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Reconstructing time series GRN
using a neuro-fuzzy system
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Abstract. As a reverse engineering field, reconstructing a Gene Regulatory Network (GRN) from time series gene data has
been a challenging issue in bioinformatics. This paper proposes a novel engineering framework that infers and reconstructs a
gene regulatory network in terms of regulatory accuracy. Different from other statistical methods, the proposed framework uses
features that represent the characteristics of time series datasets and selects the appropriate features of the time series data by
using a neuro-fuzzy system. The proposed framework for reconstruction is based on a Neuro Network with Weighted Fuzzy
Membership Function (NEWEM), which not only simplifies fuzzy inference and regulation model complexity but also improves
the regulatory accuracy of reconstructing the GRN without minimizing the dynamic regulatory cycle. Finally, the proposed

framework is evaluated with experimental results that demonstrate higher regulatory accuracy than previous algorithms.
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1. Introduction

Recently, as a field of reverse engineering, the recon-
struction or identification of gene regulatory networks
from gene expression data has been a challenging
issue in bioinformatics due to the inherent uncertainty,
fuzziness and complexity. A network representing the
relationship between the gene and the gene regulation
is referred to as a gene regulation network. Gene reg-
ulatory networks represent the cause and effect among
genes. An activator aids the expression of other genes,
while a repressor inhibits gene expression. A time series
yeast cell microarray data set was used to reconstruct a
gene regulatory network. The time series dataset shows
the different gene expressions. Thus, it is able to predict
the expression at the current time in accordance with the
expression at a previous time.

*Corresponding author. Joon S. Lim, IT College, Gachon Uni-
versity, Seongnam, South Korea. Tel.: +82 31 750 5330; Fax: +82 31
750 5662; E-mail: jslim@gachon.ac.kr.

Time series data are used for decrypting the complex
and dynamic characteristics of biological networks, by
storing multiple expression files at discrete time points
during continuous processing. Time series microarrays
are also used to analyze continuous processing datasets.

Time series data that has a characteristic of the
expression at a previous time (t-1) can estimate the
current time (t) expression, as shown in Fig. 1.

Gene networks have been modeled according to
various approaches [3, 4, 12]. Although there have
been many proposed algorithms for reconstructing gene
regulatory networks, each algorithm has specific dis-
advantages during inference of the gene regulatory
network. For example, the dynamic Bayesian net-
work model [12] based on time series data constructs
a gene network with cyclic regulatory information,
necessitating that the data be discretized into several
classes; results depend on the discretization thresholds,
leading to information loss. The model based on the
Variational Bayes Expectation Maximization (VBEM)
algorithm [3] presents the disadvantage of dynamic
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Fig. 1. Time series.

regulatory minimization [2, 14]. The time delay algo-
rithm for the reconstruction of an accurate cellular
network (ARACNE) results in low reconstruction accu-
racy.

To address the disadvantages of previous approaches,
this paper proposes a novel process of reconstructing
Gene Regulatory Networks (GRNs) with time series
data and based on a neuro-fuzzy system, the Neural
Network with Weighted Fuzzy Membership Function
(NEWFM) [15]. The NEWFM is a supervised fuzzy
neural network system that classifies layers by using
the bounded sums of the weighted fuzzy membership
function that are input and learned from the network
[5, 16, 17]. It also combines the abilities of inference
and learning in a fuzzy neural network system. As a
method of feature selection, NEWFM selects the acti-
vator and repressor from the given yeast cell microarray
time series data for GRN reconstruction. Thus, feature
selection by NEWFM is the key process in the pro-
posed framework. To evaluate the proposed framework,
a yeast cell microarray time series dataset was used [7].
Finally, the proposed framework results in higher accu-
racy than the DBN [12], VBEM [4], and the time delay
ARACNE [9] algorithm.

The entire process of the proposed process for
GRN reconstruction with NEWFM is described in Sec-
tion 2. The proposed process of GRN reconstruction
is then evaluated according to experimental results
in Section 3. Finally, conclusions regarding the pro-
posed method of GRN reconstruction are presented in
Section 4.

Four features are extracted, namely a(i), d(i), cp, and
time lag, for each gene in the yeast cell microarray
dataset, which has a total of 12 genes. The cdc 15
dataset was trained with NEWFM in order to select
more effective features. The reasoning for feature selec-
tion can increase accuracy by removing genes with
low correlations or degrees of influence. The GRN

was reconstructed after assigning a weight to each
selected feature. The achieved accuracy is 83.53% as
compared to conventional GRN, providing the KEGG
database.

2. Process of reconstructing GRN with
NEWFM

2.1. Neural network with weighted fuzzy
membership function (NEWFM)

NEWEFM is a supervised fuzzy neural network that
classifies layers using the bounded sums of the weighted
fuzzy membership functions that are input and learned
from the given network. The NEWFM consists of
three layers: the input, hyperbox, and class layers. The
input layer contains input nodes for featured input pat-
terns. Figure 2 depicts the structure of the NEWFM.
Each figure is inputted into the input layers of fi,
f2, etc. The hyperbox layer comprises fuzzy sets with
the bounded sum of three weighted fuzzy member-
ship functions. The hyperbox layer will be divided
into two classes: Bj is the learning class 1, and B; is
the learning class 2. One of characteristics is learned
classl or class2, and is categorizing the class. The
bounded sum of three weighted fuzzy membership
function is a synthesis of the bounded sums of three
membership functions of large, middle, and small val-
ues according to their weights [5, 16, 17]. NEWFM
trains n number of fuzzy set in each hyperbox accord-
ing to a number n of feature inputs. After training,
all three (large, medium, and small) weighted fuzzy
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Fig. 2. Structure of NEWFM.
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Fig. 3. Structure of bounded sum of three weighted fuzzy member-
ship functions.

membership functions of the fuzzy set compose one
weight fuzzy membership function according to the
bounded sum. This will be defuzzificated by using
Takagi-Sugeno techniques. Finally, the class layer is
the output layer. In this paper, a yeast cell dataset
GRN is reconstructed using NEWFM. As the proposed
process is unsupervised in this paper, the class layer
does not represent the value of classification in this
process [6].

Figure 3 shows the structure of the bounded sum of
three weighted fuzzy membership functions.

2.2. Data: Yeast cell cycle dataset

The dataset used for reconstruction of the GRN with
NEWEM is a yeast cell cycle microarray time series
dataset. The yeast cell is a living organism, of which
Saccharomyces cerevisiae is one of several. The yeast
cell dataset consists of four datasets: cdcl5, cdc28,
alpha, and Elu. Each data set has a time point: 24, 17,
18, and 14, respectively. The proposed NEWFM was
analyzed using the cdc15 dataset. Table 1 describes the
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Fig. 4. Overview of the proposed process with NEWFM.

2.3. Overview of the proposed process

This paper proposes a novel process for reconstruct-
ing a GRN with NEWFM. As the Fig. 4, the proposed
process consists of four steps as follows.

The description of each step is as follows:

— Step 1: For preprocessing, four features are
extracted from each of 12 genes in the yeast cell
cycle microarray dataset: wavelet a(i) (approxi-
mation), wavelet d(i) (detail coefficient), current
position and time lag (the feature extraction meth-
ods are described in detail after the general
overview of the process). Thus, there are a sum of
48 extracted features from the 12 genes that serve
as input values in the input layer of NEWFM.

— Step 2: By using NEWFM, 15 features can be
extracted from the given dataset, and the features
can differ based on the given dataset. Accord-
ing to the results of NEWFM, 15 features were
selected from the highest value to the 15th highest
value; an addition 15 features were selected that
have the lowest values, in reverse order. Experi-
mental results indicate that the best performance
was achieved when 15 features were selected
for activators and 15 features were selected for

12 genes that are related to the experiments [7]. Tepressors.
Table 1
The 12 genes of yeast cell cycle used to reconstruct the GRN [7]
Gene name ORF Description
SICO1 YLRO79W Inhibitor of the Cdc28-ClIb protein kinase complex
CLBO05 YPR120C B-type cyclin
CDC20 YGL116W Cell division control protein
CLNO3 YALO040C G1/S-specific cyclin
SWI06 YLR182W Transcription factor, subunit of SBF and MBF
CLNO1 YMR199W G1/S-specific cyclin
CLNO2 YPL256C G1/S-specific cyclin
CLB06 YGR109C B-type cyclin
CDC28 YBR160W Cyclin-dependent protein kinase
MBPO1 YDLO5S6W Transcription factor, subunit of MBF
CDCO06 YJIL194W Initiates DAN replication, active late G1/S
SWI104 YERI111C Transcription factor, subunit of the SBF factor
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Fig. 5. Structure of 48 extracted features.

— Step 3: The selected features are ranked according
to their average values of classification after the
processing in step 2. Finally, the gene regulatory
network was constructed with the activators and
repressors that were selected by NEWFM.

For the feature extraction in step 1, three different
methods were utilized: wavelet, current position, and
time lag. Each method is described as follows:

* Wavelet: The Haar function is used as a mother
wavelet and irrelevant data were removed. The
detail coefficient (di) and approximation coeffi-
cient (ai) were used at level 1, since the number
of samples in the yeast cell microarray time series
data are not sufficient to perform at level 2 or
above. The following equations are used for each
respective coefficient.

a(i) = (mj-1 + m;)/sqrt(2)
d(@) = (mj-1—m;)/sqrt(2)

where m; is the value of the current time point.
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* Current Position (CP): Current position was used
as the second feature extraction method. The
equation describing current position is as follows
[19]:

CP(t) = (X—avg(X1,-2))/ave(X 1 -2)s

where X is the value of time point t, and avg(X-1,¢-2) is
the average of X-1 and X-». The values of X1 and X;-»
were used because sample of yeast cell is not sufficient.

* Time Lag (TL): TL represents the time difference
between gene expressions. Gene T and gene R that
begin gene expression at time point t and change
expressions at time point t+1 regulate gene net-
works. The TL equation is described as follows:

TL = Rd@)(t — 1) Td()t,

where Rd(i) is the time point (t-1) of wavelet d(i) of the
gene regulator, and Td(i) is the time point(t) of wavelet
d(i) of the target wavelet.

Four features were extracted from each of 12 genes;
therefore, 48 total features were extracted. Figure 5
illustrates the structure of the features extracted by
methods a, b and ¢, described above.

Gene regulatory network

Fig. 6. Process of reconstructing GRN with NEWFM.
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Fig. 7. KEGG yeast cell cycle interactions.

3. Experimental results

The yeast cell time series datasets include alpha,
cdcl5, cdc28 and elu with 18, 24, 7 and 14 time
points, respectively [10, 15]. Twelve genes were uti-
lized (i.e., SICO1, CLB05, CDC20, CLNO03, SWIO06,
CLNO1, CLNO2, CLB06, and SWI04) from the cdc15
dataset that is presented by M.C. Costanzo, J.D. Hogan,
M.E. Cusick, et al. as a training dataset, and the alpha
and cdc28 datasets that were used for testing datasets
in this experiment [7].

To represent the characteristics of the time series
datasets during preprocessing, a moving average
method was applied that appropriately represents the
relationship between the two moving averages, removes
noisy datasets and reflects the dynamic changes and
then extracts the data according to feature extraction
methods such as wavelet a(i), wavelet d(i), CP(current
position) 5, 15], and time-lag (TL) [2]. Therefore, each
gene has four features and each gene selects features
from 44 other features with NEWFM that are the sum
of the features from the other 11 genes.
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Fig. 8. GRN reconstruction with NEWFM.

Figure 5 depicts the process of reconstructing the
gene regulatory network with NEWFM. The input layer
consists of 44 extracted features, and each node of the
hyperbox layer consists of the 44 features of each gene.

In Fig. 6 each hyperbox node is connected by a
common classification into a single class. The class is
classified by the value at dataset time point t. For exam-
ple, if t > t+1 then the class is 1; otherwise, the class is 2.
Finally, network of activators was constructed with the
best classifying results, and repressors with the worst
classifying results.

In Fig. 7, an arrow indicates a positive interaction,
while a closed circle indicates a negative interaction.
The overall figure shows the GRN reconstructed with
NEWEFM evaluated according to a portion of the yeast
cell cycle regulatory network extracted from the KEGG
database [8, 18].

Figure 8 shows the results of the gene regulatory net-
work achieved by NEWFM. Each node represents a
gene; the blue solid lines indicate activator interactions,
and the red dotted lines indicate repressor interactions.
Sensitivity and precision are computed by the following
equations:

. TP
sensitivity = ———— x 100,
TP + FN
.. TP
precision = ——  x 100
TP + FP

where a true positive (TP) is the inferred number of
edges as shown above, a false negative (FN) is the num-
ber of unidentified edges, and a false positive (FP) is the
number of correctly identified edges. Table 2 shows a
comparison of proposed process with other algorithms
in terms of sensitivity and precision. The F-score is
expressed by using the sensitivity and precision to eval-
uate the performance. The formula used to calculate the

Table 2
Sensitivity and precision comparison with other algorithms

Algorithm TP FP FN Sensitivity Precision F-score
VBEM [2] 5 3 28 152%  62.5% 23.5%
DBM [1] 4 129 121% 80% 21%

Time delay ARACNE [9] 10 2 23 30.3% 83.3% 44.4%
PF subjectto LASSO[1] 7 3 26 21.2% 70%  32.5%
HTBNF [11] 13 3 20 394% 81.3% 53.1%
Proposed Process 25 5 8 7575% 83.53% 79.45%

F-score is described as follows [11].

1
F —score =1/ (a ( ; )
precision

1
+(1—a)(.. . )
senitivity

where o =0.5 is the determined weight.

According to the results indicated by the F-
score: VBEM =23%, ARACNE=44.4%, LASSO=
32.5%, HTBNF=53.1%, and the proposed algo-
rithm =79.45%, demonstrating improved results.

4. Conclusion

This paper investigated the accuracy of GRN recon-
struction with NEWFM. By extracting four features
(wavelet a(i), wavelet d(i), CP (current position), and
TL (time lag)) the proposed process is able to accu-
rately represent the characteristics of the time series.
Time-series data is extracted using the characteris-
tic of the expression: the expression at previous time
(t-1) can estimate the expression at current time(t), and
could also represent a control gene in relation to the
target gene that is identifiable in the feature selection
process. The proposed process of GRN reconstruction
achieved a higher F-score than other algorithms such
as the dynamic Bayesian network, Variational Bayes
Expectation Maximization (VBEM), and time delay
ARACN. In future work, the proposed process of recon-
struction GRN will be strengthened, experimentation
will be conducted with a larger time series data set,
and optimal thresholds for the given datasets will be
determined.
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