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Abstract. Knowledge Graph (KG) embedding approaches have been proved effective to infer new facts for a KG based
on the existing ones–a problem known as KG completion. However, most of them have focused on static KGs, in fact,
relational facts in KGs often show temporal dynamics, e.g., the fact (US, has president, Barack Obama, [2009–2017]) is
only valid from 2009 to 2017. Therefore, utilizing available time information to develop temporal KG embedding models is
an increasingly important problem. In this paper, we propose a new hyperplane-based time-aware KG embedding model for
temporal KG completion. By employing the method of time-specific hyperplanes, our model could explicitly incorporate time
information in the entity-relation space to predict missing elements in the KG more effectively, especially temporal scopes
for facts with missing time information. Moreover, in order to model and infer four important relation patterns including
symmetry, antisymmetry, inversion and composition, we map facts happened at the same time into a polar coordinate system.
During training procedure, a time-enhanced negative sampling strategy is proposed to get more effective negative samples.
Experimental results on datasets extracted from real-world temporal KGs show that our model significantly outperforms
existing state-of-the-art approaches for the KG completion task.

Keywords: Temporal knowledge graph, knowledge graph completion, knowledge graph embedding

1. Introduction

Knowledge Graphs (KGs) collect and store human
knowledge as large multi-relational directed graphs
where nodes represent entities, and typed edges rep-
resent relationships between entities. Examples of
real-world KGs include Freebase [1], YAGO [2] and
WordNet [3]. Each fact in a KG can be represented
as a form of triple such as (US, has president, Barack
Obama) where ‘US’ and ‘Barack Obama’ are called
head and tail entities respectively and ‘has president’
is a relation connecting them. In the past few years, we
have witnessed the great achievement of KGs in many
areas, such as natural language processing [4], ques-
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tion answering [5], recommendation systems [6], and
information retrieval [7]. Although commonly used
real-world KGs contain billions of triples, they still
suffer from the incompleteness problem that a lot of
valid triples are missing. Therefore, there have been
various studies on predicting missing relations or
entities based on the existing ones which is an import
problem known as KG completion or link prediction.
As one of the most effective approaches, KG embed-
ding has state-of-the-art results for KG completion
on many benchmarks.

KG embedding is also called KG representation
learning, which aims to represent entities and rela-
tions in low-dimensional continuous vector spaces,
so as to simplify manipulation while preserving the
inherent structure and semantics of the KG. Tradi-
tionally, a KG is considered to be a static snapshot of
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Fig. 1. A sample temporal knowledge subgraph extracted from the
Wikidata.

multi-relational data. And the traditional KG embed-
ding approaches (see [8–10] for a summary) have
been mostly designed for this kind of static KGs,
which ignore the availability and importance of tem-
poral aspect while learning vectorial representations
(also called embeddings) of entities and relations.
However, in several well-known temporal KGs, such
as Integrated Crisis Early Warning System (ICEWS)
[11], Global Database of Events, Language, and Tone
(GDELT) [12], YAGO3 [13] and Wikidata [14], facts
are typically associated with timestamps and might
only hold for a point in time or a certain time inter-
val. For example, Fig. 1 shows a subgraph of such
temporal KG, in which the fact (US, has president,
Barack Obama, [2009–2017]) is only valid from
2009 to 2017. As a result, developing embedding
learning solely on the basis of static facts as in
static KG embedding approaches will confuse entities
with similar semantics when conduct KG comple-
tion. For example, they may confuse entities such as
‘Barack Obama’ and ‘Bill Clinton’ when predicting
the missing tail entity of (US, has president, ?, [1993–
2001]). To conquer this problem, several temporal
KG embedding approaches have been designed to
answer this kind of query accurately. That is, the rank-
ing of the query (US, has president, ? , timestamp) is
expected to vary with the different timestamps.

Most of the existing temporal KG embedding
models incorporate time information during rep-
resentation learning explicitly or implicitly by
extending static approaches. And the vast majority
of them can only deal with time information in the

form of points in time but have difficulty in han-
dling time information in the form of time intervals
as in Fig. 1. In fact, time information in the form of
time intervals is universal and has illustrated a com-
mon challenge posed by its time continuity. On the
other hand, the success of a KG embedding model
is heavily dependent on its ability to model and infer
connectivity patterns of the relations, such as sym-
metry (e.g., marriage), antisymmetry (e.g., filiation),
inversion (e.g., hypernym and hyponym) and com-
position (e.g., my mother’s husband is my father)
[15]. However, few existing temporal KG embedding
models could model and infer all the above relation
patterns. A more detailed description can be referred
to in section 3.

To address the above issues, we propose a novel
Hyperplane-based Time-aware Knowledge graph
Embedding model named HTKE for temporal KG
completion. By dividing time information from the
input KG into multiple time-specific hyperplanes rep-
resenting distinct time in points or time periods, and
projecting facts to time-specific hyperplanes which
they belong to according to their timestamps, our
model could incorporate explicitly and utilize time
information directly. Meanwhile, our model can deal
with timestamps not only in the form of points in time
but also in the form of time intervals, and predict tem-
poral scopes for facts with missing timestamps such
as (US, has president, Barack Obama, ?). In addi-
tion, the proposed model is capable of modeling and
inferring all the above four important relation pat-
terns including symmetry, antisymmetry, inversion
and composition through mapping facts happened at
the same time into a polar coordinate system. We
illustrate that the HTKE is scalable to large KGs as it
remains linear in both time and space complexity.

We further propose a time-enhanced negative sam-
pling strategy to get more effective negative samples
for optimization, which generates negative samples
by corrupting both entities and timestamps of known
facts. To evaluate the performance and merits of our
model, we conduct extensive experiments on tem-
poral datasets extracted from ICEWS and YAGO3
for KG completion and temporal scope prediction
tasks. Experimental results show that our method
significantly and consistently outperforms the state-
of-the-art models.

The organization of the paper is as follows. Section
2 presents some formal background and reviews the
related work. In Section 3, we first describe the details
of our model. Then, we show that how our model can
infer four relation patterns. Finally, we discuss the
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scalability of our model and the process of optimiza-
tion. Section 4 reports experimental results and in
Section 5, we conclude the paper and discuss future
work.

2. Background and related work

Notation: Throughout this paper, we present scalars
with lower-case letters, vectors with bold lower-case
letters and tensors with bold upper-case letters. Let
z ∈ R

d be a real vector of length d, z ∈ C
d be a com-

plex vector of length d. [z]i represents the i-th entry
of a vector z, and ‖z‖l represents its l norm.
Temporal Knowledge Graph (Completion): Let
E be a finite set of entities, R be a finite set of
relation types, and T be a finite set of timestamps.
W ⊂ E ×R× E × T represent the collection of all
temporal facts which have the form of a quadruple
(head, relation, tail, timestamp), or (h, r, t, τ) and
(h, r, t, [τs, τe]) for short, where h, t ∈ E represents
the head and tail entities respectively, r ∈ R repre-
sents relations connecting two entities, τ, [τs, τe] ∈ T
represents timestamps of quadruples. Specifically, the
former expresses facts occurred at a specific point in
time τ, and the latter expresses facts occurred at an
(open) time interval with start time τs and end time
τe. A temporal KG G is a subset of W (i.e., G ⊂W).
Temporal KG completion is a problem of inferring
W from G. As shown in Fig. 1, the aim of temporal
KG completion (i.e. link prediction) is to predict the
missing element of the quadruple (US, has president,
?, [1993–2001]) on the basis of all known quadru-
ples including (US, has president, Barack Obama,
[2009–2017]), (US, has president, Donald Trump,
[2017–2021]), etc.
Relation Patterns: According to the existing litera-
tures [15–19], four types of relation patterns are very
important and widely spread in real-world KGs: sym-
metry, antisymmetry, inversion and composition. We
give their formal definition here:

Definition 1. A relation r is symmetric if

(h, r, t, τ) ∈W ⇔ (t, r, h, τ) ∈W

Definition 2. A relation r is antisymmetric if

(h, r, t, τ) ∈W ⇔ (t, r, h, τ) ∈Wc

where Wc is the complement of W .

Fig. 2. A simple illustration of KG embedding.

Definition 3. A relation r1 is inverse to relation r2 if

(h, r1, t, τ) ∈W ⇔ (t, r2, h, τ) ∈W

Definition 4. A relation r1 is composed of relation
r2 and relation r3 if

(h, r2, e, τ) ∈W ∧ (e, r3, t, τ) ∈W ⇒ (h, r1, t, τ) ∈W

(Temporal) KG Embedding: KG embedding is also
called KG representation learning. As Fig. 2 shows,
a KG embedding model defines three things: 1- the
embedding function for mapping entities and rela-
tions to vector spaces, 2- a score function which
takes embeddings for h, r and t as input and gen-
erates a score as the factuality for the given triple
(h, r, t), 3- a suitable loss function to optimize and
learn the values of embeddings using all known triples
in the input KG. The values of the embeddings are
learned using all known facts in the KG. Temporal
KG embedding is to incorporate time information
available such as timestamps τ during representation
learning to improve the performance of embedding.

During the past decade, a variety of KG embedding
models have been widely explored for the KG com-
pletion task. In the following, we will introduce two
lines of them that are closely related to our work. One
is the static KG embedding method which learns vec-
torial embeddings only on the basis of static triples
and ignoring available time information; the other is
the temporal KG embedding method, which lever-
ages time information associated with known facts
during representation learning to improve the perfor-
mance of embedding. The embedding representations
and score functions of several typical static and tem-
poral models are listed in Table 1, where 〈· , · 〉 is the
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Table 1
Embedding representations and scoring functions of state-of-the-art static and temporal models

Model Embedding representations Scoring function

Static TransE (2013) h, t ∈ R
d , r ∈ R

d −‖h+ r − t‖1/2
DistMult (2014) h, t ∈ R

d , r ∈ R
d 〈h, r, t〉

ComplEx (2016) h, t ∈ C
d , r ∈ C

d Re(〈h, r, t̄〉)
SimplE (2018)

→
h,
←
h,
→
t ,
←
t ∈ R

d , r, r−1 ∈ R
d 1

2 (〈→h, r,
←
t 〉 + 〈→t , r−1,

←
h〉)

RotatE (2019) h, t ∈ C
d , r ∈ C

d −‖h ◦ r − t‖1
Temporal TTransE (2018) h, t ∈ R

d , r ∈ R
d, τ ∈ R

d −‖h+ r + τ − t‖1/2
HyTE (2018) h, t ∈ R

d , r ∈ R
d −‖h⊥ + r⊥ − t⊥‖1/2

TA-TransE (2018) h, t ∈ R
d, rseq ∈ R

d −
∥∥h+ LSTM(rseq)− t

∥∥
2

TA-DistMult (2018) h, t ∈ R
d, rseq ∈ R

d 〈h, LSTM(rseq), t〉
ConT (2019) h, t ∈ R

d , r ∈ R
d, T ∈ R

d3 〈T , h ◦ r ◦ t〉
DE-SimplE (2020)

→
h

τ

,
←
h

τ

,
→
t

τ
,
←
t

τ ∈ R
d , r, r−1 ∈ R

d 1
2 (〈→h

τ

, r,
←
t

τ〉 + 〈→t τ
, r−1,

←
h

τ

〉)
TComplEx (2020) h, t ∈ C

d , r ∈ C
d, τ ∈ C

d Re(〈h, r, t̄, τ〉)

sum of Hadamard (element-wise) product of vectors
[20], t̄ is the complex conjugate of t [16], r−1 is the
inverse relation embedding of relation r,

→
e ,
←
e ∈ R

d

and e ∈ {h, t} is the vectorial representations of enti-
ties located in the head and tail position respectively
[21], ◦ is the element-wise product of vectors [15].
For each τ ∈ T , τ ∈ R

d and τ ∈ C
d are vectorial

embeddings of timestamps [22, 23]. x⊥ = x− τT xτ

where x ∈ {h, r, t} denotes the temporal projection
of embeddings [24]. LSTM(·) is an LSTM neural
network and rseq denotes a temporal relation embed-

ding [25]. T ∈ R
d3

is the time-specific core tensor
[26].

→
e

t
,
←
e

t ∈ R
d and e ∈ {h, t} are temporal entity

embeddings [27]. For further details on these meth-
ods, please refer to recent surveys [28–30].

2.1. Static KG embedding models

Most of the existing KG embedding approaches
are static and can be roughly divided into two
categories, translational distance-based models [15,
31–33] and tensor factorization models [16, 20, 21,
34]. Translational distance-based models use the dis-
tance between two entities as a metric to measure
the plausibility of facts, usually after a translation
or rotation carried out by relations. TransE [31]
is a typical translational distanced-based model. It
maps facts into a real vector space and interprets the
relation as a translation from the head to the tail.
The score function is defined as the Euclidean dis-
tance between the translated head embedding and tail
embedding. TransE can implicitly model the antisym-
metry, inversion and composition relation patterns,
but has difficulty in modeling the symmetry rela-
tion pattern which is common in real-world KGs. To
overcome this drawback, many variations of TransE

have been proposed, such as RotatE [15] and HAKE
[32]. Compared with TransE, RotatE maps each triple
into a complex vector space instead of a real vector
space, and considers the relation as a rotation from
the head embedding to the tail embedding in the com-
plex vector space. In this way, RotatE could model
and infer all four important types of relation pat-
terns mentioned above. Moreover, HAKE is a slight
extension of RotatE. By taking advantage of both
the modulus and phrase part of the complex vector,
HAKE is able to model not only all of the above rela-
tion patterns but also semantic hierarchies between
entities.

Apart from translation distance-based models, ten-
sor factorization models are also competitive on many
benchmarks, including DistMult [20], ComplEx [16]
and SimplE [21]. DistMult defines the same embed-
ding function as in TransE, but the score function
is the sum of Hadamard (element-wise) product of
embedding vectors. Intuitively, DistMult is a simpli-
fied version of the tensor factorization model, which
learns a symmetric tensor in the head and tail modes
to keep the parameter sharing. As a result, it can
only model symmetric relations and cannot infer anti-
symmetric relations. ComplEx enhances DistMult
by mapping elements into a complex space, where
head and tail embeddings share the parameters of
values but are complex conjugate of each other. Sim-
plE is another tensor factorization approach based on
Canonical Polyadic (CP) decomposition [35], which
employs inverse relations to associate two embed-
dings of the same entity locating at different positions.
Compared with ComplEx, SimplE avoids computa-
tional redundancy and reduces time consumption.
Besides, Lacroix et al. [34] also proposed a simi-
lar CP decomposition-based model to improve the
performance.
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Although static models have achieved great suc-
cess, their representing and modeling capabilities
are still limited due to the single static triples.
Therefore, all kinds of extensions of static KG embed-
ding models have been developed by infusing rich
additional information into the process of represen-
tation learning, including time information, entity
types, relation paths, etc. Especially time informa-
tion, which demonstrates the specific time when an
event happened or a fact was valid, can effectively
avoid entity confusion and improve the performance
of KG embedding.

2.2. Temporal KG embedding models

Many temporal KG embedding models have been
explored and most of them can be seen as extensions
of static models. Such as, TTransE [22], HyTE [24]
and TA-TransE [25] are extended from TransE, TA-
DistMult [25] is the temporal extension of DistMult.
Similar to their static versions TransE and DistMult,
these temporal KG embedding models have issues
with inferring symmetric relations or antisymmet-
ric relations. Recently, TComplEx and TNTComplEx
[23] follow CP decomposition to extend ComplEx
by adding a new temporal factor vector. Therefore,
same as ComplEx, TComplEx and TNTComplEx
also involve the problem of redundant computations.
DE-SimplE [27] learns entity embeddings that evolve
over time by introducing a diachronic entity (DE)
embedding function. As an extension of SimplE,
DE-SimplE has the capability of encoding domain
knowledge by parameter sharing and is the first full
expressive temporal KG embedding model. ConT
[26] can be seen as an extension of Tucker [36]
which replaces the core tensor in Tucker decomposi-
tion [37] with a time-specific tensor. Both DE-SimplE
and ConT do not take into account facts with time
intervals shaped like [2015, 2018] and are hard to pre-
dict time scopes for facts missing time information.
Moreover, because of the large number of parameters
per timestamp, ConT faces a high time complexity
and rapid overfits during training. Inspired by RotatE,
ChronoR interprets the relation and time together as
a rotation from the head entity to the tail entity, and
represents entities, relations and timestamps as matri-
ces in real vector space. While the operation of the
matrices brings high time and space costs. In contrast,
HERCULES [38], which is a time-aware extension
of the static model ATTH [39] learns embeddings in
hyperbolic spaces rather than Euclidean space. But
similar to DE-SimplE and ConT, HERCULES cannot

model timestamps with the form of time intervals. On
the other hand, recent T-GAP [40] incorporates neural
network and additional relation path information to
the process of temporal KG embedding, which aims
to fully exploit the local neighborhood and facilitate
multi-hop reasoning. However, both neural network
and path traversal are time-consuming.

In contrast, our proposed model HTKE has merits
to conquer these issues. That is, our model could deal
with time information not only in the form of points
in time but also in the form of time intervals, and
predict temporal scopes for facts with missing time
information. Furthermore, our model is capable of
modeling and inferring all four important relation pat-
terns including symmetry, antisymmetry, inversion
and composition with linear time and space consum-
ing.

All of the above temporal KG embedding models,
including our method can be classified as the inter-
polation setting. Under this setting, models attempt
to infer missing links at past timestamps. While most
recently, several work [41–45] attempt to predict facts
in the future, which is called the extrapolation setting.
Under the extrapolation setting, models can better
support the open-world assumption that missing facts
is not necessarily false and may potentially happen
in the future, which is also the direction of our future
work.

3. The proposed HTKE

In this section, we introduce our proposed model
Hyperplane-based Time-aware Knowledge graph
Embedding model (HTKE). Generally speaking,
our model contains two components, one is the
time-specific hyperplane, and the other is a polar
coordinate system.

3.1. Time-specific hyperplane

As mentioned above, temporal KGs provide time
information of facts. In order to incorporate these time
information directly during KG embedding algo-
rithm, for a KG with time information in the form
of points in time, we dismantle it into n disjoint time
point subgraphs G = Gτ1 ∪ Gτ2 ∪ · · · ∪ Gτn , where
∀i /= j, Gτi ∩ Gτj = ∅ and τi(i ∈ 1, 2, · · · , n) is one
of the time points. For a KG with time information
in the form of time intervals, we dismantle it into
n disjoint time period subgraphs G = Gτ1 ∪ Gτ2 ∪
· · · ∪ Gτn , where ∀i /= j, Gτi ∩ Gτj = ∅ and τi(i ∈
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Fig. 3. Simple illustration of our proposed HTKE.

1, 2, · · · , n) is one of the time periods with min-
imum time min(τi), maximum time max(τi). Each
quadruple belongs to one or more time subgraphs
according to its timestamp. Such as, if the times-
tamp is a specific point in time with the form
of τ, then it only belong to one time point sub-
graph Gτi when τ = τi. While if the timestamp of
a quadruple is a time interval with the form of
[τs, τe], then it may belong to one time period sub-
graph Gτi or more time period subgraphs Gτi . . . Gτj

when min(τi) ≤ τs ≤ τe ≤ max(τi) or min(τi) ≤
τs ≤ max(τi) ≤ · · · ≤ min(τj) ≤ τe ≤ max(τj).

Then, each time subgraph is associated with a time-
specific hyperplane represented by a normal vector
τ, where τ ∈ R

d and ‖τi‖2 = 1. Thus, we can get n

different hyperplanes represented by normal vectors
τ1, τ2, . . . , τn. That is to say, we can segregate the
space into n different time zones with the help of these
time-specific hyperplanes.

Subsequently, we project each fact to time-specific
hyperplanes which it belongs to. Such as Fig. 3 shows,
we project two facts with time information (US, has
president, Barack Obama, [2009-2017]) and (US, has
president, Bill Clinton, [1993-2001]) onto different
time-specific hyperplanes denoted by normal vectors
τ = [2009− 2017] and τ = [1993− 2001]. In this
way, facts happened at different times can be distin-
guished. Therefore, its easy to conclude the correct
answer ‘Bill Clinton’ when answering the the query
(US, has president, ?, [1993-2001]) mentioned in
section 1.

3.2. Polar coordinate system

In order to model and infer four common and
important relation patterns introduced in section 2,
we further map facts projected on the same time-

specific hyperplane into a polar coordinate system.
Specifically, we first map each entity e to two parts–
the modulus part em ∈ R

d and the phase part ep ∈
[0, 2π)d , where the modulus part corresponds to the
radial coordinate and the phase part corresponds
to the angular coordinate. Thus the projections of
entities on the time-specific hyperplane τ can be rep-
resented as projected modulus parts:

em⊥ = em − (τ�emτ), (1)

and the projected phase part:

ep⊥ = ep − (τ�epτ). (2)

On this hyperplane, we consider every dimen-
sion of projected entity representation, i.e.,
([em⊥]i, [ep⊥]i) as a 2D point in the polar coordinate
system. Inspired by static models RotatE and HAKE,
we interpret each relation as a rotation from the
projected head angular coordinate [hp⊥]i to the
projected tail angular coordinate [tp⊥]i plus a scaling
transformation form the projected head radial coor-
dinate [hm⊥]i to the projected tail radial coordinate
[tm⊥]i. Therefore, the relation r should also be
mapped to two parts rm ∈ R

d+ and rp ∈ [0, 2π)d

where rm represents the extent of scalability, rp

represents the rotation angle. These two parts are
also projected onto the corresponding time-specific
hyperplane. Given a quadruple (h, r, t, τ), we adopt
the basic idea of translation distance-based models,
using the distance between the head entity trans-
formed by the relation and the tail entity in the polar
coordinate system to measure the factuality of this
quadruple. Alternatively, for a positive quadruple,
we expect that the head entity embedding rotated
and scaled by the relation embedding is as close to
the tail entity embedding as possible and otherwise,
they are expected to be far away. As a result,the
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score function is defined as

φ(h, r, t, τ) = −‖hm⊥ ◦ rm⊥ − tm⊥‖2
− λ‖ sin((hp⊥ + rp⊥ − tp⊥)/2)‖1

(3)

where the first part −‖hm⊥ ◦ rm⊥ − tm⊥‖2 repre-
sents the distance between the head entity after
scaling by the relation and the tail entity in the
radial coordinate, and the second prat−‖ sin((hp⊥ +
rp⊥ − tp⊥)/2)‖1 represents the distance between the
head entity after rotation by the relation and the tail
entity in the angular coordinate. The smaller the dis-
tance, the higher the score. The sin function is used in
the second part because the angular coordinates have
periodic characteristics and λ ∈ R is a parameter that
is learned by the model. Figure 3 gives an illustration
of the proposed model.

3.3. Model and inference relation patterns

Our method can model and infer all four important
relation patterns including symmetry, antisymmetry,
inversion and composition. On time-specific hyper-
plane τ, similar to RotatE and HAKE, a relation
r is symmetric(antisymmetric) if and only if each
element of its projected rotation angle [rp⊥]i sat-
isfies [rp⊥]i = kπ ([rp⊥]i /= kπ), k = 0, 1, 2; two
relations r1 and r2 are inverse if and only if each
element of their projected rotation angles is opposite
to each other: [r1p⊥]i = −[r2p⊥]i; a relation r1 is a
combination of other two relations r2 and r3 if and
only if each element of their projected rotation angle
satisfy [r1p⊥]i = [r2p⊥]i + [r3p⊥]i. Figure 4 shows
how HTKE models these relation patterns with only
1-dimensional embedding.

Lemma 1. HTKE can infer the symme-
try/antisymmetry relation pattern in time-specific
hyperplanes.

Proof. If (h, r, t, τ) and (t, r, h, τ) hold in their corre-
sponding time-specific hyperplane τ, we have

tp⊥ = (hp⊥ + rp⊥) mod 2π∧
hp⊥ = (tp⊥ + rp⊥) mod 2π

⇒ ∀i, [rp⊥]i = kπ, k = 0, 1, 2

Otherwise, if (h, r, t, τ) and ¬(t, r, h, τ) hold, we
have

tp⊥ = (hp⊥ + rp⊥) mod 2π∧
hp⊥ /= (tp⊥ + rp⊥) mod 2π

⇒ ∃i, [rp⊥]i /= kπ, k = 0, 1, 2

Lemma 2. HTKE can infer the inversion relation
pattern in time-specific hyperplanes.

Proof. If (h, r1, t, τ) and (t, r2, h, τ) hold in their cor-
responding time-specific hyperplane τ, we have

tp⊥ = (hp⊥ + r1p⊥) mod 2π∧
hp⊥ = (tp⊥ + r2p⊥) mod 2π

⇒ ∀i, [r1p⊥]i = −[r2p⊥]i

Lemma 3. HTKE can infer the composition relation
pattern in time-specific hyperplanes.

Proof. If (h, r1, t, τ), (h, r2, e, τ) and (e, r3, t, τ) hold
in their corresponding time-specific hyperplane τ, we
have

tp⊥ = (hp⊥ + r1p⊥) mod 2π∧
ep⊥ = (hp⊥ + r2p⊥) mod 2π∧
tp⊥ = (ep⊥ + r3p⊥)

⇒ ∀i, [r1p⊥]i = [r2p⊥]i + [r3p⊥]i

3.4. Time complexity and parameter growth

As described in [46], to scale to the size of current
KGs and keep up with their growth, a KG embedding
model must have a linear time and space complex-
ity. Models with many parameters usually overfit and
present poor scalability. We calculate and analyze
the time complexity and the number of parameters
for several state-of-the-art temporal KG embedding
approaches and our model according to embedding
functions and score functions of models, which are
listed in Table 2, where d is the dimension of the
embedding vector space. Contrary to DE-SimplE,
other models do not learn temporal embeddings that
scale with the number of entities (as frequencies and
biases), but rather embeddings that scale with the
number of timestamps. Although our model has more
parameters than HyTE, but experiments demonstrate
that our model performs better than HyTE because
of the ability to model the symmetry relation pattern.
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Fig. 4. Illustrations how HTKE models relation patterns with only 1 dimension of embedding.

Table 2
Time complexity and number of parameters for each model considered, d is the

dimension of the embedding vector space

Model Time complexity Number of parameters

TTransE O(d) d(|E | + |R| + |T |)
HyTE O(d) d(|E | + |R| + |T |)
TA-TransE O(d) d(|E | + |R| + |T |)
TA-DistMult O(d) d(|E | + |R| + |T |)
ConT O(d3) d(|E | + |R|)+ d3|T |
DE-SimplE O(d) d(2(3γ + (1− γ))|E | + 2|R|)
TComplEx O(d) d(2|E | + 4|R| + 2|T |)
HTKE O(d) d(2|E | + 2|R| + |T |)

All of the temporal models except for ConT have
the linear time complexity O(d). The large number
of parameters per timestamp (a three-order tensor)
makes ConT perform poorly and train extremely
slowly. As an extension of ComplEx, TComplEx also
involves redundant computations.

3.5. Optimization

To train the model, we use the negative sampling
loss function with self-adversarial training [15]:

L =
∑

x∈G+

∑

y∈G−
[− log σ(γ + φ(x))

−
n∑

i=1

exp αfr(yi)∑
j exp αfr(yj)

log σ(−φ(yi)− γ)],

(4)

where γ is a fixed margin, σ is the sigmoid function, α
is the temperature of sampling and G+, G− is the set of
positive instances and negative instances respectively.
yi is the ith negative sample.

In order to get better performance in link pre-
diction and temporal scopes prediction, besides the
common entity negative sampling, we also explore
a time-enhanced negative sampling strategy for time
information:

Entity negative sampling corrupts head entities or
tail entities of positive instances randomly irrespec-
tive of timestamps. More formally, negative samples
come from the set

G− ={(h′, r, t, τ)|h′ ∈ E, (h′, r, t, τ) /∈ G+}∪
{(h, r, t′, τ)|t′ ∈ E, (h, r, t′, τ) /∈ G+}.

(5)

Time-enhanced negative sampling emphasizes on
time. By corrupting timestamps, we get negative
samples that do not exist in any timestamps of the
temporal KG. Thus we draw negative samples from
the set

G− = {(h, r, t, τ′)|τ′ ∈ T , (h, r, t, τ′) /∈ G+}. (6)

4. Experiments

Datasets: Our datasets are subsets of two tempo-
ral KGs: ICEWS and YAGO3, which have become
standard benchmarks for temporal KG completion.
Integrated Crisis Early Warning System (ICEWS) is
a repository containing political events that occurred
each year from 1995 to 2015. These political events
relate head entities to tail entities (e.g., countries,
presidents...) via logical predicates (e.g., ‘Make a
visit’ or ‘Express intent to meet or negotiate’) and
every event has a timestamp when it happened. Natu-
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Table 3
Statistics on ICEWS14, ICEWS05-15, and YAGO11k

Dataset |E | |R| |T | |train| |validation| |test|
ICEWS14 7,128 230 365 72,826 8,941 8,963
ICEWS05-15 10,488 251 4017 386,962 46,275 46,092
YAGO11k 10,623 10 198 164,000 2000 2000

rally, timestamps of quadruples in ICEWS are points
in time and have the form of τ. More information can
be found at http://www.icews.com/. We use two sub-
sets of ICEWS generated by Garcı́a-Durán et al. [25]:
1- ICEWS14 corresponding to the events in 2014 and
2- ICEWS05-15 corresponding to the events between
2005 to 2015. In the YAGO3 knowledge graph, some
temporally associated facts have meta-facts as (#fac-
tID, occurSince, ts), (#factID, occurUntil, te). That is,
timestamps of quadruples in YAGO3 are time inter-
vals with the form of [τs, τe]. By this dataset, we can
show that our model can effectively deal with times-
tamps provided in the form of time intervals. We take
a subset of YAGO3 generated by Dasgupta et al. [24].
Table 3 provides a summary of the dataset statis-
tics. It is noteworthy that all entities and relations in
validation and test are included in training and how
to effectively handle the open-world assumption in
which entities and relations in validation and test are
unseen in training is our future consideration.
Baselines: We compare HTKE with both static
and temporal KG embedding models. From the
static KG embedding models, we use TransE, Dist-
Mult, ComplEx, SimplE, RotatE and HAKE where
time information is ignored. From the temporal
KG embedding models, we use TTransE, HyTE,
TA-TransE, TA-DistMult, ConT, DE-Simple and
TComplEx introduced in Section 2.
Evaluation Metrics: For evaluating the performance
of link prediction, we first create two sets of candidate
quadruples (h′, r, t, τ) and (h, r, t′, τ) by replacing
the head entity h and the tail entity t respectively
for each quadruple (h, r, t, τ) in the test dataset with
each candidate entity e ∈ E . Then we rank the can-
didate quadruples in descending order according to
their scores. We evaluate in the filtered setting as in
[31]. That is, test quadruples are ranked against all
other candidate quadruples not appearing in the train
and validation sets. We choose Mean Reciprocal Rank
(MRR), which computes the mean of the inverse of
the rankings as the evaluation metric:

MRR = 1

2 ∗ |test|
∑

(h,r,t,τ)∈test

( 1

rankh

+ 1

rankt

)

(7)

where rankh and rankt represent the rankings for
each test quadruple in corresponding candidate sets
replaced by the head entity and replaced by the tail
entity respectively. Compared to its counterpart Mean
Rank (MR) which is largely influenced by a single bad
prediction, MRR is more stable [8]. We also report the
proportion of correct quadruples ranked in the top N
(Hit@N) which defined as

Hit@N = 1

2 ∗ |test|
∑

(h,r,t,τ)∈test
[C(rankh ≤ N)

+ C(rankt ≤ N)]

(8)

where C(x) is 1 if x holds and 0 otherwise. MRR
and Hit@N have been standard evaluation measures
for the KG completion task [15, 16, 21, 23, 25–27]
and higher MRR and Hit@N indicate better possible
performance attainable on these datasets.
Implementation: We implemented our model and
the baselines in PyTorch [47]. Given that we used
the same data splits and evaluation metrics for the
two ICEWS datasets, we reported the results of most
baselines from some recent works [23, 27]. For the
other experiments on these datasets, for the fair-
ness of results, we followed a similar experimental
setup as in [15, 32]. Particularly, when we imple-
ment static models on temporal benchmarks, we
directly discard the available time information in
these datasets and only use static triples to match
the static approach. Since DE-SimplE and ConT
mainly focus on event-based datasets, they cannot
model time intervals which are common in YAGO3.
Thus their results on YAGO11k are unobtainable.
We used Adam [48] as the optimizer and vali-
dated every 20 epochs selecting the model giving
the best validation MRR. The ranges of the hyper-
parameters for the grid search were set as follows:
embedding dimension d ∈ {200, 500, 800, 1000},
batch size b ∈ {500, 800, 1000}, self-adversarial
sampling temperature α ∈ {0.5, 1.0}, fixed mar-
gin γ ∈ {3, 6, 9, 12}, and learning rate used for
SGD lr ∈ {0.0001, 0.0002, 0.001}. Both ICEWS and
YAGO11k datasets contain timestamps to the gran-
ularity of days. For YAGO11k, we distributed all
timestamps, that is, applying a minimum threshold
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Table 4
Link prediction results on ICEWS14, ICEWS05-15 and YAGO11. Best results are in bold

ICEWS14 ICEWS05-15 YAGO11k
Model MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE 0.280 0.094 - 0.637 0.294 0.090 - 0.663 0.100 0.015 0.138 0.244
DistMult 0.439 0.323 - 0.672 0.456 0.337 - 0.691 0.158 0.107 0.161 0.268
ComplEx 0.470 0.350 0.530 0.700 0.490 0.370 0.550 0.720 0.167 0.106 0.154 0.282
SimplE 0.458 0.341 0.516 0.687 0.478 0.359 0.539 0.708 0.175 0.137 0.179 0.247
RotatE 0.418 0.291 0.478 0.690 0.304 0.164 0.355 0.595 0.167 0.103 0.167 0.305
HAKE 0.437 0.315 0.504 0.701 0.322 0.186 0.380 0.603 0.179 0.187 0.172 0.319
TTransE 0.255 0.074 - 0.601 0.271 0.084 - 0.616 0.108 0.020 0.150 0.251
HyTE 0.297 0.108 0.416 0.655 0.316 0.116 0.445 0.681 0.105 0.015 0.143 0.272
TA-TransE 0.275 0.095 - 0.625 0.299 0.096 - 0.668 0.127 0.027 0.160 0.326
TA-DistMult 0.477 0.363 - 0.686 0.474 0.346 - 0.728 0.161 0.103 0.171 0.292
ConT 0.185 0.117 0.205 0.315 0.163 0.105 0.189 0.272 - - - -
DE-SimplE 0.526 0.418 0.592 0.725 0.513 0.392 0.578 0.748 - - - -
TComplEx 0.560 0.470 0.610 0.730 0.580 0.490 0.640 0.760 0.182 0.118 0.187 0.347
HTKE 0.562 0.471 0.613 0.728 0.581 0.487 0.645 0.763 0.257 0.170 0.255 0.404

of 300 quadruples per period during construction
and we got 61 different time period subgraphs.
We chose the highest MRR on the validation set
as the best configuration. For both ICEWS14 and
ICEWS05-15 datasets, we obtained d = 800, γ =
9, lr = 0.0002, b = 800, α = 0.5. For YAGO11k,
we got d = 800, γ = 6, lr = 0.0001, b = 800, α =
0.5.

4.1. Link prediction

In this part, we show the performance of our pro-
posed model HTKE against existing state-of-the-art
methods. Table 4 lists the results for the link predic-
tion task on ICEWS14, ICEWS05-15 and YAGO11k.
According to the results, the temporal models outper-
form the static models in MRR and Hit@N in most
cases which provides evidence for the merit of cap-
turing time information.

Overall, our model matches or beats the com-
petitive methods on all datasets. Specifically, our
model significantly outperforms HyTE on all datasets
since HTKE can infer all four relation patterns while
HyTE cannot infer the symmetry relation pattern
which is common in real-world datasets. For instance,
YAGO11k dataset contains the symmetric relation
‘isMarriedTo’ and ICEWS contains symmetric rela-
tion ‘negotiate’. The superior performance of HTKE
empirically shows the importance of modeling and
inferring four relation patterns for the task of predict-
ing missing links.

DE-SimplE, together with ConT, cannot get results
in YAGO11k datasets, because in YAGO11k, times-
tamps of quadruples are time intervals and they can’t
deal with this form of timestamps. Furthermore, DE-
SimplE only considers entities evolving with time

and ignores the time attributes of relations and whole
facts. Therefore, it cannot achieve results as good
as ours on ICEWS14 and ICEWS05-15. Because of
the large number of parameters per timestamp, ConT
performs poorly on ICEWS as it probably overfits.
Apart from affecting the prediction performance, the
large number of parameters makes training ConT
extremely slow.

As Table 4 shows, our model gives on-par results
compared with recent TComplEx on ICEWS14 and
ICEWS05-15, but performs better than them on
YAGO11k. Since the timestamps on ICEWS14 and
ICEWS05-15 are points in time, while on YAGO11k
are time intervals with the form of [ts, te], and deal-
ing with timestamps of time intervals is a challenging
task. TComplEx samples uniformly between start
time and end time at random. In this way, it treats
time intervals as discrete points in time and can-
not capture the continuity of time. However, in our
model, we divide time intervals into time period
subgraphs, thus our model could maintain the con-
tinuity of time well. This result also validates the
merit of our method. On the other hand, both TCom-
plEx and our method encode timestamps with the
form of time points as vectorial embeddings. And as
a temporal extension of the static model ComplEx,
TComplEx also has the powerful capability to model
important relation patterns. Therefore, It can achieve
comparable results with our model on ICEWS14 and
ICEWS05-15. However, like its static version Com-
plEx, TComplEx faces the problem of computational
redundancy. At the same time, TComplEx requires
more parameters than ours, which is analyzed in Sec-
tion 3.4. As a result, our model is more time and
space-efficient than TComplEx. Such as, under the
same hardware and software conditions, it only takes
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Fig. 5. Scores for facts (Ashley Cole, plays for, {Arsenal F.C. |
Chelsea F.C. | A.S. Roma | LA Galaxy}, {[1999-2006] | [2006-
2014] | [2014-2016] | [2016-?]}).

3694s for HTKE to finish 100 training epochs, while
TComplEx needs 12408s.

4.2. Temporal scope prediction

Given the scarcity of time information in tempo-
ral KG, predicting missing time information for facts
is an important problem. Unlike previous baseline
methods, our model can predict the temporal scope
for a given quadruple (h, r, t, ?). In this task, the train-
ing procedure remains the same as the link prediction
task. We project the entities and the relation of the
quadruple on all time-specific hyperplanes and check
the plausibility of that quadruple on each hyperplane
by their scores. We select the time information of the
time-specific hyperplane corresponding to the high-
est score as the temporal scope of that quadruple.

We plot in Fig. 5 the scores along time for facts
(Ashley Cole, plays for, {Arsenal F.C. | Chelsea F.C.
| A.S. Roma | LA Galaxy}, {[1999–2006] | [2006–
2014] | [2014–2016] | [2016-?]}) from YAGO11k.
The time periods with the highest scores match
closely the ground truth of the start and end year of
these quadruples which are represented as a colored
background. This result shows that our model can
correctly predict temporal scopes along time periods.
We also can infer the temporal scope of the end time
missing in the fact (Ashley Cole, plays for, LA Galaxy,
[2016-?]). From the result, we get the highest score
for this fact in [2016–2019] period, and the true end
time is 2019 learned from Wikipedia which matches
our results very well. This result also shows that our
model is effective in temporal scope prediction.

4.3. Analysis on relation inference

In this part, we show that HTKE could implicitly
represent the symmetric relation pattern by analyzing
the projected rotation angle of relation embeddings.

The symmetry relation pattern requires the sym-
metric relation to have each element of its projected

Fig. 6. Distribution histograms of two relations embedding phases
that reflect the same hierarchy. The x-axis represents the value of
entry [rp⊥]i, the y-axis represents the number of entry [rp⊥]i.

rotation angle satisfy [rp⊥]i = kπ, k = 0, 1, 2. We
investigate the relation embeddings from a 500-
dimensional HTKE trained on YAGO11k. Figure
6a gives the distribution histogram of the average
angle of each element projected on all time-specific
hyperplanes of the symmetric relation embedding
‘isMarriedTo’. We can find that the rotation angles
are 0, π or 2π. It indicates that the HTKE does infer
and model the symmetry relation pattern. Figure 6b is
the histogram of relation ‘wasBornIn’, which shows
that the embedding of a general relation does not have
such kπ pattern.

5. Conclusion and future work

Temporal knowledge graph (KG) completion is an
important problem and has been the focus of sev-
eral recent studies. We propose a Hyperplane-based
Time-aware Knowledge graph Embedding model
HTKE for temporal KG completion, which incor-
porates time information directly to representation
space by developing time-specific hyperplanes, and
maps facts in the same time-specific hyperplane into
a polar coordinate system for modeling and inferring
important relation patterns such as symmetry, anti-
symmetry, inversion and composition. Experiments
on three real-world temporal KG datasets show that
our model outperforms existing state-of-the-art meth-
ods on the KG completion task. Furthermore, our
model adapts well to the various time forms of these
datasets: points in time, time intervals with beginning
and ending. A further investigation shows that HTKE
is capable of predicting time scopes for facts with
missing time information. In the future, we plan to
incorporate type consistency information to further
improve our model and also integrate HTKE with
open-world knowledge graph completion [49].
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[36] I. Balažević, C. Allen and T.M. Hospedales, Tucker: Ten-
sor factorization for knowledge graph completion, arXiv
preprint arXiv:1901.09590 (2019).

[37] L.R. Tucker, Some mathematical notes on three-mode factor
analysis, Psychometrika 31(3) (1966), 279–311.

[38] S. Montella, L. Rojas-Barahona and J. Heinecke, Hyper-
bolic temporal knowledge graph embeddings with relational
and time curvatures, arXiv preprint arXiv:2106.04311
(2021).



P. He et al. / Hyperplane-based time-aware knowledge graph embedding for temporal knowledge graph completion 5469

[39] I. Chami, A. Wolf, D.-C. Juan, F. Sala, S. Ravi and C.
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