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Abstract. In this paper, a T-S fuzzy model of the NSV (Nearspace Vehicle) kinematic model is established based on fuzzy
approximation theory, and a new fuzzy robust tracking control law is designed in reference to the feedforward control of the linear
system. In order to account for a case in which no augmented matrix is introduced, the control law is designed as a compound form
of feedback and feedforward, and the gains of feedback and feedforward are solved by LMI (Linear Matrix Inequalities). The
strategy is applied to the anti-interference control of NSV attitudes, and the convergence of tracking errors is analyzed according
to the Lyapunov method. Simulation results based on the NSV demonstrate the validity of the proposed method.
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1. Introduction

It is well known that the fuzzy control technique pro-
vides a means of collecting knowledge and expertise.
Over the past decade, it has proved to be very useful
in many applications [8, 10, 13, 14, 19]. It is not sur-
prising that T-S fuzzy models have become one of the
most useful control approaches for complex nonlinear
systems. Many nonlinear systems can be represented by
T-S fuzzy systems, allowing designers to take advantage
of conventional linear system methods to for design and
analysis [2, 4, 6, 7, 18, 21, 22]. The fuzzy adaptive con-
trol can not only automatically adjust to control rules
in the face of change in performance and parameters
of the controlled object, but also enhance the adaptive
ability to deal with environmental changes and realize
the purpose of control.
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The control design of NSVs has attracted increas-
ing attention in recent years. The primary reason is that
they have potential and promising applications in both
military and civilian fields. Since a Nearspace vehicle
is a complex dynamic system, it is difficult to study
according to traditional control methods. To overcome
this limitation, a T-S fuzzy control scheme has been
considered to cope with such problems. The major
advantage of this scheme is that an accurate mathe-
matical model is not necessary, and consequently, the
T-S fuzzy control theory is suitable for the design of the
flight control system of an NSV [5, 15]. However, the
Nearspace hypersonic vehicle dynamics are severely
nonlinear, time-varying, highly uncertain and strongly
coupled. It also suffers from different external distur-
bances and uncertainties due to changes in the flight
environment. Therefore, ensuring the robust stability
of the NSV flight is challenging. To date, this subject
has not been fully investigated.

This paper proposes the design of a feedback and
feedforward control for T-S fuzzy systems, which has
been applied to the tracking control of attitude angle
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of the NSV. The organization of the paper is as fol-
lows: Section 2 describes design formulation. Section 3
describes the tracking controller design of the NSV, and
presents the design of an anti-interference composite
controller, as well as the calculation method of feedfor-
ward gain and feedback gain by LMI. The simulation
results which demonstrate the effectiveness of the pro-
posed approaches are presented in Section 4, followed
by conclusions in Section 5.

2. Problem formulation

The mathematic model of the NSV developed
at NASA (National Aeronautics and Space Admin-
istration) Langley Research Center is given as
follows:

α̇ = 1

MV cos β

+[−L + Mg cos γ cos µ − Tx sin α + Tz cos α]

+q − tan β(p cos α + r sin α)

β̇ = 1

MV
[−Tx sin β cos α + Ty cos β − Tz sin α sin β]

1

MV
[Y cos β + Mg cos γ sin µ]

−r cos α + p sin α

µ̇ = sec β(p cos α + r sin α)

+ 1

MV
[L tan γ sin µ + L tan β]

+ 1

MV
[−Mg cos γ cos µ tan β

+(Y + Ty) cos β cos µ tan γ]

+ 1

MV
[(Tx sin α − Tz cos α)(tan γ sin µ + tan β)]

− 1

MV
[(Tx cos α + Tz sin α) tan γ cos µ sin β]

ṗ = Ip
qrqr + İp

pp + g
p
l (lA + lT )

q̇ = Iq
prpr + İq

qq + gq
m (mA + mT )

ṙ = Ir
pqpq + İr

r r + gr
n (nA + nT ) (1)

where α is the angle of attack, β is the sideslip angle,
µ is the bank angle, p is the roll rate, q is the pitch rate
and r is the yaw rate.

According to singular perturbation theory, the six
equations can be divided into the fast loop and the slow

loop, respectively. The above attitude motion equations
can thus be rewritten as follows:

�̇(t) = f s(�(t)) + gs(�(t))ω(t) + gs2(�(t))δ(t)

ω̇(t) = gf (ω(t))TC(t) + ff (ω(t)) (2)

where� = [α, β, µ]T represents the slow-loop state, or
the attitude angle vector; ω = [

p, q, r
]T represents the

fast-loop state, or the body-axis angular rate vector; and
f s(�(t)) = [fα, fβ, fµ]T represents the system matrix
of attitude angle gs2(�(t)), given as follows:

gs2 =

⎡
⎢⎣

gα,δe gα,δa 0

gα,δe gα,δa gα,δr

gα,δe gα,δa gα,δr

⎤
⎥⎦ (3)

According to the following: x (t) = [ω(t)T ,�(t)T ],
u (t) = TC, y(t) = �(t) system (2) can also be repre-
sented as follows:

ẋ (t) = f (x (t)) + g (x (t)) u (t) + d (x (t))

y (t) = Cx (t) (4)

3. The tracking controller design for NSV

3.1. Stability analysis

In recent years, many important results regarding sta-
bility analysis for T-S fuzzy control systems have been
reported [1, 3, 5, 9, 15]. In this section, the follow-
ing T-S fuzzy model of the NSV is considered, and
which is composed of a set of fuzzy implications. The
ith rule of this T-S fuzzy model is of the following form.
Then, based on the Lyapunov stability theorem, a suf-
ficient condition is derived in terms of LMIs, which
can guarantee the stability of the closed-loop control
system.

Plant Rule i

IF z1 (t) isNi1 and · · · zk (t) is Nik

THEN ẋ (t) = Aix (t) + Biu (t) + d (x (t))

(5)

where i = 1, 2, . . . , r, Nik represents the fuzzy set
and r represents the number of rules; x (t) is the state;
u (t) is the control input; d (x (t)) is the unknown uncer-
tainty; zn (t) are premise variables; and Ai, Bi are
constant matrices with appropriate dimensions.



N.-B. He et al. / Robust adaptive fuzzy control design for nearspace vehicle 2507

According to fuzzy principles, system (5) can be
described as follows:

ẋ (t) =
r∑

i=1

hi (z) (Aix (t) + Biu (t) + Eid(t))

y (t) = Cx (t)

(6)

For all t, therefore:

hi(z(t)) = wi(z(t))/
r∑

i=1

wi(z(t)),
r∑

i=1

wi(z(t)) = 1

wi(z(t)) =
r∏

j=1

Nij(z(t)), i = 1, . . . , r,

Nij(z(t)) is the grade of membership of Nik.
For a dynamic system, the feedback controller can

be represented as follows:

u(t) = −
r∑

i=1

hi(z(t))Kix(t) (7)

The H∞ gain is defined for the system anti-
interference characteristics as follows:

‖ϒ‖∞ = sup
‖d‖2 /= 0

‖y‖2

‖d‖2
< λ (8)

where λ represents the rate of decay H∞; d is the
unknown uncertainty; andy is the control input. In order
to prove stability of the system, the following theorem
is applied.

Theorem 1. Considering system (6), for i, j =
1, 2, . . . , r, Ei and Ej are the known real constant
matrices of appropriate dimensions. If rate of decay λ

and a symmetric positive definite matrix P exist, then
any set of state feedback control gains Kj must meet
the following matrix inequality:⎡

⎢⎢⎢⎢⎢⎢⎣

⎧⎨
⎩

−1

2
((Ai − BiKj)TP + P(Ai − BiKj)

+(Ai − BjKi)
TP + P(Ai − BjKi))

⎫⎬
⎭ − 1

2P(Ei +Ej) 1
2 (Ci + Cj)T

− 1
2 (Ei +Ej)TP λ2I 0
1
2 (Ci + Cj) 0 I

⎤
⎥⎥⎥⎥⎥⎥⎦

≥ 0 (9)

whereAi,Bi, and Ci are constant matrices with appro-
priate dimensions; thus, the system is asymptotically
stable.

Proof. Choose the Lyapunov function candidate

V (x(t)) = xT (t)Px(t) (10)

The time derivative (10), the following is obtained:

=
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t))xT (t)(Ai − BiKi)
TPx(t)

+
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t))xT (t)P(Ai − BiKi)x(t)

+
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t))xTCT
i Cjx(t) − λ2dT (t)d(t)

+
r∑

i=1

hi(z(t))dT (t)ET
i Px(t)+

r∑
j=1

hj(z(t))xT (t)PEid(t)

= V̇ (x(t)) + yT (t)y(t) − λ2dT (t)d(t) ≤ 0

Integrating both sides with respect to time:

V (x(tr)) − V (x(0))

+
∫ tr

0
(yT (t)y(t) −2 dT (t)d(t))dt ≤ 0

Due to V (x(t)) ≥ 0, then

‖y‖2

‖d‖2
< λ

Therefore V̇ (x(t)) ≤ 0 and the system satisfies the
H∞ performance index, indicating that the closed-loop
system is asymptotically stable.

3.2. The robust controller design

In order to design a control law to guarantee the
stability of the closed-loop system and to eliminate
the effect of external disturbances and uncertainties.
the composite controller of NSV, system (4), can be
described as follows:

ẋ (t) = ψ(t) + d (x (t)) +
r∑

i=1

hi (Aix (t) + Biu (t))

y (t) = Cx (t)
(11)
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where ψ(t) represents the external disturbance of the
NSV; d (x (t)) is the unknown bounded uncertainty; and
yc (t) is the reference output, which is produced by the
following model:

ẋc (t) = Acxc (t) xc (0) = xc0

yc (t) = Ccxc (t)
(12)

In accordance with T-S fuzzy theory, the control rules
can be designed as follows:

Tracking Controller Rule i :

IF z1 (t) is N1
j

and · · · zn (t) isNn
j

THEN u (t) = u1 (t) + u2 (t) j = 1, 2, · · · , r

(13)

where u1 (t) = ∑r
j=1 hj (z)Kjx represents the fuzzy

feedback control law;Kj stands represents the gains of
the feedback control law;u2 (t) = ∑r

j=1 hj (z)Kcjxc is
the fuzzy feed forward control law; and Kcj represents
the gains of the feedforward control law.

In order to prove the stability of the track, the follow-
ing lemma is given.

Lemma 1. [17] Let X be a symmetric matrix given by:

X =
[
X11 X12

XT
12 X22

]
,

The following conditions are equivalent:

(i) X < 0
(ii) X11 < 0 and X22 − XT

12X
−1
11 X12 < 0

(iii) X22 < 0 and X11 − X12X
−1
22 XT

12 < 0

where X11 = XT
11, X22 = XT

22, and X11 ∈ Rr×r repre-
sents a symmetric nonsingular matrix.

Assumption 1. There exists a known bounding matrix
�π satisfying ‖ψ(t)‖ ≤ ‖�π‖, where ψ(t) is the exter-
nal disturbance in system (11).

Assumption 2. There exists a known bounding matrix
� such as ‖d (x (t))‖ ≤ ‖�‖, where d (x (t)) is the
unknown bounded uncertainty in system (11).

Based on the above analysis, the robust adaptive con-
trol of the vehicle can be surmised according to the
following theorem.

Theorem 2. For i, j = 1, 2, · · · , r, there exists a real
symmetric positive definite matrix P , which satisfy the
following the inequality.

(Ai − BiKj)PT + P(Ai − BiKj)

+η2P�T�P + η2
πP�T

π�πP + 

T < 0 (14)

where 
 =
[

1
η
I, 1

ηπ
I
]
, η, ηπ > 0, the static feedback

gains Kj are obtained.

Theorem 3. For i, j = 1, 2, . . . , r, (D, F j) satisfying
condition

AiD+ BiF j −DAc = 0

CD− Cc = 0
(15)

According to the solutions of (D,F j), the feedfor-
ward control gains Kcj are obtained.

4. Simulation

In this section, simulation results are presented in
order to illustrate the effectiveness of the proposed
robust control scheme. Considering the nonlinear-
ity of NSV dynamics, the aerodynamic coefficients
are taken as the nominal cruising flight; the nom-
inal flight of an NSV occurs at a trimmed cruise
condition (V = 2500 m/s, H = 45 km); the initial atti-
tude angle conditions are chosen as α = 1◦, β = −1◦,
µ = −1◦; the body-axis angular rate is assumed to
be p = q = r = 0◦/s; the reference commands are
αc = 3.4◦, βc = 0◦, and µc = 1.2◦, respectively. The
external disturbance of the NSV system is 2 × 105 ·
[sin(2t), sin(2t), sin(2t)]T Nm, and the system exists
–20% aerodynamic parameter perturbation.

According to Theorem 2, the feedback control gains
Kj can be obtained as follows:

K1

=106 ×

⎡
⎢⎣
−6.16 −0.85 −1.84 −16.2 −1.61 −1.62

0.09 −12.6 2.73 −0.15 −6.02 −34.2

5.03 −1.86 −14.9 −0.71 40.2 −3.50

⎤
⎥⎦

K2

=106 ×

⎡
⎢⎣
−5.95 −0.86 2.00 −11.6 −11.2 −1.65

1.20 −12.6 4.02 4.53 −7.92 −34.2

−4.35 −1.89 −15.2 −25.2 30.9 −3.58

⎤
⎥⎦

K3

=106 ×

⎡
⎢⎣
−6.16 0 −1.63 −16.1 −1.75 0

−0.01 −12.6 0 0−0.04 −34.2

5.02 0 −14.9 −1.34 40.0 0.05

⎤
⎥⎦
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K4

= 106×

⎡
⎢⎣

−5.96 −0.01 2.21 −11.6 −11.4 −0.01

−0.01 −12.6 0 0.02 −0.02 −34.2

−4.37 −0.01 −15.2 −25.8 30.6 0.03

⎤
⎥⎦

K5

= 106×

⎡
⎢⎣

−6.16 0.84 −1.42 −16.0 −1.91 1.64

0.06 −12.6 −2.73 −0.16 5.93 −34.2

5.01 1.89 −14.9 −1.93 39.8 3.64

⎤
⎥⎦

K6

= 106×

⎡
⎢⎣

−5.97 0.85 2.42 −11.5 −11.5 1.65

−1.20 −12.6 −4.02 −4.49 7.88 −34.2

−4.37 1.89 −15.1 −26.4 30.3 3.68

⎤
⎥⎦

The reference model is given as follows:

Ac =

⎡
⎢⎣

−3 0 1

0 −5 0

3 0 −1

⎤
⎥⎦ ,Cc = I3

xc (0) = [
2.3◦, −0.3◦, 2.3◦]T

In Theorem 3, Kcj = F j −KjD were obtained.

Kc1 = 106 ×

⎡
⎢⎣

16.2 1.61 3.86

0.15 6.02 35.6

0.71 −40.2 −6.65

⎤
⎥⎦

Kc2 = 106 ×

⎡
⎢⎣

16.2 1.61 3.86

0.15 6.02 35.6

0.71 −40.2 −6.65

⎤
⎥⎦

Kc3 = 106 ×

⎡
⎢⎣

16.1 1.75 −0.01

0 0.04 34.2

1.34 −40.0 −0.05

⎤
⎥⎦

Kc4 = 106 ×

⎡
⎢⎣

11.6 11.4 0.01

−0.02 0.02 34.2

25.8 −30.6 −0.03

⎤
⎥⎦

Kc5 = 106 ×

⎡
⎢⎣

16.0 1.91 −3.93

−0.16 −5.93 35.6

1.96 −39.8 6.17

⎤
⎥⎦

Kc6 = 106 ×

⎡
⎢⎣

11.5 11.5 −5.77

4.49 −7.88 35.6

26.4 −30.3 1.55

⎤
⎥⎦

The simulation results indicate the following conclu-
sions. Figure 1 depicts the tracking curve of the angle
of attack α; Fig. 2 represents the tracking curve of the
sideslip angle β; Fig. 3 depicts the tracking curve of the
bank angle µ; and Fig. 4 shows the p, q, r state response
curve (p is the roll rate, q is the pitch rate and r is the
yaw rate.). The variables αc, βc, µc are the reference
commands of attitude angle α, βµ, respectively.

As shown in Figs. 1 through 4, the closed-loop sys-
tem is asymptotically stable under the proposed robust
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Fig. 1. Angle of attack α tracking curve.
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Fig. 2. Sideslip angle β tracking curve.
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Fig. 3. Bank angle µ tracking curve.
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Fig. 4. Angular rate p, q, r state response curve.

compound controller. Thus, the proposed fuzzy con-
trol scheme based on feedback control and feedforward
control is validated.

5. Conclusion

T-S fuzzy control schemes have been developed for
the NSV system with functional uncertainty and exter-
nal disturbance. Feedforward and feedback composite
control is adopted to eliminate the external disturbance
of the NSV. The controller design has been imple-
mented in a unified manner in which gains are solved
according to a set of LMIs. Simulation results have
demonstrated the effectiveness of the proposed model.

NSV is a complex dynamic system; future work will
take random factors and stochastic noises in develop-
ments of NVS models into accountance [11, 12, 16],
and will study attitude tracking control and accommo-
dation approaches to NSVs with functional uncertainty
and external disturbance.
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[6] I. Škrjanc, S. Blažič and D. Matko, Direct fuzzy model-
reference adaptive control, International Journal of Intelligent
Systems 17(10) (2002), 943–963.

[7] J.X. Dong, Y.Y. Wang and G.H. Yang, H(∞) and mixed
H(2)/H(∞) control of discrete-time T–S fuzzy systems with
local nonlinear models, Fuzzy Sets and Systems 164(1) (2011),
1–24.

[8] M. Chen, C.S. Jiang and Q.X. Wu, Disturbance-observer-based
robust flight control for hypersonic vehicles using neural net-
works, Advanced Science Letters 4 (2011), 1771–1775.

[9] J.A. Meda-Campana, J. Rodriguez-Valdez, T. Hernandez-
Cortes and R. Tapia-Herrera, Analysis of the fuzzy
controllability property and stabilization for a class of T-S
fuzzy models, IEEE Transactions on Fuzzy Systems 23(2)
(2015), 291–301.



N.-B. He et al. / Robust adaptive fuzzy control design for nearspace vehicle 2511

[10] M.K. Chang, J.J. Liou and M.L. Chen, T–S fuzzy model-based
tracking control of a one-dimensional manipulator actuated
by pneumatic artificial muscles, Control Engineering Practice
19(12) (2011), 1442–1449.

[11] M.T. Malinowski and R.P. Agarwal, Some properties of strong
solutions to stochastic fuzzy differential equations, Informa-
tion Sciences 252 (2013), 62–80.

[12] M.T. Malinowski and R.P. Agarwal, On solutions to set-valued
and fuzzy stochastic differential equations, Journal of the
Franklin Institute 352 (2015), 3014–3043.

[13] Q. Shen, B. Jiang and V. Cocquempot, Fault-tolerant control
for T–S fuzzy systems with application to near-space hyper-
sonic vehicle with actuator faults, IEEE Transactions on Fuzzy
Systems 20(4) (2012), 652–665.

[14] Q. Zhou, H.Y. Li and P. Shi, Decentralized adaptive fuzzy
tracking control for robot finger dynamics, IEEE Transactions
on Fuzzy Systems 23(3) (2015), 501–510.

[15] R.E. Precup, M.L. Tomescu and S. Preit, Fuzzy logic control
system stability analysis based on Lyapunov’s direct method,
International Journal of Computers, Communications &
Control 4(4) (2009), 415–426.

[16] R.R. Yacoub, T. Riyanto, A. Bambang and J. Harsoyo, Sar-
wono, DSP implementation of combined FIR-functional link
neural network for active noise control, International Journal
of Artificial Intelligence 12(1) (2014), 36–47.

[17] S. Boyd, L.E. Ghaoui, E. Feron, et al., Linear Matrix Inequali-
ties in System and Control Theory, SIAM, Philadelphia, 1994.

[18] T. Senthilkumar and P. Balasubramaniam, Robust H(∞) con-
trol for nonlinear uncertain stochastic T–S fuzzy systems
with time delays, Applied Mathematics Letters 24(12) (2011),
1986–1994.

[19] Y.H. Wang, Q.X. Wu and C.S. Jiang, Reentry attitude track-
ing control based on fuzzy feedforward for reusable launch
vehicle, International Journal of Control, Automation, and on
Systems 7(4) (2009), 503–511.

[20] Z.F. Chen, S. Aghakhani, J. Man and S. Dick, ANCFIS: A
neurofuzzy architecture employing complex fuzzy sets, IEEE
Transactions on Fuzzy Systems 19(2) (2011), 305–322.

[21] Z.J. Yu and Y.N. Xu, Research of adaptive fault-tolerant control
based on T-S fuzzy model, International Journal of Modeling
and Optimization 4(1) (2014), 62–66.


