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Random Transformation of image
brightness for adversarial attack
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Abstract. Deep neural networks (DNNs) are vulnerable to adversarial examples, which are crafted by adding small, human-
imperceptible perturbations to the original images, but make the model output inaccurate predictions. Before DNNs are
deployed, adversarial attacks can thus be an important method to evaluate and select robust models in safety-critical appli-
cations. However, under the challenging black-box setting, the attack success rate, i.e., the transferability of adversarial
examples, still needs to be improved. Based on image augmentation methods, this paper found that random transformation
of image brightness can eliminate overfitting in the generation of adversarial examples and improve their transferability. In
light of this phenomenon, this paper proposes an adversarial example generation method, which can be integrated with Fast
Gradient Sign Method (FGSM)-related methods to build a more robust gradient-based attack and to generate adversarial
examples with better transferability. Extensive experiments on the ImageNet dataset have demonstrated the effectiveness of
the aforementioned method. Whether on normally or adversarially trained networks, our method has a higher success rate
for black-box attacks than other attack methods based on data augmentation. It is hoped that this method can help evaluate
and improve the robustness of models.
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1. Introduction

In image recognition, some experiments on stan-
dard test sets have proven that deep neural networks
(DNNs) have higher recognition ability than that of
humans [1–4]. However, while deep learning brings
great convenience, it also brings security problems.
For an abnormal input, the question about whether
DNNs can obtain satisfactory results remains. DNNs
have been shown to be highly vulnerable to attacks
from adversarial examples [5, 6], because adding
perturbations to an original input image that are
imperceptible to humans will cause misclassification
of the models. As shown in Fig. 1, deep neural net-
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works have been fooled into recognizing the Japanese
spaniel as the great white shark. Furthermore, the
experiments in [7] show that the “stop” sign added
with human-imperceptible perturbations can deceive
the neural network to identify it as a “speed limit
45” sign, which may mislead an autonomous vehicle
to cause an accident. Specifically, adversarial exam-
ples normally have a certain degree of transferability,
meaning those generated for one model may also
be adversarial to another, which enables black-box
attacks [8]. These phenomena show that the exis-
tence of transferable adversarial examples poses a
great threat to the security of AI systems, leading
to the chaos of AI driven intelligent systems, the
formation of missed judgments and misjudgments,
and even the collapse of the system. Therefore, it is
particularly significant and urgent to study the rea-
son for and essence of the existence of adversarial
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Fig. 1. The classification of a clean image and corresponding adversarial examples on Inception v3 and Inception v4 model are shown. For
the images, the ground-truth is Japanese spaniel. The first row shows the top-10 confidence distributions for the clean image, which indicates
all the models provide right prediction with high confidences. The second and third rows show the top-10 confidence distributions of the
adversarial examples generated on the ensemble of models by RT-MI-FGSM and RT-DIM, which attack the two models successfully.

examples, as well as adversarial attack and adversar-
ial defense. As to adversarial attack, it can be used to
evaluate and test the robustness of deep neural net-
works; moreover, the adversarial examples generated
by adversarial attack can be added to the training set
for adversarial training, so as to enhance the robust-
ness of models. Therefore, this paper is committed
to the research of adversarial attack methods to help
evaluate and improve the robustness of models.

Although adversarial examples are generally trans-
ferable, to further improve their transferability for
effective black-box attacks remains to be explored. In
the search of more transferable adversarial examples,
some gradient-based attacks have been proposed,
such as single-step [6] and iterative [9, 10] methods.
These methods show powerful attack capabilities in
the white-box setting, but their success rates are rela-
tively low in the black-box setting, which is attributed
to overfitting of adversarial examples. Since the gen-
eration process of adversarial examples is similar to
the training process of neural network, this differ-
ence in attack ability of an adversarial example under
white-box and black-box settings is also similar to
that of the same neural network on training and test
sets. As a result, this paper can apply methods that
improve the performance of deep learning models to

the generation of adversarial examples to eliminate
overfitting and improve their transferability. Many
methods have been proposed to improve DNN per-
formance [1, 2, 10–13], one of the most important one
is data augmentation [1, 2], and it can prevent over-
fitting during training and improve the generalization
ability of models.

This paper optimizes the generation of adver-
sarial examples based on data augmentation and
proposes the Random Transformation of Image
Brightness Attack Method (RTM) to improve their
transferability.

– Inspired by data augmentation [1, 2], this paper
adapts the random transformation of image
brightness to adversarial attacks, so as to effec-
tively eliminate overfitting in the generation of
adversarial examples and improve their transfer-
ability.

– The proposed method is readily combined with
gradient-based attack methods (e.g., momentum
iterative gradient-based [10] and diverse input
[15] methods) to further boost the success rate
of adversarial examples for black-box attacks.

Extensive experiments on the ImageNet dataset
[14] have indicated that, compared to current data
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augmentation attack methods [15], our method,
RT-MI-FGSM (Random Transformation of Image
Brightness Momentum Iterative Fast Gradient Sign
Method), has a higher success rate for black-box
attacks in normally and adversarially trained models.
By Integrating RT-MI-FGSM with the diverse input
method (DIM) [15], the resulting RT-DIM (Random
Transformation of image brightness with Diverse
Input Method) can greatly improve the average attack
success rate on adversarially trained models in black-
box settings. In addition, the method of attacking
ensemble models simultaneously is used to further
improve the transferability of adversarial examples
[8]. Under the ensemble attack, RT-DIM reaches an
average success rate of 72.1% for black-box attacks
on adversarially trained networks, which outperforms
DIM by a large margin of 24.3%. It is expected that
the proposed attack method can help evaluate the
robustness of models and effectiveness of defense
methods.

2. Related work

2.1. Adversarial example generation

Biggio et al. [16] presented a simple but effec-
tive gradient-based method that can be used to
systematically assess the security of several widely-
used classification algorithms against evasion attacks,
indicating that traditional machine learning models
are vulnerable to adversarial examples. However, this
discovery is limited to the traditional machine learn-
ing models, and cannot be extended to the widely
used deep neural networks. Szegedy et al. [5] reported
the intriguing property that DNNs are also fragile
to adversarial examples and proposed the L-BFGS
method to generate them, but this method needed
a lot of computation. Goodfellow et al. [6] demon-
strated the fast gradient sign method that can generate
adversarial examples with one gradient step which
reduces the computation needed to generate adver-
sarial examples and forms the basis of subsequent
FGSM-related methods, but has low attack success
rate. Alexey et al. [9] extended FGSM to an iter-
ative version, which greatly improved the success
rate for white-box attacks and proved that adversarial
examples also exist in the physical world. How-
ever, due to overfitting, the success rate of black box
attack of this method is lower than that of FGSM.
Dong et al. [10] proposed momentum-based iterative
FGSM, improving the transferability of adversarial

examples. But this method only introduced a bet-
ter optimization algorithm to generate adversarial
examples, which limited the transferability of the
adversarial examples. Zhang et al. [17] proposed a
new approach named PCD for computing adversar-
ial examples for DNNs and increase the robustness
of Big Data. Because of the particularity of this
method, this method cannot be well combined with
FGSM-related methods and therefore, cannot fur-
ther improve the attack success rate. Xie et al. [15]
randomly transformed the original input images in
each iteration to reduce overfitting and improved the
transferability of adversarial examples. However, the
realization of this method was not easy since random
transformation involved scaling and adding. Dong et
al. [18] used a set of translated images to optimize
adversarial perturbations. To reduce computation, the
gradient was calculated by convolving the gradient of
the untranslated images with the kernel matrix, which
can generate adversarial examples with better trans-
ferability. However, this method greatly increased the
number of translation transformation, resulting in its
significantly lower attack success rate on the nor-
mal training network than DIM. After discussing the
above-mentioned methods, the fact that adversarial
examples may exist in the physical world brings much
greater security threats to the practical application of
DNNs [7, 9].

2.2. Defense methods against adversarial
examples

Many defense methods against adversarial exam-
ples have been proposed to protect deep learning
models [19–26]. Adversarial training [6, 27, 28] is
one of the most effective ways to improve the robust-
ness of models by injecting adversarial examples into
training data. Xie et al. [21] found that the effective-
ness of adversarial examples can be reduced through
random transformation. Guo et al. [22] found a range
of image transformations with the potential to remove
adversarial perturbations while preserving the key
visual information of an image. Samangouei et al.
[23] used a generative model to purify adversarial
examples by moving them back toward the distri-
bution of the original clean image, thereby reducing
their impact. Liu et al. [24] proposed a JPEG-based
defensive compression framework that can rectify
adversarial examples without affecting classification
accuracy on benign data, alleviating the adversar-
ial effect. Cohen et al. [26] proposed a randomized
smoothing technique to obtain an ImageNet classi-
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fier with certified adversarial robustness. Tramèr et al.
[28] proposed ensemble adversarial training, utilizing
adversarial examples generated for other models to
increase training data and further improve the robust-
ness of models. Liu et al. [29] proposed a novel
defense network based on generative adversarial net-
work (GAN) to improve the robustness of the neural
network.

3. Methodology

Let x be the original input image, y the cor-
responding true label, and θ the parameter of the
model. J(θ, x, y) is the loss function of the neural
network, which is usually cross-entropy loss. This
paper aims to generate an adversarial example xadv

that is visually indistinguishable from x by maxi-
mizing J(θ, x, y) to fool the model; i.e., the model
misclassifies the adversarial example xadv. This paper
uses the L∞ norm bound, ||xadv − x||∞ ≤ ε, to limit
adversarial perturbations. Hence adversarial example
generation can be transformed to a condition con-
strained optimization problem:

arg max
xadv

J(θ, xadv, y), s.t.||xadv − x||∞ ≤ ε. (1)

3.1. Gradient-based adversarial attack methods

Since our proposed method belongs to and is based
on gradient-based adversarial attack methods, this
section introduces several methods to generate adver-
sarial examples.

Fast Gradient Sign Method (FGSM). FGSM [6] is
one of the most basic methods, which searches adver-
sarial examples in the direction of the loss gradient
∇xJ(θ, x, y) with respect to the input and imposes
infinity norm restrictions on adversarial perturba-
tions. The updated equation is

xadv = x + ε · sign(∇xJ(θ, x, y)). (2)

Iterative Fast Gradient Sign Method (I-FGSM).
Kurakin et al. [9] proposed an iterative version of
FGSM. It divides the gradient operation in FGSM
into multiple iterations to eliminate the under-fitting
caused by single-step attacks. It can be expressed as

xadv
t+1 = Clipε

x{xadv
t + α · sign(∇xJ(θ, xadv

t , y))},
(3)

where α is the step size of each iteration and α = ε/T ,
where T is the number of iterations. The Clip function

restricts the adversarial example to be within the ε-
ball of the original image x to meet the infinity norm
constraint. Experiments have shown that I-FGSM
has a higher success rate for white-box attacks than
FGSM, but with poorer transferability.

Momentum Iterative Fast Gradient Sign Method
(MI-FGSM). Dong et al. [10] proposed MI-FGSM
from the perspective of introducing better optimiza-
tion algorithm to the process of adversarial attack.
MI-FGSM is the first method to integrate the momen-
tum item with I-FGSM, which can stabilize gradient
update directions, improve convergence, and greatly
increase the attack success rate. MI-FGSM differs
from I-FGSM in the update directions of adversarial
examples:

xadv
0 = x, g0 = 0, gt+1 = μ · gt + ∇xJ(θ, xadv

t , y)

||∇xJ(θ, xadv
t , y)||1

, (4)

xadv
t+1 = Clipε

x{xadv
t + α · sign(gt+1)}, (5)

where gt is the gradient weighted accumulation of
the previous t iterations. In Equation (4), μ is the
decay factor of the momentum term, which controls
momentum updating size.

Diverse Input Method (DIM). DIM [15] randomly
transforms the original input with a given probability
in each iteration to reduce overfitting. Transforma-
tions include random resizing and padding. This
method is readily combined with other baseline attack
methods to generate adversarial examples with better
transferability. The random transformation equation
is

T (Xadv
t ; p) =

{
T (Xadv

t ), with probability p

Xadv
t , with probability 1 − p

.

(6)
Projected Gradient Descent (PGD). PGD [19] is

a strong iterative version of FGSM, which improves
the attack success rate of adversarial examples.

3.2. Random transformation of image brightness
attack method

Data augmentation [1, 2] has been proven effective
to prevent network overfitting during DNN train-
ing. Based on this, this paper proposes the Random
Transformation of Image Brightness Attack Method
(RTM), which randomly transforms the brightness of
the original input image with probability p in each
iteration to alleviate overfitting. The idea of the RTM
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Fig. 2. Frame diagram of random transformation of image brightness attack method.

is showed on Fig. 2. It optimizes the adversarial per-
turbations of the image with randomly transformed
brightness:

arg max
xadv

J(θ, RT (xadv; p), y), s.t.||xadv − x||∞ ≤ ε, (7)

RT (Xadv; p) =
{

RT (Xadv)mwith probability p

Xadv, with probability 1 − p

. (8)

The random transformation function RT (·) randomly
decreases the brightness of the input image at a ran-
dom rate. The transformation probability p controls
the balance between the original input image and the
transformed image. With this method, this paper can
achieve effective attacks on the model through data
augmentation, avoid overfitting attacks of white-box
models, and improve the transferability of adversarial
examples.

3.3. Attack algorithms

For the gradient processing of generating adver-
sarial examples, RTM introduces data augmentation
to alleviate overfitting. RTM is easily combined with
MI-FGSM to form a stronger attack, which is referred
to as RT-MI-FGSM (Random Transformation of
image brightness Momentum Iterative Fast Gradi-
ent Sign Method). Our algorithm can be associated
with the family of FGSM by adjusting its param-

Algorithm 1: RT-MI-FGSM

Input: A clean example x with ground-truth label y; a
classifier f with loss function J ; Perturbation size ε;
maximum iterations T and decay factor μ.
Output: An adversarial example xadv

1: α = ε/T

2: xadv
0 = x; g0 = 0

3: for t = 0 to T − 1 do
4: Get xadv

t by xadv
t = RT (xadv

t ; p) � apply random
transformation of the input’s brightness with the
probability p

5: Get the gradients by ∇xJ(θ, xadv
t , y)

6: Update gt+1 by gt+1 = μ · gt + ∇xJ(θ,xadv
t ,y)

||∇xJ(θ,xadv
t ,y)||1

7: Updatexadv
t+1 by Equation (5)

8: return xadv = xadv
T

eter settings. For example, RT-MI-FGSM degrades
to MI-FGSM if p = 0, i.e., step 4 of algorithm 1
can be removed to realize MI-FGSM. Algorithm 1
summarizes the RT-MI-FGSM attack algorithm1.

In addition, RTM can be combined with DIM to
form RT-DIM, further improving the transferability
of adversarial examples. The algorithm of RT-DIM
attack is summarized in Algorithm 2. The RT-MI-
FGSM attack algorithm can be obtained by removing
step 4 of Algorithm 2 and the DIM attack algorithm
by removing step 5. In addition, the MI-FGSM attack

1The code is publicly available at https://
github.com/yangbo93/atack-method.

https://github.com/yangbo93/atack-method
https://github.com/yangbo93/atack-method
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Algorithm 2: RT-DIM

Input: A clean example x with ground-truth label y; a
classifier f with loss function J ; Perturbation size ε;
maximum iterations T and decay factor μ.
Output: An adversarial example xadv

1: α = ε/T

2: xadv
0 = x;g0 = 0

3: for t = 0 to T − 1 do
4: Get xadv

t by xadv
t = RT (xadv

t ; p) � apply random
transformation of the input’s brightness with the
probability p

5: Get xadv
t by xadv

t = T (xadv
t ; p) � apply random resizing

and padding to the inputs with the probability p

6: Get the gradients by ∇xJ(θ, xadv
t , y)

7: Update gt+1bygt+1 = μ · gt + g
||g||1

8: Update xadv
t+1 by Equation (5)

9: return xadv = xadv
T

algorithm can be acquired by removing steps 4 and
5. Of course, our method can also be related to the
family of Fast Gradient Sign Methods by adjusting
the transformation probability p and decay rate μ.
It reflects the convenience and advantages of our
method.

4. Experiments

Extensive experiments are conducted to evaluate
our method’s effectiveness. In the following, we spec-
ify the experimental settings, show the results of
attacking a single network, validate our method on
ensemble models, and discuss the hyper-parameters
that affect the results.

4.1. Experimental setup

Dataset. It is meaningless to generate adversarial
examples from the original images that are already
classified wrongly. This paper randomly selects 1000
images belonging to 1000 categories (i.e., one image
per category) from the ImageNet verification set,
which were correctly classified by our testing net-
works. All images were adjusted to 299 × 299 × 3.

Models. Seven networks are considered. The
four normally trained networks are Inception-v3
(Inc-v3) [30], Inception-v4 (Inc-v4) [31], Inception-
Resnet-v2 (IncRes-v2) [31], and Resnet-v2-101
(Res-101) [32]; the three adversarially trained net-
works [28] are ens3-adv-Inception-v3 (Inc-v3ens3),
ens4-adv-Inception-v3 (Inc-v3ens4), and ens-adv-
Inception-ResNet-v2 (IncRes-v2ens).

Baselines. Our method is integrated with MI-
FGSM [10] and DIM [15] to evaluate the
improvement of RTM over these baseline methods.

Implementation details. For the hyper-parameters,
we follow the default settings in [15] with the maxi-
mum perturbation ε = 16, number of iterations T =
10, and step size α = 1.6. For MI-FGSM, the decay
factor is defaulted to μ = 1.0. For DIM, the default
settings are adopted. For our methods, p is set to 0.5
for the random transformation function RT (X; p),
and to 1.0 when RTM is combined with DIM. For
transformation operations RT (·), the brightness of
the input image x is randomly adjusted to B ∗ r,
where B is the original brightness of the input image
and r ∈ (

1
/

16, 1
]

is the adjustment rate. For intu-
itive understanding, Fig. 3 shows some images after
random brightness transformation.

4.2. Attacking a single network

We first perform adversarial attacks on a single net-
work. I-FGSM, MI-FGSM, DIM, and RT-MI-FGSM
are used to generate adversarial examples only on
the normally trained networks which are tested on
all seven networks. The results are shown in Table 1,
where the success rate is the model classification error
rate with adversarial examples as input. This paper
also combines RTM and DIM as RT-DIM. p is set to
1.0 for RTM in this case. The test results on the seven
networks are shown in Table 2.

The results in Table 1 show that the attack success
rates of RT-MI-FGSM under mostly black-box set-
tings are much higher than those of other baseline
attacks. It also has higher attack success rates than
the DIM attack method based on data augmentation,
and maintains relatively high white-box attack suc-
cess rates. For example, when generating adversarial
examples on the Inc-v3 network to attack the Inc-
v4 network, the success rate for black-box attacks
of RT-MI-FGSM reaches 71.4%, the highest among
these methods. RT-MI-FGSM also performs better
on the adversarially trained networks. Compared to
the other three attack methods, our method greatly
improves the success rates for black-box attacks. For
example, when generating adversarial examples on
the Inc-v3 network to attack the adversarially trained
networks, the average attack success rates of RT-
MI-FGSM and MI-FGSM are 24.6% and 12.2%,
respectively. This 12.4% enhancement demonstrates
that our method can effectively improve the trans-
ferability of adversarial examples. The six randomly
selected original images, the corresponding randomly
transformed images and generated adversarial exam-
ples are shown in Fig. 3. The adversarial examples are
crafted on the Inc-v3 by the proposed RT-MI-FGSM
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Fig. 3. The adversarial examples are crafted on Inc-v3 by RT-MI-FGSM and RT-DIM method respectively. Images from first to third line
are original inputs, randomly transformed images, and generated adversarial examples, respectively.

Table 1
The success rates (%) of adversarial attacks against seven models under single model setting

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3 I-FGSM 99.9∗ 22.6 20.2 18.1 7.2 7.6 4.1
MI-FGSM 99.9∗ 48.1 47.1 39.9 15.2 14.2 7.2
DIM 99.2∗ 69.6 64.8 58.8 22.7 21.2 10.3
RT-MI-FGSM(Ours) 96.8∗ 71.4 68.1 62.9 30.8 28.3 14.6

Inc-v4 I-FGSM 37.9 99.9∗ 26.2 21.9 8.7 8.0 5.0
MI-FGSM 63.9 99.9∗ 53.7 47.7 19.7 16.9 9.4
DIM 80.1 99.0∗ 71.4 63.6 26.6 24.9 13.4
RT-MI-FGSM(Ours) 80.4 98.5∗ 72.5 69.0 42.6 39.1 23.4

IncRes-v2 I-FGSM 37.2 31.8 99.6∗ 25.9 8.9 7.5 4.9
MI-FGSM 68.6 61.9 99.6∗ 52.1 25.1 20.2 14.4
DIM 80.6 76.5 98.0∗ 69.7 36.6 32.4 22.6
RT-MI-FGSM(Ours) 80.9 75.3 96.4∗ 71.3 48.0 41.6 33.4

Res-101 I-FGSM 27.7 23.3 21.3 98.2∗ 9.3 7.9 5.6
MI-FGSM 52.4 48.2 45.6 98.2∗ 22.3 18.6 11.8
DIM 71.0 65.1 62.6 97.5∗ 32.4 29.8 17.9
RT-MI-FGSM(Ours) 66.5 61.8 59.7 96.7∗ 33.7 29.9 20.3

Adversarial examples are crafted on Inc-v3, Inc-v4, IncRes-v2, and Res-101, respectively, using I-FGSM, MI-FGSM, DIM, and RT-MI-
FGSM. ∗ indicates white-box attacks.

and RT-DIM method respectively. It can be seen that
these generated adversarial perturbations are human
imperceptible.

We then compare the attack success rates of the
RT-MI-FGSM with that of DIM methods based on
data augmentation. The results show that our method

mostly performs better on both normally and adver-
sarially trained networks, and RT-MI-FGSM has
higher black-box attack success rates than DIM. In
particular, compared to DIM, RT-MI-FGSM signif-
icantly improves the black-box attack success rates
on the adversarially trained networks. For exam-
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Table 2
The success rates (%) of adversarial attacks against seven models under single-model setting

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3 DIM 99.2∗ 69.6 64.8 58.8 22.7 21.2 10.3
RT-DIM(Ours) 93.9∗ 75.3 72.0 70.4 38.9 35.5 19.0

Inc-v4 DIM 80.1 99.0∗ 71.4 63.6 26.6 24.9 13.4
RT-DIM(Ours) 85.7 96.1∗ 77.5 74.9 54.0 48.3 34.1

IncRes-v2 DIM 80.6 76.5 98.0∗ 69.7 36.6 32.4 22.6
RT-DIM(Ours) 77.6 73.4 89.6∗ 70.0 51.1 45.8 38.0

Res-101 DIM 71.0 65.1 62.6 97.5∗ 32.4 29.8 17.9
RT-DIM(Ours) 70.8 65.5 62.9 94.0∗ 40.2 36.8 25.2

Adversarial examples are crafted on Inc-v3, Inc-v4, IncRes-v2, and Res-101, respectively, using DIM and RT-DIM. ∗ indicates white-box
attacks.

ple, when generating adversarial examples on the
Inc-v3 network to attack the adversarially trained net-
work Inc-v3ens4, the black-box attack success rate
of DIM was 21.2%, and that of RT-MI-FGSM was
28.3%. If adversarial examples are crafted on Inc-
v4, then RT-MI-FGSM has success rates of 42.6%
on Inc-v3ens3, 39.1% on Inc-v3ens4, and 23.4% on
IncRes-v2ens, while DIM only obtains correspond-
ing success rates of 26.6%, 24.9%, and 13.4%,
respectively.

The results in Table 2 show that RT-DIM, which
integrates RT-MI-FGSM and DIM, further improves
the attack success rates in most black-box settings.
For example, when generating adversarial examples
on the Inc-v4 network to attack adversarially trained
networks, the average attack success rate of RT-
DIM reaches 45.5%, while that of the DIM method
under the same conditions is 21.6%. The average
attack success rate more than doubled with RT-DIM.
Interestingly, the white-box attack success rates of
RT-DIM are not as high as those of DIM, perhaps
because the integration of the two methods further
increases the transformation randomness of the orig-
inal input image. More analysis and discussion about
this can be seen in Section 4.4.

4.3. Attacking an ensemble of networks

Though RT-MI-FGSM and RT-DIM can improve
the transferability of adversarial examples on the
black-box models, we can further increase their attack
success rates by attacking the ensemble models. We
follow the strategy in [10] to attack multiple networks
simultaneously. We consider all seven networks dis-
cussed above. Adversarial examples are crafted on
an ensemble of six networks, and are tested on
the ensembled network and hold-out network, using
I-FGSM, MI-FGSM, DIM, RT-MI-FGSM, and RT-
DIM, respectively. The number of iterations in the

iterative method is T = 10, the perturbation size is
ε = 16, and the ensemble weights of networks are
equal, i.e., ωk = 1

/
6.

The experimental results are summarized in
Table 3, which shows that in the black-box settings,
RT-DIM has higher attack success rates than the
other methods. For example, with Inc-v3 as a hold-
out network, the success rate of RT-DIM attacking
Inc-v3 is 85.2%, while those of I-FGSM, MI-
FGSM, DIM, and RT-MI-FGSM are 54.3%, 75.4%,
83.7%, and 84.3%, respectively. On challenging
adversarially trained networks, the average success
rate of RT-DIM for black-box attacks is 72.1%,
which is 24.3% higher than that of DIM. These
results show the effectiveness and advantages of our
method.

In the white-box settings, we encounter a similar
result to that of RT-MI-FGSM and RT-DIM men-
tioned above (see Section 4.2): the white-box attack
success rates of RT-MI-FGSM on the ensemble mod-
els are lower than those of MI-FGSM, but are higher
than those of RT-DIM and DIM, and the results of
RT-DIM are lower than those of DIM and RT-MI-
FGSM. This is an interesting result. Perhaps the
model and method ensembles have something in
common, meaning they have similar effects on the
generation of adversarial examples, which remains
an open issue for future research.

4.4. Hyper-parameter studies

In this section, extended experiments are con-
ducted to further study the influence of different
parameters on RT-MI-FGSM and RT-DIM. This
paper considers attacking an ensemble of networks to
evaluate the robustness of the models more accurately
[15]. The experimental settings are maximum per-
turbation ε = 16, number of iterations T = 10, and
step size α = 1.6. For MI-FGSM, the decay factor is
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Table 3
The success rates (%) of adversarial attacks against seven models under multi-model setting

Attack -Inc-v3 -Inc-v4 -IncRes-v2 -Res-101 -Inc-v3ens3 -Inc-v3ens4 -IncRes-v2ens

Ensemble I-FGSM 98.5 98.2 99.1 97.8 98.2 98.2 96.3
MI-FGSM 98.8 98.7 99.4 97.8 98.6 98.5 96.8
RT-MI-FGSM(Ours) 93.9 95.4 96.2 93.5 95.5 95.0 96.3
DIM 87.2 86.8 87.7 87.8 91.9 91.4 91.8
RT-DIM(Ours) 87.7 87.8 90.0 89.0 91.3 92.8 91.9

Hold-out I-FGSM 54.3 48.3 48.8 41.2 17.4 18.5 10.8
MI-FGSM 75.4 69.7 67.5 62.8 25.4 31.2 19.1
RT-MI-FGSM(Ours) 84.3 80.9 80.7 77.1 54.0 57.8 40.7
DIM 83.7 82.3 80.5 76.9 49.8 52.0 41.7
RT-DIM(Ours) 85.2 82.4 84.0 81.9 75.2 75.7 65.4

The “-” symbol indicates the name of the hold-out network. Adversarial examples are generated on the ensemble of the other six networks.
The first row shows success rates for the ensembled networks (white-box attack), and the second row shows success rates for the hold-out
network (black-box attack).

Fig. 4. Success rates of RT-MI-FGSM (left) and RT-DIM (right) under different transformation probabilities p. Adversarial examples are
generated on an ensemble of six networks, and tested on the ensembled network (white-box setting, dashed line) and hold-out network
(black-box setting, solid line).

defaulted to μ = 1.0, and for DIM [15], the default
settings are used.

Transformation probability p. This paper first
studies the impact on the attack success rates in
the white-box and black-box models by varying
p between 0 and 1. When p = 0, RT-MI-FGSM
degrades to MI-FGSM, and RT-DIM to DIM. Fig-
ure 4 shows the attack success rates of our method
on various networks. It can be seen that the trends
of RT-MI-FGSM and RT-DIM are different with the
increase of p. For RT-MI-FGSM, as p increases,
the success rates for black-box attacks increase and
that for white-box attacks decrease. For RT-DIM,
with the increase of p, the success rates of black

box attack on adversarially trained networks increase
steadily. The success rates of white-box attacks and
black-box attacks on normally trained network first
increase and then decrease, and finally present an
upward trend. Moreover, for all attacks, if p is rel-
atively small, i.e., only utilizing a small number
of randomly transformed inputs, the black-box suc-
cess rates on adversarially trained models increase
significantly, the black-box success rates on nor-
mally trained networks fluctuate slightly, while the
white-box success rates only drop a little. This
result shows the importance of adding randomly
transformed inputs to the generation of adversarial
examples.
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Fig. 5. Success rates of RT-MI-FGSM (left) and RT-DIM (right) under different random adjustment rates r. Adversarial examples are
generated on an ensemble of six networks and tested on the ensembled network (white-box setting, dashed line) and hold-out network
(black-box setting, solid line).

Random adjustment rate r. This paper studies the
effect of r on the attack success rates under the
white-box and black-box settings, randomly select-
ing r within a range, which is changed from (1, 1]
to

(
1
/

16, 1
]
. When r ∈ (1, 1], i.e., r = 1, RT-MI-

FGSM degrades to MI-FGSM, and RT-DIM degrades
to DIM. The attack success rates on various networks
are shown in Fig. 5. It can be seen that as the value
range of r increases, the success rates for black-box
attacks of RT-MI-FGSM increase, and they decrease
for white-box attacks. However, for RT-DIM, the
success rates of black-box attacks on adversarially
trained networks are significantly improved, and the
success rates of white-box attack and black-box
attacks on normally trained networks are slightly
increased. The random adjustment rate r considers
both the randomness and adjustment amplitudes of
the image brightness transformation.

Constant adjustment rate r. This paper finally stud-
ies the influence of a constant value of r on the attack
success rates under the white-box and black-box set-
tings, changing the value range of r from 1

/
16 to

1, i.e., the value of r is increasing. In each iteration,
the transformation of the original input is the same.
When r = 1, RT-MI-FGSM degrades to MI-FGSM,
and RT-DIM to DIM. Figure 6 shows the attack suc-
cess rates on various networks. It should be noted

that the leftmost ordinate value in Fig. 6 represents
the attack success rate of our method (RT-MI-FGSM
and RT-DIM), while the ordinate value at the far right
of Figs. 4 and 5 represents the attack success rate of
our method. As r increases, the attack success rates
of RT-MI-FGSM and RT-DIM have different trends.
For RT-MI-FGSM, with the increase of r, i.e., the
decrease of the amplitude of image brightness trans-
formation, the success rates of black box attacks on
adversarially trained networks decrease significantly.
The success rates of black box attacks on normally
trained networks first increase and then decrease, and
finally present a downward trend, while the white-box
attack success rates increase slightly. For RT-DIM,
the success rates for black-box attacks on the adver-
sarially trained networks decrease greatly, while they
drop a little for white-box and black-box attacks on
the normally trained networks. It is also found that
the same methods have different attack effects under
random and constant adjustment rates. With a ran-
dom adjustment rate, a higher attack success rate is
more easily achieved in the white-box models. With a
constant adjustment rate, it is easier to obtain a higher
attack success rate on the normally trained networks
and in the black-box models. These results provide
useful suggestions for constructing strong adversarial
attacks in practice.
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Fig. 6. Success rates of RT-MI-FGSM (left) and RT-DIM (right) under different constant adjustment rates r. Adversarial examples are
generated on an ensemble of six networks and tested on the ensembled network (white-box setting, dashed line) and hold-out network
(black-box setting, solid line).

5. Conclusions and future work

In this paper, we propose a new attack method
based on data augmentation that randomly transforms
the brightness of the input image at each iteration in
the attack process to alleviate overfitting and gener-
ate adversarial examples with more transferability.
Compared with traditional FGSM related methods,
the results on the ImageNet dataset show that our pro-
posed attack method has much higher success rates
for black-box models, and maintains similar success
rates for white-box models. In particular, our method
is combined with DIM to form RT-DIM to further
improve the success rates for black-box attacks on
adversarially trained networks. Moreover, the method
of attacking ensemble models is used simultaneously
to further improve the transferability of adversarial
examples. The results of this enhanced attack show
that the average black-box attack success rate of
RT-DIM on adversarially trained networks outper-
forms DIM by a large margin of 24.3%. Our work of
RT-MI-FGSM suggests that other data augmentation
methods may also be helpful to build strong attacks,
which will be our future work, and the key is how
to find effective data augmentation methods for itera-
tive attacks. This inspires us to continue to explore the
nature of adversarial examples, study the differences
among data augmentation methods, and explore more

ways to improve model generalization performance.
It is hoped that the proposed attack method can help
evaluate the robustness of the models and the effec-
tiveness of different defense methods and build deep
learning models with higher security.
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