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Abstract. The coronavirus disease 2019 pandemic has significantly impacted the world. The sudden decline in electricity
load demand caused by strict social distancing restrictions has made it difficult for traditional models to forecast the load
demand during the pandemic. Therefore, in this study, a novel transfer deep learning model with reinforcement-learning-
based hyperparameter optimization is proposed for short-term load forecasting during the pandemic. First, a knowledge base
containing mobility data is constructed, which can reflect the changes in visitor volume in different regions and buildings
based on mobile services. Therefore, the sudden decline in load can be analyzed according to the socioeconomic behavior
changes during the pandemic. Furthermore, a new transfer deep learning model is proposed to address the problem of limited
mobility data associated with the pandemic. Moreover, reinforcement learning is employed to optimize the hyperparameters
of the proposed model automatically, which avoids the manual adjustment of the hyperparameters, thereby maximizing the
forecasting accuracy. To enhance the hyperparameter optimization efficiency of the reinforcement-learning agents, a new
advance forecasting method is proposed to forecast the state-action values of the state space that have not been traversed. The
experimental results on 12 real-world datasets covering different countries and cities demonstrate that the proposed model
achieves high forecasting accuracy during the coronavirus disease 2019 pandemic.
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1. Introduction

Short-term load forecasting (STLF) refers to the
load forecasting from one hour to one week [1].
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Forecasted short-term load facilitates efficient dis-
patching of power systems. Although STLF is
challenging owing to the significant uncertainty and
volatility of the load demand, it has been well handled
by some deep learning models, such as convolutional
neural networks (CNNs) [2], long short-term memory
networks (LSTMs), and recurrent neural networks
(RNNs) [3]. In our previous work [4], an ensemble
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deep learning model with dynamic error correc-
tion method and multi-objective ensemble pruning
method was proposed for time series forecasting.

However, the coronavirus disease 2019 (COVID-
19) pandemic has severely impacted the daily lives of
people worldwide. Relevant policies have been pro-
mulgated in many countries and regions, requiring
people to obey strict social distancing restrictions
because of the high infectiousness of COVID-19.
Traditional deep learning models for STLF gener-
ally use previous load demand, timing information,
and weather data as input features [5]. However, it
is difficult for deep learning models to capture the
sudden decline in load demand during the pandemic
caused by strict social distancing restrictions, because
the social and economic information produced by
the COVID-19 pandemic is often neglected. It is
therefore difficult to achieve the balance between
electricity generation and load demand because of the
inaccurate load forecasting results, which may lead
to large-scale blackouts.

The mobility data provided by Google1 and Apple2

reflect the changes in visitor volume in different
regions and buildings based on mobile services,
which are location specific and aggregated across the
population [6]. Le Quéré et al. [7] demonstrated that
there is a strong correlation between the mobility data
and economic activities. Therefore, a knowledge base
comprising mobility data is conducive to improving
the forecasting accuracy of the STLF models during
the pandemic. However, it is difficult for traditional
deep learning models to exploit the knowledge base
efficiently because of the limited mobility data asso-
ciated with the pandemic.

Transfer learning is an approach that utilizes the
knowledge accumulated from data in the source
domain to solve forecasting problems in the target
domain involving different data patterns [8]. The
transfer deep learning model can adequately uti-
lize the knowledge base with limited mobility data
by combining the data utilization ability of trans-
fer learning with the nonlinear fitting ability of deep
learning. However, it is computationally expensive to
adjust the hyperparameters of transfer deep learning
models to maximize the forecasting accuracy. To the
best of our knowledge, there is no effective hyper-
parameter optimization method for the transfer deep
learning models.

1Available at https://www.google.com/covid19/mobility
2 Available at https://www.apple.com/covid19/mobility

Reinforcement learning is an artificial intelligence
technology that seeks an optimal strategy and maxi-
mizes benefits through continuous interactions with
the environment [9]. Reinforcement learning has
been widely used to solve diverse optimization prob-
lems. However, no research has been reported to
optimize the hyperparameters of transfer deep learn-
ing models using reinforcement learning algorithms,
because it is difficult for the reinforcement-learning
agents to completely traverse the large state space
composed of different hyperparameters.

To bridge the above research gap and inspired by
Chen et al. [6], a novel transfer deep learning model
with reinforcement-learning-based hyperparameter
optimization and advance forecasting method (TDL-
RLHO-AFM) is proposed for STLF during the
COVID-19 pandemic. The main contributions of this
study are summarized as follows:

(1) A knowledge base comprising mobility data
is constructed. The socioeconomic behavior
changes can be leveraged to analyze the sud-
den decline in the load during the pandemic,
hence improving the load forecasting accuracy
during the pandemic.

(2) A new transfer deep learning model (TDL)
is proposed to solve the problem of limited
mobility data associated with the pandemic,
which efficiently utilizes the socioeconomic
behavior changes across different geograph-
ical regions. It also inspires a new insight
for load forecasting during some other public
emergencies.

(3) A new reinforcement-learning-based hyper-
parameter optimization (RLHO) method is
proposed to optimize the hyperparameters of
the proposed model automatically and maxi-
mize the forecasting accuracy of the proposed
model by transforming the hyperparameter
optimization problem into a Markov decision
process (MDP).

(4) A new advance forecasting method (AFM) is
proposed to forecast the state-action values
of the state space that has not been tra-
versed, which handles the difficulty for the
reinforcement-learning agents to completely
traverse the large state space comprising
different hyperparameters and enhances the
hyperparameter optimization efficiency of
reinforcement-learning agents.

(5) A total of 12 real-world datasets covering dif-
ferent countries and cities are used to verify
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the effectiveness of the proposed model.
The experimental results demonstrate that the
proposed model achieves high forecasting
accuracy during the COVID-19 pandemic.

The remainder of this paper is organized as follows.
Section 2 provides a review of previous research on
the STLF problem, transfer learning, and reinforce-
ment learning. Section 3 introduces the construction
of the knowledge base. Section 4 presents the pro-
posed TDL-RLHO-AFM model in detail. Section
5 describes the implementation details and experi-
mental results of TDL-RLHO-AFM on 12 datasets.
Section 6 outlines the conclusions and discusses the
future work.

2. Related work

This section briefly presents previous research on
the STLF problem, transfer learning, and reinforce-
ment learning.

2.1. Short-term load forecasting

Short-term load forecasting models can be cat-
egorized into persistence, physical, statistical, and
artificial intelligence models [10]. Deep learning
models, which belong to artificial intelligence mod-
els, are good at STLF, owing to their excellent
nonlinear fitting ability on different features, includ-
ing previous load demand, timing information, and
weather data. For example, Qiu et al. [11] pro-
posed a hybrid incremental learning approach for
STLF, which was composed of random vector func-
tional link network, discrete wavelet transformation,
and empirical mode decomposition. Avatefipour and
Nafisian [12] proposed a method based on clonal
selection algorithm and artificial neural network for
STLF, which used fuzzy set theory to select the most
informative and irredundant features from the input
feature set. Kim et al. [13] proposed a deep learning
model for STLF, which combined RNN and CNN
to calibrate the hidden state vector values obtained
from different features. Motepe et al. [14] used long
short-term memory recurrent neural network to fore-
cast the power consumption of large South African
power users, which considered the impact of temper-
ature. Afrasiabi et al. [10] proposed an end-to-end
model comprising of CNN and gated recurrent unit
for residential load forecasting by utilizing the load
consumption information of residents and the meteo-

rological data. Chitalia et al. [15] presented an RNN
model to forecast the short-term load in different
types of commercial buildings by utilizing the fea-
tures of different building types and locations. Peng
et al. [16] proposed a hybrid RNN model for STLF,
which could select the spatial and temporal features
that were most relevant to the load demand. However,
it is difficult for these deep learning models to forecast
the load demand with traditional features during the
COVID-19 pandemic because of the massive impact
of the pandemic on the power system.

The COVID-19 pandemic has been detected in
more than 200 countries, resulting in tens of mil-
lions of confirmed cases and hundreds of thousands of
deaths worldwide in 2020. The strict social distancing
restrictions used to deal with the high infectiousness
of COVID-19 have altered load demand tremen-
dously. For example, the average load demand of the
New York Independent System Operator (NYISO)
area in March fell by 9% than that in the previous
year, which was reduced from 17102 watt to 15640
watt [17]. The load demand of New York in April of
2020 was 21% lower than that in the previous year.
In Italy, the largest reduction in the observed load
demand was 25% [18]. Therefore, the socioeconomic
behavior changes associated with the pandemic need
to be analyzed to capture the sudden decline in load
demand caused by strict social distancing restrictions.

The mobility data provided by Apple and Google
reflect the changes in visitor volume in different
regions and buildings, which also reflect the socioe-
conomic behavior changes during the pandemic. In
this study, a knowledge base comprising mobility
data is constructed for STLF during the pandemic
so that the socioeconomic behavior changes can be
leveraged to analyze the sudden decline in load during
the pandemic. However, only small parts of mobil-
ity data are associated with the pandemic, making
it difficult for deep learning models to exploit the
socioeconomic behavior changes adequately.

To solve the aforementioned problem, a novel
TDL model is proposed, which can efficiently utilize
the socioeconomic behavior changes by sharing the
mobility data across different geographical regions.

2.2. Transfer learning

Transfer learning was first introduced in 1996 [19];
however, it did not attract widespread attention until
2018. Transfer learning does not require training and
testing data to follow the same distribution [20].
Therefore, it can solve the problem of limited train-
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ing data by reusing the data from other different
but related domains. For example, Laptev et al. [21]
proposed a transfer learning model for time series
forecasting, which used transfer learning to allevi-
ate the plight of limited training data. Ribeiro et al.
[22] proposed a transfer learning model for cross-
building energy forecasting, which merged the data
from similar buildings with different distributions and
solved the problem of small historical datasets. Cai et
al. [23] proposed a two-layer transfer-learning-based
model for STLF, which solved the problem of lim-
ited load data in the target zone. Gupta et al. [24]
proposed a transfer learning model for clinical time
series forecasting to solve the problem of limited clin-
ically labeled data. Jung et al. [25] proposed a model
based on transfer learning to forecast the monthly
electric load in cities, by selecting the similar data
from other cities to satisfy the required amount of
data for model training. Fong et al. [26] combined
the transfer learning with RNN to forecast the con-
centration levels of air pollutants, which solved the
problem of limited observed data in air quality mon-
itoring stations. Lee and Rhee [27] adopted transfer
learning and meta learning for load forecasting, by
taking full advantage of the limited residential dataset
collected over just several days.

There are limited mobility data associated with the
pandemic, which make it difficult for traditional deep
learning models to forecast the load during the pan-
demic. Inspired by the above studies, a new TDL
model is proposed herein to solve the problem of
limited mobility data associated with the pandemic.
However, the forecasting accuracy is heavily influ-
enced by the hyperparameter optimization of TDL
models, which was not considered in the above stud-
ies. It is also computationally expensive to optimize
the hyperparameters of TDL models to maximize
the forecasting accuracy. Therefore, a new RLHO
method is proposed in this study to automatically
optimize the hyperparameters of the proposed model.

2.3. Reinforcement learning

Reinforcement learning obtains the optimal solu-
tion to a specific problem by modeling the problem
as an MDP and allowing the agents to continuously
interact with the environment. The reinforcement
learning models, including Q-learning [28] and
state-action-reward-state-action [29], have achieved
considerable contributions in the fields of optimiza-
tion and decision-making. For example, Brandi et
al. [30] proposed a reinforcement learning model to

control the supply water temperature setpoint of a
heating system and obtained promising results for an
office building in an integrated simulation environ-
ment. Zou et al. [31] used reinforcement learning to
solve the dynamic multi-objective optimization prob-
lem, which was proven to be effective through the
evaluation on a real-world problem.

In recent years, reinforcement learning has grad-
ually been used in the field of hyperparameter
optimization, which can efficiently avoid deceptive
local optima and handle the high-dimensional param-
eter vector [32]. For example, Meng et al. [33]
used reinforcement learning to optimize the weight-
ing parameters of a dynamic priority scheduling
algorithm. Bu et al. [32] proposed a reinforcement
learning method to optimize a large number of
hyperparameters of a composite load model with dis-
tributed generation.

However, reinforcement-learning agents have dif-
ficulty in completely traversing the large state
space comprising different hyperparameters, result-
ing in local optimal hyperparameters. In this study,
an RLHO combined with a new AFM is pro-
posed to forecast the state-action values of the
state space that has not been traversed, which can
enhance the hyperparameter optimization efficiency
of reinforcement-learning agents.

3. Construction of knowledge base

The knowledge base constructed in this study
includes four types of normalized data: load data,
time index, weather data, and mobility data. It cov-
ers 12 different geographical regions, including the
United Kingdom (UK), Germany, France, the Cali-
fornia Independent System Operator (CAISO) area,
the NYISO area, Dallas, Houston, San Antonio
(SA), Boston, Chicago, Philadelphia, and Seattle.
The acquired data range from February 15, 2020 to
May 15, 2020, covering the period before and after
the policy of strict social distancing restrictions was
promulgated to tackle the pandemic.

(1) The load data represent the hourly load demand
in different geographical regions. The load
data of European regions are obtained from
the European Network of Transmission Sys-
tem Operators, and the load data of the United
States are obtained from the respective inde-
pendent system operators in the United States.
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Table 1
The values of mobility data provided by

Google and Apple

Different locations Percentage of change
or movements from baseline

Retail and recreation 55.29
Grocery and pharmacy 20.99
Parks 52.26
Transit stations –58
Workplaces –16
Residential areas 21
Driving –70
Transit –46
Walking 15

(2) The time index represents the day of the week
and hour information through the One-Hot
code [34].

(3) The weather data are obtained from World
Weather Online, which contain the informa-
tion on cloud coverage, humidity, precipita-
tion, pressure, and temperature.

(4) The mobility data are obtained from Google
and Apple, revealing the relative changes in
visitor volume in different regions and build-
ings. The mobility data obtained from Google
reveal the relative changes in visitor volume
at six different locations: retail and recreation,
grocery and pharmacy, parks, transit stations,
workplaces, and residential areas. The base-
line volumes are the median of the 5-week
period from January 3, 2020 to February 6,
2020. The mobility data obtained from Apple
reveal the relative changes in visitor volume
for three types of movements: driving, transit,
and walking. The baseline volumes are the data
on January 13, 2020. Google and Apple collect
the information based on the location history of
the users’ accounts [6]. Take the mobility data
at 10 o’clock on March 1, 2020 in Boston as
an illustrative example, and the specific values
are shown in Table 1.

As shown in Table 1, the visitor volumes at retail
and recreation, grocery and pharmacy, parks, and
residential areas are increased by 55.29%, 20.99%,
52.26%, and 21%, respectively. The other values can
be self-explainable similarly.

4. Methodology

The proposed TDL-RLHO-AFM model consists
of three parts: a TDL model, an RLHO method, and

an AFM. The RLHO method is used to optimize the
hyperparameters of neural networks in different lay-
ers, which are contained in TDL model. The AFM
is used to enhance the hyperparameter optimization
efficiency of RLHO method and obtain the better
hyperparameters. The framework diagram of the pro-
posed TDL-RLHO-AFM model is shown in Fig. 1
and is detailed in the following sub-sections.

4.1. Transfer deep learning model

In this study, a new TDL model is proposed to solve
the problem of limited mobility data associated with
the pandemic, which uses the transfer knowledge
learned from source domains to solve other target
learning tasks. The data covering different source
domains include time index, weather data, and mobil-
ity data of different geographical regions, and the
different learning tasks refer to the STLF in differ-
ent geographical regions. The definition of TDL is
shown as follows.

Definition of transfer deep learning [35]: Given a
source domain DS, a source learning task TS, a target
domain DT, and a target learning task TT, the TDL
model will improve the learning ability of the target
forecasting function rT(·) in DT using the transfer
knowledge learned from DS and TS, where DS /= DT,
and TS /= TT.

According to the definition above, each domain
of transfer deep learning is defined as a pair D =
{F, P(X)}, where F = {f1, . . . , fn} is a feature
space with n dimensions. X = {x1, . . . , xn} ∈ F is
the learning sample, and P(X) is the marginal prob-
ability distribution of X [22]. The feature space and
marginal probability distributions differ across dif-
ferent domains. Each learning task is defined as a
pair T = {y, r(·)}, where y is the value space of the
true load demand, and r(·) is the forecasting func-
tion. Referring to Fig. 1, the TDL model includes the
following steps:

(1) First, the data from different source domains
are used as the input of the neural networks for
solving different learning tasks.

(2) Second, the transfer knowledge is transformed
into the weight sharing layers of the proposed
model, which can be utilized by all learning
tasks. In this study, all weight sharing layers
are constructed based on RNN, and the hyper-
parameters of each weight sharing layer are set
to be the same.
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Fig. 1. Overview of TDL-RLHO-AFM

(3) Finally, the neural networks for different learn-
ing tasks are trained, and the forecasting results
are output respectively.

4.2. Reinforcement-learning-based
hyperparameter optimization method

Reinforcement learning models the problem as an
MDP, through which, the agents interact with the
environment through trial and error over discrete
time steps [9]. The goal of the agents is to select an
action that maximizes the expected discount reward.
In this study, the hyperparameters of the proposed
TDL model are optimized through a reinforcement
learning method, so as to improve the forecasting
accuracy. MDPs are generally defined as < S, A, P ,
R > [36]:

• S refers to the set of all possible valid states of the
agents, including the different values of epoch,
batch size, and learning rate in the proposed TDL
model. s refers to the specific state, where ∀s
∈ S.

• A refers to the set of all possible valid actions
of agents. At each time point, the agents take
one of the six potential actions and change the
value of the epoch, batch size, or learning rate
accordingly. a refers to a specific action, where
∀a ∈ A.
• P refers to the transition probability distribution

of the agents in the constructed environment.
• R is the reward function of the agents, Rt =∑∞

k=0 γk rt+k [37], t means different time point,
k means future time step, and rt+k refers to the
future reward after k time steps. γ is a discount
factor that balances the importance of immedi-
ate rewards and future rewards, and r is a scalar
reward value. In this study, the forecasting accu-
racy of the test set is used as the signal for agents
to update the reward, rt = 1 − accuracyt, and
rt ∈ (0, 1).

Qπ(s, a) is defined as the state-action value, which
means the expected cumulative discount reward
obtained by executing action a under state s following
policy π: S−→A, as shown in Equation (1) [36]:
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Qπ (s, a) = Eπ(
∑∞

k=0
γkrt+k

∣∣∣ st = s, at = a)

(1)
where st and at represent the state and action at time
point t, respectively.

The Q-learning algorithm [38] is used in this study
to continuously estimate the optimal state-action
value through the Bellman equation to obtain the
optimal policy π∗(s) ∈ arg maxa Q∗(s, a), Q∗(s, a) is
the optimal state-action value. With the Q-learning
algorithm, the state-action value can also be called
as Q value [39]. The Bellman equation is given by
Equation (2) [40]:

Q∗ (s, a)

= Eπ(r + γ max
at+1

Q∗(st+1, at+1)|st = s, at = a)

(2)

The pseudocode of the RLHO method for the TDL
model is shown in Algorithm 1, where Q(·,·) refers
to the set of state-action values at all time points,
and the value of Qt+1(st, at) is the Q value at time
point t + 1. An episode with different number of time
steps is one complete play of the agents interacting
with the environment in the general reinforcement
learning setting [41].

Algorithm 1: RLHO method

1: Input: number of episodes M, number of time steps T, discount factor γ , hyperparameter �,
value of epoch ep, value of batch size bs, and value of learning rate lr

2: Initialize Q0(s0, a0) for s in S and a in A, initialize ep0, bs0, and lr0 randomly, and set Q(·, ·) = 0
3: for episode = 1, . . . ,M do
4: Receive initial state s1
5: for t = 1, . . . , T do
6: if a random number>� then
7: Select at = argmax(Q(·,·))
8: else
9: Select at randomly where at∈[0, 6)
10: end if
11: Run TDL model with ept, bst, and lrt, obtain the accuracyt
12: Obtain reward rt = 1- accuracyt
13: Execute action at, obtain the next state st+1

14: Update Qt+1 (st , at)← Qt (st , at)+ lrt
[
rt + γ max Qt(st+1, at+1)−Qt (st , at)

]
15: Update s← st+1
16: end for
17: end for

Figure 1 and Algorithm 1 show the main process
of the RLHO method, which can be described as
follows:

(1) At each time point, obtain the action at through
the �-greedy algorithm. at is an integer, with
different values representing different actions,
as listed in Table 2.

Table 2
The values of at and their corresponding actions

The value of at Corresponding actions

0 Add 1 to the value of epoch
1 Subtract 1 from the value of epoch
2 Add 1 to the value of batch size
3 Subtract 1 from the value of batch size
4 Add 0.0001 to the value of learning rate
5 Subtract 0.0001 from the value of learning rate

(2) Run the TDL model with the current values
of epoch, batch size, and learning rate at time
point t. Then, the forecasting accuracy of the
TDL model at time point t is obtained, which
is presented by means of the mean absolute
percentage error (MAPE) [42] as Equation (3):

MAPE = 1

N
×

(∑N

i=1

∣∣∣∣yi − pi

yi

∣∣∣∣
)

(3)

where N indicates the number of forecasting
hours, and yi and pi are the actual and fore-
casted values of the ith hour, respectively.

(3) Obtain the reward rt at time point t and execute
the action at to get the new state st+1, which
includes the new values of epoch, batch size,
and learning rate at time point t + 1.

(4) Update the Q value and the state at time point
t + 1, repeat the above procedures until the ter-
mination time step is reached.

(5) Select the corresponding state with the largest
Q value of all time points, representing the
optimized hyperparameters.
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Fig. 2. Overview of AFM.

4.3. Advance forecasting method

The hyperparameters obtained through Q-learning
are usually sub-optimal because of the large state
space. In this study, an AFM is proposed to forecast
the corresponding Q values of the states that have
not been traversed at some time points by means of
the extreme gradient boosting (XGBoost) [43] algo-
rithm, which is a widely recognized machine learning
method. AFM enhances the hyperparameter opti-
mization efficiency of reinforcement-learning agents
and obtains the better hyperparameters.

The AFM process is described as follows (Fig. 2).
Each Q value represents the state-action value of the
state that has or has not been traversed by the agents
at different time points.

(1) First, in the proposed TDL model with the
RLHO method, a part of states are traversed
by the agents, with the corresponding Q values
obtained. The gray squares in Fig. 2 repre-
sent the states that have been traversed by the
agents, together with their corresponding Q
values. The white squares represent the states
that have not been traversed by the agents,
together with their corresponding Q values.

(2) Second, the states that have been traversed by
the agents with their corresponding Q values
are divided into the training set and test set,
which are used to train the XGBoost.

(3) Finally, the trained XGBoost model is used to
forecast the Q values of states that have not
been traversed by the agents, which are rep-
resented by the squares with oblique lines in
Fig. 2. Then, the corresponding state with the
largest Q value is selected, representing the
near optimal hyperparameters.

Table 3
Hardware and software platforms

Hardware and software platform Configuration

Operating system Windows 10
RAM 32 GB
CPU Intel Core i7-8700K
GPU GeForce RTX 2080
Programing language Python
Deep learning software library Keras
Integrated development environment Spyder

5. Experiments and analysis

This section shows the experimental implemen-
tation details, presents the results of different
comparison experiments, and analyzes the experi-
mental results.

5.1. Experimental platforms and parameters

The experimental platforms in this study are
described in Table 3.

In this study, the sequence length of the input is
24, and the day-ahead load demand are forecasted.
The forecasting accuracy of different models is rep-
resented by the MAPE. The smaller values of MAPE
indicate the more accurate forecasting results. The
data are normalized according to Equation (4) [44],
and some other data pre-processing techniques, such
as outlier detection technique [45], are also used in
this study.

X∗i =
Xi − μ

σ
(4)

where X and X∗ indicate the variables before and after
normalization, i indicates the index of variables. μ

and σ indicate the standard deviation and mean of
variables, respectively.
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Table 4
Experimental hyperparameters of different algorithms

Algorithm Experimental hyperparameter Value

TDL Step size of learning rate 0.0001
Step size of batch size 1
Step size of epoch 1

RLHO � of �-greedy 0.3
Decay rate of � 0.99
Reward discount rate 0.95
Learning rate 0.1

AFM Number of iterations 160
Learning rate 0.1
Maximum depth of tree 3

RNN/CNN/LSTM Learning rate 0.0001
Number of epochs 50
Batch size 32
Activation function relu

All experimental results of the models in this study
are obtained by averaging the forecasting results
through five runs. The training set of the experiments
in this study covers the period from February 15, 2020
to April 30, 2020, and the test set covers the period
from May 1, 2020 to May 14, 2020. The proposed
TDL-RLHO-AFM model is constructed based on the
RNN, and the default hyperparameters are listed in
Table 4.

5.2. Experiments results and discussions

5.2.1. Performance of mobility data
This sub-section verifies the effect of the con-

structed knowledge base containing the mobility data.
The forecasting results of the RNN with knowledge
base (RNN KB) and RNN without knowledge base
(RNN) are shown in Table 5. The significant values
are boldfaced.

As shown in Table 5, the forecasting accuracy of
the RNN with knowledge base is higher than that
of the RNN without knowledge base. For France,
Germany, UK, NYISO, CAISO, Dallas, Houston,

SA, Boston, Chicago, Philadelphia, and Seattle,
the forecasting accuracy is improved by 40.5%,
49.2%, 12.5%, 64.9%, 57.5%, 9.1%, 33.8%, 0.2%,
58.5%, 70.6%, 75.1%, and 56.3%, respectively. The
experiments in this sub-section demonstrate that the
knowledge base, in particular, its contained mobility
data, can improve the forecasting accuracy of deep
learning model during the pandemic.

5.2.2. Performance of transfer deep learning

This sub-section verifies the effect of the TDL
model. The forecasting results of the TDL and the
RNN without transfer learning (RNN KB) are shown
in Table 6, and the significant values are boldfaced.
Note that the forecasting results of RNN KB are
different from the results in Table 5 because the aver-
aging results are obtained through five runs again.

As shown in Table 6, compared with the RNN
without transfer learning, the TDL model has higher
forecasting accuracy on eight datasets (i.e., France,
Germany, UK, Dallas, Houston, Boston, Philadel-
phia, and Seattle), and it has lower forecasting
accuracy on only four datasets (i.e., NYISO, CAISO,
SA, and Chicago). Generally, the TDL model outper-
forms the RNN without transfer learning because the
TDL model can take advantage of the socioeconomic
behavior changes contained in the mobility data,
demonstrating the effectiveness of transfer learning
during the pandemic.

5.2.3. Performance of reinforcement-learning-
based hyperparameter optimization with
advance forecasting method

This sub-section verifies the effect of RLHO and
AFM. The value scopes of different hyperparameters
in this sub-section are shown in Table 7.

Table 5
Comparison of the forecasting results of RNN with knowledge base and RNN without knowledge base

Dataset France Germany UK NYISO CAISO Dallas Houston SA Boston Chicago Philadelphia Seattle

RNN 0.1199 0.1049 0.2442 0.1175 0.0966 0.0974 0.1079 0.1066 0.1045 0.1260 0.2029 0.1144
RNN KB 0.0714 0.0533 0.2137 0.0412 0.0411 0.0885 0.0714 0.1063 0.0434 0.0370 0.0506 0.0500

Note: Significant values are boldfaced.

Table 6
Comparison of the forecasting results between TDL model and RNN without transfer learning

Dataset France Germany UK NYISO CAISO Dallas Houston SA Boston Chicago Philadelphia Seattle

RNN KB 0.0669 0.0529 0.1905 0.0402 0.0413 0.0906 0.0690 0.1002 0.0451 0.0365 0.0517 0.0540
TDL 0.0663 0.0521 0.1715 0.0418 0.0468 0.0867 0.0676 0.1079 0.0413 0.0372 0.0448 0.0494

Note: Significant values are boldfaced.
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Table 7
Value scopes of different

hyperparameters

Hyperparameter Scope

Epoch [0, 30]
Batch size [30, 60]
Learning rate [0, 0.005]

The forecasting results of the proposed TDL-
RLHO-AFM model with different episodes and time
steps are presented in Table 8. Different combinations
of episodes and time steps represent the number of
states that can be traversed by the agents. For exam-
ple, the combination of 5 episodes and 10 time steps
means that the agents can traverse up to 50 states.
Variables ep, bs, and lr represent the best values of
epoch, batch size, and learning rate of the proposed

Table 8
The forecasting results of the proposed model with different episodes and time steps

Dataset Episode×step ep bs lr State num Time(s) MAPE

France 5×10 30 34 0.0011 38 2074 0.0661
10×30 21 54 0.0008 227 14792 0.0595
30×30 11 56 0.0012 608 39765 0.0566

10×100 30 45 0.0005 447 47750 0.0605
Germany 5×10 2 44 0.0012 40 1820 0.0519

10×30 9 56 0.0010 211 14141 0.0488
30×30 16 37 0.0004 589 37230 0.0476
10×100 7 31 0.0005 455 54219 0.0450

UK 5×10 15 52 0.0017 45 2450 0.1308
10×30 26 51 0.0025 212 12589 0.1358
30×30 27 44 0.0025 577 38126 0.1306
10×100 29 53 0.0014 518 64011 0.1266

NYISO 5×10 16 41 0.0003 47 2804 0.0342
10×30 23 59 0.0009 209 15749 0.0327
30×30 30 44 0.0005 581 44860 0.0315
10×100 20 37 0.0002 492 68059 0.0318

CAISO 5×10 29 30 0.0043 36 2004 0.0438
10×30 13 40 0.0020 190 12231 0.0405
30×30 15 56 0.0001 620 38160 0.0367
10×100 27 57 0.0002 440 47489 0.0387

Dallas 5×10 15 41 0.0034 43 2297 0.0346
10×30 7 48 0.0009 191 13949 0.0332
30×30 15 50 0.0008 610 49426 0.0308
10×100 29 41 0.0011 500 69528 0.0324

Houston 5×10 20 32 0.0017 34 1616 0.0358
10×30 7 30 0.0004 199 11547 0.0316
30×30 17 33 0.0001 615 42138 0.0323
10×100 29 59 0.0017 445 43195 0.0315

SA 5×10 13 42 0.0013 46 2353 0.0319
10×30 18 53 0.0001 168 10078 0.0325
30×30 25 41 0.0003 666 45353 0.0313

10×100 20 52 0.0017 394 38220 0.0332
Boston 5×10 15 34 0.0010 36 1768 0.0339

10×30 29 33 0.0016 186 11700 0.0330
30×30 18 45 0.0005 574 34590 0.0328
10×100 30 39 0.0006 516 68292 0.0339

Chicago 5×10 23 32 0.0002 41 2360 0.0345
10×30 30 49 0.0006 186 12980 0.0317
30×30 3 38 0.0002 632 41322 0.0306
10×100 30 31 0.0011 514 66050 0.0320

Philadelphia 5×10 11 49 0.0004 35 1775 0.0338
10×30 24 48 0.0004 190 10485 0.0313
30×30 5 33 0.0009 575 34096 0.0316
10×100 30 45 0.0001 467 54719 0.0338

Seattle 5×10 13 47 0.0021 33 1744 0.0371
10×30 11 41 0.0007 200 13237 0.0333
30×30 1 42 0.0010 610 37413 0.0310
10×100 5 50 0.0014 515 58982 0.0321
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Table 9
The forecasting accuracies of the proposed model with different

hyperparameter combinations

Different hyperparameter combinations MAPE
Epoch Batch size Learning rate

0 30 0.0001 0.0391
0 30 0.005 0.0835
0 60 0.0001 0.0385
0 60 0.005 0.0755
30 30 0.0001 0.0392
30 30 0.005 0.0561
30 60 0.0001 0.0366
30 60 0.005 0.0545
30 44 0.0005 0.0315

Note: Significant values are boldfaced.

model with different episodes and time steps, respec-
tively. State num represents the number of states that
have been traversed by the agents. Time represents
the time cost of training the proposed model with
different episodes and time steps. MAPE represents
the forecasting accuracy of the proposed model. The
significant values of MAPE on all datasets are bold-
faced.

According to the experimental results shown in
both Table 6 and Table 8, the following results can be
obtained:

(1) Referring to both Tables 6 and 8, the fore-
casting accuracy of the proposed TDL-RLHO-
AFM model is higher than that of TDL, which
is improved by 14.6%, 13.6%, 26.2%, 24.6%,
21.6%, 64.5%, 53.4%, 71.0%, 20.1%, 17.7%,
30.1%, and 37.2% on the datasets of France,
Germany, UK, NYISO, CAISO, Dallas, Hous-
ton, SA, Boston, Chicago, Philadelphia, and
Seattle, respectively. The results demonstrate

the effectiveness of reinforcement learning for
optimizing hyperparameters.

(2) Referring to Table 8, in 8 of the 12 datasets,
the forecasting accuracy of the proposed model
with 30 episodes and 30 time steps is higher
than that of the proposed model with 10
episodes and 100 steps, indicating that the bet-
ter hyperparameters are found by the agents
in the proposed model with 30 episodes and
30 time steps. This also shows that the agents
traversing more states do not always find
the better hyperparameters because they may
encounter the boundary of the state space more
often.

(3) Referring to Table 8, the use of AFM
significantly enhances the hyperparameter
optimization efficiency of the reinforcement-
learning agents. For example, on the France
dataset, when the episode is 30 and the time
step is 30, the agents can traverse up to 900
(30×30) states. However, the agents actually
spend 39,765 seconds (i.e., 11.05 hours) to
traverse 608 states and obtain the correspond-
ing Q values, because the Q values of the
remaining 292 (900–608) states are forecasted
using AFM. Because these 292 states are not
actually traversed, the time cost of 19,097
(292/608*39,765) seconds (i.e., 5.30 hours)
are saved.

Table 9 and Fig. 3 present the forecasting accu-
racies and forecasting results of the proposed model
corresponding to different hyperparameter combina-
tions from May 1, 2020 to May 14, 2020 on the
NYISO dataset. The significant values of MAPE are

Fig. 3. Comparison of forecasting results of the proposed model with different hyperparameter combinations.
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Table 10
Comparison of the forecasting accuracies of the proposed model and other methods

Dataset France Germany UK NYISO CAISO Dallas Houston SA Boston Chicago Philadelphia Seattle

CNN 0.1447 0.1204 0.2260 0.1910 0.1342 0.1157 0.1016 0.1086 0.1289 0.1283 0.1705 0.1354
CNN KB 0.0811 0.0789 0.2152 0.0379 0.0601 0.0840 0.0958 0.1230 0.0418 0.0456 0.0598 0.0716
LSTM 0.2451 0.1219 0.2253 0.2178 0.0891 0.2240 0.1154 0.1338 0.2497 0.1868 0.2380 0.1607
LSTM KB 0.1300 0.1369 0.2131 0.0812 0.0738 0.1175 0.0812 0.1171 0.1131 0.0906 0.0955 0.1342
Proposed model 0.0566 0.0450 0.1266 0.0315 0.0367 0.0308 0.0315 0.0313 0.0328 0.0306 0.0313 0.0310

Note: Significant values are boldfaced.

Fig. 4. Comparison of forecasting results of the proposed model and other methods.

boldfaced. The legends of Fig. 3 indicate the different
hyperparameter combinations. For example, (30, 30,
0.0001) means the epoch is 30, the batch size is 30,
and the learning rate is 0.0001. The unit of load data
is megawatt (MW) in Fig. 3.

As shown in Table 9 and Fig. 3, different hyperpa-
rameter values have great influence on the forecasting
results of the model, and they are not linearly corre-
lated. The proposed model with the hyperparameters
values found by reinforcement learning has the best
forecasting accuracy, demonstrating the effectiveness
of reinforcement learning.

In order to verify the effect of the proposed model
further, CNN and LSTM are used for comparison
due to their good ability of feature learning. The
forecasting accuracies of the proposed model, CNN
and LSTM with knowledge base (CNN KB and
LSTM KB), and CNN and LSTM without knowl-
edge base (CNN and LSTM) are shown in Table 10.
The significant values of MAPE are boldfaced.

As shown in Table 10, the forecasting accuracy of
the proposed TDL-RLHO-AFM model is higher than
that of the CNN and LSTM either with or without
knowledge base. The experiments in this sub-section
demonstrate the effectiveness of the proposed model
for load forecasting during the pandemic.

Figure 4 shows the line chart of forecasting results
of the proposed TDL-RLHO-AFM model, CNN

and LSTM with knowledge base (CNN KB and
LSTM KB), and CNN and LSTM without knowl-
edge base (CNN and LSTM) from May 1, 2020 to
May 14, 2020 on the NYISO dataset. The unit of the
load data is megawatt (MW).

As shown in Fig. 4, the forecasting results of the
proposed TDL-RLHO-AFM model are closer to the
actual loads than other methods, visually illustrat-
ing the effectiveness of the proposed model for load
forecasting during the pandemic.

6. Conclusions and future work

In this study, a novel TDL model with RLHO
and AFM is proposed for STLF during the COVID-
19 pandemic. Twelve real-world datasets covering
different countries and cities are used to verify the
performance of the proposed model. Based on the
results of multiple comparison experiments, the fol-
lowing four conclusions are summarized as follows:

(1) The socioeconomic behavior changes con-
tained in the knowledge base are beneficial for
deep learning models to forecast sudden load
decline during the pandemic. It also provides a
new direction for load forecasting under other
global emergencies.
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(2) The proposed TDL model can overcome the
problem of limited mobility data associated
with the pandemic by making full use of the
socioeconomic behavior changes in the knowl-
edge base.

(3) The proposed RLHO method can automati-
cally optimize the hyperparameters of the TDL
model.

(4) The proposed AFM can improve the hyper-
parameter optimization efficiency of the
reinforcement-learning agents by forecasting
the state-action values of the states that have
not been traversed.

Although the proposed model has achieved high
forecasting accuracy during the pandemic, it also
has some limitations. First, the agents may reach
the boundary of the state space, which increases lots
of unnecessary time costs, and necessitates a more
effective reinforcement learning algorithm that can
improve the search efficiency of the agents. Second,
generative adversarial networks can expand the lim-
ited mobility data [46], therefore, the effectiveness
of this technique can be explored in the future work.
Finally, various variables affect the forecasting accu-
racy of deep learning models [47]. However, the study
did not explore the influence of various variables
except mobility data on load forecasting, which will
be considered in the future work.
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