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According to the traditional approach to control:

– first, weidentify a system, i.e., test how it reacts to
different controls and, based on the reaction, de-
sign a model that describes the system’s behavior;

– then, the apply the known optimal control tech-
niques to the resulting model and produce the op-
timal control strategy.

This procedure makes perfect sense in many real-life
situations: if we want optimal control, e.g., optimal
fuel efficiency or optimal output, we need to find out
how exactly the systems reacts to different controls, so
the time and money spent on identification pay off.

In many real-life situations, however, the plant (=
controlled system) exists only for a short period of time,
or it exists for a longer period of time but its parameters
change fast. Examples of such situations include close
formation aircraft flights or combustion engine control,
where the parameters of the plant change with the minor
changes in the atmospheric conditions and/or in the
characteristics of the fuel. In such situations, we have
no time for a proper identification, we must instead
use some model-free control technique. One of such
techniques is extremum seeking control described in
this book.

In extremum seeking control, crudely speaking, we
add high-frequency perturbationsA · sin(ω · t) to the
controlu, filter out the frequencyω part of the system’s
responsex, and use this part in a feedback loop to up-
date the control. Let us illustrate this idea on a simple
example of a single-input single-output system in which
x = f(u) for some unknown functionu. Our objective
is to find the controlu∗ for which the outputf(u∗)
has the largest possible value. We can safely assume
that the current controluc is reasonably close tou∗,

so that in this vicinity, we can ignore cubic and higher
order terms in the dependence off onu and only keep
quadratic terms:f(u) = f(u∗)+ (1/2) ·f ′′(x∗) · (u−
u∗)2, wheref ′′(u∗) < 0 (since we have a minimum). If
we substitute the perturbed signalu = uc+A·sin(ω ·t)
into this formula, we get the expression

x = f(u∗) +
1
2
· f ′′(u∗) · (uc + A · sin(ω · t) − u∗)2.

One can easily see that in the resulting expression forx,
there is only one term proportional tosin(ω·t): the term
with an amplitudeAx = A · (u − u∗) · f ′′(x∗). Thus,
if we set up a feedback loop in whicḣuc = k · Ax for
somek > 0, we then conclude that for the difference

∆u
def= uc − u∗, we have∆u̇ = −C · ∆u, where

C
def= k · A · |f ′′(u∗)| > 0. So, ∆u decreases with

time asexp(−C · t) and, thus, the resulting controluc

reaches the desired maximum levelu∗ really fast.
It turns out that a similar idea can help optimize more

complex multi-parametric non-linear systems. Due to
simplicity and easiness-of-implementation, this idea
was actively used until the late 1960s, when complex
optimization algorithms replaced it. It has recently
turned out that in my applications, this idea still works
well.

The book describes different implementations of this
idea, with stability proofs showing that for a large class
of systems, this methods really leads to a stabilizing
control. The second part of the book contains practical
applications of this idea, ranging from anti-lock brakes
to bioreactors to formation flight to combustion engines
and compressor control.
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