b) 5000 3000 6000 - -
Total cost (b) 82400 115700 64800 63500 86300 Total saving (b) -5000  -3000  -2000 - -
Table 8
Saving matrix . L L .
Step 9: A mobile vaccination clinic is assigned at
Candidate locations 1 2 3 4 5 . YT ..
Region candidate location “4” where has minimum total cost
N ~ — T ax ~ with 63.500 b. All regions are assigned to candidate
B _ _ X B 4000%* location “4”.
C X - 4000 C - . . .
D _ X _ D* _ Step 10: The relocation saving (benefit) is evaluated
E - - - E* - in Table 8 by assigning customers to other candidate
F - - 4500 F 9000* location&
Clinic cost (b) 5000 3000 6000 - 2000 . . L.
Total saving (b) ~5000 =3000 2500 _ 11000 Step 11: Another mobile vaccination clinic is

The problem is also solved by proposed modified
saving heuristic algorithm. Step by step solution for
Izmir data is as follows:

Step 7: The initial matrix is given in Table 4 with the
given information of weighted travel time between
customer region and candidate location, and the pop-
ulation (demand) of people living in region.

Step 8: The transportation cost table is prepared in
Table 7 by multiplied weighted travel time with pop-
ulation of the region, and the sum of columns are
calculated. All data in this table are cost type.

assigned at candidate location “5” where has max-
imum saving with 11.000 . Region B and F are
assigned to candidate location “5”.

Step 12: The saving matrix is revised in Table 9. The
candidate locations have no saving. But each loca-
tion can serve maximum three regions, and location
“4” serves four region. Thus, algorithm goes to Step
11, and another mobile vaccination clinic is assigned
at candidate location “3” where has maximum sav-
ing with -2.000 . Region C is assigned to candidate
location “3”.

The saving matrix is revised in Table 10. Candidate
locations have no saving and selected locations serve
within the limit of maximum capacity (three regions).
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Table 10
Revised saving matrix

Candidate locations 1 2 3 4 5
Region

A - - A* -
B - X - B*
C X - C -
D - X - D* -
E - - - E* -
F - - - - F*
Clinic cost (b)) 5000 - 6000 - -
Total saving (B -5000 - -2000 - -

Table 11
The final assignment matrix

Candidate locations 1 2 3 4 5 Cost (b)
Region

A - - A - 3000
B - - X - B 12000
C X - C - - 4000
D - X - D - 12000
E - - - E - 4000
F - = - - F 4500
Clinic cost (b) - — 6000 7000 2000 15000
Total cost () - - - — - 54500

Thus, a new clinic is not required, and algorithm ends.
The final version of the assignments and costs are
given in Table 11.
As a result of the mobile vaccination clinic
assignment problem by applying the proposed heuris-
tic algorithm, it would be appropriate for three

mobile vaccination clinics to serve. These clinics are
assigned to candidate locations “3”, “4”, and “5”.
The clinic which is located at candidate location
“3” serves one region, region C. The clinic which is
located at candidate location “4” serves two regions,
region A, D and E. The clinic which is located at can-
didate location “5” serves three regions, region B and
F. After the assignments, the total cost of assigning
three mobile vaccination clinics to serve six regions
is 54,500 . The results of the heuristic algorithm are
same as the GAMS solution of the problem given in
Table 6.

3.2. Ankara data

In Ankara, the DMs select ten regions
(i={A,B,C.DLEEGH,]IJ}) and eight candidate
locations (j={1,2,3,4,5,6,7,8}). Each location can
serve maximum three regions. The fixed clinic
cost (¢;j ), demand (d;; ) and weighted travel times
(s (@) cij ) are given in Table 12. In table, the travel
times of conflicted locations and regions are marked
(C={{B,6},{C,5},{E,4},{H,1},{1,8}}) with X.

This problem is solved by GAMS using the linear
programming formulation in Section 2.3. The number
of locations to be selected at minimum cost is five.
Cost values for different numbers of selected loca-
tions are shown in the Table 13. Since five selected
locations are optimum, the assignments for this state-
ment are given in Table 14. The remainder of this
sub-section continues with optimum statement.

Table 12
Fixed cost, demand and weighted travel times information of Ankara data
Candidate 1 2 3 4 5 6 7 8 Demand
locations wy : wy w3 : wy : ws : we : w7 wg : (person)
Regions 0.108 0.104 0.135 0.118 0.153 0.142 0.099 0.141
A 3 5 6 2 1 8 3 6 2000
B 4 6 7 9 5 X4 2 5 3600
C 4 2 3 8 X(8) 5 6 2 4200
D 7 4 7.5 3 2 3 8 7 2800
E 4 10 8 X(2) 4 7 7 5 4100
F 3 11.5 5 6 5 5 3 9 5300
G 6 7 4 8 3 9 5 3 2900
H X(3) 8 2 7 6 1 8.5 1.5 3200
1 5 4 6.5 5 9 5 7 X(4) 2400
J 4 13 2 4 3 7 6 5 6200
Clinic Cost (b) 4500 3500 7000 6000 3000 3500 5500 8000
Table 13
Cost values for different selected locations for Ankara
Number of 1 2 3 4 5 6 7 8
selected locations
Total Cost infeasible infeasible infeasible 120,100% 118,400b 123,600b 122,400h 130,400%
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Table 14
Results of assignment problem for Ankara
Selected locations 1 2 5 6 7
Assigned Region E,F CI A,G,J D,H
Total Cost 118,400b

As mentioned in Section 2.4, constraint (14) is
relaxed, the assignment of all demands is ignored.
This problem is solved by GAMS, and the total
cost decreased to 40.729,465 b as it allowed not all
demands of a region to be assigned. Figure 3 shows
that the iterations of Lagrange relaxation with their
total cost results.

After, constraint (17) is relaxed, and conflictions
areignored. The travel times of conflictions are cpg =

100.000
80.000
60.000
40.000
20.000
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4,cc5 =8,cp4 =2,cy1 = 3,ci3 =4. This prob-
lem is solved by GAMS, and the total cost decreased
to 109,400 b as it allowed less costly assignments in
conflicted areas.

The problem is also solved by proposed modified
saving heuristic algorithm. Steps are not shown due
to the size of the problem. As a result of the algo-
rithm, the same assignment results as in Table 14 are
obtained.

3.3. Istanbul data

In Istanbul, the DMs select twenty regions (i=
{A,B,C,.D.E,FGHLJKLMN,0PR,STU}) and
fifteen candidate locations (j={1,2,3,4,5,6,7,8,9,10,

0
-20.000
-40.000
-60.000
-80.000

o v
&8

Fig. 3. Iteration results of Lagrange relaxation for constraint (14) of Ankara data.

Table 15
Fixed cost, demand and weighted travel times information of Istanbul data

Candidate 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Demand
locations wp:o w2l w3 W4l Ws5: W Wy:i  wg: W9 Wp: Wil: Wi2: W3: wia: wis: (person)
Regions 0.050 0.098 0.060 0.048 0.066 0.069 0.081 0.044 0.051 0.081 0.084 0.055 0.055 0.080 0.078

A 1 6.5 (X)8 5 8 4 3 2 9 5 4 10 8 2 13.5 1500
B 6 3.5 3 2 5 1 4 7 8 3 1 8 3 4.5 5 4200
C 5 6 4 4 3 8 7 6 6 4 4 7 3 4 5 6700
D 8 4 2.5 7 6 4 4 5 4 4 X)8 6 3 4 6 3600
E 6 9 6 5 7 5 X)3 7 10 7 6 6 4 6 8 5700
F 2 12 5 4 X)1 3 4 8 6 7 6 9 7 6 9 3900
G 9 4 3 6 7 9 7 X)4 4 5 8 8 2 3 1 5700
H 7 5 1 9 1 7 10.5 45 7 2 9 6 (X)6 9 3 1900
1 5 8 6.5 8 6 6 9 3 1 2 7 7 6 11 1 2200
J 3 11 3 3 4 2 5 6 3 4 X)1 9 7 9 3 4600
K 4 4 9 4 9 3 2 9 8 1 2 5 12 9 7 7200
L 6 9 4 5 2 5 6 4 7 9 3 6 3.5 4 3 8100
M X)2 1 3 7 3 8 1 2 11 5 9 9 5 7 4 2900
N 7 3 9.5 1 9 4 3 2 4 7.5 7 7 5 7 8 3600
(0] 9 12 2 3 4 1 8 4 9 6 1 7 7.5 6 8 7100
P 7 10.5 3 4 1 7 7 8 9 X)I2 4 4 2 8 7.5 4500
R 5 2 7 5 6 2 7 6 8 10 6 5 2 6 14 5600
S 4 7 2 9 5 4 13.5 7.5 4 5 6 5 7 3 11 6200
T 3 8 5.5 4 8 3 X)6 4 3 4 5 6 10 2 9 2700
U 2 10 7 5 7 5 4 7 1 7 6.5 5 8 3.5 10 4900

Clinic Cost (b) 5000 6500 4000 3700 4800 6200 5700 7800 8100 6500 8300 7600 3900 4100 5800
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Table 16
Cost values for different selected locations for Istanbul
Number of Selected 1-6 7 8 9 10 11 12 13 14 15
locations
Total Cost infeasible 229,700b 228,400h 216,900b 223,400b 222,700b 230,3000 238,1000 241,3000 249,600
Table 17
Results of assignment problem for Istanbul
Selected locations 1 3 4 6 7 13 14 15
Assigned Region AFU D,H,S N CL,p B,J,O KM ER T G,I
Total Cost 216,900b
200.000
150.000
100.000
50.000
0
-50.000
-100.000
-150.000
-200.000
iterl iter2 iter3 iterd

Fig. 4. Iteration results of Lagrange relaxation for constraint (14) of Istanbul data.

Table 18
Results comparison of assignment problems for Izmir, Ankara and Istanbul data with different approaches

Instance GAMS Proposed Lagrange relaxation

(MIP) Heuristic Const(6) Const(9)
Izmir (6Rx5 S) 54,500b 54,5000 52,496.083b (-%3,67) 50,7000 (-%6,97)
Ankara (10Rx8 S) 118,400b 118,400b 40.729,465b (-%65,6) 109,400b) (-%7,6)
Istanbul (20Rx15 S) 216,900b 216,900b 86.650b (-%60,05) 202,700b (-%6,54)

11,12,13,14,15}). Each location can serve maxi-
mum three regions. The clinic cost (c;;), demand
(dij) and weighted travel times (s (ﬁ) j) cjj) are
given in Table 15. In table, the travel times of
conflicted locations and regions are marked (C=
{{A,3},{D,11}{E,7} {E5},{G,8},{H,13},{J,11},
{M,1},{P,10},{T,7}}) with X.

This problem is solved by GAMS using the linear
programming formulation in Section 2.3. The number
of locations to be selected at minimum cost is nine.
Cost values for different numbers of selected loca-
tions are shown in the Table 16. Since nine selected
locations are optimum, the assignments for this state-
ment are given in Table 17. The remainder of this
sub-section continues with optimum statement.

As mentioned in Section 2.4, constraint (14) is
relaxed, the assignment of all demands is ignored.
This problem is solved by GAMS, and the total cost
decreased to 86.650,00 b as it allowed not all demands
of a region to be assigned. Figure 4 shows that the

iterations of Lagrange relaxation with their total cost
results.

After, constraint (17) is relaxed, and conflic-
tions are ignored. The travel times of conflictions
are CA3=8,C[)11 =8, CE7=3,CF5= 1,CG8=
4,cgi3=6,cyi1 =1, cmr =2,cpio =12, c17 =
6. This problem is solved by GAMS, and the total
cost decreased to 202,700 b as it allowed less costly
assignments in conflicted areas.

The problem is also solved by proposed modified
saving heuristic algorithm. Steps are not shown due
to the size of the problem. As a result of the algo-
rithm, the same assignment results as in Table 17 are
obtained.

4. Results and discussion

Table 18 gives the results of applied approaches.
Asin this table, the results of the original MIP (Mixed
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Integer Programming) problems are same as pro-
posed heuristic. Since this is a small-scale problem,
the results of proposed heuristic give the optimum
results. Thus, it is clear that proposed algorithm is
robust. For all data, two different Lagrange relax-
ation are applied. The relaxation of constraint (14)
relaxes the problem of having to assign all customers
to the facility. Thus, the total costs of three cities are
reduced. With this relaxation, the total cost in Istan-
bul has decreased the most with 130,250%. But the
largest rate of cost reduction has been in Ankara with
(-%65,6). The relaxation of constraint (17) relaxes the
problem of not assigning conflicting regions. Thus,
the total costs of three cities are reduced. With this
relaxation, the total cost in Istanbul has decreased
the most with 14,200b. But the largest rate of cost
reduction has been in Ankara with (-%7,6).

5. Conclusions

The vaccines developed against the pandemic
caused by the COVID-19 virus hold great hope. How-
ever, it poses a major problem to vaccinate large
masses. In addition to the fixed located health cen-
ters, mobile vaccination clinics have been proposed
to speed up vaccination and to keep COVID-19 pro-
cesses separate from other diseases. In this study, we
investigate an assignment problem to locate mobile
vaccination clinics in Turkey’s big cities (Istanbul,
Ankara, Izmir). Multiple locations are determined
as candidate locations, and their weights are calcu-
lated with a spherical bipolar fuzzy MCDM method
based on determined criteria by DMs. The linear
formulation of the problem is given, and the multi-
facility location problem for COVID-19 vaccination
is solved with GAMS. A hybrid spherical bipolar
fuzzy heuristic algorithm is proposed based on saving
matrix to handle the multi-facility location problem
for optimum mobile vaccination clinics number. In
addition, based on the existing algorithms, the lin-
ear expression of the problem has been expanded
using Lagrange relaxation to show the effective-
ness of the methodology. The proposed approach is
applied on the data for three cities, and the results
are compared.

For future studies, we recommend to use proposed
multi-facility location heuristic algorithm with other
fuzzy sets extentions such as intuitionistic fuzzy sets,
Pythagorean fuzzy sets, spherical fuzzy sets etc. As
a step forward, new criteria can be considered in
weighting candidate locations. The problem can be

enlarged by including other cities data, and new result
can be compared with this article. New heuristic
algorithms can be proposed, and the procedures can
be compared with existing algorithms. The MCDM
approaches may be adapted to the algorithm’s steps,
and imprecise data can be added to the mobile facility
location problem.
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