
Journal of Intelligent & Fuzzy Systems 37 (2019) 7643–7655
DOI:10.3233/JIFS-179369
IOS Press

7643

Empirical evaluation of continuous
test-driven development in industrial
settings

Lech Madeyskia,∗ and Marcin Kawalerowiczb

aFaculty of Computer Science and Management, Wroclaw University of Science and Technology,
Wroclaw, Poland
bFaculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology,
Opole, Poland

Abstract.
BACKGROUND: Continuous Test-Driven Development (CTDD) is, proposed by the authors, enhancement of the well-
established Test-Driven Development (TDD) agile software development and design practice. CTDD combines TDD with
continuous testing (CT) that essentially perform background testing. The idea is to eliminate the need to execute tests manually
by a TDD-inspired developer.
OBJECTIVE: The objective is to compare the efficiency of CTDD vs TDD measured by the red-to-green time (RTG time),
i.e., time from the moment when the project is rendered not compiling or any of the tests is failing, up until the moment
when the project compiles and all the tests are passing. We consider the RTG time to be a possible measurement of efficiency
because the shorter the RTG time, the quicker the developer is advancing to the next phase of the TDD cycle.
METHOD: We perform single case and small-n experiments in industrial settings presenting how our idea of Agile Experi-
mentation materialise in practice. We analyse professional developers in a real-world software development project employing
Microsoft .NET. We extend the contribution presented in our earlier paper by: 1) performing additional experimental evalu-
ation of CTDD and thus collecting additional empirical evidence, 2) giving an extended, detailed example how to use and
analyse both a single case and small-n experimental designs to evaluate a new practice (CTDD) in industrial settings taking
into account natural constraints one may observe (e.g., a limited number of developers available for research purposes) and
presenting how to reach more reliable conclusions using effect size measures, especially PEM and PAND which are more
appropriate when data are not normally distributed or there is a large variation between or within phases.
RESULTS: We observed reduced variance and trimmed means of the RTG time in CTDD in comparison to TDD. Various
effect size measures (including ES, d-index, PEM, and PAND) indicate small, albeit non-zero, effect size due to CTDD.
CONCLUSIONS: Eliminating the reoccurring manual task of selecting and executing tests and waiting for the results (by
embracing CTDD) may slightly improve the development speed, but this small change on a level of a single developer,
multiplied by a number of developers, can potentially lead to savings on the company or industry level.

Keywords: empirical software engineering, agile software development, test-driven development, continuous test-driven
development, human-centric experimentation, agile experimentation

∗Corresponding author. Lech Madeyski, Faculty of Computer
Science and Management, Wroclaw University of Science and
Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
E-mail: Lech.Madeyski@pwr.edu.pl.

1. Introduction

According to the Pulse of the Profession [9],
based on the 9th Global Project Management Survey
by Project Management Institute, 71% of organiza-

ISSN 1064-1246/19/$35.00 © 2019 – IOS Press and the authors. All rights reserved
This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0).

mailto:Lech.Madeyski@pwr.edu.pl

7644 L. Madeyski and M. Kawalerowicz / Empirical evaluation of continuous test-driven development

tions report using agile approaches in their projects
sometimes (31%), often (29%), or always (11%).
As reported by the recent State of Agile report by
VersionOne [1], 97% of respondents said that their
organizations practiced agile development methods.
According to the same report, 35% of respondents
use Test-driven development (TDD) practice. Fur-
thermore, TDD, along with pair programming, is one
of the most interconnected practices of Extreme Pro-
gramming (XP) [4]. A detailed description of TDD
by example is given by Beck [5]. It is also worth
mentioning that among software development prac-
tices, those commonly associated with TDD and XP
are still prevalent, e.g., unit testing and refactoring
are employed by 75% and 45% of the respondents,
respectively, according to the State of Agile report by
VersionOne [1].

Practically, all modern Integrated Development
Environments (IDEs) provide support for a practice
that is called continuous compilation. It is a prac-
tice of compiling the source code in the background
thread after every change in the code base. The effect
of the continuous compilation is an immediate feed-
back about all the compilation errors and warnings
while developer edits the code. Continuous compila-
tion is available in IDEs like Microsoft Visual Studio
(since 2010), Eclipse, IntelliJ IDEA etc. An extension
of continuous compilation called continuous testing
(CT) was introduced by Saff and Ernst [22, 23]. CT
adds background testing on top of the background
(continuous) compilation. Thus developers are not
only informed about the compilation problems but
also about the results of the automated tests. So the
test feedback is provided on top of the compilation
feedback. CT is available in Microsoft Visual Studio
since version 2012, but only in the highest and most
expensive versions. The Visual Studio implementa-
tion of CT is called Live Unit Testing and is contained
in the Enterprise version of Visual Studio 2017.

In 2013, we proposed the new practice Continuous
Test-Driven Development (CTDD) which combines
the TDD practice with CT [15]. CTDD is described
in detail in Section 2. Preparing for evaluation of the
new practice we have forked an open source CT tool
called AutoTest.NET. We have extended it with the
capabilities of gathering the life data about its exe-
cution (e.g. exact timestamps of the test triggering
events, results of the tests, etc.), as well as gathered
preliminary feedback about the tool via a Technol-
ogy Acceptance Model (TAM)-inspired survey [15].
The results of the survey encouraged us to proceed an
empirical evaluation of the new CTDD practice and

supporting tool. We have found that CTDD might
gain acceptance among TDD practitioners. To the
best of our knowledge, we are the first who performed
an empirical comparison of TDD and CTDD. The
initial speculation was that if there is even a small
time benefit regarding the coding velocity of a single
developer then might turn out to be a visible benefit at
large scale, due to the size of the software engineering
industry as a whole.

Hence, we wanted to assert whether there is any
time-related benefit for a developer or a small number
of developers and thus compared CTDD with TDD
to answer the question. If there is a performance gain
due to CTDD then (taking into account the mentioned
popularity of TDD among software developers) an
organisation using TDD or the entire software indus-
try could observe benefits from switching to CTDD.

This paper extends our earlier conference
paper [17], including preliminary CTDD evalua-
tion (using single case experimental design) with
only one developer, by performing a second CTDD
experiment (using small-n experimental design) in
a different project involving two additional develop-
ers. We also present much more in depth analysis
of the results of both experiments using effect size
measures (discussed in Section 6.3) to provide more
reliable conclusions wrt. differences between TDD
and CTDD. The research goal and hypothesis stayed
the same for both of the studies and are presented in
Section 3.

In [16] we emphasise the value of software engi-
neering research performed in a real industrial setting
(based on real-world tasks) in contrary to the lab
experiments (mainly based on toy tasks). While it
was not strictly required to use close-to-reality set-
ting to perform our research (it could also be done
in a more controlled lab environment), gathering
empirical evidence from real developers working in
real projects, in real software engineering environ-
ments, gives us a dose of reality lab experiments often
lack. That is why we believe that there is a need for
a kind of lightweight/agile experimentation frame-
work that is especially suitable in industrial software
engineering setting, see our Agile Experimentation
Manifesto [16].

The large scale experimental research, although
doable, is often not feasible in profit driven set-
ting. It is mainly because it is often too expensive
to involve professional developers in full-fledged
experiments (e.g., doing the same (sub)system twice
using different methods). For example, the CODE-
FUSION company was interested in possible benefits

L. Madeyski and M. Kawalerowicz / Empirical evaluation of continuous test-driven development 7645

Fig. 1. Test-Driven Development.

of CTDD, but not interested in full-fledged experi-
ments. That is why the idea of Agile Experimentation
and using single-case/small-n experimental designs
was coined by the first author and accepted by the
company.

We compared the TDD and CTDD practices,
described in Section 2, in a single-case randomized
blocks design with two conditions. We treat TDD
as a baseline1 and CTDD as an intervention (details
are described in Section 3.3). We have performed two
experiments to asses the efficiency of the CTDD prac-
tice. Plan, execution (including the tool set we built to
perform the experiments), results, as well as analysis
and discussion of the results of the conducted experi-
ments are presented in Section 3, 4, 5, 6, respectively.
The results of the first experiment were discussed ear-
lier [17]. The results of the second experiment and
detailed analysis of the results of both experiments
(including four effect size measures) are presented in
this paper for the first time.

2. Background

Figure 1 shows a typical TDD practice flow. The
developer begins by writing a test. Then she executes
the test. She expects the test or even the build to fail
because there is no implementation yet to satisfy the
test. Then she proceeds to quickly write the func-
tionality that will satisfy the test. Executes the test
to check if it succeeds. Then refactors the code and
repeats the process several times striving for complete
implementation. While doing this she is executing the
tests continuously checking whether she did not break
anything.

The Figure 2 shows the subtle but meaningful
change in the flow. We proposed to add a continuous
notion to the TDD practice by virtually freeing the
developer from the duty to manually execute the tests.

1Actually, TDD can also be considered just another interven-
tion level.

In CT and CTDD the code is compiled and tested
automatically mostly after the developers saves the
changes in the file. She is not forced to select specific
tests and execute them herself. The need to manually
select and trigger the tests by pressing a button or issu-
ing a command is removed. The tests are performed
in the background. It potentially adds a value to the
process by giving to the developer a more frequent
and earlier feedback from amended code.

3. Experiments planning

3.1. Experiments goal

The overall goal of the experiments is to determine
the difference in software developer performance
using CTDD compared with TDD. The objects of
this study are professional software developers work-
ing in a real software development project. All of the
participants are computer science graduates with two
to five years in professional software development.
One held BSc, while two held MSc degree at the
time of performing the experiment. All of them are
TDD practitioners, although the level of experience
in TDD practice varied among them. In Experiment 1
we had single software engineer involved, in Experi-
ment 2 the developer 1 was also a software engineer
and developer 2 was a junior software engineer. All of
them have used TDD in previous projects they were
involved in. The usage of TDD is completely optional
in the projects the developers are working in. If they
find it suits the development in one way or another
they are allowed and encouraged to use TDD. The
experiment was conducted on modules where TDD
was suitable from the point of view of the developer.

The developers will use TDD and CTDD simul-
taneously and the tools they use will differentiate
the practice. Randomization will be used during
the assignment of the individual classes to TDD or
CTDD.

7646 L. Madeyski and M. Kawalerowicz / Empirical evaluation of continuous test-driven development

Fig. 2. Continuous Test-Driven Development.

The purpose is to measure and evaluate the indi-
vidual developer performance when she uses CTDD
(introduced by the authors in [15]) instead of TDD.
Form the point of view of the researcher it is interest-
ing if there is any systematic difference in the TDD
vs. CTDD performance. RTG time is the measure
with which the individual performance of the soft-
ware developer will be measured. It is also where
the difference between the TDD and CTDD prac-
tices, which are similar, may reveal. RTG stands for
red-to-green.

Let tred in RTG be the moment in time when the
whole software project is transitioning to the red state,
i.e., is rendered not building. Whatever the reason is.
It is in the red state when there is a problem with
producing working software on any stage of the build
process. It can not compile due to syntax errors in
source code or any of the automated tests is failing
for whichever reason (e.g., error in code under test
or in test itself). Let tgreen in RTG be the moment
in time when the project is transitioning from red to
green, i.e., to building properly again. It compiles and
all the tests are passing (no matter the strategy used
to satisfy the test: obvious implementation, fake it or
triangulation [14]). The shorter the time between the
tred and tgreen the quicker the turnover — the less time
developer is spending in the TDD loop transitioning
from the red state to the green one.

Figure 3 depicts the TDD loop with the RTG time
highlighted as red dashed lines with arrows. In every
TDD loop the developer runs the tests and checks the

result. Depending on the result she proceeds to the
next step. After writing the initial test it should fail
— there is no implementation to satisfy the test. The
RTG time begins. The developer proceeds to satisfy
the test in the easiest possible manner. Then she runs
the tests and checks the result. If the test is satisfied
then the RTG time ends. The developer proceeds to
the refactoring phase. In this phase the RTG time is
possibly triggered many times when the developer
refactors the code rendering the tests to fail and then
fixing it to satisfy the tests again. We are measuring
the RTG time because it encapsulates all the devel-
oper manual tasks to run the tests. If we can eliminate
those manual tasks from the TDD loop, as explained
in the earlier section by incorporating the continuous
notion into the TDD practice, we can shorten the RTG
time. It is desirable that the developer spends more
time doing his actual work of developing required
features and tests than to be engaged in the mundane
and recurring “mechanical” work involving manual
selection and execution of tests. The task of select-
ing and executing the tests and then waiting for the
feedback to be returned is constantly occurring while
using TDD. To the extend that the developer might
omit some test feedback loops which might be risky.
The conjecture is that if we can eliminate this con-
stantly repeated task using CTDD, we can reduce the
aforementioned risk and time waste and make the
developers more productive. As a side effect it might
ensure better TDD abidance by performing relent-
lessly the tasks the developer might omit.

Fig. 3. RTG time - red-to-green time in the TDD loop. Red arrows indicate the time measured in the experiment.

L. Madeyski and M. Kawalerowicz / Empirical evaluation of continuous test-driven development 7647

Table 1
Overview of CTDD experiments

Experiment 1 Experiment 2

Project Industry grade construction Industry grade waste
engineering software management software

KLOC 39.2 277.3
Avg. Methods 7.31 9.80
per Class
Avg. Statements 3.78 3.04
per Method
Avg. Complexity [19] 1.73 1.71
Developers 2 2
Developers participating 1 2
in experiment
Environment / language .NET / C# .NET / C#
IDE Visual Studio 2012 Visual Studio 2015
IDE Extensions AutoTest.NET4CTDD, ResharperSensor,

NActivitySensor NActivitySensor

The context embraces real-world commercial soft-
ware development projects. First is a civil engineering
software project for doing the calculation of vari-
ous concrete constructions. It is a Windows desktop
application using Windows Presentation Foundation
to create GUI. Second is a software for in-house waste
management in a company that is producing or pro-
cessing dangerous wastes. It is a web application that
uses ASP.NET MVC to create GUI. Both projects
are using C# as a programming language and are
written using Microsoft Visual Studio. Table 1 shows
some additional data about the experiments and the
software projects under investigation.

The goal template proposed by Basili et al. [3] was
used to summarize the scope of the study as follows:
Analyze the CTDD practice
For the purpose of evaluation
With respect to its efficiency measured by the RTG
time
From the point of view of the researcher
In the context of a professional software devel-
oper in real-world (industrial) software development
project(s).

3.2. Hypothesis formulation

A precise statement about what will be evaluated
in an experiment is the central aspect of experiment
planing. Hence we formulated the null and alternative
hypotheses:

H0: There is no difference in the developer cod-
ing velocity, measured as the RTG time (TRTG)
introduced earlier in Section 3, between the
CTDD and TDD observation occasions, i.e., H0:
TRTG(CTDD) = TRTG(TDD).

H1: Using CTDD in a real software project
makes the developer faster in comparison to TDD
in terms of the RTG time, i.e., H1: TRTG(CTDD) <

TRTG(TDD).
In Section 3.1, we mentioned that we expect the

CTDD to reduce the waste related to the RTG time
so we are predicting a direction in the effect and thus
we could assume directional alternative hypothesis.

3.3. Experimental design

Performing an empirical study in the real world,
commercial software development project, apart
from obvious challenges, has important advantages,
e.g., increasing the external validity of the obtained
results. It is hard to obtain this level of external valid-
ity by performing experiments with computer science
students on a toy project at university. It is also the
case that we decided to grab the opportunity we had
an access to the CODEFUSION company (through
one of the authors). As a result, our decision to per-
form the study in the real project should help us to
generalise the results of our study to similar industrial
projects.

Despite having access to the professional soft-
ware developers we needed to take into consideration
that a software developer is valuable and expensive
“resource” in the IT industry. Developer’s time is a
scarce resource and the goal of the various parties
(researcher and business owner) regarding the exper-
iment do not necessary converge. The researcher is
often interested in improving the industry process
through a large, controlled experiment where reliable
conclusions can be drawn. The business or project
owner is mostly interested in the return of investment

7648 L. Madeyski and M. Kawalerowicz / Empirical evaluation of continuous test-driven development

(ROI). The incorporation of the results of an exper-
iment are interesting for business owner only if the
positive impact to the project was proven. From the
business point of view the professional developers
are expensive assets, seldom available for scientific
research.

Because we had access to a small software devel-
opment company we up front gave up the idea to
perform large scale experiment. Also performing the
project or its part twice once with use of TDD and
once with CTDD was not an option. The company
we had access to, was co-run by one of the authors of
this paper, while one of the customers of that company
had scientific background and was kind enough to
allow some experimentation provided the impact on
the project will be reasonably small. Furthermore, we
could perform a part of the experiment in an in-house
product development project. Because the develop-
ers had full freedom to choose weather to use TDD
in the project or not we had on of two developers
involved in the project using TDD in the first exper-
iment and both developers involved in the second
project using (i.e., small-n). That was the reason we
were not controlling the TDD process conformance
in the experiments. The developers had no reason not
to use the practice if they freely choosed to do so in the
fist place.

An important aim of the experimental design is to
mitigate threats to internal validity related to alter-
native explanations. Randomization can be seen as
a useful technique to mitigate this threat. Because
of the constraints imposed by the company and the
project we were not able to assign the interventions
(treatments) at random to a large enough number of
participants (subjects) as it is the case in classic, large-
n experimental designs. What we, however, were able
to do was to randomly assign treatments to obser-
vation occasions to mitigate the threads to internal
validity. As a result, we were able to make use of ran-
domization in single case and small-n experiments.

Even though it is possible to randomly allocate
treatments to observation occasions it is unfortu-
nately not possible to use classic statistical tests (like
t-test) to analyze the data from single-case or small-
n experimental designs. The assumptions made in
the classic tests are different. The most prominent
assumption is that the observations are independent.
It is obviously not the case when we collect a series
of measurements on a single case.

Instead of using classic tests we decided to use ran-
domization tests that fit better for our scenario. They
do not require the observations to be independent,

and do not relay on rather restrictive assumption of
random sampling from a population.

Using single-case/small-n experimental design
combined with randomization tests [7] (that are the
core elements behind our idea of Agile Experimen-
tation in software engineering [16]) were until now
mainly used in the social psychology, medicine, edu-
cation, rehabilitation, and social work [10], although
there were first inroads into using those techniques in
software engineering as well [8, 16, 17, 25].

Dugard et al. [7] discuss different experimental
designs considering the constrains the project charac-
teristics impose on those designs. Taking into account
the imposed constraints, we found the single-case
randomized blocks design with two conditions exper-
imental design to be suitable for our needs because:

1. We are treating the participants as single-cases.
2. We have two conditions to compare: TDD and

CTDD.
3. We can arrange those two conditions in blocks.
4. We can assign conditions to observation occa-

sions in blocks at random (further details how
we did it are provided in Section 4)

To introduce required randomization in our exper-
imental design we decided to use randomized block.
This design is one of the schemas in alternation
designs. The simplest of the alternation designs is
a completely randomized design where the treat-
ments are assigned in a fully random manner. As such
some possible assignments can be rather undesirable.
For example, such that have no changes in treat-
ments, because the randomization algorithm returned
the same treatments all the time (e.g., AAAAAA or
BBBBBB) or the changes in treatment was assigned
only once during the randomization (e.g., AAABBB
or BBBAAA). Random block design deals with that
problem by introducing a block. The algorithm we
implemented in our tool was based on two con-
ditions. The first treatment in block was always
randomly assigned and the second was a reverse. So,
the possible assignments, if we have six measurement
occasions, are as follows: AB AB AB, BA BA BA,
AB AB BA, BA BA AB, AB BA AB, BA AB BA,
AB BA BA, BA AB AB.

4. Experiment execution

Two experiments were conducted using the same
experimental design but different tools. Table 1 shows

L. Madeyski and M. Kawalerowicz / Empirical evaluation of continuous test-driven development 7649

the overview of the experiments2. Both experiments
were conduced on two different industry grade soft-
ware projects. As mentioned before, the results of
the first experiment were reported by the authors
in [17].

In the first experiment, we had two developers, but
only one was using TDD/CTDD, while in the second
one we had also two developers and both of them
were using TDD/CTDD. During both experiments
the developers were using Visual Studio (version
2012 in the first experiment, while version 2015 in
the second one).

In order to gather the data needed to assess the
CTDD practice, in the first experiment, we had to
extend one tool and develop another.

The first tool AutoTest.NET4CTDD is a fork of
an open source Visual Studio add-in AutoTest.NET.
We have made it possible for AutoTest.NET to gather
the real time statistics during its usage. This feature
was not available in the built in CT capabilities of
Visual Studio. AutoTest.NET4CTDD detects what
tests need to be run based on the changes the devel-
oper makes in code. It executes all the detected tests
regardless of its purpose and origin. Those tests can
formally be unit, integration or even system tests. As
long as the change the developer made is related to
the test that is automated, it will be run. If those tests
were used as regression tests, AutoTest.NET4CTDD
will run them.

Another feature that we have built into this tool was
the ability to turn the automatic testing off for certain
classes. If the background testing was turned on, we
have had the CTDD phase. If the background testing
was turned off, the developer needed to execute tests
manually which gave us the TDD phase. The tests in
both phases were executed in an user interface non-
blocking thread (Visual Studio was responsive all the
time). The differentiation weather a class needs to
be developed using TDD or CTDD is made using a
Random Block Generator tool described later in that
section.

AutoTest.NET4CTDD was able to gather the data
about the tests performed when developer used
CTDD. What we needed was another tool that could
allow us to gather the data when developer used TDD,
when no CT is performed. We have searched for a
ready made extension of this kind available for Visual
Studio. Unfortunately we did not find any suitable for
our needs so we have decided to develop one, called

2All metrics in Table 1 were calculated using SourceMonitor
V3.5 http://www.campwoodsw.com/sourcemonitor.html

NActivitySensor, ourselves. We described this tool in
the appendix of [16].

With AutoTest.NET4CTDD and NActivitySensor
at hand, we were able to gather the data needed for
our empirical investigation of CTDD vs TDD. The
measure we have used to compare both practices
is red-to-green time (RTG time), see Section 3.1,
which can be easily measured using the tools we
have developed as they provide the time stamps of
all the events needed to calculate it. The RTG time is
where the advantage of using CTDD practice could
appear over the use of TDD. RTG time is the right
measure to differentiate between TDD and CTDD
because it measures the time that the developer is
wasting by selecting and executing the tests, wait-
ing for the results that were not prepared in advance
in the background thread, and checking the results.
All else being equal apart from the treatment (TDD
vs CTDD) the smaller the RTG time the quicker the
developer.

The second experiment was conducted in a project
where Visual Studio 2015 was used. At the time of
conducting the experiment the developers were using
Resharper — a popular Visual Studio extension3 that
already contained the continuous testing infrastruc-
ture. So Resharper (and not AutoTest.NET4CTDD)
was used in this experiment to perform CTDD.
Unfortunately Reshaper does not provide any data
gathering functionality. In order to get the test exe-
cution time stamps and results from Resharper we
needed to develop the third tool, a plug-in for
Resharper called RSActivitySensor.

To introduce randomization to the experiment as
required in the single-case randomized blocks design
with two conditions experimental design, we imple-
mented a subsequent software tool that we called
Random Block Generator. RSActivitySensor and
Random Block Generator are described in an online
appendix [18].

It was agreed upon that the impact of the research
on the developers working in the project should be
minimal. The Random Block Generator tool usage
was the only one manual action the developers needed
to perform in the experiment. The tool randomly
decides if the class the developer is adding to the
project will be developed using TDD or CTDD. The
developer then needs to decorate the class with the
comment //AUTOTEST IGNORE in the first line of
the file if it is to be developed using traditional TDD.
Both AutoTest.NET4CTDD and RSActivitySensor

3https://www.jetbrains.com/resharper/

http://www.campwoodsw.com/sourcemonitor.html
https://www.jetbrains.com/resharper/

7650 L. Madeyski and M. Kawalerowicz / Empirical evaluation of continuous test-driven development

read this comment and act accordingly by disabling
the CT. In that case the developer needs to select and
execute the test manually.

All the data gathered during the experiments was
stored in two relational databases. One was for
AutoTest.NET4CTDD and one for RSActivitySen-
sor/NActivitySensor. We calculated the RTG time
from the time stamps in the database.

We released NActivitySensor and AutoTest.
NET4CTDD as open source projects that are avail-
able from GitHub4.

5. Results

The statistical analysis of the data was performed
using R [21], while to aid our single-subject data
analysis we used an SSDforR [2] package.

In both experiments we began the comparison
between the TDD and CTDD phases by calculating
descriptive statistics including measures of central
location (e.g., mean, trimmed mean), as well as vari-
ation in both phases. As is often recommended, we
have looked for the outliers and the observations that
were beyond the two SD were further investigated.
In the first experiment, we have found them to be
the RTG times including the midnight (when the
project with some failing test(s) was left until the
next working day). As a result, we were sure that we
need to remove the outliers. In the second experiment
we followed the same practice — checked all of the
observations that were beyond the two SD and, if it
was reasonable, removed from the further analysis
(6,7% of the observations from developers involved
in the first experiment were considered outliers; in
the second experiment the numbers were 4.2% and
4.8%).

The subsequent RTG times from Experiment 1
visualized in Figure 4 and Experiment 2 visualized
in Figures 5 and 6 were first sorted by the TDD and
CTDD phase and then depicted on the diagrams to
better facilitate the presentation of descriptive statis-
tics.

What we found across all of the analysed exper-
iments and developers is that widely used measures
of central locations, means and more robust trimmed
means, as well as standard deviations of the RTG
times are lower in CTDD than TDD, see Figures 4, 5
and 6. It is also visualised by boxplots presented in
Figures 7, 8 and 9, as well as summarised in Table 2.

4https://github.com/ImpressiveCode

Fig. 4. Subsequent RTG durations [min] in phases A (TDD) and
B (CTDD) – Experiment 1 (after [17]).

Fig. 5. Subsequent RTG durations [min] in phases A (TDD) and
B (CTDD) – Experiment 2, Developer 1.

The only measure of central location that does
not follow this, otherwise clear, trend was median in
Experiment 1 (see Figure 4, 7 and Table 2) and devel-
oper 2 in Experiment 2 (see Figure 6, 9 and Table 2).
This is something we did not expect that could con-
tradict our hypothesis. Therefore, now we will focus
on detailed analysis and discussion of the obtained
results.

6. Detailed analysis and discussion of results

In this section we discuss in detail results of the per-
formed experiments from the perspective of measures
of central location, measures of variations, as well as
effect size measures which are crucial to provide more

https://github.com/ImpressiveCode

L. Madeyski and M. Kawalerowicz / Empirical evaluation of continuous test-driven development 7651

Fig. 6. Subsequent RTG durations [min] in phases A (TDD) and
B (CTDD) – Experiment 2, Developer 2.

Fig. 7. Boxplot for RTG duration [min] in A (TDD) and B (CTDD)
– Experiment 1 (after [17] with added mean).

Fig. 8. Boxplot for RTG duration [min] in A (TDD) and B (CTDD)
– Experiment 2, Developer 1.

Fig. 9. Boxplot for RTG duration [min] in A (TDD) and B (CTDD)
– Experiment 2, Developer 2.

reliable conclusions about differences between TDD
and CTDD.

6.1. Measures of central locations

Visual examination of the boxplot in Experiment
1 shows a slight drop in the RTG time in the CTDD
phase of that experiment. The boxplot for developer
1 in Experiment 2 indicates an evident drop of the
RTG time in the CTDD phase of the experiment.
However, the drop is not so evident for developer
2 in Experiment 2. The reason for that might be that
the developer 2 was less experienced and was using
AutoTest.NET4CTDD in other way than the other
developers. It might be that the developer was also
the developer that was not strictly following the TDD
rules. This was hard to control and constitutes a threat
to validity. On the other hand it was entirely devel-
opers decision whether to use TDD and when. That
is why one of the developers in Experiment 1, who
preferred not to use TDD, was not involved in the
experiment. Hence, we feel that the process confor-
mance threat, albeit present, was minimised in this
way.

It might also be a good idea to build into the
research tools the ability to gather more telemetry
data, e.g., how exactly the developer is using the IDE
and our tool, what tool windows are visible in the IDE
and when etc. It could give us in further information
to reason about differences between developers.

As pointed out in Section 5, the RTG time mean
across all of the experiments and involved developers
was smaller in CTDD than TDD. It suggests a positive
impact of the CTDD practice. However, mean is not
a robust measure of the central location and can be

7652 L. Madeyski and M. Kawalerowicz / Empirical evaluation of continuous test-driven development

Table 2
Descriptive statistics (RTG duration [min])

Measurement Experiment 1 Experiment 2 Experiment 2
Developer 1 Developer 2

A (TDD) B (CTDD) A (TDD) B (CTDD) A (TDD) B (CTDD)

number of observations 85 55 21 46 68 31
median (Md) 1.768 3.018 3.85 2.58 1.615 1.820
mean (M) 12.372 8.388 5.051 3.247 2.683 2.088
10% trimmed mean (tM) 7.713 5.67 4.560 2.761 2.248 1.927
standard deviation (SD) 20.724 12.459 4.009 2.833 2.601 1.451
minimum (0% quantile) 0.275 0.295 0.88 0.42 0.25 0.43
maximum (100% quantile) 116.746 60.286 15.68 12.02 14.73 5.25
IQR 13.439 9.804 4.5700 2.7475 2.1925 2.2150
25% quantile 0.584 0.758 1.98 1.09 1.000 0.895
75% quantile 14.023 10.562 6.5500 3.8375 3.1925 3.1100

strongly influenced by outliers, especially when the
number of observations is small.

One of the widely known robust measures of the
central location is the median. As pointed out in
Section 5, the medians across developers were not
consistent, i.e., the median of the RTH time for CTDD
was lower in the case of developer 1 in Experiment2,
while higher than TDD in Experiment 1 and in the
case of developer 2 in Experiment 2. This might
be surprising. However, in general the median is
not ideal [11]. Even though the median is robust, it
ignores all but one or two observations. As a result,
estimates of the standard error of the median are
not efficient. They may also be unreliable if there
are duplicate values in the data. Therefore, trimmed
means are often recommended robust measures of the
central location while analysing software engineering
experiments [11].

The 10% trimmed means for the data in Exper-
iment 1 and Experiment 2, for both developers,
suggest the same positive impact of the CTDD prac-
tice versus the traditional TDD. Based on the 10%
trimmed means, the RTG time reduction in Experi-
ment 1 was about 123 seconds, while in Experiment
2 in the case of developer 1 was 108 seconds, and in
the case of developer 2 was over 19 seconds.

6.2. Measures of variations

Apart from the measures of central tendcency,
Table 2 reports the maximum and minimum. The
difference between these values form a very simple
measure of variation — a range. It is clearly the case
that variation measured by the range is smaller in
CTDD than TDD across all of the experiments and
analyzed experiments.

The more valuable measure of statistical dispersion
is the interquartile range (IQR) or the middle 50%.

IQR is the difference between the 75th (third quantile)
and 25th (first quantile) percentiles.

We have found a great deal of variation in Exper-
iment 1. Not only the variation in the middle 50%
of the data was substantial, but also IQR for TDD
(IQR1TDD = 14.023 − 0.584 = 13.439) was higher
than for CTDD (IQR1CTDD = 10.562 − 0.758 =
9.804). In Experiment 2, we observed a similar
pattern, the variation in the middle 50% of the
data, in case of developer 1, was higher in TDD
(IQR2TDD1 = 6.55 − 1.98 = 4.57) than CTDD
(IQR2CTDD1 = 3.8375 − 1.0900 = 2.7475),
while in case of developer 2 they were sim-
ilar (IQR2CTDD2 = 3.110 − 0.895 = 2.215,
IQR2TDD2 = 3.1925 − 1.000 = 2.1925). Gener-
ally, the variation in the middle 50% of the data in
Experiment 2 was much smaller than in Experiment
1. A possible explanation of this phenomenon
might be higher complexity of the project used in
Experiment 1 (calculation library in civil engineer-
ing) than the project used in Experiment 2 (waste
management).

We also report standard deviation (SD) in Table
2, which is another helpful measure of variation. It
describes the average distance between the scores and
the mean. According to the 68-95-99.7 rule 68% of
the scores in normal distribution are within the 1 SD
below and the 1 SD above the mean, 95% are within
the 2 SDs and 99.7% are within the 3 SDs below and
above the mean.

Standard deviations (SD) calculated in Experi-
ment 1 provide additional empirical evidence to the
claim that variation when the CTDD practice was
used was much smaller than when TDD was used
(SDCTDD = 12.459 vs. SDTDD = 20.724). This is a
desirable effect of the CTDD practice that is designed
to provide fast and continuous feedback to the devel-
oper informing him immediately when tests do not

L. Madeyski and M. Kawalerowicz / Empirical evaluation of continuous test-driven development 7653

pass. We also used this common measure of variation
(SD) which measures the distance between the scores
and the mean again in Experiment 2 and we observed
exactly the same pattern. The SD in Experiment 2
was SDTDD = 4.009 vs. SDCTDD = 2.833 for devel-
oper 1 and SDTDD = 2.601 vs. SDCTDD = 1.451 for
developer 2. Again, it is straightforward to explain as
the aim of the new practice (CTDD) is to provide a
fast feedback when tests do not pass, thus the reduced
variance in the RTG time thanks to CTDD.

6.3. Effect size

The importance of the experimental effect is often
calculated using effect size measures. They can be
very helpful, as they provide a measure of the mag-
nitude of a treatment effect (CTDD vs. TDD in our
case) and thus complement the statistical significance
of the test statistic in a important way. Effect size
measures are much less affected by the sample size
than the statistical significance and, thus, are better
indicators of practical significance [11, 14].

In our case, effect size measures quantify the
change between the RTG times in the TDD and
CTDD phases of the experiments. To better grasp the
effect of CTDD vs TDD, apart from typically reported
traditional effect size measures ES and d − index

calculated with the help of the SSDforR package, we
also report more sophisticated effect size measures
PEM and PAND. They are considered to be more
appropriate when data are not normally distributed
or there are multiple phases to be compared, or there
is a large variation between or within phases, which
is indeed the case in our experiments.

Effect size measure ES is defined as:

ES = MCTDD − MTDD

SDTDD

(1)

It is a difference between the RTG times means in
the CTDD and TDD phases divided by the standard
deviation of the TDD phase.

In our study the variation between the phases dif-
fers (see Table 2). In such case it is better to use
d − index as the effect size measure. It is similar
to ES but uses pooled standard deviation instead
of standard deviation. Pooled standard deviation is
a weighted average of standard deviations for two
groups. d − index does not show the direction of the
effect and can be defined as:

, d − index = MCTDD − MTDD

SDpool(TDD,CTDD)
(2)

Neither mean nor median should be used if there
are trends in the data, and the same applies to effect
size measures ES or d − index. We have calculated
the trends using ordinary least squares (OLS) regres-
sion because it is considered an accurate measure of
the trend. The OLS was calculated for both exper-
iments. In Experiment 1, the multiple R-squared
values were very close to 0 (0.005 for the phase A
(TDD) as well as B (CTDD)), while the p-values for
the slopes in both phases were not statistically signif-
icant (p > .05), p = 0.519 for A and p = 0.608 for
B. Hence, we concluded that there were no (or were
negligible) trends in the data.

The situation was similar in Experiment 2. The
multiple R-squared values for developer 1 were 0.088
for the phase A and 0.013 for the phase B, with
p-values 0.192 and 0.457 accordingly. For devel-
oper 2 we measured multiple R-squared values of
0.006 in phase A and 0.101 in phase B. The p-values
for trend were 0.533 and 0.0814. The p-value in
phase B was not so far from 0.05 but still above the
threshold what allows us to assert the trend as small
enough to proceed and calculate effect size to mea-
sure the magnitude of change between A (TDD) and
B (CTDD).

In the first experiment, we have calculated ES =
−0.192 and d − index = 0.222 which can be inter-
preted as small, albeit non-zero effect size [6]. In
Experiment 2, for the developer 1 we have ES =
−0.45018 and d − index = 0.55689 and for devel-
oper 2 ES = −0.22878 and d − index = 0.25788. It
is a bit higher, but still small albeit non zero effect in
all cases. It is worth mentioning that the minus in ES

indicates the desirable direction of the change — the
drop of the RTG time in CTDD.

Because we had a relatively large deal of vari-
ation in both experiments and within both phases
we decided to use non-overlapping effect size mea-
sures: the percentage of the data points in intervention
phase (CTDD) exceeding the median of the baseline
phase (TDD), i.e., PEM [13], and the percentage of
all non-overlapping data, i.e., PAND [20]. They are
calculated by using the percentage of data points in
the CTDD phase that exceeds a specific point in the
TDD phase [12].

In Experiment 1, we have calculated PEM = 0.38,
which can be interpreted as “not effective” accord-
ing to [13, 24], and PAND = 0.61, which can be

7654 L. Madeyski and M. Kawalerowicz / Empirical evaluation of continuous test-driven development

interpreted as “debatable effectiveness” according to
Parker et al. [20].

In Experiment 2, for developer 1 PEM = 0.74
which can be interpreted as “moderate effectiveness”,
while for developer 2 PEM = 0.48 — “not effec-
tive”. Further, in the case of developer 1 we have
calculated PAND = 0.3 which is “not effective” and
PAND = 0.69 which is “debatable effectiveness” (it
is worth noting that 0.69 is the maximal value in
the “debatable effectiveness” range, just below the
threshold value for “moderate effectiveness”).

7. Conclusions and future work

The results of the second quasi-experiment seem
to corroborate the findings we reported in [17]. It
seems to be a small effect of using the CTDD prac-
tice compared to the TDD practice regarding the
RTG time. We have noted drop in the mean, the
trimmed mean and variation of the RTG time in
CTDD vs TDD across both experiments. Addi-
tionally, non-overlapping data effect size measures,
developed to deal with large variations within both
phases, classified the size of the effect due to CTDD
as between “moderate effectiveness” and “not effec-
tive”.

Obtained results seem to align with common intu-
ition. The act of selecting and executing tests after
the changes are made is a simple task. The expected
time difference will not be big, but still worth empir-
ical investigation taking into account how often it
happens and how many software engineers use TDD
(vide Section 1).

The current results are showing that our initial
hypothesis, presented in Section 3, seems to be
backed by the data. The calculated effect size was
moderate at best thus further investigation needs to
be made to obtain more reliable empirical evidence.
The impact of using CTDD on a day to day work
of a single developer is rather small, but a common
admission of the new CTDD practice in a team or in
the whole organisation might positively influence its
performance.

This study can be seen as an example of and
a guide to the so called Agile Experimentation
and using small-n and single case experiments
in software engineering [16, 17]. What we think
is important, is that Agile Experimentation may
bridge the gap between academia and business,
between researchers and business owners or devel-
opers due to negligible cost of experimentation and

still valuable feedback for developers/business and
researchers.

Acknowledgments

Lech Madeyski was partially supported by the
Polish Ministry of Science and Higher Education
under Wroclaw University of Science and Technol-
ogy Grant 0401/0201/18.

References

[1] The 12th annual State of Agile Report. Technical report,
Versionone.com, 2018.

[2] C. Auerbach and W. Zeitlin. SSDforR: Functions to Analyze
Single System Data, 2017. R package version 1.4.15.

[3] V.R. Basili, G. Caldiera and H.D. Rombach, The goal
question metric approach. In Encyclopedia of Software
Engineering. Wiley, 1994.

[4] K. Beck, Extreme Programming Explained: Embrace
Change. Addison-Wesley, Boston, MA, USA, 1999.

[5] K. Beck, Test Driven Development: By Example. Addison-
Wesley, Boston, MA, USA, 2002.

[6] M. Bloom, J. Fischer and J. Orme, Evaluating Practice:
Guidelines for the Accountable Professional. Pearson/Allyn
and Bacon, 2008.

[7] P. Dugard, P. File and J. Todman, Single-case and Small-n
Experimental Designs: A Practical Guide to Randomization
Tests. Routledge, 2nd edition, 2012.

[8] W. Harrison, N = 1: An alternative for software engineering
research?, 1997. Based upon an editorial of the same title
in Volume 2, Number 1 of Empirical Software Engineering
(1997).

[9] P.M. Institute, Pulse of the profession: Success rates rise:
Transforming the high cost of low performance, 2017.

[10] A.E. Kazdin, Single-case Research Designs: Methods for
Clinical and Applied Settings. Oxford University Press,
2011.

[11] B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P.
Brereton, S. Charters, S. Gibbs and A. Pohthong, Robust
Statistical Methods for Empirical Software Engineering.
Empirical Software Engineering 22(2) (2017), 579–630.

[12] A.S. Lenz, Calculating effect size in single-case research,
Measurement and Evaluation in Counseling and Develop-
ment 46(1) (2013), 64–73.

[13] H.-H. Ma, An alternative method for quantitative synthesis
of single-subject researches, Behavior Modification 30(5)
(2006), 598–617.

[14] L. Madeyski, Test-driven development: An empirical evalu-
ation of agile practice. Springer, (Heidelberg, London, New
York), 2010.

[15] L. Madeyski and M. Kawalerowicz, Continuous Test-
Driven Development - A Novel Agile Software Develop-
ment Practice and Supporting Tool. In L. Maciaszek and J.
Filipe, editors, ENASE 2013 - Proceedings of the 8th Inter-
national Conference on Evaluation of Novel Approaches to
Software Engineering, (2013), pp. 260–267.

[16] L. Madeyski and M. Kawalerowicz, Software Engineer-
ing Needs Agile Experimentation: A New Practice and

L. Madeyski and M. Kawalerowicz / Empirical evaluation of continuous test-driven development 7655

Supporting Tool. In Software Engineering: Challenges and
Solutions, volume 504 of Advances in Intelligent Systems
and Computing, (2017), pp. 149–162. Springer.

[17] L. Madeyski and M. Kawalerowicz, Continuous Test-
Driven Development: A Preliminary Empirical Evaluation
Using Agile Experimentation in Industrial Settings, (2018),
pp. 105–118. Springer International Publishing, Cham.

[18] L. Madeyski and M. Kawalerowicz, Appendix to
the paper “Empirical Evaluation of Continuous Test-
Driven Development in Industrial Settings”, 2019.
http://madeyski.e-informatyka.pl/download/Madeyski
Kawalerowicz19CTDDAppendix.pdf.

[19] S. McConnell, Code Complete: A Practical Handbook of
Software Construction. Microsoft Press, Redmond, WA,
USA, 1993.

[20] R.I. Parker, S. Hagan-Burke and K. Vannest, Percentage
of All Non-Overlapping Data (PAND) : An Alternative to
PND, The Journal of Special Education 40 (2007), 194–204.

[21] R Core Team. R: A Language and Environment for Statis-
tical Computing. R Foundation for Statistical Computing,
Vienna, Austria, 2016.

[22] D. Saff and M.D. Ernst, Reducing wasted development time
via continuous testing. In Fourteenth International Sym-
posium on Software Reliability Engineering, (2003), pp.
281–292, Denver, CO, November 17–20.

[23] D. Saff and M.D. Ernst, An experimental evaluation of
continuous testing during development. In ISSTA 2004,
Proceedings of the 2004 International Symposium on Soft-
ware Testing and Analysis, (2004), pp. 76–85, Boston, MA,
USA, July 12–14.

[24] M.A.M. Thomas E. Scruggs, Applications of Research
Methodology. Number t. 19 in Advances in learning and
behavioral disabilities. Elsevier, 2006.

[25] A. Zendler, E. Horn, H. Schwärtzel and E. Plödereder,
Demonstrating the usage of single-case designs in exper-
imental software engineering, Information & Software
Technology 43(12) (2001), 681–691.

http://madeyski.e-informatyka.pl/download/MadeyskiKawalerowicz19CTDDAppendix.pdf
http://madeyski.e-informatyka.pl/download/MadeyskiKawalerowicz19CTDDAppendix.pdf

