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Abstract. Design and manufacturing sectors are vital agents of an economy. However, multiple challenges influence product
designs such as the predicted scarcity of energy and primary materials, the ubiquitous integration of electronic components and
computing science in systems’ architectures, the pervasive production of data by most systems, the emphasis given to CO2 free
energy solutions, recycling, and reuse, the transformation of the consumption model from product ownership to product as a
service, as well as the geopolitical conflicts. Major technological advancements leading to transformation in socio-economic
practices would be required to address these challenges which can have a profound effect on design and manufacturing
activities. This research aims to evaluate the potential impact and modification induced by such transformations on product
design process. The research identifies that early design automation can enable coping with unmanageable cognitive load
generated by cascading changes. A list of modifications to current design practices is proposed to enable the development
of a new generation of design tools. The article provides an initial prospective effort to discuss the potential services and
functionality that will be offered by future design tools’.
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1. Introduction

Herbert Simon introduced two concepts remaining relevant for the entire design and manufacturing
disciplines. First, the concept of bounded rationality, which was initially introduced in an economic
context as a criticism of the classical economic theory and asserting the existence of a purely rational
decision-maker, the homo economicus (Moon, 2007). Research in fields such as economy or psychol-
ogy has demonstrated that rationality, is often the exception more than the norm in human decision
processes. Hypothesising a purely rational behaviour is detrimental to understanding the complexity
of the human decision processes and consequently its branch of design decision making. The second
important concept is the concept of satisficing (Simon, 1956). The term satisficing is a combination
of satisfying and suffice. This concept is important for practical reasons. Indeed, the design activity is
a problem-solving activity, where solutions to problems are found in form of tangible or non-tangible
artefacts. An artefact is an artificially created object. A satisficing solution to a design problem is a
feasible solution produced within specified time limits and using specified and constrained bounded
resources.
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248 E. Coatanéa et al. / A prospective analysis of the engineering design discipline evolution

Designers, in all application fields of the design discipline, are facing the problem of finding feasible
and satisficing solutions. When working on solutions, certain stages of design can have a higher
influence and induce constraints on the final performances of the designed artefacts. For example,
design decisions taken at the early stages of the process are less costly but concurrently, can also
heavily constrain later decisions. Therefore, the early design stage is a strategic phase of the design
activity, but also a challenging one, due to the limited availability of early knowledge combined with
a high level of associated uncertainty. Early design decisions combine the potential for high added
value and high risk due to the ill-defined nature of the early knowledge. Early knowledge combines
characteristics such as fuzziness, scarcity, and qualitative nature. Despite the inherent uncertainty,
early knowledge can provide crucial information during product development and the potential of this
resource is rarely fully exploited in current design practices.

Two key types of information are available at an early stage. First, information in form of natu-
ral language and diagrams and second, numerical data collected. Natural language and diagrams are
knowledge that is used in all system and product development frameworks, and they form the basic
initial engineering material that fuels the design process. Nevertheless, a fundamental change in the
requirements of a design is affecting this first source of knowledge. The scope and volume of require-
ments that are considered by designers have increased drastically over the years based on factors such
as choice of feasible manufacturing alternatives, meeting market expectations, government regula-
tions, sustainability performance of the product, and broader consideration of life cycle phases for
instance recycling or remanufacturing. Simultaneously, there is also an increase in the complexity and
number of standards and norms to be fulfilled, resulting in a tighter containment of the design solution
space. An example of this can be seen in the automotive industry where the push from governmental
organizations for a fossil-fuel-free mode of transportation combined with modified business strate-
gies of automotive manufacturers has resulted in making electric vehicles equally appealing for both
consumers and automotive manufacturers. The above-mentioned elements imply that a larger number
of requirements need to be considered and integrated into a classical product development process.
Conjointly, this increases the complexity of the design process due to the significant increase in the
number of requirements and their couplings. Changes in individual requirements can lead to a cascad-
ing chain of modifications on connected requirements and design solutions, that are quickly becoming
impossible to track and manage for human designers. Our cognitive capabilities are becoming truly
challenged by the scale of the design problems to be solved.

The limitations of human cognitive capabilities in handling these extensive design problems call for
the development of efficient methods for design automation in the form of support tools. Such tools
can help overcome the complexity levels generated by the increasing number of requirements and
the fundamental linguistic and diagrammatic nature of modern requirements engineering. Neverthe-
less, a shift to design automation would require preliminary research that can address the following
challenges; First, how to automatically extract requirements and analyse their interconnections and
quality? Second, how to model the massive number of interconnections between them and simulate
the effects of changes? and third, how to support design synthesis, design concept evaluations, and
design decision making in a fuzzy qualitative context where massive amount of decision criteria need
to be considered? To address these challenges, leveraging the second type of information (collected
data) in the classical design process can provide benefits.

Data collection is integrated into most last generation systems. This source of information results
from the systematic integration of sensors and computer devices on the latest generation of manufac-
tured artefacts. This is a paradigm shift both technologically and from a business model point of view.
The traditional form of design, named in this article the forward design paradigm, is flowing from
requirements to final artefact. A second design paradigm is emerging, the data-enabled engineering
design paradigm, where new types of needs and requirements can be extracted in almost real-time



E. Coatanéa et al. / A prospective analysis of the engineering design discipline evolution 249

from the mass of collected information on an artefacts’ usage. The data-enabled engineering design
paradigm presented in this section is more commonly named data-driven engineering (Brunton et al.,
2019). From the combination of the traditional and data-enabled design processes, a more dynamic
and looped design process is emerging which enables rapid development of services or artefacts tai-
lored to customers’ needs. Thus, a new design process would need to integrate data analysis for new
requirement extraction, as an additional stage in the classical design process, along with supplementary
evolutionary factors to be considered in a prospective effort. They are the changes in the engineer-
ing design working practices and organization. The engineering design discipline increasingly relies
on simulations to replace expensive prototyping. In addition to simulation models, multidisciplinary
design optimisation (MDO) is being used in the different design phases (such as early conceptual
phase, detailed design phase, design optimization) to find optimum solutions that satisfy the multidis-
ciplinary constraints (product-process-structure and performance criterion). Consequently, the nature
of the skills required in the engineering design discipline is expanding and the role played by systems’
modelling languages as a common language is growing in importance. Simultaneously the role played
by systems engineers to orchestrate a complexified design process is becoming central.

The radical changes affecting the design practices summarized above are generating massive
challenges for the engineering design and manufacturing communities. The trend toward the com-
plexification of the design activity is pushing the human cognitive capabilities toward their limits.
Emerging patterns and interactions might appear in such type of complex environment and should be
detected beforehand to be able to mitigate or remove their possible negative impacts. Even without
the presence of emerging behaviours, the systemic impacts of requirements or design modifications in
present-day products are already difficult or often impossible to predict and manage without the use of
advanced engineering support tools. Few novel tools have been developed partly in favour of design
advancements and the purpose of this article is to demonstrate the development and use of a future
design tool. This effort should be part of a more global automation design support system (DSS) for the
early design phases integrating, requirement engineering, design synthesis, as well as design concepts
analysis and evaluation. Computer support tools are very hard to create for such types of tasks due to
the fuzzy and vague nature of early design knowledge.

The present article provides a roadmap that would help discuss and answer questions related to the
technologies that can be used in the development of a DSS and the possible benefits and challenges of
implementation of DSS for improving the early design stage process. The remainder of this manuscript
is organized as follows. Section 2 presents an overview of disciplines spanning from design methodolo-
gies, natural language processing, causal ordering, and knowledge graphs. Those fields of research are
the key enablers for the future of engineering design activity. Section 3 presents two prototyping tools
already existing and that can serve as examples of the direction to be followed. Section 4 concludes
with a discussion on the findings.

2. Background

In the background section, we aim to present potential key disciplines supporting the development
of design automation and solving the associated challenges. The focus in this section is specifically
oriented toward early design tasks for the reasons presented above. The section starts with a brief
overview of the existing engineering design process and the evolutionary transformation that the
discipline must assimilate to keep up with data-driven methodologies. Similarly, to fractal structures,
the early design process is on a smaller scale repetition of engineering design tasks such as problem
description, solution generation and evaluation, decision making. A similar pattern is repeated for the
embodiment and detail design stages.
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Problem formulation in form of needs and requirements is very important for the success of the
design activity. Specific focus should be given in the engineering design discipline to natural lan-
guage processing (NLP) methods because needs and requirements are mainly captured in form of
natural language sentences often associated with diagrams and tables. Being aware of the state-of-
the-art in NLP methods is important to support automation of the requirement engineering phase.
Knowledge and causal graphs are also potentially useful approaches for requirement engineering
because requirements themselves exhibit interconnections and cross-influences. The spectrum of appli-
cation for graphs is going far beyond requirements engineering and covers the entire design process.
Graph modelling capabilities will play most certainly a significant role in the future of the engi-
neering design discipline because they provide capabilities for supporting automatic reasoning and
possibilities to generate new design architectures in a qualitative and quantitative context. To play
this role, graphs need to be connected to other concepts and approaches too. Those concepts are
briefly introduced in subsection 2.3. In subsection 2.1, we describe some transformations affecting
the design process itself and try to evaluate the consequences and opportunities provided by those
changes.

2.1. Forward and data-enabled design process

Problem-solving via the creation of new artefacts is not only a human capability but also a skill shared
by multiple other species such as dolphins, crows, and primates. New surprising occurrences of that
capabilities are regularly discovered by scientists, showing its prevalence within living species. The
formalization of the problem-solving aspects associated with the engineering design discipline started
progressively during the 19th century in Germany with theorists and practitioners such as Ferdinand
Redtenbacher and Franz Reuleaux (Moon, 2007). The same intellectual movement was taking place
also in parallel in other European countries such as England and France but with a less developed
engineering focus. Nowadays, the design discipline is covering a large spectrum of application domains
from civil engineering to clothing design. This article does not aim at developing a thorough analysis of
all those branches, but instead, want to extract a few key general drivers covering the engineering design
discipline. One important driver is the role played by creativity in design in opposition to a design
process seen as an integration process using predesigned components or sub-systems. An important
validation method for the design process is the possibility to generate cheap tangible prototypes or
to require simulation. A third, characteristic to consider is the recursive nature of the design process.
Finally, the design process is also an activity, where design space exploration and design solutions
selection and evaluation are taking place.

Different socio-economic trends are affecting the design factors and leading to a certain types of
design features. First, novelty, innovation, and differentiation are favoured by most product and system
designs. Second, the growing complexity of systems and products are favouring design strategies
relying on models and simulations. Third, the recursive character of the design process is reinforced
by the continuous collection and production of data by artefacts and the possibility to use them to
refine or generate rapidly new requirements. This is visible in the design process presented in Fig. 1
and integrating the collection of data and their analyses to generate new needs and functions. Fourth,
the growing number of dimensions of any design space is making the exploration more challenging
and costly from a computational point of view. Simultaneously, the integration of multiple disciplines
and the discontinuous nature of the design space is making the multidisciplinary design optimizations
(MDO), a necessary approach for design in multiple cases.

The following sections developed a small state of the art of different approaches and research
directions that can be considered for the automation of the design process.
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Fig. 1. Evolution of the engineering design process.

2.2. Overview of Design Decision Support (DSS) systems

With the engineering design and manufacturing disciplines moving towards more automated pro-
cesses, solutions have been developed leading to intelligent Decision Support Systems (DSS) and
cyber-physical production systems (CPPS). DSS can serve as passive, active, or cooperative systems
depending upon their functionality. The available literature categorizes DSS into five types, namely,
model-driven, data-driven, knowledge-driven, document-driven, and communication-driven systems
(Felsberger et al., 2016). A model-driven DSS is typically not data-intensive, rather it uses analytical
models, simulation tools, and optimization methods to generate multiple experiments depicting the
effects of alternative decisions. Monte Carlo simulation, discrete event simulation, probabilistic fore-
casting, agent-based and multi-agent simulation, system dynamics, and visual simulation are some of
the common simulation methods used in model-driven DSS (Hilletofth et al., 2016; Li et al., 2016; F.
Zhang et al., 2016). Data-driven DSS, on the other hand, utilizes structured data (e.g., machine learning
using neural networks), such as internal and external company data, time-series data, and real-time
data (Power 2001). Business intelligence systems or online analytical processing (OLAP) are examples
of data driven DSS that enable better decision support by formulating decisions through triggering,
manipulating, and/or analysing data. However, accurate and structured data are a key requirement in
developing data-driven solutions and thus, efficient data processing could enable fast and accurate
decision making (Chaudhuri et al. 2011; Pillai 1990).

Knowledge-based DSS methods of today (e.g., fuzzy logic, Bayesian networks, and genetic algo-
rithms) have evolved from their predecessors, known as rule-based expert systems. Such rule-based
expert systems use heuristics to solve problems with the help of human expert knowledge stored in
databases. In the age of big data, the challenges about the properties of data (i.e., volume, variety,
velocity, veracity, validity, and value) need to be addressed to improve the process of decision making
(Kaiser et al 2013; Berman 2013; Zhang 2014).

All the approaches presented in this short review are confirmatory, requiring a pre-existing structured
knowledge. This is implying the existence of approaches to structure the pre-existing knowledge.
Currently, this process is done manually by humans. Automatically extracting and structuring, this
initial knowledge using automatic approaches is a central research problem if the goal is the automation
of DSS. To move in that direction, the next section is exploring a possible enabler by scratching the
surface of a broad domain, the knowledge graphs.

2.3. Knowledge Graphs (KG) applications in modelling, simulation, and decision making

Briefly presented, a knowledge graph is a type of modelling approach extracting and graphically
encoding knowledge. In its most elementary form, a knowledge graph only models the relationships
between variables of a system of interest and does not explain the inner workings of the system of
interest. Different forms of knowledge exist, but a key attribute of this approach is to determine the
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relationships between entities, such as between the variables describing a system. Knowledge graphs
are typically created from different forms of datasets. Those datasets can vary in their structures and
nature, making knowledge graphs a rather broad concept. Knowledge graphs can represent words,
sentences, and their relationships. They can also be created from numerical datasets and represent for
examples variables. Or they can combine also diagrams, words and numbers for example in requirement
engineering.

Knowledge graphs are often associated with ontologies, and it is debated in some communities if
knowledge graphs are ontologies or another type of object. In this article, we decided to separate
the broad domain of knowledge graphs into some fundamental properties that we need for graphs
to be useful to support the adaption of the design and manufacturing process. First, we need graphs
able to process natural language. Second, we need also graphs able to structure initial knowledge,
an activity usually done by humans. For this reason, we need to deal with the concept of causality
and causal reasoning, central to human reasoning. Third, the design process is implying more and
more decision making and optimization. For this reason, a section of this article has been reserved for
surrogate modelling and multidisciplinary optimization. Surrogate modelling is useful in this context
as a confirmatory method as well as an approach required for multidisciplinary optimization methods.

2.3.1. Natural language processing and KG
As far as needs or requirements are expressed in natural language, computational linguistics meth-

ods form a technique of choice to analyse and manage them. Natural Language Processing (NLP)
approaches have been utilized to highlight different relationships between pieces of language. The NLP
methods are used in three main specific contexts, first for comparison between pieces of language, sec-
ond for classification of pieces of language into predefined or dynamically defined categories. Finally,
the most challenging task for NLP methods is understanding language meaning. This can be used for
example for detecting errors in requirements or detecting contradictions between requirements. To
summarize, the purpose of NLP methods can be separated between labelling part of speech, extracting
meaning from sentences, comparing language parts. The algorithms employed to achieve those tasks
belong to the three fundamental categories of supervised, semi-supervised or unsupervised algorithms.
The key techniques used in the literature currently are transformers, SVD decomposition applied to
the frequency of terms. This technique is also named Latent Semantic Analysis (LSA). Different
adaptations of LSA methods are also available in the literature (Landauer et al., 2008).

To be more precise, the classification tasks can be handled via a broad variety of methods belonging
to the field of machine learning (ML). The labels or clusters can be predefined or learned via cluster-
ing algorithms. Classical algorithms such as Kmeans or DBscan can be interesting for each specific
situation (Pelleg et al., 1999) (Ester et al., 1996). For comparison purposes, the comparison between
pieces of language can be used for example similarity metrics. Semantic similarity measures can be
provided by using vector space measures or probabilistic measures (Lamar, 2009). If probabilistic
data are not present, then vector space measures can be used for similarity analysis. One common
vector space measure is the cosine similarity method, which is widely used for measuring the distance
between documents or sentences (Lamar et al., 2010). In their research work (Christophe et al., 2014),
Christophe et al. used the cosine metric together with a logistic function to find out the similarity
between requirements. Lash used a computational linguistic approach to identify the relationships
between requirements. Along with this, he compared different requirements analysis methods (Lash,
2013). Among the computational linguistic methods, Singular Value Decomposition (SVD) or one
of its variants is commonly used to identify and relate the semantics of requirements. SVD is used
to develop an NLP approach called Latent Semantic Analysis (LSA) (Landauer et al., 2008). LSA
can also be seen as a dimension reduction technique. It takes a set of semantic objects that exist in a
high-dimensional space and represents them in a lower-dimensional space (Lamar, 2009) in which the
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main dimensions are represented. LSA is widely used to find out the relations between sentences. This
approach is applied, for example, in software industries to propose titles for books that are related to
the keywords used in a search query. LSA and SVD are also commonly used in collaborative filtering.
This is a method of choice employed for example to suggest tv programs on some well-known online
platforms. This method has been validated for its accuracy in different applications (Landauer et al.,
2008). Four key features of LSA are listed below.

1. Latent meaning: the truncated result of SVD analysis (low-dimensional matrix); the correspon-
dence between words and contexts indicates similarities between contexts (in our case sentences).

2. Noise reduction: truncated SVD mostly captures information rather than noise.
3. High-order co-occurrence: when two words appear in the same context, it is called first-order co-

occurrence, and when two words appear in different contexts, it is called high-order co-occurrence.
SVD can discover the high-order co-occurrences.

4. Sparsity reduction: Normally, an input matrix (word to sentence) is very sparse (most contain only
zeroes), but the truncated SVD produces denser matrices. This quality increases the efficiency of
the computing method.

In the context of comparing and analysing requirements, the work of J. Misra is significant. He used
LSA to prioritize requirements within clusters (Misra et al., 2014). Although this helps engineers to
prioritize requirements, it does not provide an understanding of the interactions between requirements.
Presenting those interactions will lead to easier requirements management for engineers.

One type of interaction important for requirement engineering is the ability to understand and detect
contradictions. For a large and complex project, identifying the interaction (or relations) between
requirements texts is a key issue to consider because it can provide significant benefits when later
developing causal ordering and early reasoning.

Apart from requirements, contradictions can occur in a normal text, when two sentences are extremely
unlikely to be true at the same time. In this area, the works of (Harabagiu et al, 2006) and (de Maneffe et
al., 2008) are significant. Compared to Harabagiu’s work, de Marneffe’s refinement method for finding
contradictions between texts is easier to implement in computer systems. Table 1 below summarizes
different types of contradictions that are listed in those works.

De Marneffe mentioned that some of the contradictions could be detected using computational
linguistic approaches. Other contradictions, for example, factive world knowledge structure-related
contradictions, are difficult to detect using NLP approaches and the results are error-prone.

More advanced methods such as transformers can become potential solutions to detect the most
challenging types of contradictions present in the text (Vaswani et al., 2017).

Requirement’s quality metrics are also covered by NLP methods. Table 2 from Mokammel et al.
2018, summarizes different metrics considered in the requirement engineering literature.

Such type of contradiction detection approach was developed for a general text corpus. Applying this
approach to requirements texts was proposed by Mokammel et al. in (Mokammel et al., 2018). This
generic overview of different uses of NLP methods has highlighted three types of possible knowledge
that can be extracted from text. In an engineering context, requirements can be directly and automati-
cally extracted from text. The quality of those requirements can be evaluated, and automatic corrections
can be proposed to requirement structures. Last, it is possible to detect links between requirements
and to detect potential contradictions between requirements. Those requirements can also be classified
into specific predefined or automatically defined categories. The natural move from the requirements’
network is causal relations and causal reasoning. This is the topic of the next section.
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Table 1

Contradictions

Type Description

Antonym Contradiction exists due to the existence of antonym words. Example Catalyst,
Deterrent.
Example: The number of personnel should be decreased in the factory. The number
of personnel should be increased in the factory.

Negation Contradiction exists due to negative words. Example: have not, do not.
Example: The temperature of the room should not be more than 25 degrees Celsius.
The temperature of the room should be more than 25 degrees Celsius.

Numeric Contradiction exists due to imposing different numerical specifications for some
systems.
Example: The weight of the handset should be less than 113 grams. The weight of
the handset should be less than 200 grams.

Structure Considering the physical structure of a system, a contradiction exists with the
requirements.
Example: Internet submarine cable links should be built between the Czech Republic
and Finland.
Explanation: it is impossible because the Czech Republic does not have any coastal
border with Finland.

Lexical Contradiction due to lexical or semantic discrepancy. For example, all the components
of the system should be manufactured locally. Battery and power supply should be
imported from Germany.

Factive, World knowledge Contradiction exists due to facts of established or previous knowledge.
Example: Sand from the Sahara Desert should be used for constructing the building.
Explanation: This requirement refers to an impossible fact because desert sand is not
suitable for construction work.

2.3.2. Causal relationships and causal reasoning
A central aim of the scientific activity is to develop methods to systematically unveil cause-effect rela-

tionships between variables of a problem. This is also particularly relevant to the engineering design
and manufacturing discipline. The discovery of potential confounding variables has been a major
source of investigation (VanderWeele et al., 2013). In statistics, a confounding variable is a variable
that influences both the dependent and independent variables. This is the source of a false association
between variables. Confounding is a concept related to cause-effect relationships and this should not
be mixed with the concepts of correlations or relations. The existence of confounders is explaining why
correlation does not imply always a causal relationship. An important variety of approaches have been
developed to generate causal ordering, but for this article, the focus of the authors is on methods using
graphs and equations directly coming from physics or other scientific disciplines. Those approaches
are limiting the scope of the analysis, but they have demonstrated their effectiveness and robustness
in several practical engineering contexts and problems. They can become particularly relevant for the
future of the engineering design disciplines as presented later in this article. Methods such as Bond
graph causal ordering (Gawthrop et al., 1996) or causal ordering of equations via the direct use of
Iwasaki and Simon algorithm (Iwasaki et al., 1994) or its extensions (Travé-Massuyès et al., 1997),
as well as work done in qualitative physics (Bhashkar et al., 1990), are few examples of causal order-
ing methods belonging to such a classification. Another approach applied more specifically to the
social science context is also interesting for this limited literature review. This is a method searching
causes and effects relationships via models using structural equations modelling (SEM) (Pearl, 2000;
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Table 2

Natural language quality metrics for requirements

Developed
metrics

Lexical
(Word
choice)

Syntactical
(Requirement
structure)

Semantic
(Requirement
meaning)

Source

Vagueness X QuARS
(Lami, 2005)

Subjectivity X
Optionality X
Implicitness X
Weakness X
Under-
specification

X

Multiplicity X
Readability X
Completeness X X (Lamar,

2009)
Atomicity X X (Ott, 2012)
Unambiguity X
Conciseness X
Testability X
Traceability X
Consistency X
Correctness X
Completeness X X

Spirtes et al., 2000). SEM derives from path analysis which was developed by the biologist S. Wright
in the 1920 s and has been often applied to analyse causal relations of non-experimental data using
an empirical approach. Path analysis extends regression analysis by analysing simultaneously many
endogenous and exogenous variables of a system or problem. Path analysis was combined with factor
analysis and latent variables to form the SEM approach to causal analysis. In path analysis, variables
can be endogenous or exogenous. Relations between variables can be represented by a one-sided arrow
when a relationship exists between variables and a two-sided arrow when a correlation exists between
variables as presented in Fig. 2. Different path tracing rules have been defined in the path analysis
approach such as the following key rules. It is possible to trace the following type of relations between
arrowheads, heads-tails, or tails-heads, but not heads-heads. It is possible to pass through each variable
only once in a chain of paths and finally no more than one bi-directional arrow can be included in
each path chain. Factor analysis is integrated with latent variables in the SEM approach. Factor anal-
ysis is a statistical method used to describe variability among observed, correlated variables with the
central idea that the variation of observed variables can also be reflecting the variations of unobserved
variables name latent variables. The observed variables are modelled as linear combinations of the
potential factors plus “error” terms. Factor analysis may help to deal with data sets where there are
large numbers of observed variables that are thought to reflect a smaller number of underlying/latent
variables (Harmann, 1976). However, SEM is of confirmatory nature and researchers have first to model
the true causal relationships based on other background knowledge before collecting or analysing data
(Goldberger, 1972). This task is difficult, especially at the beginning of a design process because of
the lack of background initial knowledge. A method presented below and named DACM for Dimen-
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Fig. 2. Example of SEM diagram.

sional Analysis Conceptual Modelling (Coatanéa, 2014) aims at building initial causal relationships
from the available background knowledge using a framework integrating engineering design concepts
such as functions, organs, elementary organs laws, variables’ classification, and dimensional analysis
theory.

Consequently, using SEM alone, it is often difficult to unveil the initial causal structure. Additionally,
SEM suffers from another limitation because SEM assumes normality of the statistical distribution
and only uses the covariance structure and cannot find causal direction between two highly correlated
variables because the models produced will be equivalent using the SEM approach. Nevertheless, the
SEM method constitutes the conceptual basis of several algorithms that are successful in the discovery
of causal structure, especially in complex systems studied by sciences such as economics and sociology.
This has also been used in medicine and more specifically in epidemiology.

The fundamental concepts of formalism are summarized in the following manner by Halpern
(Halpern, 2000). The construction of structural equations (SE) models requires three key steps. First,
the problem being studied is represented by a finite set of variables, corresponding to the features of
the problem. This can also be the function of a system to be designed as a solution for a specific design
problem. There are two sorts of variables. Endogenous variables are such that their values are deter-
mined by other variables within the model, whereas the values of exogenous variables are determined
in a way that is independent of other variables of the system. The structural equations describe the
functional dependence of the endogenous variables on other variables (endogenous and exogenous) in
the model (Kaplan, 2008).

SEM use graphs to represent relations between observed variables and latent variables. Latent vari-
ables are not observed. Latent variables can be also residues or errors in the modelling and measurement
process. Software specifically developed for SEM modelling are existing to form the model. An SEM
model can take the following form presented in Fig. 2. Each of the generic situations presented above
must form each time a specific model. The � is the element of a correlation matrix. The λ is the
coefficient allowing to model quantitatively the different properties in Fig. 2.

The dimensional homogeneity of models is one property required to support reasoning. A second
property is the right causal ordering of the variables. This was discussed above.

The DACM method is merging SEM with Dimensional Analysis (DA) and qualitative physics and
reasoning (Mokhtarian et al., 2017). This is an approach of choice for bringing automatic reasoning
capabilities to the early design stages. Additionally, discovering contradictions as defined in TRIZ
(Savransky, 2000) and especially physical contradictions can be computed automatically using DACM.
When physical contradictions are detected, it is becoming possible to apply transformation rules to
the causal graphs in DACM implementing in simple terms the separation principles of TRIZ. The
graph transformations are separation of nodes, change of node types for expansion or limitation of
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systems scope, addition, or removal of links between nodes. Causal graphs can find usage in surrogate
modelling too. This is the purpose of the next section.

2.3.3. Surrogate Modelling and Multidisciplinary optimization (MDO) using knowledge graphs
Surrogate modelling and MDO are two disciplines of great importance for the engineering design

process. Usually, they take place during the embodiment and detail design stages and consequently
their initial role in early design stages is limited. Nevertheless, with the changes affecting the design
process and especially the availability of massive data collection presented in a previous section, it is
possible to also consider the early use of surrogate modelling and MDO in a design process.

Traditionally surrogate modelling has been seen as a solution to cope with the fundamental contra-
diction in requirements imposing on one side to explore the design space to find optimal solutions and
on the other side the prohibitive exploration time associated with different high-fidelity simulations.
This has been coupled with MDO strategies to gain time by exploring not the entire design space but
only some zones of potentially bigger interest. A significant effort has been dedicated in the MDO
discipline to the resolution of the fundamental contradiction between exploration of design space and
exploitation in terms of global optimization search. Usually, a trade-off is considered between those
two criteria, but a potential paradigm shift due to the future introduction of Quantum computing might
provide a change since both objectives might become compatible.

Models and simulations, from different fidelity levels, are an important part of product design used
to evaluate the product performance for different design parameters. Product performance evaluation
through high fidelity model simulations is a shared approach across various engineering fields ranging
from automobile, aerospace to civil engineering and medical engineering. Since prototyping is not
always a viable approach for product development, due to potentially unacceptable costs, simulations
are providing an alternative in form of virtual prototyping. Simulations play an important role in facili-
tating an efficient design process through sensitivity analysis, multi-domain optimizations and at early
design stages, analysis of risk and uncertainty resulting from limited knowledge. However, evaluating
product performance using high fidelity models are time-intensive and require costly computer sim-
ulations. Thus, the development of surrogate models also known as metamodels can facilitate design
space exploration via fast simulations and scenario analyses.

Surrogate or metamodels are approximation models with a measurable level of accuracy that closely
model the outputs of a system of interest. The approximation of the model from a high-fidelity physics-
based simulation model to a simpler input-output behaviour of the system alleviates the burden of
complex computations and enables cheaper simulations. Metamodels are often black-box models as
they do not model the inner workings of the system and are developed solely based on data. Several
surrogate and metamodeling methods have been developed ranging from traditional approaches such
as polynomial regression, kriging, and radial basis functions to name a few, to more data advanced
methods such as spatial mapping, artificial neural networks, and Bayesian networks. The development
of a surrogate model can be streamlined to the following steps, 1) data sampling through the design of
experiments, 2) assembling of the training dataset, 3) surrogate model selection, choosing the right type
of model to represent the input-output relationships of the collected dataset, 4) model construction,
development of the model using the chosen modelling approach, and 5) active learning through data
enrichment, i.e., adding more data to retrain the model to achieve the required accuracy. All surrogate
models do not contain all of those five steps. Active learning is in our viewpoint specific to models
that can be qualified as machine learning models. This active learning can also take place during steps
1, 2, 3 and 4 described above.

In recent years, metamodels have been used to facilitate fast simulations for various fields and
applications. Cai et al., 2021 studied three ML-based surrogate modelling approaches for parameter
estimation of left ventricular myocardium from clinical data. The authors investigated the use of
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K-nearest neighbour (KNN), XGBoost, and multi-layer perceptron (MLP) approaches to perform
modelling. Their research showed that the three ML approaches were able to learn the relationships
between the properties of interest and found that parameter estimation could be performed in a matter of
minutes. They found that XGBoost and MLP approaches performed better with lesser uncertainties than
KNN. The authors concluded that ML-based surrogate modelling was able to predict left ventricular
diagnostic dynamics and estimate passive parameters with an acceptable level of accuracy with future
work focusing on emulating cardiac pump function in a multi-physics and multi-scale framework.
Zhang et al., 2017 evaluated the effectiveness of advanced hybrid surrogate modelling with different
sampling techniques and sizes for four different complex engineering systems namely, wind farm
power generation, product platform planning, three-pane window eat transfer, and onshore wind farm
cost estimation. They found that the sampling techniques had a higher impact on the accuracy of the
surrogate modelling approach. Increasing sample size alone did not present a higher level of accuracy
rather choosing the right sampling technique alongside increasing sampling size was better suited for
improving model accuracy. The authors concluded that adaptive hybrid surrogate modelling provided
good accuracy in representing complex system behaviour and that choosing the right sampling method
and the sample size was essential in improving the accuracy of the models. Kuya et al., 2011 presented a
multi-fidelity surrogate modelling approach combining experimental and computational aerodynamics
datasets. A multi-fidelity cokriging regression model was used for the study. The study showed that low
fidelity computation data can contribute to improving the surrogate model with limited high-fidelity
data from experiments. The authors also examined the impact of characteristics of the sampling design
for low fidelity data on the final surrogate models. They found that the low fidelity data provided a
priori reduce the need for a large quantity of high-fidelity data.

Metamodeling has been increasingly used as a solution to the long-standing problem of developing
fast methods to estimate the properties of a system from data. However, despite their vast advantages,
metamodels can be limited by their accuracy, inability to generalize over a large design data space, and
inability to accommodate data deviating from the modelled limits. The black-box nature of metamodels
makes it difficult to generalize a phenomenon observed in the model, and high-fidelity data from
costly simulations are required to enrich the training dataset to facilitate active learning and to improve
model accuracy. Thus, it is advantageous to focus on the development of a modelling approach that
can combine knowledge from different forms to facilitate a grey box modelling approach in the form
of oriented knowledge graphs. The knowledge graphs integrate knowledge from functional and non-
functional requirements of the design combined with collected data to develop an accurate model of
the system. The use of knowledge graphs in future design tools is discussed next.

3. Vision of future design support systems

As developed in previous chapters, engineering design is confronted with the growing complexity of
systems and system of systems but also with the extension of its scope but simultaneously the cognitive
aptitudes of human designers remain stable. How do we solve this paradox where constant cognitive
capabilities should be used to solve more complex systemic problems?

A simple answer will be by providing better support tools and in TRIZ words, by separating the
tasks allocated to humans and the tasks allocated to machines. Some answers can be found in literature,
for example, improved support tools can be developed such as approaches favouring system-oriented
thinking (Mobus et al., 2015), or a more radical use and operationalization of analytical concepts coming
from different engineering traditions such as the concepts of ideality or contradictions (Jordan, 1967)
(Dunham et al., 2011) (Savransky, 2000). Those concepts are useful at the conceptual design level to
generate innovative solutions and to overcome solutions’ limitations.
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This should be combined with the creation of efficient design companions in form of a new type of
intuitive computer tools, automating the processing of increasing mundane tasks and unmanageable
expansion of design problems scope and complexity. Those tools should be capable of learning from a
few examples, which is like how humans learn. They should support designers efficiently by providing
insights in the form of prescriptions or analyses, using cognition modes that are human-friendly. As
an example, those methods should be able to reason using qualitative reasoning and provides analyses
in form of cause-effect relationships. Such methods are implying the development of novel machine
learning methods and approaches inspired by qualitative reasoning methods (Bhashkar et al., 1990)
using very small data samples potentially containing imprecisions and uncertainties. In an ideal context,
those future tools and methods should also interact using different senses and communication modes. In
this paper, we only describe in more detail a possible user interface representation integrating graphs
and causal relationships as the key communication means. A significant effort will nevertheless be
required to develop those human-machine interfaces. This is not part of the scope of this article, but
this is a topic of great importance, especially the visualisation aspects that require extensive efforts.

The focus is given in this article to the early phases with a special emphasis on early modelling, early
simulation, early detection of solutions weaknesses and early removal of solution weaknesses. The
central goal is to favour fast scanning and discovery of weak points in design requirements and design
space as well as design architectures. The next section is exemplifying two types of semi automatized
prototypes design support systems, corresponding to that vision.

3.1. Exemplification

The first software support tool presented in this section is a tool exemplified in the work of Mokam-
mel et al., 2018. Different screenshots coming from the article published in 2018 are reproduced in
this section. The software tool aims to achieve the following tasks. First, automatically extracting
requirements from different sources of texts. The texts can be standards, descriptions of needs, initial
specifications and descriptions of the capabilities expected from the system.

The second, task is the automatic analysis of the quality of the extracted requirements following a
set of different quality metrics implemented in the tool. The final objective of the software is to auto-
matically detect connections and interactions between requirements. The interactions can be presented
in form of contradictions between requirements. The software can detect three of the most common
types of contradictions existing between requirements. They are the antonym, negation, and numeric
contradictions. Three more challenging types of contradictions are requiring the use of more advanced
NLP methods. They are the structure, lexical and factive contradictions (Mokammel et al., 2018). NLP
methods used in that software to detect requirements links and contradictions can reach similar level
of performance than machine learning methods such as transformers integrating the mechanism of
self-attention (Vaswani et al., 2017). The major advantage of NLP methods developed in that research
work is that they do not require the use of pre-training datasets.

The Figures below present, by following the order of the requirement extraction and analysis, the
different steps present in this new type of tool. Figure 3 shows on the left the initial pdf text. On the right
part of the figure, the parced requirements are presented. Figure 4 presents the individual requirements
with the different defects detected for each of them on the left and on the right a summary of the defects
per categories.

The requirements graphs presented above in Figs. 5 and 6 are a form of a knowledge graph. In
that case, they inform about the clusters found, the links between clusters, and the links between
individual requirements. The approach used to detect connections between requirements in Figs. 5 and
6 is presented in the work of Mokammel et al. (Mokammel et al., 2018).
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Fig. 3. Initial source document with highlighted extracted document on the left and list of extracted requirements on the right
with the text extracted from the source document highlighted. (Mokammel et al., 2018).

Fig. 4. List of individual requirements with defects on the left and, on the right, a summary in form of pie chart of the types
of defects detected on requirements. (Mokammel et al., 2018).

Another benefit of knowledge graphs is to support reasoning as well as more classical modelling
and simulations. The second exemplification, presented below, shows a tool aiming at generating
causal graphs at a very early stage of development for reasoning purposes and detection of physical
contradictions (Savransky, 2000). The graphs generated by the tool can be used also for systems’
dynamic modelling and other applications.

The figures below are presenting a tool under development and follow three key routes for the
modelling starting point. This is summarized in Fig. 7. Figure 7 presents also different usages of the
causal graphs.
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Fig. 5. On the left, a list of requirements belonging to a specific cluster. On the right a dendrogram presenting the different
clusters (with a color per cluster and list of requirements IDs per cluster of requirements. The relationships between clusters
in presented in blue connections in the middle of the dendrogram. (Mokammel et al., 2018).

Fig. 6. On the left, a list of individual requirements associated with each other’s and, on the right, a 3D visualization of links
existing between requirements. The nodes of different colours represent different individual requirements IDs belonging to
different clusters. (Mokammel et al., 2018).

From a modelling starting point, a causal model can be generated first, using a functional represen-
tation. This route is already implemented and tested and summarized in Figs. 7 and 8. Second, it is
envisioned to produce, a model generated directly from collected data and following the data-enabled
engineering paradigm change presented above in the article. The third route envisioned uses as a
starting point a set of available equations.
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Fig. 7. Presentation of the different modelling and usages routes of the prototype modelling, simulation and analytical tool
for early design. Three modelling starting points are presented on the left, modelling from a fonctional model, from datasets
or from equations. This is leading to a common intermediate result in form of a causal graph in the middle of the figure.
This causal graph can be used for contradiction detections in a qualitative manner, for Bayesian network simulation, or for
quantitative simulation like in Systems dynamic.

Fig. 8. Functional/organ modelling phase presenting one of the routes for generating a causal graph.

In this vision, a common intermediate product is always a causal graph presented in Fig. 9. From
this intermediate result, three different possible applications and usages are presented in Fig. 7. Firstly,
the detection of physical contradictions when the graph is associated with qualitative objectives. This
route is already implemented, tested, and validated. Second, the use of the causal graph model for
systems dynamics analysis associating quantitative data to the causal model. Third, the use of the
causal graph as a precursor for Bayesian networks and the dynamic simulation and design space
exploration using a Bayesian approach. Both of those last routes have been tested and validated. The
software implementation is still an ongoing effort.

Figure 10 visualize on the left detected contradictions in form of capital M and small m associated
with variables. The graph in the left part can be modified to reduce or remove the contradictions. In the
context of the example presented, the causal graph of an underwater drone was generated of the left
part of the Fig. 10. Qualitative objectives in form of red m and M were associated with two key design
objectives. First, maximizing (capital red M) the speed V of the drone and also minimizing (small
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Fig. 9. Causal graph resulting from the functional modelling route. This is theintermediate result of the modelling process.

red m) the drag force w generated by the drone. Using backward and frontward propagations of those
objectives in the graph, it was found two primary physical contradictions (Savransky, 2000) on V and
w. To reduce those contradictions, the originally exogenous variables ρ and ν (i.e., grey bubbles in
left part of Fig. 10) representing the density and viscosity of sea water have been modified to add two
controllable independent design variables ρd and νd ((i.e., green bubbles in left part of Fig. 10). The
TRIZ principle of physical contradiction is employed in this modelling method. The resolution of the
contradiction presented in Fig. 10, expand the initial borders of the drone by incorporating a gas under
pressure released in front of the drone. The effect is to have a drone moving in a bubble of gas instead
than being in direct contact with water. On the right side of the figure, a solution resulting from the
graph evolution on the left side is described. The solution is using the separation principle from TRIZ
between the properties of viscosity and density of the sea water and the drone itself. This is done via
a new fluid (i.e., a gas) carried in the underwater drone. In the software development, a graph can be
changed automatically to apply different invention principles, used to solve or reduce contradictions,
but the transformation of the graph into an initial design solution (i.e., right part of Fig. 10) is requiring
a human intervention to generate the concept of solution emerging from the causal graph evolutionary
process.

This section briefly exemplified tools already existing to support early design activities. In that case,
the common denominator is the use of oriented graphs as a design tool. This is not the only approach
that can be considered to support design. This article aimed at presenting some fundamental challenges
and some possible solutions supporting the evolution of the design discipline.

4. Conclusion

The article has analysed fundamental changes affecting the design and manufacturing activities. The
most important envisioned changes are the scarcity of energy and primary materials, the ubiquitous
integration of electronic components and computing science in systems, the pervasive production of
data by systems, the emphasis given to CO2 free energy production, recycling and reuse, and the
transformation of the consumption model from product ownership to product as a service. Those
changes are increasing the number, the couplings and ultimately the complexity of requirements and
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Fig. 10. Example of an underwater drone modeling with two key design objectives, maximizing the speed V and minimizing
the drag w. Left: Objective propagation, contradictions detection and contradiction reduction. The contradictions detected are
the physical contradictions from TRIZ (Savransky, 2000). The causal graph is the result of an evolution of the initial causal
graph. Right: Translation of the causal graph evolution into a concept of solution for the underwater drone.

the entire complexity of the design process. Those socio-economic and technological transformations
have been analysed and effects on the phases and the nature of the design process have also been
described. More specifically, this position paper aimed at analysing the impact and modifications
induced by those transformations on the designers’ activities and see how the design activity can be
supported to cope with those changes.

Specifically, the changes are transforming the design process from a classical forward design process
to a looped design process integrating classical forward design with massive data-driven engineering
using data generated during different phases of design and manufacturing as well as the usage phase.
The article claimed that early design automation is becoming a necessity to cope with the unmanage-
able cognitive load generated by this cascade of changes. The article also presented an overview of
transformations needed in the design process and design practices. The article provided a prospective
attempt to imagine what can be the services provided by a new generation of design tools. Some tools
exploiting graphs, existing at a prototype stage or under development have been unveiled and briefly
presented to the readers.

This article is a modest attempt to highlight the effects of changes induced by technological devel-
opments and socio-economic trends on the design and manufacturing activity.
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Grenoble Alpes in France. He has received his Ph.D. degree in Industrial engineering from Université
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