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Interval type-2 fuzzy servo controller
for state feedback of nonlinear systems
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aComputer Engineering and Automation Department, Federal University of Rio Grande do Norte,
University Campus Lagoa Nova, Natal, RN, Brazil
bControl Engineering and Automation Department, Federal Institute of Education, Science and Technology
of Mato Grosso, Cuiabá, MT, Brazil

Abstract. Many researches use T-S fuzzy models to accurately represent nonlinear dynamic systems. However, T-S fuzzy
makes the implementation of fuzzy controller more complex as system order and nonlinearities increase. Thus, the present
work is aimed to overcome these limitations by using an Interval Type-2 Fuzzy Rule-Based System in which the membership
functions and the number of rules can be freely chosen simplifying the implementation of the technique. To this end, it
is established a direct state feedback control with reference tracking to generate the nonlinear control action using parallel
distributed compensation techniques with no need to include T-S fuzzy models to describe the dynamic system. The proposed
strategy is applied to a synchronous generator and also to a magnetic levitation system. From the results, it was verified that
IT2FRBSs are able to stabilize the systems analyzed at different equilibrium points with higher performance and less settling
times, given the uncertainties in the linearized model. In fact, the IT2FRBS proved to be a proper way to accomplish this
task, because fuzzy logic control itself does not depend on an accurate model.
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1. Introduction

Among the most well-known techniques of Artifi-
cial Intelligence is the Fuzzy Logic, introduced in the
mid-1960s by L. A. Zadeh [15], whose formulation
constituted the starting point for the construction of
a structure similar to that used in standard sets, but
more general, having greater usability [17] thanks to
the concept of a class of elements that admits inter-
mediate degrees of pertinence in a certain set.

For this reason, fuzzy logic allows not only a
quantitative but also qualitative analysis of several
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dynamical systems found in the real world. These
systems contain nonlinearities, and were previously
considered complex and insufficiently defined to be
susceptible to an accurate analysis [19]. For these
systems, when the control signals extend beyond the
linear operating zones, the system no longer presents
approximately linear dynamics [21], and the theory
of linear systems was limited only to some special
categories.

Furthermore, the state space formulation, when
compared to others modeling strategies, is a more
powerful alternative model that allows additional
advantages, such as: (a) adequate format for the sys-
tematization of the solution through computers; (b)
state variables constitute a powerful unified structure,
suitable for the study of linear and nonlinear systems;
(c) allow the development of more robust and efficient
methods for digital simulation.
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These particularities were determinant to suggest
that the fuzzy logic in association with state feed-
back techniques would be a promising thematic to
the study of complex plant control with nonlinear
dynamics.

Regarding the uncertainties in the industrial
sphere, a solution to define the appropriate adjust-
ment of parameters in relation to a consensus among
experts is the use of a formulation, to which the impli-
cations of the Takagi-Sugeno method and a fuzzy
rule base is used for defining explicit local models
[11, 19] known as Takagi-Sugeno fuzzy model (T-S
models) [23].

Many works have demonstrated that the stability
of any dynamic T-S fuzzy system can be determined
by verifying an equation of Lyapunov or a set of Lin-
ear Matrix Inequalities (LMIs) [1, 26], and others,
such as [1, 25, 27, 29] use fuzzy controller based
on Parallel Distribution Compensation (PDC) tech-
niques to a proposed T-S model, in which the control
problem was transformed into a LMI control design
problem.

A disadvantage in using LMI in T-S fuzzy models
is that, since if the number of fuzzy IF-THEN rules is
large, a common matrix P > 0 maybe does not exists
in all the subsystems [1]. So, works sought to suppress
the need for the use of LMIs. For example, in [10]
the fuzzy control is transformed into a time-varying
system by using Riccati Differential Equation.

In the case of nonlinear systems, the control
problem for tracking trajectories is occasionally con-
sidered relatively difficult in respect to stability
problems, since it is expected that the states of the
nonlinear system should follow those of the stable
model [2, 6].

On the other hand, regarding the nature of uncer-
tainty, in the case of fuzzy systems, any and all kinds
of uncertainties is interpreted as being transferred to
their membership functions [12]. However, in Fuzzy
Rule-Based Systems (FRBSs), the knowledge that
is used to construct the rules is also uncertain, and
occurs in three ways: (a) the words used in the
antecedents and consequences of the rules can have
different meanings for different people; (b) the impu-
tation of consequences for a particular rule may be
different for different groups of experts; (c) there is
accessibility only to a set of noisy data.

It was only later found these deficiencies in tradi-
tional fuzzy logic [12] and, in 1975, the concept of
type-2 fuzzy was presented by Zadeh as an extension
of conventional fuzzy logic (henceforth called type-1
fuzzy logic) [15].

By introducing an additional dimension repre-
senting the degrees of membership functions, fuzzy
systems could then be formulated as a problem in
which membership degrees are themselves fuzzy
sets [4].

By eliminating the disadvantages in terms of the
modeling of dynamic uncertainties, it was made it
possible to develop controllers that use Type-2 fuzzy
logic for control, which could be applied to more
complex control problems, such as the reference
tracking of nonlinear systems for example [8, 13, 28].

In these works, T-S models represent exactly the
nonlinear dynamics of the model. However, the use
of T-S models increases the implementation complex-
ity of the fuzzy controller by the significant increase
of the rule base as system order and nonlinearities
increase [10, 24]. To this, researches was conducted
to perform the control process, where the type-2 fuzzy
model and the type-2 fuzzy controllers do not share
the same membership functions [5, 7].

However, in spite of providing greater design flex-
ibility, when the rule bases of the TS model and the
controllers are dissociated, the rule base of the model
incorporates the rule base of the controller, so that
there is an overall increase in the number of rules.
Since as the complexity of the model and controller
increases, the operation becomes much more diffi-
cult, and as consequence, the design procedure of
its type-2 fuzzy logic controller tends to be more
complicated [21].

Thus, it is suggested a systematic design method-
ology to design a Fuzzy-Rule-Based System (FRBS)
to state feedback with reference tracking of systems
with soft nonlinearities in which: (a) does not require
T-S fuzzy model representation, requiring only a base
of linguistic rules to establish a state feedback con-
trol for a class of nonlinear systems found in the real
world, (b) the fuzzy controller is able to track a vary-
ing reference signal such that drive the system states
to the reference (y(t) = r as t → ∞), (c) allowing
the use of techniques previously established in the
literature to obtain controllers’ gains, (d) allow easy
conversion of Type-1 to an Interval Type-2 FRBS
(IT2FRBS).

In the present work, the acronym T1 are used
to mention Type-1 fuzzy logic and T2 for Type-2
fuzzy logic. Similarly, IT2 for Interval type-2 fuzzy,
and MFs sometimes used to designate Membership
Functions.

For validation purposes, the proposed strategy will
be applied to two case studies, a magnetic levitation
system [9] and a synchronous generator [18, 22].
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This paper is organized as follow: Section 2
presents some concepts about a state feedback sys-
tem with reference tracking. Section 3 introduces the
methodological aspects for the development of the
proposed IT2FRBS. In section 4 there are some sim-
ulation results for which the proposed methodology is
adapted to the case studies. In Section 5, the results are
analyzed, and finally, some conclusions are presented
in section 6.

2. State feedback system with reference
tracking

Given a fully controllable state system to design
a servo controller that guarantees regime error equal
to zero, it is necessary to incorporate integrators into
the plant before calculating controller gains to inte-
grate the error into the system outputs for which
zero-regime error is specified [14].

To avoid the possibility of cancellation of the
inserted integrator, it is assumed that the plant does
not have zeroes at the origin [3, 14]. Thus, given
the linear time-invariant system, the dynamics of the
plant with the insertion of the integrators are:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
ẋ(t)

v̇(t)

]
=

[
A 0

−C 0

][
x(t)

v(t)

]
+

[
B

0

]
u(t) +

[
0

1

]
r(t)

[
y(t)

] =
[
C 0

][
x(t)

v(t)

]
+Du(t)

(1)

where A is an n× n state matrix; B is an n×m

matrix of the coefficients that weight the inputs; C is
anp× nmatrix of coefficients that weight the system
outputs;D is anp×m direct transition matrix; x(t) ∈
�n is the dynamic vector of states variables; u(t) ∈
�m is the input vector; y(t) ∈ �p is the vector of the
output variables; v(t) ∈ �p is composed of the errors
between the outputs and their respective references.

The controller’s gain matrix is then calculated
for the plant with the built-in integrators, so that
an asymptotically stable system is designed so that
x(∞), v(∞) and u(∞) tend to be constant values,
and obtained under a permanent regime y(∞) = r.

Based on these observations, the suggested tech-
nique consists, instead of searching for a single point
of linearization for the system, of the definition of
different balance regions, and thus, the operating
space is subdivided into distinct linearization points
to obtain local subsystems for the desired balance
situations.

The feedback gain matrices can be obtained for
each operating point previously established by the
designer, using one of the numerous techniques
already known in the literature, that is, for each local
subsystem whose plant has built-in integrators.

3. Proposed fuzzy-rule-based systems
(FRBSs)

The T1 Fuzzy-Rule-Based System (T1FRBS) was
basically composed of three stages: an input proces-
sor, a processing stage composed of a fuzzy rule base
and an inference method, and an output stage where
the control signal is calculated.

The design methodology for T1FBRS will be
explained in more details, since for the construc-
tion of the Interval T2FRBS (IT2FRBS), the stages
of processing and output obtained are replicated by
using the methodology presented for constructing a
T1FRBS, and a type-reduction block is added to con-
vert the T2 into T1 fuzzy sets.

3.1. Input processor

The input processor is defined by the input vari-
ables of the fuzzy controller, where fuzzy variables
ϕ(t) are chosen to be used. Subsequently, the sets of
terms of the fuzzy variables are sent to the input pro-
cessor of the FRBS, and the response at the exit of this
stage depends on the MFs corresponding to the terms
inserted in the input with the fuzzy input variables.

In this work, the set of dynamic variables ϕ(t) are
suggested as fuzzy variables, so that:

ϕ(t) = [x(t), v(t), v̇(t), y(t)] (2)

where v̇(t) corresponds to the error between the
output of interest y(t) and the reference r(t), both
measures at the moment t, such that:

v̇(t) = r(t) − y(t) (3)

v(t) is the state variable corresponding to the output
of the integrator, i.e., v(t) = ∫

v̇(t)dt.
In this stage, from the observation of specific cri-

teria, it is possible to optimize the fuzzy system, for
which one must consider the supposed knowledge
about the circumstances that delimit the system to be
controlled to be suitable for practical applications.

Also, a decrease in the number of fuzzy variables
decreases the rule base. In this sense, by means of
the appropriate choice of a set of state variables, it
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is possible to choose the output equal to one of the
state variables [14]. Based on these aspects, the state
variables, which alone do not correspond to the out-
put of interest y(t), are established by definition 1,
according to their universes of discourse, such that
their MFs corresponds to a constant.

Definition 1. BeingU a non-empty set. A subsetX ⊂
U is characterized by a membership functionμX(x) :
U → 1, in which μX(x) is interpreted as being equal
to 1 for every value of x belonging to X.

Thus, a set X can be defined by its indicator
function, such that given a set X in the universe of
discourse U, μX(x) is described by Equation (4).

μX(x) = 1, ∀x ∈ U (4)

In cases where the fuzzy variables are sent to the
input system in the form of simple numerical val-
ues, intended to obtain the same results in the form
of output, the term fuzzy has no explicit distinction,
and its MF is represented as a function of constant
pertinence.

The fuzzy variables defined in the input processor
as constant functions are: state variables x(t) which
do not constitute outlets of interest of the system, as
well as the vector v(t) from the inserted integrators.

On the other hand, the fuzzy y(t) and v̇(t) variables
are defined in accordance with definition 2 in view of
their discourse universes, such that their pertinence
functions correspond to triangular and/or trapezoidal
functions.

Observation 1. In some cases, for example in the case
of MIMO systems that have a high degree of coupling
between the outputs, it is also possible to use con-
stant MFs for y(t) and/or v̇(t) along their respective
universe of discourse, even if they consist of outputs
of interest to the system.

Definition 2. Being U a non-empty set. A subset
X ⊂ U is characterized by the membership function
μX(x) : U → [0, 1], such thatμX(x) is interpreted as
the degree to which x belongs to X.

3.2. Inference stage and Rule base

The rule base is made up of sentences of the type
IF. . . THEN. . ., interconnected by connectors of the
type AND. Each rule is mathematically translated
based on the chosen inference method, and in this
work it is used a t-norm to model the AND con-

nective, generating an output for each rule based on
definition 3.

Definition 3. Being X1 and X2 fuzzy subsets of U1
andU2, respectively. The membership function of the
intersection ofX1 andX2 is defined by Equation (5).

μX1∩X2 (x) = min{μX1 (x), μX2 (x)},∀x ∈ U (5)

In other words, in the inference stage the relation
between the fuzzy sets expressed in their respective
universes of discourse is made. Eventually, more than
two universes may be related, such that:

Being U1, U2, . . . , Un universes of the discourse
of each fuzzy variable. A fuzzy relation R in U1 ×
U2 × . . .× Un is stipulated by the combination:

U1 ∩ U2 ∩ . . . ∩ Un : μR : U1 × U2 × . . .

× Un → [0, 1] (6)

Suppose that U1, U2, . . . , Un are distinct uni-
verses of discourse, such that each universe of
discourse has a limited number p1, p2, . . . , pn of
MF in U1, U2, . . . , Un, respectively. μR1 is the
grade of membership from the relationship R1 over
U1, U2, . . . , Un, μR2 the grade of membership from
relation R2 over U1, U2, . . . , Un, and being μRw a
ω-th grade of membership from relation Rw over
U1, U2, . . . , Un, the composition of these grades of
pertinence leads to the construction of a vector of
pertinence R ∈ F(�w), whose dimension w will be
given according to the quantities p1, p2, . . . , pn of
MF existing in U1, U2, . . . , Un, respectively, such
that:

w = p1 ∗ p2 ∗ . . . ∗ pn (7)

Notably, R will consist of valuesR : μX → [0, 1],
where the corresponding values between ]0,1], comes
from the relationship

min{μX1 (x), μX2 (x), . . . , μXn (x)}
between values present in the support of the fuzzy set
X by definition 4.

Definition 4. BeingX a fuzzy subset ofU, the support
of X, denoted by supp(X), is the subset of U whose
elements have non-zero grades of membership in X:

supp(X) = {x ∈ U;X(x) > 0} (8)

In order to facilitate the assignment of local con-
trollers, the Equation (3) was used in association with
the limits established by the MF of the fuzzy variables
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corresponding to yp(t) and v̇p(t). The superscript p
refers to the p-th output of interest.

Since these variables have their universes of dis-
courses subdivided into MFs, a matrix was created by
taking the combination between the lower and upper
limits of these MF and the respective reference values
that define each situation.

So, for each rule, a critical point matrix calledmL
is assembled, such that, to the j-th rule:

mLj =
[

min(yp) + min(v̇p) min(yp) + max(v̇p)

max(yp) + min(v̇p) max(yp) + max(v̇p)

]
(9)

min(yp) and max(yp) equivalent to the minimum and
maximum limits of the MF to the p-th interest out-
put yp, and min(v̇p) and max(v̇p) to the minimum
and maximum limits of the MF corresponding to the
error v̇p between the p-th output of interest yp and
the desired reference for this variable.If any element
of the mL matrix exceeds the lower or upper limits
possible for reference, it is replaced by the nearest
limit value.

Then, a med(mLj) value is defined for mLj , in
order to determine the most likely measure of refer-
ence to emerge upon activation of this rule, and thus
assign the controller that is probably more suitable for
a given situation. The value med(mLj) corresponds
to the arithmetic mean of the elements of the matrix
mLj .

3.3. Output processor

The output processor is responsible for calculating
the fuzzy control signal uF (t). In this stage, first, it
is computed a vector Z ∈ F(�w) of the same dimen-
sion of the membership vector R, such that each Z
value contained in Z corresponds to the portion of the
control signal relative to the contribution of each rule
present in the rule base of the FRBS.

Thus, it is defined relations such that,Z1 is the con-
trol contribution to rule 1 overU1, U2, . . . , Un,Z2 the
control contribution to rule 2 over U1, U2, . . . , Un,
and Zw is the control contribution to the w -th rule
over U1, U2, . . . , Un.

The idea is to assign a compensator K(α) calcu-
lated for each of the α balance situations defined in
the modeling phase of the system.

In addition to the stability requirements, during the
calculation of each compensator K(α), the dynamic
behavior desired for the systems at each operating

point must also be taken into account, in order to
improve transient response and steady state, still in
the design phase, so that:

K(α) = [K,KI,Ke,Ky, c] (10)

K is am× nmatrix of gains to state feedback;KI is
an m× p matrix of feedback gains to integral of the
error v(t);Ke is anm× pmatrix with error feedback
gains v̇(t);Ky is anm× pmatrix with feedback gains
for the system outputs; c is anm× pmatrix with the
constants of integration. For simplification purposes,
all the entries of the matricesKe,Ky, and c are defined
as equal to zero.

Each control contribution Z consists of the linear
combination of the fuzzy inputs at time , such that for
the j-th rule:

Rule j :

⎧⎪⎪⎨
⎪⎪⎩

IFXj1 and IFXj2 and . . . and IFXjn,

THENZj(t) = K(α)jϕ(t)

ELSEZj(t) = 0

(11)

The superscript j indicates the index corresponding
to the j-th portion of control contribution calculated
for the j-th rule. Therefore, it was defined that:K(α)j

indicates the compensator computed for the α-th
equilibrium region assigned to the j-th fuzzy rule, as
well asZj(t) is the calculated control contribution for
the j-th rule. Zj(t) is initially defined with the help
of the matrixmLj proposed in subsection 3.2, which
the K(α)j compensator can subsequently be manu-
ally adjusted to obtain a more suitable performance
for a given situation.

Thus, Zj(t) is given by the linear combination of
the fuzzy variables ϕ(t) according to Equation (12):

K(α)jϕ(t) = −Kjx(t) +K
j
Iv(t)

+Kjev̇(t) +Kjyy(t) + c (12)

After finalizing the vector Z, and owning the
membership vector R from the inference block, the
global fuzzy control signal uF (t) to be applied to
the dynamic system is finally calculated.

The method used to calculate uF (t) consists of the
Takagi-Sugeno fuzzy association between Z and R,
in order to obtain uF (t) ∈ F(�n).

uF (t) =
∑w
j=1 R(t) ∗ Z(t)∑w

j=1 R(t)
(13)
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Thus, the amount of global fuzzy control signal to
be supplied at time t is given by summing the product
of each linear control contribution by its respective
grades of membership and dividing the result by the
sum of all membership.

3.4. Interval type-2 fuzzy-rule-based system

In case of the IT2FRBS, the difference is linked
to the nature of the MF and not to the rules. Such
uncertainties may be related not only to the grades of
membership for a particular fuzzy variable ϕ(t) given
its respective fuzzy set, but also in situations where
there is uncertainty about the format of the MF or
uncertainty in some of its parameters.

To that end, the MF of T2 fuzzy sets include a Foot-
print Of Uncertainty (FOU) represented by a third
dimension capable of providing additional degrees
of freedom that make it possible to directly model
and deal with the uncertainties of the designer about
the meanings of fuzzy associations to be used.

After their definition, the T2 fuzzy sets are moved
to the type reduction block, which provides the
conversion of the output T2 fuzzy sets, from the
Takagi-Sugeno fuzzy association of the local control
contributions in Z and their grades of membership in
R, in T1 fuzzy sets.

To reduce the computational complexity, it was
used interval type-2 fuzzy logic, such that, the type-
reducer combines all the output T2 sets by finding
their union.

The resulted signal, which follows type-reduction,
is based on using the average of outputs ūF1(t) and
u−
F2

(t), i.e.,

uF (t) =
ūF1(t) + u−

F2
(t)

2
(14)

ūF1(t) and u−
F2

(t) in Equation (14) are calculated in

a similar way to Equation (13) from upper and lower
MF information.

4. Simulation results

For validation purposes, simulations were used to
test the proposed methodology, and the results are
compared to those obtained using standard state feed-
back control.

The proposed methodology was applied in two
case studies. In the first case study the control of the
position of a steel ball in an electromagnetic suspen-

Fig. 1. Schematic of the MAGLEV plant.

sion system [9] is made, and for the second case study
the control of the magnetic flux and the load angle
in a connected synchronous machine feeding into an
infinite busbar [18, 21].

4.1. Case study 1: Magnetic levitation system
(MAGLEV)

The MAGLEV plant, whose schematic represents
in Fig. 1, basically consists of an electromagnet
located at the upper part of the apparatus.

The challenge is to levitate a solid steel ball in
the air from the pedestal using an electromagnet, in
which only the x-axis is controlled. The control sys-
tem should maintain the ball stabilized in mid-air and
track the ball position to a desired trajectory.

Two variables are directly measured on the
MAGLEV rig: The coil current ic(t) and the ball
distance xb(t) from the electromagnet face [9].

The coil current can then be computed using Kirch-
hoff’s voltage law given by Equation (15).

Vc(t) = (Rc + Rs)ic(t) + Lc
dic(t)

dt
(15)

where Rc is the coil resistance, Lc is the coil induc-
tance, Ic is the coil current, Vc is the applied coil
voltage, and Rs is the current sense resistance.
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Fc is the attractive force generated by the elec-
tromagnet acting on the steel ball and Fg is the
force due to gravity acting on the ball, so that the
total external force experienced by the ball using
the electromagnet is:

Fext = −Fc + Fg = −Kmic(t)
2

2xb(t)2 +Mbg (16)

where xb > 0 is the ball position, andKm is the elec-
tromagnetic force constant.

Using Newton’s second law of motion to the ball
gives the nonlinear Equation (17).

ẍb(t) = − Kmic(t)2

2Mbxb(t)2 + g (17)

4.1.2. Linear space state model
Static equilibrium at a nominal operating point

(xb0, ico) is characterized by being suspended in the
air at a constant position xb0 due to a constant electro-
magnetic force generated by ico. The Equation (17)
should be linearized around a quiescent operating
point (xb0, ico), when it becomes:

ẍb = 2g

xb0
xb − 2g

ic0
ic (18)

As the objective is to control the position of the
ball, the system output of interest is y(t) = xb(t).

The static equilibrium current ico is a function of
the system’s desired equilibrium position xb0 and its
electromagnet force constant Km.

Different values of ico are evalueteds using differ-
ent equilibrium positions xb0 and specifications of the
MAGLEV [9]. Solving for the equilibrium current:

ic0 =
√

2Mbg

Km
xb0 (19)

Applying the parameters defined in [9] and the
intended operating points results in the operating
points currents ico to equilibrium positions xb0 in
Table 1.

With the values in Table 1, a local model for each
balance situation (xb0, ico) is calculated, and for each
local model, a local state feedback controllerK(a) is
designed using some method disponibilized in liter-
ature.

Table 1
Quiescent points (xb0, ic0) used

Quiescent points (xb0, ic0)
xb0(m) ic0(A)

0.002 0.286
0.003 0.429
0.004 0.572
0.005 0.715
0.006 0.858
0.007 1.001
0.008 1.143
0.009 1.286
0.010 1.429
0.011 1.572
0.012 1.715

4.2. The proposed FRBS adapted to the case
study 1

4.2.1. Fuzzy input variables
Considering that for the MAGLEV the output y(t)

corresponds to one of the state variables (xb(t)), the
set of fuzzy variables necessary to control the posi-
tion of the sphere can be reduced to the set ϕ(t) =
[x(t), v̇(t), v(t)], in witch:

x(t) = [ic(t)xb(t)ẋb(t)] (20)

and [
v̇xb (t)

vxb (t)

]
=

[
rxb (t) − yxb (t)∫
rxb (t) − yxb (t)dt

]
(21)

Having the fuzzy variables v̇xb (t) and xb(t), it is
possible to determine the desired reference for the
ball. In other words, only the fuzzy inputs are con-
sidered for the construction of the fuzzy rules.

4.2.2. Membership functions
The assignment of the controllers according to

the fuzzy rule base essentially requires the values of
v̇xb (t) and xb(t). For this reason, the fuzzy sets made
up of these variables are partitioned into their respec-
tive universes of discourse, into triangular and/or
trapezoidal MF (Table 2). The other fuzzy variables
are represented by continuous MFs in their respective
universes of discourse.

4.2.3. Rule base
Once the MFs are defined, it is possible to con-

struct the rule base of the FRBS, such that if the output
y(t) is xb(t) whose possible values are between zero
(without levitation) and 0.014 meters (highest possi-
ble height to be reached by the ball). Likewise, v̇xb (t)
equal to zero suggests that the ball is in the desired
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Table 2
T1 Membership Functions (T1 MF) from the T1 fuzzy set used to

characterize xb(t) e v̇xb(t)

xb(t) v̇xb(t)
T1 Fuzzy set T1 MF T1 Fuzzy set T1 MF

xb from 0 to 3 x2 Negative maximum error Nmax
xb from 2 to 4 x3 Negative Big error NB
xb from 3 to 5 x4 Negative Average error NA
xb from 4 to 6 x5 Negative Small error NS
xb from 5 to 7 x6 Negative minimum error Nmin
xb from 6 to 8 x7 Zero error Z
xb from 7 to 9 x8 Positive minimum error Pmin
xb from 8 to 10 x9 Positive Small error PS
xb from 9 to 11 x10 Positive Average error PA
xb from 10 to 12 x11 Positive Big error PB
xb from 11 to 14 x12 Positive maximum error Pmax

position, while positive values of v̇xb (t) indicate that
the ball is below the desired position and negative
values show that it is above of the reference value.

Thus, according to Equation (21), where rxb (t) is
known by means of the values of xb(t) and v̇xb (t),
the possibility of knowing what is the equilibrium
point (xb0, ic0) of the system at the present moment
is found, and as a consequence, the implication of the
rule for the analyzed data is obtained:

IF position is “xb” and IF error is “v̇xb (t)” THEN
reference is in “rxb (t)”

From the estimate of the desired reference, it is
made the assignment is of the most appropriate con-
troller to the quiescent point (α)(xb0, ic0) at time t.

Eleven local controllers K(α) were defined and
both variables xb(t) and v̇xb (t) had their respective
universes of discourse subdivided in such a way that
11 MFs were assigned to each variable. Thus, a rule
base from FRBS is composed by a total of 121 rules.

As result of each rule, one of the 11 controllers
is designed for each of the 11 quiescent points
(α)(xb0, ic0).

As the starting point, the assignment of the local
controllers do with the help of the measurement
med(mLj) from the matrix mLj , presented in sub-
section 3.2, and from this, fine adjustments are made.

4.2.4. Type-2 fuzzy controller
The MFs of the T2 fuzzy sets included a FOU

consisting of upper and lower MFs responsible for
providing the additional grades of freedom, since the
set ϕ(t) of the input fuzzy variables remains the same.

For the case study 1, the MFs of xb(t) were mod-
ified to incorporate an FOU of approximately 0.5
mm in width (Fig. 2). In the case of the MFs that
characterize v̇xb (t), to describe the large error situa-
tions the MFs are wider (around 0.5 mm in width).

Fig. 2. T2 MFs used to characterize xb(t).

Fig. 3. T2 MFs used to characterize v̇xb(t).

Table 3
T2 MFs from the T2 fuzzy set used to characterize xb(t) e v̇xb(t)

xb(t) v̇xb(t)
T2 Fuzzy set T2 MF T2 Fuzzy set T2 MF

xb from 0 to 3.5 x2 Negative maximum error Nmax
xb from 2 to 5 x3.5 Negative Big error NB
xb from 3.5 to 6 x5 Negative Average error NA
xb from 5 to 7 x6 Negative Small error NS
xb from 6 to 8 x7 Zero error Z
xb from 7 to 9 x8 Positive Small error PS
xb from 8 to 10.5 x9 Positive Average error PA
xb from 9 to 12 x10.5 Positive Big error PB
xb from 10.5 to 14 x12 Positive maximum error Pmax

In the same way, they become narrower as the error
becomes smaller (around 0.2 mm wide) so that uncer-
tainty is considered to be reduced as xb(t) tends to
rxb (t), resembling those present in Fig. 3.

Also, the number of MFs was reduced from 11 to
9 MFs as can be seen in Table 3.

4.3. Case Study 2: Synchronous machine

In the case study 2, the proposed IT2FRBS is
applied to the field flux control, as well as the rotor
angle of a synchronous machine feeding into an infi-
nite busbar [18, 21].

4.3.1. Nonlinear model
The synchronous machine is represented by a non-

linear model based on the equations of Park [21]:
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Table 4
List of principals symbols used in case study 2

Principals symbols
Symbol Meaning

δ Rotor angle or load angle
ω Rotor speed
ψf Concatenated flux field
Efd Field voltage
Tm Shaft torque input
Pg Governor output
V, Vt Infinite-busbar, generator terminal voltage
rf , xf Field resistance, field reactance
xd, x

′
d

d-axis armature, d-axis transient reactances
xq, xaf , xt d-axis armature, q-axis mutual,

transmission line reactances
H, d Inertia, damping constants
ke Exciter gain
ug, ue Governor, valve-actuating exciter signals
Tt, Tg, Te Governor, turbine, exciter time constants

ẋ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω

p1 sin(2δ) − p2ω − p3ψf sin(δ) + p4Tm

p5 cos(δ) − p6ψf + p7Efd

− Efd
Te

+ Ke
Te
ue

Pg
Tt

− Tm
Tt

− Pg
Tg

+ ug
Tg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)
For definition: ẋ(t) � a(x, t) + Bu(t), whereas:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 = ω0V
2(xq − x′

d)/4H(xt + x′
d)(xt + xq)

p2 = ω0kd/2H

p3 = ω0Vxaf /2Hxf (xt + x′
d)

p4 = ω0/2H

p5 = ω0rf Vxaf /xf (xt + x′
d)

p6 = ω0rf (xt + xd)/xf (xt + x′
d)

p7 = ω0rf /xf

(23)
x(t) ∈ �6 is the state vector, u(t) = [ueug]T ∈
�2 is the control vector. The superscript T

denotes transposed matrix and α(x, t) = [a1(x),
a2(x, t), · · · , a6(x)]T . The outputs to be controlled
are y(t) ∈ �2 = [δψf ]T � c(x) .

The symbology for the variables considered in the
model and parameters used, as well as their respective
meanings, is presented in the Table 4 [21].

4.3.2. Linear space state model
The perturbation in the frequency ω and for the

field flux ψf , given in the system of Equation 22,
have nonlinear behaviors. Thus, by making the lin-

Table 5
Simulation parameters values used in case study 2

Simulation parameters
Parameter Value Parameter Value

ke 25 xt 0.3 p.u.
xd 1.75 p.u. xaf 1.562 p.u.
x′
d

0.2846 p.u. Tt 0.3 s
H 3.82 s Tg 0.08 s
d 0.006 s Te 0.04 s
rf 0.0012 p.u. V 1 p.u.
xf 1.665 p.u. ω0 2πf rad/s
xq 1.68 p.u. f 60 Hz

ear approximation around a point of equilibrium
(δ0, ψf0), it becomes:

ω̇ = [2p1 cos(2δ0) − p3ψf0 cos(δ0)]δ− p2ω

− p3 sin(δ0)ψf + p4Tm (24)

ψ̇f = −p5 sin(δ0)δ− p6ψf + p7Efd (25)

The occurrence of some power impact can cause δ
(to increase, which can lead to loss of synchronism
and, consequently, to instability in the power system
[18, 20]. In this sense, δ has a very important role
for the stability of the power system. The load angle
increases as more electric loads are fed by the gen-
erator, and the maximum value for δ is π

/
2 radians.

Above this value, the generator loses synchronism
and the stability will be compromised.

So, equilibrium at a nominal operating point
(δ0, ψf0) is characterized by being essential for the
synchronous machine, and the objective is to keep
these variables within a certain margin of safety. For
this, different values of ψf0 are evaluated using dif-
ferent values of δ0, with the help of Equation 26
which establishes the voltage Vt at the terminal of
the machine [21].

Vt =√[
Vxq sin(δ)

xt + xq

]2

+
[
Vx′

d cos(δ)

xt + x′
d

+ xaf xtψf

xf (xt + x′
d)

]2

(26)

By applying the parameters defined in Table 5 and
the intended operating points results for Vt(t) = 1
p.u., the operating points (δ0, ψf0) were obtained and
shown in Table 6.

With the values in Table 6, a local model for each
balance situation is calculated, and for each local
model, there is a local state feedback controllerK(α).
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Table 6
Quiescent points (δ0, ψf0) used

Quiescent points (δ0, ψf0)
δ0(◦) ψf0 (p.u) δ0(◦) ψf0 (p.u)

0,001 1.06731 50 0.92990
05 1.06547 55 0.91479
10 1.06000 60 0.90469
15 1.05105 65 0.90195
20 1.03889 70 0.90938
25 1.02390 75 0.93007
30 1.00657 80 0.96726
35 0.98758 85 1.02377
40 0.96773 90 1.10144
45 0.94808

4.4. The proposed FRBS adapted to the case
study 2

4.4.1. Fuzzy input variables
Considering y1(t) = δ(t) and y2(t) = ψf (t)(both

state variables), the fuzzy variables suggested to con-
trol system is reduced to ϕ(t) = [x(t), v̇(t), v(t)], in
witch:

x(t) = [δωψfEfdTmPg]T ∈ �6 (27)

and

v̇(t) =
[
rδ(t) − y1(t)

rψf (t) − y2(t)

]
=

[
v̇δ(t)

v̇ψf (t)

]
∈ �2 (28)

v(t) =
[∫

rδ(t) − y1(t)dt∫
rψf (t) − y2(t)dt

]
∈ �2 (29)

4.4.2. T2 Membership functions
Having the fuzzy variables v̇(t) and y(t) , it is pos-

sible to determine the desired references for each
output. It means that only the fuzzy inputs are consid-
ered for the construction of the fuzzy rules by of the
combination of only both v̇(t) and [δ(t)ψf (t)]T , and
the assignment of the best controller K(α) for each
situation can be made.

However, in the case of the synchronous machine,
there is a high degree of coupling among the output
variables, so that when it is intended to control the
load angle δ(t), a significant variation is observed in
the field flux ψf (t). Likewise, δ(t) it varies as it tries
to control ψf (t).

Thus, the frequency-voltage control problem in
synchronous machines in interconnected power sys-
tems is considered complex, and the frequency,
directly influenced by the δ(t), is closely related to
the power balance in the entire power grid. Under

Fig. 4. T2 MFs used to characterize δ(t).

Fig. 5. T2 MFs used to characterize v̇δ(t).

normal operating conditions the generators operate
in synchronism, which represents stable operation,
and together they generate the power that is being
consumed at all times by all loads.

Considering that the synchronism occurs when δ is
constant, because in this situation, the machine enters
in steady-state response, the MFs is constructed in
such a way that it prevails by the adjustment espe-
cially of δ(t). In this case, five MFs were chosen
to model the discourse universe of y1(t) = δ(t), and
seven MFs for v̇δ(t) = rδ(t) − δ(t). As pointed out in
Observation 1, in subsection 3.1, the other variables,
including y2(t) = ψf (t) , fuzzy have constant MFs
in their oun universes of discourse. The MFs used
for y1(t) and v̇δ(t) can be visualized in Figs. 4 and 5,
respectively.

It was found that the control adjustment for small
values of δ(t) was more complicated than for aver-
ages values of this variable, which suggested that
possibly the limits used to delimit the MF respon-
sible for associating δ(t) at small load values should
be even smaller. Values above π

/
4 radians presented

qualitatively similar responses as δ(t) was increased.
So, the MFs of δ(t) and v̇δ(t) are modified to incor-

porate a FOU (see Figs. 4 and 5) that models the
uncertainties about the limits that quantify δ(t).

The number of MFs remained the same in
IT2FRBS because the rule base already contained a
sufficient number of rules.
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Table 7
T2 MFs from the T2 fuzzy set used to characterize δ(t) e v̇δ(t)

δ(t) v̇δ(t)
T2 Fuzzy Set T2 MF T2 Fuzzy Set T2 MF

δ from 0◦ to 15◦ mf δ1 Negative Big error v̇δN
δ from 2◦ to 25◦ mf δ2 Negative Average error v̇δNA
δ from 10◦ to 45◦ mf δ3 Negative Small error v̇δNS
δ from 25◦ to 70◦ mf δ4 Zero error v̇δZ
δ from 45◦ to 90◦ mf δ5 Positive Small error v̇δPS

Positive Average error v̇δPA
Positive Big error v̇δPB

4.4.3. Rule base
Possible values to y1(t) are between zero (with-

out interconnected loads) and π
/
2 radians (maximum

load fed by the generator without compromising
synchronism). Likewise, v̇δ(t) = 0 suggests that the
δ(t) = rδ(t), v̇δ(t) > 0 indicate that δ(t) > rδ(t) and
v̇δ(t) < 0 show that δ(t) > rδ(t).

From the estimate of the desired reference rδ(t),
the assignment is of the most appropriate controller
is made to the quiescent point (α)(δ0, ψ0) at time t,
where eighteen local controllers K(α) were defined
and both variables δ(t) and v̇δ(t) had their respective
universes of discourse subdivided as in Table 7.

Thus, a rule base is composed of a total of 45 rules
in each output processor block, and the assignment
of the local controllers did, initially, with the help of
the matrix mLj composed of the association of the
limits established by the MFs of δ(t) and v̇δ(t).

5. Analyses and results

The T1FRBS and IT2FRBS were used to control
in both case studies and the results compared to those
obtained by using standard state feedback.

To compare the performance of T1FRBS, the
nonlinear system using standard state feedback was
simulated with different K(α) controllers which,
unlike the fuzzy controller, maintained their gains
static over time, and the control systems were sub-
jected to the same time-varying reference signal r(t)
for each case study.

5.1. Case study 1

The objective of the control is to make y(t) = xb(t)
to follow a continuously changing reference value, in
other words, it is desired to maintain the levitating
ball in different desired balance positions by means
of current adjustments ic(t).

Fig. 6. Performance of T1FRBS in relation to standard state feed-
back controller for the case study 1.

5.1.1. T1FRBS versus standard state feedback
In simulations for the case study 1, the r(t) con-

sisted of a set of steps whose amplitudes varied from
0 m to 0.014 m.

The performance obtained by means of the
T1FRBS in relation to the standard state feedback
control (to static parameters) can be observed in
Fig. 6.

The curves relative to the performances of the con-
trollers with standard state feedback were obtained
using controllers calculated to act at different qui-
escent points corresponding to reference values of 2
mm, 7 mm and 14 mm, respectively.

From the analysis of the curves in Fig. 6, it is
observed that the T1FRBS presents superior perfor-
mance in relation to the control of state feedback to
static parameters, since the change in rxb(t) causes a
change in the operating point of the dynamic system.

The signal rxb(t) is directly associated with the
error v̇xb (t) and the output y(t), which in turn cor-
responds to a state variable (or in other cases to the
combination of state variables). Since y(t) and v̇xb (t)
are part of the set of suggested fuzzy variables, rxb(t)
has its behavior also analyzed from the point of view
of fuzzy logic, by which the data are evaluated tak-
ing into account not only the quantitative aspects but
the inaccuracies associated with their partial belong-
ing to the given situation as well. For this reason,
the adjustment of the fuzzy controller to reference
changes provides a smoother quiescent change over
traditional PDC techniques.

5.1.2. IT2FRBS versus T1FRBS
For the composition of the T1FRBS adapted to

the case study 1, the universes of the discourse of
xb(t) and v̇xb (t) were subdivided into a considerable
number of equal parts, in order to map more precisely
the subsets represented in the form of MF for these
variables. However, the high number of MFs leads to
an increase in the number of rules contained in the
rules base.



5384 M. da. S. Farias et al. / Interval type-2 fuzzy servo controller for state feedback of nonlinear systems

Fig. 7. Performance of T1FRBS in relation to IT2FRBS for the
case study 1.

Thus, it is convenient to associate some logic
capable of handling the uncertainties associated with
fuzzy sets, enabling the manipulation of imprecise
terms throughout its length. For this, a high amount
of MFs is required in order to obtain greater accuracy
in the structuring of the fuzzy subsets used.

By inserting T2 fuzzy logic, it was possible to
reduce the number of MFs, thus reducing the rule
base by about 33%.

Despite the significant reduction of the rules base,
it was observed that the performance of the system
was similar and, at times, higher than that provided
by T1FRBS (Fig. 7).

Such superiority is due to the large capacity of T2
fuzzy logic of capturing a combination of values in a
set of relevant associations, so that uncertainty can be
treated with greater precision in this case, and a single
real number is insufficient to provide more informa-
tion about the uncertainties present. In addition, in
order to quantify and satisfactorily model the exist-
ing imprecision, measure is needed. In this context,
the IT2FRBS conveniently provides this dispersion
measure.

5.1.3. IT2FRBS using T-S models
For the construction of the T-S model, a very usual

method was used [24].
The performance of the control systems for posi-

tion control in the MAGLEV using the proposed
IT2FRBS, in relation to the performance obtained by
using the T-S fuzzy model, can be verified in Fig. 8.

It is verified that the performance using T-S model
allowed for a smoother control, while the IT2FRBS,
despite showing overshoot in almost all variations
of rxb(t), had a faster transient response. Moreover,
for the T-S model, all nonlinearities presented are
denoted by local models corresponding to the maxi-
mum and minimum values of each nonlinear term in
the equations of the system. Thus, the number of local
models for each operating region is directly related
to the number of nonlinear terms present.

Fig. 8. Performance of IT2FRBS in relation to T1FRBS using T-S
model for the case study 1.

Since Equation (17), which governs the behavior of
MAGLEV, has two nonlinear terms, four local fuzzy
models are required to represent the nonlinear system
in such specific operating region, and it is necessary
to calculate a new compensator for each fuzzy sub-
system. Thus, for the elaboration of the T-S model,
by using the number of delimited regions equal to the
number of operating points established in the elab-
oration of FRBSs, the rule base was increased to a
total of 1331 rules. This increase in the rule base is
explained by the fact that the nonlinear term corre-
sponding to ic(t) , which in the methodology proposed
in this work could be described by a constant MF, in
the T-S modeling is described by a set of triangu-
lar and trapezoidal MFs, limited by the regions of
operations.

5.2. Case study 2

In a Power System, the controller is designed
to: (a) In the occurrence of random power-impacts,
the added power must be supplied by the syn-
chronous generators, (b) to maintain a scheduled
power exchange over the tie-line in the interconnected
system.

In this sense, δ has a very important role, because
some power-impact, such as abrupt changes in the
interconnected load, can make it vary considerably,
which can cause loss of synchronism and, conse-
quently, instability in the power system.

Thus, the control objective in this case study is to
make the outputs y1(t) = δ(t) and y2(t) = ψf (t) in a
synchronous machine connected to an infinite busbar
be such that the machine can safely operate and feed
loads with constant voltage and frequency.

5.2.1. T1FRBS versus standard state feedback
In simulations for the case study 2, the rδ(t) consists

of a set of steps whose amplitudes vary from 0 up
to π

2 radians, and rψf (t) varies as a function of the
quiescent points (δ0, ψf0 ) according to Table 6.
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Fig. 9. Performance of T1FRBS to the control of δ(t),in relation
to standard state feedback controller for the case study 2.

The performance obtained by means of the
T1FRBS in relation to the standard state feedback
control is observed in Fig. 9.

For the simulations with standard state feedback
controllers, three controllers (K(5◦), K (45◦) and
K(90◦)) were used to operate in three distinct equi-
librium regions (δ0, ψf0 ), in Table 6, where δ0
correspond to 5◦, 45◦ and 90◦, respectively.

In Fig. 9, it is verified that the performance obtained
using all three standard state feedback controllers
allowed for a smoother control of the load angle
for higher values of δ, whereas for small values of
δ, the controllers with fixed parameters present high
overshoot.

Thus, by using only fixed gain control, there would
be problems related to the lack of performance using
controllers designed for situations of low values of
interconnected load, which would complicate the
control problem in situations of high load because,
in this situation, the high non-linearity present in the
system was more difficult to control. In addition, an
excessively smooth control system can cause very
slow responses to load disturbances.

On the other hand, for situations of low load
demand, there would be problems of peaks in the
load angle with the use of controllers with a “tight”
tuning, designed for situations of high load, which
would lead to a fast control action, but with a dras-
tic variation in the frequency amplitude of the power
system. In this case, the control action is very fast,
and constantly varies by the difference between δ(t)
and rδ(t), in order to make the control system more
vulnerable to instabilities.

The T1FRBS, despite showing small overshoot in
almost all variations of rδ(t), but with a faster tran-
sient response, even in situations of low load angle
the response presents a smaller overshoot than the
one corresponding to the fixed gain controller calcu-
lated for this region. The field flux behavior, seen
in Fig. 10, shows that the proposed fuzzy system
can follow the reference rψf (t), but presents over-

Fig. 10. Performance of T1FRBS, to the control of ψf (t) , in
relation to standard state feedback controller for the case study 2.

Fig. 11. Terminal voltage Vt (using T1FRBS in relation to use
standard state feedback controller for the case study 2.

shoots during the transient period. The effect of this
oscillation during the transient period is reflected
in the terminal voltage Vt(t), given by Equation
26, of the synchronous generator and can be seen
in Fig. 11.

In relation to use standard state feedback con-
troller, whether tight or smooth tuning, the T1FRBS
presented satisfactory performance, characterized
by faster transient, besides keeping the oscillations
within a mean lower limit than that obtained with the
use of controllers with fixed parameters.

5.2.2. IT2FRBS versus T1FRBS
The proposed IT2FRBS was tested for case study

2, and the performance obtained was compared to the
good performance obtained by T1FRBS.

For the construction of IT2FRBS, only FOUs were
added to the MFs as quoted in subsection 3.4, in other
words, only the inference blocks and output processor
were duplicated to receive the new set of MFs, in
addition to the inclusion of the type-reducer block.

The performances resulting from the use of the pro-
posed IT2FRBS can be seen in Fig. 12 to the control
of δ(t).

In the case study 2, the IT2FRBS provided a
higher performance of the system than that pro-
vided by T1FRBS for all load situations tested and
sudden loads transitions, both in relation to the tran-
sient response, characterized by faster responses and
lower overshoots, as well as in relation to steady-
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Fig. 12. Performance of T1FRBS, to the control of δ(t), in relation
to IT2FRBS for the case study 2.

Fig. 13. Performance of T1FRBS, to the control of ψf (t), in rela-
tion to IT2FRBS for the case study 2.

state response, with the elimination of the steady-state
error.

In addition, it provides control with the advantages
of the smoother action than the T1FRBS when nec-
essary, but also inhibits the excess of slowness to the
rejection of disturbances in the interconnected load
thanks to the insertion of FOUs that made it possible
to handle the uncertainties associated with fuzzy sets
that characterized δ(t), providing a better treatment
of imprecision in its all universe of discourse.

Since there is a high degree of coupling between
the variables y1(t) = δ(t) and y2(t) = ψf (t), the
smoother control produced by IT2FRBS also pro-
vided a significant reduction of the oscillations in the
output ψf (t). This greater smoothness verified in the
output signal y2(t) with IT2FRBS in relation use of
T1FRBS can be seen in Fig. 13.

The control of the field flux implies the control of
the terminal voltage. Consequently, the advantages
provided by the performance of the IT2FRBS in sub-
stitution for the T1FRBS are also reflected in the
trajectory of Vt(t), which can be verified in Fig. 14.

These higher performances of IT2FRBS are due
to the fact that T1 fuzzy sets are able to effec-
tively capture the system nonlinearities but not the
uncertainties [5].

By choosing simple MFs such as turning the MFs
to yψf (t) and v̇ψf (t) into constant and a smaller
number of rules, it can reduce the implementation
complexity of the IT2FRBS resulting in a higher per-

Fig. 14. Terminal voltage Vt(t) using T1FRBS in relation to use
IT2FRBS for the case study 2.

formance for both outputs with lower implementation
cost.

5.3. About results

The superior performance achieved by the
T1FRBSin relation to the standard state feedback
control is due to the fact that a control system that
presents linear dynamic behavior with static param-
eters sometimes becomes unable to provide enough
flexibility to attend all the performance specifications,
by means of the present variations.

It is also known that conventional control theories,
established by rigorous analyzes, cannot satisfac-
torily deal with the complexity, nonlinearity, and
imprecision of many real control systems. In contrast,
the rule base of the FRBS allows the allocation of
more suitable controllers to different load situations.

By the proposed method, it uses a linguistic rule-
based to generate the nonlinear control action from
the linear combination of a set ϕ(t) of pre-defined
fuzzy variables, such that the problem of fuzzy con-
trol of reference tracking can be solved by making
use of control techniques for linear systems. Thus, for
each rule, it can use linear control design techniques,
but the resulting overall fuzzy controller, which is a
fuzzy blending of each individual linear controller, is
nonlinear.

The PDC techniques, in association with fuzzy
logic, allow the change from one local controller to
another to occur gradually, not abruptly, as would
happen without the implication of degrees of per-
tinence attributed to input fuzzy variables, so that
depict the nonlinearities present. The MFs respon-
sible for qualifying error allocate tightest local
controllers K(α) when the error is large and K(α)
controllers less tight while the error decreases.

The situation where the contribution Zj for the vec-
tor Z to process the fuzzy output finally receives the
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local controller designed for the reference happens
when lim

v̇(t)→0 v̇(t) = r(t) − y(t).

In T2 fuzzy, the limit lim
v̇(t)→0 v̇(t) = r(t) − y(t)

remains the same, but the introduction of FOUs in
MFs adds the uncertainties concerning the definitions
of each T1 MF, so that they are transmitted to the
antecedent and consequent in the rule base.

Thus, some rules that were not activated in a given
situation in the upper MFs started to be activated in
the lower MFs, as well as in a reciprocal way. More-
over, even in situations where a rule j is activated in
both cases, the contributions Zj relative to the con-
sequence of the j-th rule of the vector Z are inferred
with distinct degrees of pertinence for the upper and
lower MFs. Subsequently, the resulting overall con-
trol signal, at the output of the reducer-type block,
corresponds to the average between the fuzzy out-
puts produced in both processing blocks, composed
of the consequences of all active rules and inferred
by means of fuzzy logic.

For this reason, T2 fuzzy logic allows a gradual
transition from nonlinear control modes to upper and
lower MFs, and consequently to uncertainty about the
limits that best characterize a given situation.

In other words, IT2FRBS can be conveniently used
in situations where there is uncertainty about the
grades of membership, the uncertainty of the format
of MFs and uncertainty in some of the parameters of
MFs, such as the limits established for MFs. Thus,
thanks to the remarkable ability to handle uncertain-
ties in the control area, controllers that use T2 fuzzy
logic have been gaining more and more space in
recent years.

Case study 1 proposed IT2FRBS to a fuzzy state
feedback control using T-S fuzzy models. Controllers
obtained by T-S fuzzy models adapt to different sit-
uations within the region of operation for which
they were defined. In this case, their global stabil-
ity is guaranteed when looking to take a system from
one point to another within a defined convex region.
It does not happen when using local linear models
obtained by linearization around an operating point so
that the system is not guaranteed to be stable when it
is moving through points within the specified region.
However, even using T-S models, it is required to
ensure stability that the IT2 fuzzy controller shares
the same premise MFs and the same number of rules
as those of the IT2 T-S fuzzy model [5].

When it uses T-S models, however, the number of
local models increases with the nonlinearities. These
limitations constrain not only the design flexibility
of the controllers, but also increase the implemen-

tation complexity of the IT2 fuzzy controller by the
significant increase of the rule base.

On the other hand, since T-S model is not neces-
sarily implemented [7], a direct IT2FRBS allows the
number of MFs used to be freely chosen and, as a
consequence, there is more autonomy on the part of
the control designer, which would be responsible for
balancing between more accuracy of response and
computational complexity.

6. Conclusions

This work proposed systematic procedure to
design a control strategy that uses an IT2FRBS for
state feedback and reference tracking of nonlinear
systems.

Two case studies were analyzed with the applica-
tion of the proposed systematics. The performance of
the proposed FRBS was analyzed using T1 in relation
of T2 logic and it was found that IT2FRBS perform
better in relation to T1FRBS for transient and steady-
state responses, even with a smaller amount of MFs
(in the case study 1), and consequently, fewer rules.

The proposed IT2FRBS was also compared with a
T1FRBS using T-S models to the case study 1, where
it was found that the IT2FRBS was able to not only
stabilize the system, but also to do so with less settling
time and using a much lower rule base.

The methodology proposed overcomes some of the
limitations related to the project design for several
complex systems by proposing an IT2FRBS since,
by a direct control, only local linear controllers are
used without the need to include T-S fuzzy models
on the rule-base nor complicated adaptive schemes.
In this case the MFs and the number of rules can
be freely chosen, enhancing the applicability by pro-
viding increases the ease of implementation of the
technique.

From the results, it was verified that T1FRBSs
is able to stabilize the systems analyzed at differ-
ent equilibrium points, but the performance of the
IT2FRBS is much smoother and it needs less settling
times, and given the quantity of uncertainties in the
linearized model. In fact, the IT2FRBS proved to be
a proper way to accomplish this task, because fuzzy
logic control itself does not depend on an accurate
model of the controlled object, and the IT2 MFs of
the fuzzy control are able to handle parameter uncer-
tainties arising from the linearization.

The achievement of the results made it possible to
establish sufficient and necessary conditions for the
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implementation of the proposed strategy to solve the
lack of a generic procedure to a systematic form of
calculation definite during utilization of fuzzy sets,
which provide the basis of the elaboration of efficient
servo controllers, applicable to several situations,
despite the presence of some kind of nonlinearities
and source of uncertainties.

Future work should investigate the performance
of this methodology by extending the results from
the approximations of Generalized T2 fuzzy systems
based on several IT2 fuzzy systems by the concept of
α-planes representation.
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