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Prediction of PM2.5 concentration
considering temporal and spatial features:
A case study of Fushun, Liaoning Province

Fei Lei, Xueying Dong∗ and Xiaohe Ma
Faculty of Information Technology, Beijing University of Technology, Beijing, China

Abstract. With the development of the urban industry in recent years, air pollution in areas such as factories and streets
has become more and more serious. Air quality problems directly affect the normal lives of residents. Effectively predicting
the future air condition in the area through relevant historical data has high application value for early warning of this area.
Through the study of the previous monitoring data, it is found that the pollutant data of adjacent monitoring stations are
correlated in more periods. Therefore, this paper proposes a hybrid model based on CNN and Bi-LSTM, using CNN to
synthesize multiple adjacent stations with strong correlations to extract spatial features between data, and using Bi-LSTM
to extract features in the time dimension to finally achieve pollutant concentration prediction. Using the historical data of 40
monitoring stations in different locations of Fushun city to conduct research. By comparing with the traditional prediction
model, the results prove that the model proposed in this paper has higher accuracy and stronger robustness.
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1. Introduction

In recent years, environmental pollution has
received widespread attention. In particular, air pol-
lution due to PM2.5 has become and will continue
to be a major health hazard to be resolved in the
future for a long time to come [1]. Living in a
severely polluted environment for a long time, peo-
ple’s respiratory system, cardiovascular system, and
reproductive system will gradually develop lesions.
At the same time, these air pollutants can scatter
and absorb visible light, so that the visibility of the
atmosphere is reduced and more traffic accidents are
induced, which also affects the normal life of peo-
ple. Therefore, the air quality prediction with high
accuracy and stability is essential for early regional
warnings and reduction of safety accidents[2].
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In order to predict the concentration of PM2.5, pre-
viously, deterministic and statistical methods were
mainly used in air quality prediction. The determin-
istic method is mainly based on the physical and
chemical models of the atmosphere, using mathemat-
ical methods to establish the migration or diffusion
model of the atmospheric pollution concentration,
and then simulating the dynamic change of the
atmospheric pollutant concentration through calcula-
tion, and finally achieving the purpose of predicting
the concentration. Commonly used models such as
the community multi-scale air quality model [3],
WRFChem model [4], nested air quality prediction
model system (NAQPMS) [5], etc. However, these
models require very rich information data, which is
difficult to obtain in practice, and empirical estima-
tion alone will have a greater impact on performance.
Moreover, the models for some specific situations
cannot be applied to other scenarios, which greatly
limits the application and promotion of these models.
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Nowadays, statistical prediction methods have been
loved by researchers because of their advantages.
Compared with deterministic methods, this type of
model only needs to provide enough historical data,
and the prediction purpose can be achieved through
the selection of model structure and parameters, and
these historical data are precisely the most easily
obtained information in the hands of researchers.
By providing different historical data, it also makes
its applicable scenarios more extensive. Commonly
used statistical methods mainly include the multiple
linear regression (MLR) model [6], autoregressive
moving average (ARMA) model [7], and support
vector regression (SVR) model [8]. However, the
linear assumptions contained in these traditional sta-
tistical methods do not conform to the nonlinear
characteristics of atmospheric concentration in real-
ity. Despite the rapid modeling speed of regression
analysis, it shows poor performance for nonlinear
data to solve this problem, researchers have begun
to use nonlinear machine learning methods, such
as multi-layer perceptron [9], random forest (RF)
[10], and artificial neural network (ANN) [11] to
predict air quality. Among these machine learning
methods, neural network methods can well realize
the nonlinear mechanism of atmospheric phenomena,
such as the generalized regression neural network
(GRNN) [12] and the backpropagation (BP) neu-
ral network[13]. These models have high predictive
performance, so they have been widely used in
the research of atmospheric pollutant concentration
prediction.

In actual situations, air pollution at a certain
moment may have a short-term or long-term impact
on the future state. Therefore, when predicting the
concentration of atmospheric pollutants, consider-
ing the temporal features is a necessary means
to improve the prediction accuracy[14]. Recurrent
neural networks (RNN) [15], and long short-term
memory neural networks (LSTM) [16] and other
deep learning models proposed to solve long-term
dependency problems [17] have been applied to
air pollution prediction in previous studies. This
kind of model fully takes into account the tempo-
ral features of atmospheric pollutants. Reference [18]
used a bidirectional long short-term memory neural
network(Bi-LSTM), used PM2.5 as input, and tem-
perature, weather, wind direction, and wind force
as auxiliary input data to achieve the prediction of
PM2.5 concentration, the prediction effect is better
than (LSTM). However, none of these models can
make use of pollutant concentration information in

neighboring areas. In the process of atmospheric dif-
fusion, the concentration of air pollutants at a station
is related to the previous state, while the concentration
of air pollutants at nearby stations is also state-
dependent due to the transportation of pollutants,
so the Long Short-Term Memory Neural Network
Extended Model (LSTME) is used to extract the
spatio-temporal correlation of the data [19]. However,
they still input the data of all neighboring stations
into the model, which will cause interference from
unrelated stations to have a greater negative impact
on the accuracy of the model. Soh et al. arranged
the time series data of multiple locations and selects
the top k most similar locations as auxiliary data to
predict target location data. However, they extract
temporal and spatial features separately, and finally
dynamically combines temporal and spatial predic-
tions, which destroys the inherent regularity of the
data [20]. Xie et al. also built a CNNs-GRU model
that combines multi-station data and multi-modal
data. CNNs composed of multiple CNN1D units
extract the spatial features of different modal data
separately and achieve feature-level fusion through
linear merging operations, and further obtain deeper
air quality data to abstract and merge temporal and
spatial characteristics. However, it also ignores the
inter-related information between pollutant data and
different modal data[21].

Based on previous studies, this paper proposes
a hybrid prediction model for the concentration of
PM2.5 in Fushun based on CNN and Bi-LSTM net-
work model. Use the data of 40 monitoring stations
in Fushun City, Liaoning Province, provided by the
partner company for model verification. At the same
time, the data of influencing factors such as sea-
son, temperature, humidity, air pressure, wind speed,
and wind direction are considered. After data clean-
ing, correlation analysis is performed on historical
data of multiple stations, and fusion of the appro-
priate number of neighboring station data as input
to improve prediction accuracy. Use CNN and Bi-
LSTM to extract temporal and spatial features of data,
and finally use the fully connected layer to improve
the nonlinear fitting ability of the model and get the
prediction result.

The main contributions of this paper are as follows:

(1) The influence of the selection of a neighbor-
ing station on the site to be predicted is fully
considered, and the correlation coefficient
threshold is selected through experimental
analysis.
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(2) Added multiple influencing factors data to
improve the prediction accuracy of the model.

(3) Through the proposed model, the spatio-
temporal characteristics of the data are
extracted as a whole. The spatial character-
istics include the characteristics of the data
between different stations and the character-
istics between different factors. At the same
time, a Bi-LSTM network is used for the
extraction of temporal features.

(4) The proposed model can effectively extract
spatio-temporal features. Experiments show
that the model is robust to outliers, and it also
shows higher accuracy and stability in long-
term prediction.

2. Experimental data description and
preprocessing

This section mainly describes the source of the data
and its preprocessing operations. By performing data
cleaning operations on the data, and then analyzing
the data correlation between the station to be pre-
dicted and other stations, the correlation coefficient
threshold is finally determined through experiments,
and the data of neighboring stations above the thresh-
old is fused to construct the data set used in this
paper.

2.1. Data sources

The experimental data in this article come from 40
atmospheric monitoring station equipment deployed
by the cooperative company in the urban area of
Fushun, Liaoning Province, and provide historical
air quality information and meteorological hour and
day data. Air quality information includes six com-
mon air pollutants such as PM2.5, PM10, SO2, NO2,
CO, and O3. The meteorological data includes the
temperature, humidity, air pressure, wind speed, and
direction of the location of the equipment. Since
previous studies have proved that PM2.5 has strong
seasonal characteristics [22], this paper also consid-
ers the month information. This article takes PM2.5
as the research object and uses a total of 40*8760
hours of data from 40 stations from January 2019 to
December 2019 as the research data set.

2.2. Data cleaning

Accurate prediction of pollutants is essential for
early warning. However, the datasets necessary for

the effective functioning of these technologies often
contain gaps for various reasons[23]. The problem is
complicated in case of the impossibility of processing
the part of the data due to missing values in them. An
analysis that is based on such data may be distorted,
and in the case of air monitoring and control, it may
lead to very high losses[24]. This situation arises for a
variety of reasons: a malfunction or complete failure
of the sensor for collecting information, an imperfect
system for transmitting information or a problem with
its storage [25].

After analyzing the data, it was found that the
period from data failure to normal recovery was gen-
erally less than 5 hours. Therefore, for missing data or
abnormal data less than 5 hours, we use linear inter-
polation to fill in or replace them; for missing data or
abnormal data beyond this period, we directly remove
all data for that period to reduce training errors. The
formula for linear interpolation is as follows:

Xt = Xm + Xn − Xm

n − m
(t − m) (1)

Where, t denotes the time when the data is missing
or abnormal, m denotes the most recent time greater
than t in normal data, n denotes the most recent time-
less than t in normal data, Xm denotes the data at time
m, Xn denotes the data at time n, Xt denotes the data
to be filled.

2.3. Research on the correlation of multi-station
data

Through previous studies, it has been found that
due to the high circulation of the atmosphere, there
is generally a certain connection between adjacent
multiple stations except for the individual mutation
at certain times, and this connection has a strong neg-
ative correlation with distance [26]. This article takes
the station in Wanghua District, Fushun City as the
station to be predicted, and studies the data correla-
tion with other stations. We describe this correlation
by the Euclidean distance and the Pearson correlation
coefficient between the two stations.

Pearson correlation coefficient [27] is a measure
of the degree of linear correlation between two things
(called variables in the data). The calculation formula
is as follows:

ρX,Y = E (XY ) − E (X) E (Y )√
E

(
X2

) − E2 (X)
√

E
(
Y2

) − E2 (Y )
(2)



8018 F. Lei et al. / Prediction of PM2.5 concentration

Where X and Y denote the pm2.5 data sequence
of the station to be predicted and the station to be
compared; and E (·) denotes the desired operation of
the data sequence.

Generally, for two variables X and Y , the corre-
lation coefficient between 0.6 and 1.0 indicates a
strong positive correlation; the correlation coefficient
between 0.4 and 0.6 indicates a moderate positive
correlation; the correlation coefficient is between 0.0
and 0.4 weak positive correlation. Figure 1 shows the
correlation coefficient between the station to be pre-
dicted and 39 other stations in Fushun city, where the
abscissa is the relative geographic distance between
the stations calculated by the latitude and longitude of
the location where the device is installed, in kilome-
ters (KM), the ordinate is the calculated correlation
coefficient.

It can be seen from the figure that the correla-
tion coefficient values are all above 0.6, so there is
a strong positive correlation between the station to be
predicted and other stations, and the overall perfor-
mance shows that the longer the distance, the worse
the correlation. Based on the researched correlation,
this paper selects the appropriate correlation thresh-
old through subsequent experiments and integrates
the data of the stations to be predicted and the data
of adjacent stations whose correlation coefficient is
greater than the threshold for the input data of the
prediction algorithm.

3. Network model

3.1. Time-series CNN

In recent years, Convolutional Neural Networks
(CNN) have performed well in computer vision appli-
cations, especially for grid data such as images,
which have demonstrated strong feature learning
capabilities. Sparse weights, parameter sharing, and
equivariant representation are the three major charac-
teristics of CNN. These characteristics significantly
reduce the complexity of the model and improve com-
putational efficiency [28]. However, it is relatively
rare to apply it to non-image time series data. It is
often necessary to arrange and expand the time series
data in a certain form on the plane, convert it into a
similar grid structure, and then input it into the net-
work. There are two ways to expand time series data.
The first is to expand from left to right in chrono-
logical order. Zhang Guiyong (2016) used CNN to
predict the stock index by processing the input time

Fig. 1. Line correlation of data correlation and geographic distance
between the station to be predicted and other stations.

series data into the form of (k ∗ t), Where t is the time
step, k is the stock data, and k is 1 in the original text;
another form of expansion is to expand from top to
bottom in chronological order. Du Changshun et al.
(2017) explored CNN in text sentiment analysis In
the application, each word in a sentence is arranged
from top to bottom, and the final format of the data
is (k ∗ t), where k is a word vector representing each
word and t is a time step. In the application scenario
of this article, the air quality data with k-dimensional
attributes at t consecutive timesteps needs to be used
as the input of the convolutional neural network. The
expansion form is: from top to bottom according to
time, and the attributes are expanded from left to right.
Finally, a feature matrix containing spatial informa-
tion is output through the convolution operation, as
shown in Fig. 2. The specific convolution formula is
as follows:

v = f (
n∑

i=0

(dot (Wi, Xi) + b)) (3)

where v is the output feature matrix, n represents
the number of input feature matrices, Xi is the
input feature matrix, Wi represents the correspond-
ing convolution kernel, dot represents the dot product
operation of the two matrices, f is the activation
function.

3.2. Bidirectional LSTM

LSTM is a special type of recurrent neural net-
work that can capture long-distance dependencies.
It was proposed by Hochreiter and Schmidhuber in
1997 [29]. It aims to solve long-term dependency
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Fig. 2. Schematic diagram of time series convolution operation.

problems by means of short-term memory. Because
LSTM can learn what information to remember and
what to forget through the training process, it can even
process very long sequence data without gradients
disappearing. Now, LSTM is widely used to solve
sequence data problems, such as speech recognition.
The cells in LSTM have a complex cyclic struc-
ture, and information is added or deleted through the
Gates structure, which selectively allows information
to pass. Its structure is shown in Fig. 3. The LSTM
cell has three gate structures for maintaining and
updating the cell state, including the input gate, forget
gate, and output gate. The input gate is designed to
control the writing of input information to the mem-
ory, while the forget gate and output gate determine
whether to save or release information from the mem-
ory at each decision point. The calculation formulas
for each gate, storage cells, and hidden output layer
height are as follows:

Ft = σ
(
Wf

[
Ht−1Xt

] + Bf

)
(4)

It = σ
(
Wi

[
Ht−1Xt

] + Bi

)
(5)

Ot = σ
(
Wo

[
Ht−1Xt

] + Bo

)
(6)

Ît = tanh
(
Wî

[
Ht−1Xt

] + Bî

)
(7)

Ct = FtCt−1 + It Ît (8)

Fig. 3. LSTM cell A structure.

Ht = Ot tanh (Ct) (9)

where W and B denote the corresponding weights
and bias vectors; Xt , Ht and Ct represent the input,
output and storage cells at time t; Xt−1, Ht−1 and
Ct−1 represent the input, output and storage cells at
time t − 1; Ft ,It and Ot are the input, output, and
forget gates; σ ()denotes the sigmoid function, and
tanh () denotes the tanh function.

But there is still a problem with LSTM model-
ing: the information from back to front cannot be
obtained. In some cases, the prediction may need
to be determined jointly by the preceding inputs
and the following inputs, which will be more accu-
rate. Therefore, Schuster proposed the bidirectional
LSTM (Bi-LSTM) model in 1997 to solve the prob-
lem that the unidirectional LSTM cannot handle the
simultaneous capture of data information before and
after [30]. The basic idea of the Bi-LSTM is to first
calculate forward in each training sequence of the
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Fig. 4. Bidirectional LSTM structure diagram.

Forward layer, obtain and save the output of the for-
ward hidden layer at each moment, and then calculate
backward in the Backward layer along the time to
obtain and save each moment. Finally, combine the
output of the Forward layer and Backward layer at
each moment as the final output. The overall structure
is shown in Fig. 4, in which the hidden layer units Ai

and A′
i are all LSTM units. The bidirectional structure

provides more effective information through bidirec-
tional reading and data calculation and has stronger
data processing capabilities.

3.3. A prediction model based on temporal and
spatial features

The network structure of this article is shown in
Fig. 5, which mainly includes three parts: the use
of convolutional layers to extract spatial features
between data; the extracted feature vector contain-
ing multiple time steps is input into the Bi-LSTM
to extract temporal features; after the obtained fea-
ture vector passes through the fully connected layer,
a prediction value is finally output.

The single data input size in this paper is (t, k, n),
that is, the input feature matrix has n channels, and
the size of each channel is (t, k), where t is the time

step, is the number of input factors, and n is the num-
ber of selected adjacent stations. First, a layer of 2D
convolution layers with a convolution kernel size of
(1, k) is used to extract the spatial features of the data,
including the features between different stations data
and the data between each attribute in the input Fea-
ture, the final calculation is a multi-channel feature
matrix, each feature matrix size is (t, 1). Then, the
obtained feature matrix is spliced according to the
time dimension, and input a Bi-LSTM layer to extract
the temporal features containing the data informa-
tion before and after, the size is (t, 1), where l is the
number of Bi-LSTM layer units. Finally, through the
fully connected layer, the previously obtained fea-
ture vectors are integrated into the final predicted
value of pm2.5, where multiple fully connected layers
are used to improve the model’s nonlinear expression
ability.

4. Experiment and discussion

4.1. Hyperparameter selection

In deep neural networks, choosing the right hyper-
parameters is a difficult but extremely important step,
which directly affects the performance of neural net-
work models. After comparing through a series of
experiments: First, it is determined that the basic
architecture of the network includes a convolutional
layer, a bidirectional LSTM layer, and three fully
connected layers. This network structure achieves the
best training effect. Among them, the size of the con-
volution kernel in this article is set to (1, 7) to ensure
that the convolution kernel slides along the time
axis when the convolution operation is performed.

Fig. 5. CNN+BiLSTM network structure diagram.
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Table 1
Hyperparameter selection table

Parameter Description Value

learning rate Learning rate of adam optimization algorithm 0.001
time step Time step of neural network input data 5
Epochs The number of times to train the entire sample set 200
batch size The number of data used for each training 80
conv filters The number of convolution kernels in the convolution layer 7
kernel size The size of the convolution kernel (1,7)
lstm size The number of Bi-LSTM layer units 200
dense1 The number of nodes in the first layer of fully connected neural networks 60
dense2 The number of nodes in the second layer of fully connected neural networks 15
dense3 The number of nodes in the third layer of fully connected neural networks 1

According to previous studies, a small time step size
cannot guarantee that the model has sufficient long-
term memory input, while a larger time step size will
increase irrelevant input and increase the amount of
calculation. Therefore, this paper integrates the actual
training effect and finally sets the time step size to 5.
This paper uses adaptive moment estimation (Adam)
as the optimizer to improve training speed. At the
same time, relu is used as the activation function
which avoids the problem of gradient disappearance
and accelerates the network convergence process.
The final selection of optimal model hyperparameters
is shown in Table 1.

4.2. Evaluation index of the model

After the structure of the model is determined, the
training set is used to train the network until conver-
gence. In order to evaluate the effectiveness of the
model, three indicators are used in this paper, includ-
ing mean absolute error (MAE), root mean square
error (RMSE) and coefficient of determination (R2)
[31].

1) MAE: Average absolute error is the average
value of the absolute error between the true value
of all single samples and the model prediction value,
which can better reflect the true situation of the pre-
diction error. The calculation formula is as follows:

MAE = 1

N

N∑
i=1

|reali − predicti| (10)

2) RMSE: Root mean square error is the square
root of the sum of the square of the difference between
the true value of the sample and the predicted value
of the model and the total number of samples N. It is
very sensitive to extra large and small errors, and can
well reflect the precision of the prediction error. The

calculation formula is as follows:

RMSE =
√√√√ 1

N

N∑
i=1

(reali − predicti)2 (11)

3) R2: The coefficient of determination reflects the
proportion of all the variation of the dependent vari-
able that can be explained by the independent variable
through the regression relationship. The closer the
value of R2 is to 1, the better the independent variable
can explain the dependent variable. The calculation
formula is as follows:

R2 = 1 −
∑N

i=1 (reali − predicti)2

∑N
i=1

(
reali − real

)2 (12)

In Eq. (10) to Eq. (12), N is the sample size, reali
and predicti represent the real value and predicted
value at time i, respectively; real denotes the mean
of all real values.

4.3. The influence of the selection of related
stations on accuracy

In this experiment, for station A to be pre-
dicted, based on the correlation coefficient calculated
between station A and other stations, the impact of
setting different correlation coefficient thresholds on
the model accuracy is analyzed and discussed. The
experimental results are shown in Table 2.

It can be seen from the table that when the sim-
ilarity threshold is selected too high or too low, the
final model effect will be worse, but the effect is bet-
ter than when the similarity threshold is 0.95, that is,
the model obtained when no adjacent site is used. So
it can be concluded: Adding data from adjacent sta-
tions will increase the number of important features,
which can improve the accuracy of the model dur-
ing prediction. However, after adding too many sites,
the data volume will become larger and larger, which
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Table 2
Comparison of model prediction effects under different

correlation coefficient thresholds

Thresholds MAE RMSE R2 Stations

0.95 8.17 13.53 0.88 0
0.92 7.39 12.57 0.90 1
0.90 6.58 11.61 0.91 3
0.89 6.69 11.92 0.92 5
0.88 6.22 10.46 0.92 8
0.87 7.09 12.64 0.90 13
0.86 7.40 12.19 0.91 23

will lead to irrelevant data and reduces the accuracy
of the model. At the same time, when the set similar-
ity threshold is 0.88, the obtained model has the best
effect.

This paper studies the prediction model for a single
station, so the final selection of a set of related station
data with the best prediction effect is used to analyze
and verify the prediction effect of our network model,
that is, the similarity threshold is 0.88 and the number
of adjacent stations is 8.

4.4. Comparison and analysis of model
prediction performance

In order to verify the prediction performance of this
model, a support vector regression (SVR) model and
seven deep learning models were used to analyzes the
prediction effect, including the GRNN model, CNN
model, Bi-LSTM model, LSTME model, STDNN
model, CNNs-GRU model and the model in this arti-
cle. Table 3 shows the MAE, RMSE and R2 of these
models on the test set. We can see that compared
with non-deep learning methods, the prediction errors
of deep learning methods are significantly lower,
mainly because pollutant data and weather data have
strong nonlinearity, and non-deep learning methods
are relatively weak in extracting nonlinear features.
Secondly, compared with the GRNN, CNN, and
Bi-LSTM networks that only consider the current sta-
tion, the prediction effects of LSTME, CNNs-GRU,
and our model that integrate data from neighboring
stations have been significantly improved. Among
them, the mae and rmse of our model is the small-
est. The main reason is: compared with the LSTME
model, we have merged the appropriate number of
adjacent station data through correlation analysis,
thereby reducing the impact of the data of weakly
correlated stations; Compared with CNNs-GRU, we
not only consider the spatial and temporal features
of the adjacent station data, we also extract the local
features that exist between the pollutant data and the

Table 3
Comparison of prediction effects of different models

Model MAE RMSE R2

SVR 24.05 29.91 0.73
ARMA 20.05 26.91 0.75
GRNN 16.79 21.95 0.81
Bi-LSTM 10.12 15.77 0.84
CNN 9.64 15.14 0.85
LSTME 8.20 13.24 0.88
CNNs-GRU 7.70 11.87 0.90
Ours 6.22 10.46 0.92

weather auxiliary data through CNN. The R2 value
of this model has reached 0.92, which also shows that
the predicted value has a good explanation for the true
value.

At the same time, to verify the effectiveness of the
fusion of adjacent station data to improve the pre-
diction accuracy, we draw the error graphs of the
Bi-LSTM, LSTME, and our model, and intercept a
certain period for observation, as shown in Fig. 6,
where the ordinate error is the absolute value of the
difference between the predicted value and the true
value. It can be seen that the overall error of our model
is smaller than that of the other two models; at the
same time, at some sudden changes in the error value,
the magnitude of the error mutation of our model is
also small, mainly because the convolutional network
is used in this paper to learn the local characteristics of
the multi-station data. When the current station data is
abnormal, the impact can be well reduced. Secondly,
the overall error of our model fluctuates significantly
less than the other two models. Therefore, the model
in this paper has good predictive performance, and at
the same time has a small response to outliers, and
has good predictive robustness.

In this paper, we have considered multiple influ-
encing factors data, including season, temperature,
humidity, pressure at the detection station, wind
speed and direction, etc. To verify the impact of these
data on the prediction accuracy, the data set was reor-
ganized, and the model in this paper was used to train
the data set containing influencing factors and not
containing influencing factors. The results are shown
in Table 4. It can be seen that after using the data
of influencing factors, the prediction effect has been
significantly improved.

The final prediction effect of our hybrid model
on the test set of this paper is shown in Fig. 7. In
the figure, the abscissa is time in hours, the ordinate
is PM2.5 concentration, the blue broken line is the
actual value of the concentration measured by the
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Fig. 6. Comparison error graph of the model in this paper, Bi-
LSTM model and LSTME model.

Table 4
Comparison of the impact of influencing factor data on prediction

performance

Influencing factor data MAE RMSE R2

Not added 11.49 15.26 0.85
Added 6.22 10.46 0.92

Fig. 7. The prediction effect of our hybrid model.

device, and the orange broken line is the predicted
value of the algorithm in this paper. It can be seen
that the model has a strong tracking performance for
the changing trend of pm2.5.

4.5. Analysis of long-term prediction
performance

In the actual application of PM2.5 prediction, it is
of little significance to the regional warning that only
predicting the concentration value in the next hour.
Therefore, it is necessary to continuously forecast the
data for some time in the future. To further test the

Table 5
Comparison of long-term prediction performance

MAE 1 2 3 4 5

SVR 24.05 28.36 33.38 35.06 41.91
ARMA 20.05 24.61 27.78 32.49 35.25
GRNN 16.19 19.41 21.62 24.74 26.41
Bi-LSTM 10.12 13.62 15.17 18.28 21.39
CNN 9.64 12.17 15.24 19.30 22.43
LSTME 8.20 10.84 12.61 14.95 17.43
CNNs-GRU 7.70 9.15 10.44 12.65 15.37
Ours 6.22 7.36 9.28 12.45 14.80

prediction performance of the method proposed in
this paper on a long-term scale, we have compared
and analyzed the MAE values of the results of mul-
tiple models in continuous forecasting of the next 5
hours of data. The results are shown in Table 5. It can
be seen from the results that although the error of all
methods increases with the increase of the prediction
time, the prediction error of the deep learning method
is still significantly smaller than that of the non-deep
learning method. At the same time, compared with
Bi-LSTM and CNN, the error increase of the model
using adjacent station data is smaller, indicating that
adding adjacent station data can effectively improve
the long-term prediction performance of the model.
When predicting multi-hour data, our model main-
tains the minimum MAE value, which indicates that
the model in this paper has high accuracy and stability
in long-term prediction performance.

5. Conclusion

In this paper, we propose a hybrid model based
on CNN and Bi-LSTM, which is used to predict the
PM2.5 of air pollutants in the urban area of Fushun.
First of all, the historical data of all the stations in
Fushun city are analyzed for correlation. After exper-
imental comparison, a group of adjacent stations with
a higher correlation coefficient with the station to be
predicted are selected, and the PM2.5 data, weather
data, and month data of these stations are integrated as
input to the network. Secondly, based on the proposed
hybrid model, we used CNN to effectively extract
the spatial characteristics of data between different
stations and the internal characteristics between dif-
ferent attributes; at the same time, we used Bi-LSTM
to obtain the bidirectional time features before and
after, and finally obtained a more accurate and stable
prediction effect. Through performance evaluation
and comparison of results, the main findings of this
paper are as follows: The addition of neighboring sta-
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tion data for prediction improves the accuracy of the
model while also minimizing the impact of outliers;
multiple influencing factors are added to improve
the prediction accuracy of the model; this model can
effectively extract the temporal and spatial features of
the data through CNN and Bi-LSTM, and it also has
high accuracy and stability in long-term prediction
performance.

We only considered the performance of the pre-
diction model and ignored the impact of increased
calculation and time consumption brought by the
addition of adjacent station data. Next, we will
conduct in-depth research on improving the time per-
formance of the model. For example, when selecting
a correlation coefficient thresholds, considering pre-
diction performance and time consumption to reduce
the amount of data input, and considering using 3D-
CNN to replace the convolutional layer in the current
structure to reduce the amount of calculation, these
ideas have a certain value and can be further verified.
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