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Abstract. With the continuous development of huge systems, dependence on the system is continually increasing. The failure
of such systems will cause huge losses. The reason for system failure is often unclear, so that inconsistency and uncertainty
between fault data will appear. In the actual application process, there is a process of change. If it is possible to predict the failure
probability from the monitoring parameters, it will be very beneficial to system troubleshooting. Therefore, this paper proposes
a new recognition algorithm based on fuzzy rough sets, in order to adapt to the processing of uncertain fault detection data.
Additionally, the optimal direction of the dynamic information entropy increment is used to predict the fault information. This can
quickly find the faults and provide important information for fault detection. It is verified that the proposed algorithm can improve
the early warning and the accuracy of fault diagnosis information systems in the fault simulation analysis of a diesel engine.
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1. Introduction

With the quick development of modern industry
and scientific technology, and with the large-scale,
high-speed and automatic trends in modern equip-
ment, people have become more concerned about the
safety and reliability of equipment. In recent years,
data techniques have become increasingly important
to the development of modern industrial technology
[19]. Faults of modern industrial production will result
in disasters, once the fault has occurred. Recently, the
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disastrous accidents caused by critical equipment faults
have inspired much research on equipment diagnosis,
that have resulted in an emerging field of fault diagnosis
of equipment, engineering structure and technologi-
cal processes [26]. S. Yin introduces the application
of data-driven methods in industrial monitoring, which
has occurred in the last twenty years and promotes the
rapid development of industrial automation [18]. Fault
detection and diagnosis technology has been proposed
as a new method to improve the reliability and safety
of systems so that fault detection and diagnosis tech-
nologies within dynamic systems have become a rapid
field of development. Existing fault diagnosis meth-
ods can be roughly divided into model-based methods,
knowledge-based methods and methods based on image
processing.
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The residual between the measurable information
and prior system information expressed by a model is
used in the model-based method, which can achieve
fault diagnosis by analyzing and processing the resid-
ual. This method must establish the mathematical
model of diagnosed objects, and estimate the param-
eters using detective signals or by reconstructing the
system state. The test for state estimation residual
sequences and identification are used to forecast, locate
and quantify the fault [24].

Due to the connection between the amplitude, phase,
frequency and correlation of system I/O signals and
the fault source, the fault can be detected and isolated
by the application of a signal processing method and
a characteristic extraction method after the fault has
occurred. This method based on signal analysis theory
provides multiple eigenvectors in the time domain and
frequency domain, and exploits the connection between
eigenvectors and fault sources to analyze and process
the system signal so that the position of fault sources
can be determined [9].

The knowledge-based method exploits expert diag-
nostic knowledge and diagnostic objects without
establishing a quantitative mathematical model applied
the fuzzy logic method to the adaptive adjustment of
residual thresholds [7, 16]. M. Hemza proposed the
automatic detection of faults using a neural network
[11]. A. Bellini adopted a method based on pattern
recognition to complete the automatic detection of
non-linear system faults [1]. S. Yin derives the frame-
work of data-driven design, which can be used for
the monitoring of large-scale industrial processes [22].
S. Yin introduces an improved PLS (IPLS) method,
which provides a high detection rate and can effec-
tively diagnose the faults of KPI [20]. The expert
system is also one algorithm of fault detection systems
[13].

In spite of the fantastic results from state-of-the-art
research on fault diagnosis, unsolved problems remain,
as follows:

The unknown mechanism of faults from diagnostic
equipment may result in ambiguity in the external man-
ifestation of faults and unclear system states expressed
by diagnostic information. Different faults may demon-
strate similar performance, whereas the same fault may
express differently at different times or under different
environmental conditions. The ambiguity and inconsis-
tency among failure data will have a major impact on
the operating results of fault detection systems, which
is not advantageous to the application of fault detective
technology.

Shorter time of fault diagnosis will result in smaller
losses caused by accidents. Therefore, the development
of rapid diagnostic technology is very important, partic-
ularly rapid diagnostic technology that does not reduce
the accuracy of fault diagnosis.

In this paper, a method based on cognitive rule extrac-
tion is used to achieve dynamic analysis and intelligent
cognition of informative systems, monitored by a real-
time system so that the fault is found more quickly. The
continuous change of diagnostic information is consid-
ered, and the rule extraction is achieved by a cognitive
rule in which the fuzzy rough set is adopted. The simu-
lative analysis of a diesel engine fault demonstrates that
the intelligent cognitive rules can achieve earlier warn-
ing regarding fault diagnosis information systems, and
the improved accuracy of such systems.

This paper is organized as follows. Section 2 presents
fuzzy rough set theory. Section 3 details the cognizance
rule generation. Section 4 presents the simulation of
a diesel engine fault for evaluation of the proposed
method.

2. Fuzzy rough set theory

As an extended rough set, fuzzy rough sets introduce
fuzzy set theory, so that the rough set can effectively
handle complex uncertain problems. The fuzzy decision
table is defined in this section.

Definition 1. Let the fuzzy decision table be
defined as DT = (U, A = C ∪ D, V, f ). U is the
discourse domain; A is the fuzzy attribute set,
which includes condition attribute set C = {A1,

A2, · · · , Am} and decision attribute set D = {Am+1},
in which Aj is the fuzzy attribute on domain
U. U can be divided into pj fuzzy equivalence

classes, namely F (Aj) = {Fj
1 , F

j
2 , · · · , Fpj

j }. F
j
i (1 ≤

i ≤ pj, j = 1, 2, · · · , m + 1) is a fuzzy set in the
domain U.

Since fuzzy rough sets introduce the fuzzy sets, the
equivalent class, as well as the upper and lower approx-
imation concepts in classical rough set theory are also
extended to the fuzzy equivalence class, vague upper
approximation, and lower fuzzy approximation, respec-
tively.

Definition 2. Let R be defined as a fuzzy equivalence
relation on domain U, namely the fuzzy attribute. For
x ∈ U:

µ[x]R = µR(x,y) (1)
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Represents the fuzzy equivalence class of object x.
This represents the aggregation of all adjacent elements
of x in domain U, and is a fuzzy set.

Definition 3. For the fuzzy decision table DT =
(U, A = C ∪ D, V, f ), R is a fuzzy attribute on domain
U, and X ⊆ U. The lower approximation RX member-
ship and upper approximation RX membership about
R, respectively, are as follows:

µRX(Fi) = inf
x∈U

max{1 − µF i(x), µX(x)}∀i (2)

µRX(Fi) = sup
x∈U

max{µFi (x), µX(x)}∀i (3)

where RX and RX are both fuzzy set on U. In
Formula 3, Fi is a fuzzy equivalence class on U about R
division, that Fi ⊆ U/R. The fuzzy lower approximation
and upper approximation can be defined as follows:

µRX(x) = sup
Fi∈U/R

min (µFi (x), inf
y∈U

max{1 - µFi (y),µX(y)})
(4)

µRX(x) = sup
Fi∈U/R

min (µFi
(x), inf

y∈U
min{µFi

(y),µX(y)}) (5)

The fuzzy lower approximation and upper approxi-
mation constructed binary pair

〈
RX, RX

〉
is designated

the fuzzy rough set.

Definition 4. In rough set theory, the attribute set A in
the domain partition can be expressed as follows:

U/A = ⊗ {U/α|α ∈ A} (6)

where ⊗ denotes S1 ⊗ S2 = { X ∩ Y| X ∈ S1,Y ∈
S2,X ∩ Y /= ∅}

If A = { α1,α2, · · · αm} ,

U/A = {X1i1 ∩ X2i2 ∩ · · · ∩ X1im |X1i1 ∈ U/α1,X1i2

∈ U/α2, · · · ,X1im
∈ U/αm}

Through the definition of the fuzzy equivalence class
of attribution set A, above, the membership function of
an object belonging to such a fuzzy equivalence classes
can be defined as follows:

µF1∩F2∩···∩Fm (x) = µF1 (x) ∧ µF2 (x) ∧ · · · ∧ µFm (x)

= min(µF1 (x),µF2 (x), · · · ,µFm (x))
(7)

where F1 ∩ F2 ∩ · · · ∩ Fm is one fuzzy equivalence
class of U/A.

In classical rough set theory, the positive region
is defined as the union of the lower approximation.

According to this rule, the membership function that
one object belongs to in the fuzzy positive region of a
rough fuzzy rough set can be defined.

Definition 5. Given a fuzzy decision table DT =
(U, A∼ = C ∪ D, V, f ), P ∈ C, Q ∈ D, define

µposP (Q)(x) = sup
X∈U/Q

µP(X)(x) (8)

to obtain the membership degree that x belongs to in
the fuzzy positive domain. Based on the definition of
the fuzzy positive domain, a new dependent function in
the fuzzy rough set can be defined as follows:

γ ′
P(Q) = |µposP (Q)(x)|

/
|U| =

∑
x∈U

µposP (Q)(x)
/

|U|

(9)
This indicates the degree to which attribute Q

depends on attribute P.
The basic theory of fuzzy rough set is detailed above.

Based on this theory, an algorithm is proposed to obtain
the computational cognitive rules so as to improve
recognition rate and speed.

3. Cognizance rule development

The unknown mechanism of faults from diagnostic
equipment may result in ambiguity in the external man-
ifestation of faults and unclear system states expressed
by diagnostic information. Different faults may demon-
strate similar performance, whereas the same fault may
express differently at different times or under different
environmental conditions. The ambiguity and incon-
sistency in failure data will have great impact on the
operating results of the fault detection system, which
is not advantageous for the application of fault detec-
tive technology. Shorter detection times may reduce
losses from accidents, and has thus become a primary
research focus in the field. The cognitive rule intelligent
extraction algorithm based on a rough set can deal with
uncertain fault detection data, and detect fault informa-
tion based on the optimum direction of the dynamic
entropy increment to improve the accuracy and effi-
ciency of detection.

For complex systems, many states can be expressed.
There is inconsistency in these statistics under different
environmental conditions. For example, for some states,
a characteristic may be consistent under environmental
conditions, but in some contradictory situations, system
faults may occur after environmental changes. There-
fore, the inevitable connection among system faults,
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Fig. 1. The framework for cognizance rule generation.

states and different environments should be discussed
dynamically to better obtain connection information
between system states and faults. Based on the direc-
tion of maximum entropy, the cognitive rule states
that the rule can be obtained in conjunction with the
maximum dynamic information entropy of the fault
detection system state, which can be analyzed under
different environmental conditions.

The framework of cognizance rule acquirement is
shown in Fig. 1.

The steps to achieve cognizance rule generation are
as follows:

Build the fuzzy equivalence relation, which can be
used to evaluate the correlation degree of two informa-
tion system samples in the universe.

Determine the fuzzy judgment subjection degree,
which must suit the information judgment table data.
The cognizance rule defines the formula as follows:

�

D = min

(
exp

(
xi − x̄i

4δ2

))
, i = 1, 2, . . . , n (10)

where xi is the value i of the attribute, and x̄i is the mean
value of the attribute. The variable δ is the variance or
all attribute values.

Analyze the dynamic attribution importance, which
considers the already-described attribute information.

FSigd(aj|R(xp)) = card(FPOSU/{{aj}{ai,...aj−1}}(
�

D))

card(FPOSU/{ai,...aj−1}(
�

D))
(11)

where the FPOS is the fuzzy equivalence relation to
the position, which can be expressed as:

FPOSU/{a1,··· ,aj−1} = µpos{a1,··· ,aj−1}(U)(x) > threshold
(12)

The card is the member number of the set; a threshold
can be set by the user, such as 0.8.

After computing all no-value attributes of dynamic
importance, the cognizance rule can be generated based
on the dynamic attribution importance. The cognizance
rule form is as follows:

(ai, vi) ∩ (ai+1, vi+1) ∩ · · · ∩ (ai+n, vi+n) → aj

(13)
Then, the system can arrange the system state infor-

mation in detection order for fault diagnosis.
After obtaining the new system states, the fault

diagnosis system evaluates the fuzzy judgment. If the
judgment subjection degree is beyond the threshold,
the system accepts the judgment. Otherwise, the system
regenerates the cognizance rule for the next information
index in order.

4. Simulation

To evaluate the cognizance rule generation frame-
work for fault detection, this paper presents a simulation
which compares the cognizance rule to attribution
importance. Attribution importance is the statistical
measurement, and is described as follows:

Sig = card(POSU/{{aj}{ai···ai+n}}(
�

D)) − card(POSU/{{ai···ai+n}(
�

D))

card(POS(
�

D))
(14)

This simulation employs diesel engine malfunction
as the fault detection system, which can discover eight
malfunctions using eight detection parameters. These
eight malfunctions are as follows: 100% offering (T1),
75% offering (T2), 25% offering (T3), idle consumption
(T4), pin valve block (T5), valve jam (T6), pin valve
leak (T7) and excess oil valve invalidation (T8). The
eight detection parameters are as follows: greatest pres-
sure (P1), hypo-greatest pressure (P2), wave range (P3),
ascending edge width (P4), wave width (P5), great-
est aftereffect width (P6), wave area (P7) and spout
pressure (P8). According to the maximum and mini-
mum detected by each sensor and normalized to the
[–1,1] space, a data set will be recorded, which is then
adapted to the output of various classifiers (or sensors).
The diesel engine malfunction judgment information is
listed in Table 1.
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Table 1
Diesel engine malfunction judgment information table

P1 P2 P3 P4 P5 P6 P7 P8

T1 0.9325 1.000 1.000 –0.4526 0.3895 1.000 1.000 1.000
T2 –0.4571 –0.2854 –0.9024 –0.9121 –0.0841 1.000 –0.2871 0.5647
T3 0.5134 0.9413 0.9711 –0.4187 0855 0.8546 0.9478 0.9512
T4 0.1545 0.1564 –0.500 –0.6571 –0.3333 –0.6667 –0.3333 –0.500
T5 0.1764 0.7648 0.4259 –0.6472 –0.0563 0.1726 0.5151 0.4212
T6 –0.6744 –0.4541 –0.8454 1.000 –0.8614 –0.6714 –0.6279 –0.6785
T7 0.4647 0.5710 0.0712 –0.7845 –0.2871 0.8915 0.6553 0.6152
T8 0.6818 1.000 –0.625 –0.8426 –0.6215 –0.1574 1.000 0.7782

By analyzing this table, the statistic character can be
determined. There are three cluster parameter centers:

[Vmean1 = 0.79, Vvar 1 = 0.22],

[Vmean2 = −0.06, Vvar 2 = 0.21]

[Vmean3 = 0.66, Vvar 3 = 0.15].

The rule following fault detection information can be
obtained from the intelligent extraction step and cog-
nitive rule equations in Section 3. For example, in the
known state P1 conditions and according to the attribute
importance, the detection rule is as follows.

P1 → P6 → P3 → P8 → P2 → P7 → P4 → P5
(15)

The cognitive rules based on the fuzzy rough set max-
imum dynamic information entropy in this paper are
expressed as follows:

P1 = Vmean1 → P3 → P5 → P4 → P6 → P8 → P2 → P7

(16)

P1 = Vmean2 → P3 → P5 → P4 → P6 → P8 → P2 → P7

(17)

P1 = Vmean3 → P4 → P3 → P5 → P6 → P8 → P2 → P7

(18)
These cognitive rules distinguish the analysis direc-

tion of maximum dynamic information entropy of the
fault detection system within the different initial val-
ues in state P1. Such directions are more suitable for
the cognitive mechanism of the biosphere, so the fault
detection accuracy and efficiency can be determined.

Results indicate that cognizance rules can offer more
detail in order to control fault detection processing more
intelligently and efficiently. The simulation system tests
different dates with variant system noise to evaluate the
result of the cognizance rules and attribute importance.
Figure 2 shows the system judgment results with 0.21
system noise.

Figure 2 shows the system judgment results with 0.1
system noise.
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Fig. 2. Discrimination results for 1,000 malfunction samples with
0.21 system noise.
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Fig. 3. Discrimination results for 1,000 malfunction samples with 0.1
system noise.

Figure 3 shows the system judgment results on sys-
tem noise 0.1.

This paper uses the Monte Carlo simulation method
to test 300 experiments in order to evaluate the accuracy
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Fig. 4. Discrimination accuracy result for 1,000 malfunction samples
with [0.1, 0.2] system noise, averaging 300 Monte Carlo simulation.
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Fig. 5. The discrimination efficiency result for 1000 malfunction
sample on [0.1, 0.2] system noise averaging 300 Monte Carlo simu-
lation.

and efficiency of the variant index rule. Figure 4 shows
discrimination accuracy result for 1,000 malfunction
samples with [0.1, 0.2] system noise, averaging 300
Monte Carlo simulation. Figure 5 shows the discrimi-
nation efficiency result for 1000 mal-function sample
on [0.1, 0.2] system noise averaging 300 Monte Carlo
simulation.

For diesel engine fault detection data, different
signal-to-noise of Monte Carlo simulation experiments
show that the cognitive rules based on fuzzy rough set
maximum dynamic information entropy discovery sys-
tem failure better. Within the same signal-to-noise ratio
data, the accuracy of the fault detection analysis based
on maximum dynamic information entropy from cog-
nitive rule that is higher than from regular attribute
rules. This method could improve the fault detection
efficiency. The cognitive rules based on fuzzy rough set
maximum dynamic information entropy are also adap-
tive to deal with uncertain data for fault detection in
more complicated systems.

5. Conclusions

Due to the unknown mechanisms of faults in com-
plex systems and the ambiguity and the inconsistency
of system states and fault diagnosis, this paper pro-
poses a method based on cognitive rule extraction to
achieve dynamic analysis and intelligent cognition of
informative systems monitored by a real-time system,
so that the fault is found more quickly. Based on the
direction of maximum entropy, the cognitive rule can
improve the recognition rate resulting in earlier fault
detection. The continuous change of diagnostic infor-
mation is considered, so the rule extraction is achieved
by cognitive rules which adopt the fuzzy rough set. The
simulative analysis of a diesel engine fault indicates
that the intelligent cognitive rules can achieve earlier
detection in fault diagnosis information systems, with
improved accuracy.
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