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Model and algorithm for resolving regional
bus scheduling problems with fuzzy travel
times
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Abstract. Regional bus scheduling is necessary to urban public transport that is complicated by the necessity of assigning trips
that belong to several routes to buses located at different depots while reducing fleet size and operating costs. Considering the
reality of emergencies that may interfere with the ability of vehicles to complete trips on time, it is reasonable to use fuzzy numbers
to express uncertain delay times. Based on this idea, this paper proposes a chance-constrained programming model of regional
bus scheduling that will reflect additional constraints such as the capacities of related depots and fueling needs. The objective of
this paper is to maximize utilization of fleet vehicles. To overcome the defect of premature convergence in the particle swarm
optimization algorithm (PSO), an improved PSO is proposed by using an organic fusion with group search optimization. Finally,
an example demonstrates the correctness and effectiveness of the model and algorithm.

Keywords: Urban traffic, regional bus scheduling problem, fuzzy travel time, particle swarm optimization, group search
optimization

1. Introduction

In contrast to traditional single-depot bus schedul-
ing, the regional bus scheduling problem (RBSP) [5]
aims to achieve a unified schedule by sharing vehi-
cle resources across all routes. This is accomplished
by inserting deadhead trips between depots to assign
trips belonging to several routes to buses located at dif-
ferent depots. Due to the non-uniformity of departure
frequency for all routes in a given period, RBSP can
significantly reduce operating costs and improve the
efficient utilization of vehicles. Bodin and Golden [1]
have proven the RBSP is an NP-hard.

Most scholars study RBSP using the optimal schedul-
ing theory, which is divided into network flow [3, 8, 9,
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14, 19] and set partitioning [4, 11–13]. Most research
into RBSP relies on established travel durations. How-
ever, conditions of real traffic environments, such as
fluctuations in passenger loads at different time etc.,
cause deviations between the plan and actual operation,
which make practical applications of RBSP difficult to
analyze. In general, delays to trip completion are very
difficult to predict in advance. Problems in which delay
time is assumed to be an uncertain variable are RBSP
with uncertain travel times (RBSPUTT). Research into
RBSPUTT is rare [6, 7, 11–13]. Huisman and Albert
studied RBSPUTT [6, 7] by assuming that future travel
time is fixed or predicted in advance. Wei, et al. [11]
studied a more realistic RBSPUTT with a stochastic
travel time. Wei, et al. [12] proposed a multi-vehicle-
type RBSPUTT with a grey travel time, as well as
a bi-level programming model for uncertain regional
bus scheduling that revealed the overall relationship
between a scheduling plan and its procurement scheme
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[13]. However, these models are typically difficult to
solve in practice because of a lack of sufficient reliable
historical data to determine the distribution function of
the random variable or predict future growth trends.

This paper studies an RBSP with fuzzy travel times
(RBSPFTT), which assumes that travel time is an uncer-
tain variable. In combination with the rich experience
and knowledge of scheduling staff, fuzzy numbers
can represent this type of uncertain information when
provided with capacity constraints and other practical
factors. In this case, the triangular fuzzy number is used
to express the actual travel time; it is then transformed
to the corresponding chance-constrained programming
model. A new hybrid algorithm based on the fuzzy sim-
ulation is proposed to solve the model. Finally, an actual
example calculates a bus scheme to test the correctness
and effectiveness of the model and algorithm.

2. Mathematical model

2.1. Mathematical model

– Each trip requires a bus to depart from its depot on
time.

– When historical data and expertise are considered,
it is possible to use triangular fuzzy numbers to
represent certain time delays for each bus trip not
completed on time.

– To ensure that a bus does not require refueling
during daily operations, it should be fully fueled
before or after the work day.

2.2. Decision variables

T k
d = {x1, x2, . . . , x|T k

d
|}denotes a sequence of trips

accomplished in turn by each bus ∀k ∈ Vd , which
begins and ends at same depot ∀d ∈ D.

2.3. Decision variables

T = {T1, T2, . . . , T|T |} denotes a given set of trips
belonging to several routes. Each trip ∀Ti ∈ T requires
uninterrupted driving from the starting point spTi at
starting time stTi to the ending point dpTi at ending
time etTi .

D denotes a given set of depots. For each depot
∀d ∈ D, let Vd denote a given set of buses initially
located at the depot, and let capacityd denote the capac-
ity of the depot.

Each vehicle k (∀k ∈ Vd, ∀d ∈ D) arrives at the
trip ∀xi ∈ T k

d starting point spxi at the time indi-
cated by tkxi

= etxi−1 + �Txi−1 + time(dpxi−1 , spxi ). If
time(dpxi−1 , spxi ) /= 0, this situation is called a Dead-
head Trip (DH Trip). In this situation, time(dpxi−1 , spxi )
denotes the time spent in traveling from the ending
point of the trip ∀xi−1 ∈ T k

d to the starting point of the
trip ∀xi ∈ T k

d . �Txi denotes the fuzzy delay time that
prevents a vehicle from accomplishing a trip xi on time.

a0 denotes the weight of number of the buses.
a1 denotes the weight of waiting time.
a2 denotes the weight of the deadhead time.
Pos{•} denotes the possibility of the case {•}.
|x| denotes the number of elements in the set x.

2.4. Objective function equation

min f̄ (1)

2.5. Constraint equations

st. Vp ∩ Vq = ∅ ∀p, q ∈ D (2)

∪
∀d∈D,∀k∈Vd

T k
d = T (3)

T u
p ∩ T v

q = ∅ ∀u ∈ Vp, ∀v ∈ Vq (4)

|Vd | ≤ capacityd ∀d ∈ D (5)

Pos{etxi−1 + time(dpxi−1 , spxi ) + �Txi−1

≤ stxi} ≥ α ∀d ∈ D, ∀k ∈ Vd, ∀xi ∈ T k
d (6)

Pos{f = a0

∑
k∈D

|Vk| +
∑
k∈D

∑
u∈Vk

∑
xi∈Tu

k

[a1.(stxi − tuxi
)

+a2.time(dpxi−1 , spxi )] ≥ f̄ } ≥ β (7)

The objective function in Equation (1) aims to min-
imize the number of buses, the total waiting time, and
the deadhead time. Equations (2–7) represent the con-
straints, as follows: Equation (2) ensures that each bus
belongs to only one depot; Equation (3) ensures that all
trips are successfully completed by all vehicles; Equa-
tion (4) expresses that each trip is assigned to exactly
one vehicle, and a vehicle cannot simultaneously run
two trips; Equation (5) ensures that no more than a
given number of backup vehicles are dispatched from
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each depot; Equation (6) ensures that the possibility of
two trips normally accomplished in turn by the same
bus in the random environment is at least α; Equation
(7) ensures that the confidence level of f̄ representing
the maximum value of f is at least β.

3. Group particle swarm optimization
algorithm for RBSPFTT solution

Particle Swarm Optimization (PSO) [17] is an evo-
lutionary bionic algorithm that simulates flying birds,
with advantages including smaller numbers of indi-
viduals and simple calculation. PSO performs well
in multi-dimensional continuous space optimizations,
and provides very rapid local convergence to a sta-
ble state. The group search optimization (GSO) [16],
recently proposed by S. He and Q.H. Wu, is a novel
algorithm based on the social behavior of hunting ani-
mals, such as lions and wolves. The GSO performs
well in local searches, and can maintain the diver-
sity of the solution to promote the evolution of the
population. Each algorithm has advantages and dis-
advantages. Their homologous natures determine that
they should easily integrate with one another; how-
ever, current studies involving both algorithms are rare
[15].

This paper proposes a Group Particle Swarm Opti-
mization (GPSO) based on a fuzzy simulation to solve
RBSPFTT. According to the problem characteristics,
the definite scheme solution process is described, and
the following terms are defined: particle encoding
scheme, constraints handling, and position and velocity
correction equation.

3.1. Particle code scheme

In GPSO, each individual or potential solution in the
swarm is called a particle. Every particle has its own
position and velocity, where the position vector can be
decoded as a solution to the problem, and the velocity
vector is in the direction of particle movement.

The position vector X = (x1, x2, . . . , x|T |) is used
to represent a potential solution of RBSPFTT [2, 10],
wherein the i-th element is a trip xi, which differs
from other trips in the range 1 − |T |. Furthermore, V =
(v1, v2, . . . , v|T |) denotes the velocity vector, where the
element vi is a real number ranging from −|T | − |T |.
If ∀xi−1, xi ∈ X meets constraint Equation (6), the bus
will immediately execute trip xi after it has accom-
plished trip xi−1; otherwise, the two trips would be
executed by different buses. Hence, each individual can

be decoded into a sequence of trips accomplished by
different buses according to Equation (6).

As mentioned above, any individual X satisfies con-
straints Equations (2–5). Therefore, if the individual
X complies with constraints Equations (5–7), it is a
feasible solution.

3.2. Fitness function

The fitness value, determined by the fitness func-
tion, is the standard according to which the merit of
each particle position is evaluated. Each particle can be
decoded into a set of trips finished by different vehicles.
In this paper, Equation (1) is used as the fitness func-
tion to assess the quality of any individual. Because all
individuals meet constraints Equations (2–4), constraint
Equation (5) can be regarded as a penalty function to
generate a new fitness function.

min f̄ + A
∑
∀d∈D

Max(|Vd | − capacityd, 0) (8)

where A, which is set of a sufficiently large num-
ber, denotes the penalty factor. The fitness function,
expressed by Equation (8), ensures that an infeasible
solution confers great fitness value and will be elimi-
nated in the iteration.

3.3. Fuzzy objective function and handling
constraints

Constraints Equations (6) and (7) with fuzzy parame-
ters also determine the objective function Equation (8).
Because the computer does not deal directly with fuzzy
parameters, the fuzzy simulation technology proposed
by Wu, et al. [18] can be used to examine its objec-
tive function and constraint with respective confidence
levels of α and β.

According to the definition of fuzzy number arith-
metic for vector �Txi of a fuzzy delay time in a given
decision vector X the establishment of Equation (6)
holds if and only if there exists a clear vector �T 0

xi
in the

vector �Txi that satisfies etxi−1 + time(dpxi−1 , spxi ) +
�T 0

xi
≤ stxi and µ(�T 0

xi
) ≥ a, where µ(•) is the mem-

bership function of the fuzzy set. That is to say,
if etxi−1 + time(dpxi−1 , spxi ) + �T 0

xi
≤ stxi , which uni-

formly generates vector �T 0
xi

from fuzzy vector �Txi

in order to satisfy µ(�T 0
xi

) ≥ a, then Equation (6) is
established. After a given number N of iterations, if vec-
tor �T 0

xi
does not satisfy etxi−1 + time(dpxi−1 , spxi ) +

�T 0
xi

≤ stxi , then the decision vector X is considered to
be impossible.
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As mentioned above, the specific procedure of fuzzy
Equation (6) is as follows:

Step 1: Uniformly generate vector �T 0
xi

from fuzzy
vector �Txi at a horizontal cross-sectional level α;

Step 2: If etxi−1 + time(dpxi−1 , spxi ) + �T 0
xi

≤ stxi ,
then the output is “feasible”;

Step 3: Repeat step 1 and 2 N times;
Step 4: Output “infeasible”.
Similarly, the specific procedure of fuzzy Equation

(7) is as follows:
Step 1: Set f̄ = −∞;
Step 2: Uniformly generate vector �T 0

xi
from fuzzy

vector �Txi at a horizontal cross-sectional level β;
Step 3: If f̄ ≤ f , then f̄ = f ;
Step 4: Repeat step 2 and 3 N times to calculate f̄ ;
Step 5: Output f̄ .

3.4. Formula for modifying position and updating
velocity

In PSO, each particle updates itself by tracking the
personal extreme value f ∗

i (t) and global extreme value
f ∗

g (t) in every iteration. When all particles gather to
the same location (that of the current best particle), its
velocity approaches zero due to inertia, personal aware-
ness and social consciousness. Each particle will then
refuse to search the solution space in other regions.

To address the inadequacies of PSO, a concept
derived from GSO is embedded in the search procedure
for GPSO; this concept involves a random movement by
a small number of rogue particles, wherein each particle
generates a random head angle and distance and then
moves to this new position. The number of randomly
wandering particles is related to the diversity of the
population. According to the process described above,
the particle updates its velocity and position formula as
follows:

Vi(t + 1) = w · Vi(t) + c1 · rand · (X∗
i (t) − Xi(t))

+c2 · rand · (X∗
g(t) − Xi(t)) (9)

Xi(t + 1) =
{

Xi(t) + Vi(t + 1), othes

Xi(t) + liD
t
i(ϕ

t+1), rand > σ
(10)

where w, c1 and c2 denote the inertia factor,
weight, and global optimal value, respectively;
li ∈ [0, lmax], ϕt+1 ∈ [0, θmax] and Dt

i(ϕ
t+1) denote a

random distance, head angle and the vector of the angle,
respectively; and rand denotes a random number in the
range [0, 1].

Definition 1. σ = 1
N(N−1)

N∑
i /= j,i,j=1

cij denotes the pop-

ulation’s diversity where cij =
{

1, fi /= fj

0, otherwise
.

3.5. Algorithm flow

The detailed procedure for GPSO solving RBSPFTT
is described as follows.

Step 1: Set the parameters of the algorithm.
Step 2: Let t = 0 and initialize the first generation of

particle swarm.
Step 2.1: For each particle, randomly generate its

position and velocity vector Xi(0) and Vi(0), and cal-
culate its fitness value fi(0).

Step 2.2: If X∗
i (0) = Xi(0), then f ∗

i (0) = fi(0) to
determine the extreme value of each particle.

Step 2.3: Find the global optimal particle f ∗
g (0) =

min{f ∗
1 (0), . . . . . . , f ∗

n (0)}.
Step 3: Let t = t+1, and update the current status of

the t-th generation swarm.
Step 3.1: For each particle, update its position vector

Xi(t) and velocity vector Vi(t), according to Equations
(9) and (10).

Step 3.2: Recalculate the fitness value fi(t). If
fi(t) < f ∗

i (t), let f ∗
i (t) = fi(t) and f ∗

i (t) = fi(t). If
fi(t) < f ∗

g (t), let f ∗
g (t) = fi(t) and f ∗

g (t) = fi(t).
Step 4: If the termination condition is satisfied, out-

put f ∗
g (t); otherwise return to step 3.

4. Analysis of computational examples

A regional bus network is composed of three
depots (capacityd = 15, d = 1, 2, 3) and five routes.
Tables 1–4 depict details of the test instance as fol-
lows: Tables 1 and 2 demonstrate the basic information
and the fixed schedule of these lines; Table 3 depicts
the deadhead time information; and Table 4 depicts the
fuzzy delay time between two trips. Using a unified
model for bus scheduling, a bus company will assign a
certain number of vehicles to the three depots to com-
plete a total of 210 trips while minimizing operation
costs.

In order to verify the validity of the model and algo-
rithms, the empirical parameters of GPSO are set as
follows: the maximum number of iterations is 200, and
the number of particles is 50. Let w = 0.75, c1 = c2 =
1.5, lmax = 5, θmax = 45o, a0 = 500, a1 = 1, and a2 =
2.5. Matlab was used to program GPSO to solve the
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Table 1
Route information

Route Period Departure Start End Run
time (min) depot depot time (min)

1 7:00–20:30 15 A B 60
2 6:40–20:40 20 B A 65
3 6:30–21:00 30 A C 55
4 7:00–20:00 20 C A 60
5 6:45–20:25 20 B C 65

Table 2
Timetable of route information

Trip Departure Route Trip Departure Route
time time

1 7:00 1 . . . . . . 3
. . . . . . 1 128 21:00 3
55 20:30 1 129 7:00 4
56 6:40 2 . . . . . . 4
. . . . . . 2 168 20:00 4
98 20:40 2 169 6:45 5
99 6:30 3 . . . . . . 5
100 7:00 3 210 20:25 5

Table 3
Deadhead time information

Start End Deadhead Start End Deadhead
depot depot time (min) depot depot time (min)

A B 20 C A 20
B A 25 B C 25
A C 15 C B 20

Table 4
Some fuzzy delay time between trips

Trip Delay Trip Delay Trip Delay
time (min) time (min) time (min)

8 (23,29,33) 118 (27,32,34) 159 (25,27,37)
21 (24,28,35) 120 (21,30,36) 162 (23,30,36)
24 (30,36,39) 124 (26,31,37) 163 (24,28,37)
31 (21,22,26) 152 (31,32,38) 166 (20,32,39)
42 (20,26,29) 153 (22,25,34) 171 (20,24,25)
92 (30,32,35) 155 (26,28,33) 193 (25,30,37)
99 (29,33,35) 158 (37,39,40) 208 (21,31,38)

RBSPFTT, and the simulation as repeated 50 times at
confidence levels � = 1.0 and � = 0.9 on the same com-
puter in order to avoid accidental phenomena. Table 5
indicates the simulation results. There are a total of five
solutions. The optimal solution of f is equal to 19,950,
the mean is equal to 19,964, and the variance is equal to
28.6. The best solution can be identified at 62% proba-
bility, a suboptimal solution can be identified at 22%
probability, and the worst solution can be identified
at 4% probability. Thus, GPSO can find a satisfactory
solution in most cases.

Table 5
Results of 50 simulations

Solution Objective Waiting Deadhead Probability
type function time (min) time(min)

Best solution 19,950 4100 1740 62%
Suboptimal solution 19.975 4090 1765 22%
Worst solution 20,015 4065 1785 4%

N
um
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Time

Fig. 1. Number of vehicles in each parking yard between
06:30–21:00.

Table 6 demonstrates the best schedule for the
regional buses, and Fig. 1 shows the number of vehicles
in each parking yard. Each bus follows a predefined trip
sequence and is allowed to return to the starting point
of the initial trip. That is to say, if a given trip must
be assigned to a vehicle, the vehicle must arrive at a
fixed time in advance of its starting time. In order to
cover all of the trips in a fixed bus time table, 23 buses
are required to execute a total of 85 deadhead trips,
wherein:

– 9, 9, and 5 vehicles, respectively, are initially
located at depots A, B, and C.

– Deadhead trips occur 23, 6, 10, 4, 21, and 21 times
between two depots.

– The total working time for all buses is equal to
12,445 min. Their waiting and deadhead times are
equal to 4,100 min. and 1,740 min., respectively.

The influence of the two parameters α and β on bus
scheduling was also analyzed to study the effect of the
fuzzy travel time feature onf . As parameter � decreases
and parameter β increases, the number of pairs of feasi-
ble trips completed by a vehicle decreases; this leads to a
further reduction in the feasible solution space consist-
ing of these pairs, and the sub-solution space containing
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Table 6
Results of bus arrangements

No. Sequence case of each bus completing the trip Time (min)

Traveling Waiting Deadhead

1 A-6-64-DH-68-21-191-154-40-202-166-A 540 137 20
2 C-134-DH-179-DH-187-DH-80-37-200-DH-123-54-DH-C 485 170 125
3 B-58-DH-135-14-70-26-DH-32-196-161-124-DH-B 530 185 60
4 B-172-136-16-186-150-DH-195-160-48-DH-55-B 555 225 45
5 B-57-102-140-20-76-115-DH-36-201-165-126-DH-B 580 235 40
6 C-131-12-DH-19-188-152-119-DH-122-DH-52-DH-C 475 213 90
7 A-3-63-106-141-23-83-41-203-DH-96-128-DH-A 580 265 40
8 C-132-104-DH-67-110-DH-114-DH-86-44-206-C 460 210 60
9 B-171-DH-177-143-112-DH-30-82-38-89-51-98-DH-B 590 197 60
10 A-101-DH-176-DH-15-185-148-31-197-DH-46-DH-167-A 550 133 85
11 A-2-DH-10-181-145-DH-77-118-DH-45-207-DH-A 480 219 65
12 A-5-65-108-DH-73-28-81-DH-157-43-DH-50-DH-A 520 155 85
13 C-130-7-66-18-74-DH-78-116-DH-85-DH-204-DH-209-C 585 165 80
14 B-59-9-DH-107-144-DH-189-156-DH-88-DH-94-DH-B 465 205 105
15 B-56-DH-60-11-69-111-149-34-199-DH-92-DH-B 520 215 60
16 B-170-DH-62-DH-180-DH-22-190-153-39-90-49-210-DH-B 610 171 80
17 A-1-61-DH-178-DH-71-DH-75-29-DH-117-159-47-208-DH-A 590 128 105
18 A-100-DH-103-137-DH-183-DH-25-192-155-121-DH-205-168-A 600 132 80
19 A-4-175-139-109-DH-27-DH-33-84-42-93-53-DH-A 590 134 70
20 B-173-138-17-72-113-DH-193-158-DH-164-DH-97-DH-B 535 132 75
21 C-129-DH-133-105-DH-182-146-DH-79-35-87-DH-91-DH-95-DH-C 580 140 110
22 B-169-DH-174-DH-13-184-147-DH-151-DH-198-162-125-DH-B 555 161 95
23 A-99-DH-8-DH-142-24-194-DH-120-163-127-DH-A 470 175 85
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Fig. 2. Influence of parameters � and � on bus scheduling.

better solutions is abandoned. Ultimately, the cost of the
scheme increases with less uncertainty. However, the
scheme is less disturbed by emergencies, and less cost
change occurs in the process of a real-time adjustment
scheme. The results shown in Fig. 2 are consistent with
visual analysis.

In order to verify the validity of the improved algo-
rithms, a case study was calculated 50 times each
with GPSO, PSO, and GSO. Figure 3 comparatively
analyzes the average simulation results, with the con-
clusions as follows:
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Fig. 3. Comparative analysis of three kinds of algorithms.

– GPSO, PSO, and GSO require 210, 95, and 390
iterations, respectively, to converge to their opti-
mal solutions. The differences in optimal solutions
among them are 2.1%, 2.5%, and 4.6%, respec-
tively. This indicates that GPSO performs better
than PSO and GSO in convergence.

– PSO obtains the optimal solution faster than GSO,
but it easily converges to local optima. Hence,
GPSO, which combines the advantages of the other
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two algorithms, can perform thermal simulations
effectively. By judging the degree of prematu-
rity to maintain swarm diversity, GPSO can not
only yield a suboptimal solution quickly, but also
jump from local optimization solutions by control-
ling the search space of particles. This indicates
that GPSO performs more robustly than PSO and
GSO.

5. Conclusions

The primary contribution of this paper is to propose
a chance-constrained programming model for regional
bus scheduling with fuzzy travel times. Compared to
existing studies on RBSPUTT with random or grey
travel times, the proposed model can avoid the defect
of requiring a large amount of traffic data to determine
the distribution function of uncertain travel times, mak-
ing it easier to optimally solve in practice. The test case
analyzed the influence of the fuzzy feature of travel time
on bus scheduling, and results indicate that the scheme
with less fuzziness of travel time is less disturbed by
emergencies and has less cost change in a real-time
adjustment scheme.

This paper also contributes to the design of a new
hybrid GPSO algorithm, which combines the advan-
tages of both PSO and GSO by embedding the concept
of a small portion of particles to take a random walk
out of the group into GSO, as occurs in the search
procedure for PSO. The simulation indicates that, com-
pared to PSO and GSO in convergence and robustness
of the algorithm, GPSO can not only converge to a sub-
optimal solution quickly, but also jump from a local
optimization solution by controlling the search space
of particles.
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