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Abstract. Although Huntington’s disease (HD) is classically considered from the perspective of the motor syndrome, the
cognitive changes in HD are prominent and often an early manifestation of disease. As such, investigating the underlying
pathophysiology of cognitive changes may give insight into important and early neurodegenerative events. In this review,
we first discuss evidence from both HD patients and animal models that cognitive changes correlate with early pathological
changes at the synapse, an observation that is similarly made in other neurodegenerative conditions that primarily affect
cognition. We then describe how autophagy plays a critical role supporting synaptic maintenance in the healthy brain, and
how autophagy dysfunction in HD may thereby lead to impaired synaptic maintenance and thus early manifestations of

disease.
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INTRODUCTION

Huntington’s disease (HD) is a progressive neu-
rodegenerative condition characterized by a triad
of motor, cognitive, and psychiatric symptoms [1].
Historically, much of the focus on HD has been
on the motor symptoms; not only is disease onset
defined by their development, but changes in motor
symptoms is often the primary outcome measure
in therapeutic trials in both preclinical and clinical
studies. Notwithstanding, the cognitive impairment
and psychiatric symptoms occur earlier, and are often
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more functionally limiting than the impairments in
movement [1-8]. Thus, by studying the molecular
mechanisms leading to cognitive dysfunction, we
hypothesize that we may be able to gain insight into
the early stages of disease pathogenesis.

In this review, we will first explore how cogni-
tive dysfunction is an early manifestation of HD, and
that similarly to other neurodegenerative diseases that
primarily affect cognition, such as Alzheimer’s dis-
ease, (AD), dementia with Lewy bodies (DLB), and
frontotemporal degeneration (FTD), early deficits
in synaptic function may underlie these cognitive
symptoms [9, 10]. Next, we will review the grow-
ing evidence that the lysosome-mediated degradation
pathway autophagy plays a central role in synaptic
maintenance, and how the disruption in autophagy
may be at the root of the early cognitive changes
in HD.
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Large cohort studies of HD natural history

Study Years PI Prodromal vs early Number of Initial reference and website
enrolling clinical HD participants (if available)
PHAROS 1998-2013  Ira Shoulson with the prodromal 1001 [133]
Huntington Study Group Hittps://huntingtonstudygroup.org/
PREDICT HD 2002-2014 Jane S. Paulsen prodromal 1078 [22]
Hittps://predict-hd.lab.uiowa.edu/
REGISTRY 2004-2017  G. Bernhard Landwehrmeyer both 14000 [14]
COHORT 2006-2011 Ira Shoulson with the both 2200 [134]
Huntington Study Group
TRACK 2008-2011  Sarah Tabrizi both 298 [135]
HD-YAS 2017-2019  Sarah Tabrizi prodromal 131 [26]
ENROLL HD 2012-present G. Bernhard Landwehrmeyer both still enrolling  [18]

(20131 as of
December, 2020)

Hittps://enroll-hd.org/

COGNITIVE ALTERATIONS IN HD

“the mind becomes more or less impaired, in many
amounting to insanity . .. The tendency to insan-
ity... is marked.” (George Huntington, 1872)

From the earliest descriptions of HD, such as the
well-known manuscript by George Huntington in
1872, the cognitive manifestations of the disease have
been recognized [11]. In the broadest terms, these are
often in the realm of executive function, such as pro-
cessing speed and set shifting, although there is a vast
literature devoted to better defining the specific cog-
nitive and psychiatric manifestations of disease (for
review see [12, 13]). The greatest formal insights into
these changes have been gained through the study of
prodromal HD patients, defined as patients identified
as carrying the expanded CAG repeat mutation, but
who have not yet developed the extrapyramidal motor
syndrome that defines clinical HD [2]. A series of
large observational studies of this patient population
have provided clear evidence that cognitive changes
in HD occur early and can precede motor symptoms
(Table 1) [14-21].

Briefly, neuropsychological testing indicates that
prior to being diagnosed with clinical HD, patients
demonstrate psychomotor slowing; deficits on tasks
requiring sustained attention; and impairments on
a range of other executive functions, including set
shifting, sequencing, planning, organizing, and cog-
nitive flexibility [15, 17, 22, 23]. There is also data
that memory is affected during prodromal HD, but
these findings are less clear, as is the subtype of
memory that is most affected, such as visual vs. ver-
bal memory or encoding vs. retrieval. These studies
also demonstrate that participants with prodromal HD

have difficulty recognizing emotions in facial expres-
sion and voices, particularly negative emotions such
as anger, fear, and disgust, as well as tasks requir-
ing the related concept of “theory of mind,” or the
ability to consider the world from another person’s
perspective, as reviewed [2, 24]. These neuropsychi-
atric features likely begin to develop between 10 and
20 years prior to clinical HD: PREDICT-HD sug-
gested that neurocognitive symptoms could develop
up to 15 years before clinical HD [25], whereas the
recent HD-Young Adult Study, which evaluated carri-
ers of the expanded CAG repeat who were an average
of 23.6 years from predicted clinical HD, found no
significant differences in performance on their neu-
ropsychiatric battery relative to control participants,
although imaging data suggested that this may in part
be due to compensation [26]. Performance on tasks
measuring cognitive abilities declines near the onset
of clinical HD [27].

SYNAPTIC CHANGES IN HD

It is interesting to note that one of the common
themes in neurodegenerative conditions affecting
cognition is early synaptic pathology [9]. For exam-
ple, in AD, synapse loss occurs before cell loss
and is a better correlate for cognitive changes than
cell loss or the accumulation of pathologic aggre-
gates; and the majority of aggregated alpha-synuclein
in post-mortem brains of patients with DLB and
Parkinson’s disease is found in presynaptic inclusions
rather than Lewy bodies in the soma [9]. Indeed,
there is a large amount of evidence suggesting that
synaptic dysfunction may be an important step in
the pathological cascade of HD as well, although
as with all autopsy samples, early changes are
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difficult to discern. Moreover, correlating findings
of neuropathological studies and imaging studies
in early disease with the clinical phenotype is
often challenging, as subjects are described variably
as “prodromal,” “presymptomatic,” and “premani-
fest,” without a consistent description of the specific
assessment scales used to define that clinical stage.
Nonetheless, participants labeled with one of these
descriptors had not yet begun displaying motor symp-
toms at a level detectable at the time of last clinical
evaluation by the assessments used.

Autopsy studies have long reported neuropatho-
logical changes in both pre- and postsynaptic sites
in HD post-mortem brain tissue [28-34], but data in
subjects with prodromal HD or patients with Von-
sattel grades O or 1 (suggestive that the samples are
analyzed prior to gross cell loss) is limited. Pre-
dating Vonsattel grading, medium spiny neurons of
adult subjects with clinical HD have been shown to
demonstrate morphologic changes in dendrites and
alterations in the size, shape, and number of den-
dritic spines relative to controls [28], which was later
confirmed to occur in brains ranging from Vonsattel
grades 2-5 [29]. Similar changes were also seen in
prefrontal cortical pyramidal cells of Vonsattel grades
2-4 brains from adult HD subjects, in which neu-
rons demonstrated changes to dendritic arborization,
length, and surface area [30].

Notably, the finding that the HD gene product
huntingtin (Htt) aggregates in neuronal intranuclear
inclusions and dystrophic neurites on pathology in
post-mortem human brain tissue has offered some
clarification on when neuronal processes become
involved—studies suggest that dystrophic neurites
are present in brains of subjects classified as presymp-
tomatic mutant Htt carriers and early HD cases,
whereas the appearance of neuronal intranuclear
inclusions coincides with motor symptom onset, but
may precede cell death [31, 32, 35]. This is consis-
tent with the hypothesis that alterations in axons are
an earlier event in pathogenesis. A study that looked
directly at HD pathologic samples from participants
classified as presymptomatic revealed a decrease in
nerve fiber density, and axonal and synaptic markers
[33], supporting this hypothesis. In subjects classified
as premanifest, decreased density of the astrocytic
glutamate transporter GLT-1 has also been reported,
suggesting a potential non-neuronal contribution to
synaptic dysfunction [36]. These changes as well as
a selective decrease in levels of proteins involved in
neurotransmitter release have been observed through
all subsequent stages of HD (grades 0—4) [34, 36].

Some of the strongest studies suggesting that
axonal and synaptic changes are early events in HD
are imaging studies, which have demonstrated that
many of the early manifestations of HD may be
associated with dysfunction in white matter tracts
[37, 38]. In patients with early HD, overall cerebral
white matter volume is decreased, and that decrease
is correlated with impaired performance on cog-
nitive tasks [39]. Studies examining white matter
tracts in pre-symptomatic or early HD patients using
diffusion tensor imaging demonstrate a decline in tis-
sue integrity, as measured by decreased fractional
anisotropy (FA), in multiple cortical regions, the body
of the corpus callosum, and the posterior portion of
the internal capsule [40, 41]. Rosas et al. found that
the change in FA in the body of the corpus callosum
correlated with impairments in cognitive function, as
measured by the Stroop color word test. A follow
up study further corroborated the tract changes in
the corpus callosum in pre-manifest and early HD
[42]. Tt is difficult to determine the proximal cause
of white matter changes in these studies. Possibili-
ties include synaptic dysfunction leading to a dying
back of the axon tracts, deterioration due to cell death,
or a primary pathology within the white matter, as
might occur as aresult of pathological changes within
oligodendrocytes. The authors posit that these white
matter changes may occur prior to frank neurodegen-
eration, given that they occur very early in disease,
often decades before expected symptom onset; how-
ever, the tract changes were not evaluated relative
to atrophy in the connected regions, which would
have provided further support for that claim. Sim-
ilar early changes in white matter tracts have been
demonstrated in putamen-prefrontal and prefrontal-
parietal tracts, but again, these were not evaluated
relative to overall atrophy in the connected regions,
making it difficult to eliminate the possibility that
these findings are secondary to cell loss [43]. In
addition, PET imaging studies evaluating radioligand
binding to proteins found in striatal synapses such
as phosphodiesterase 10A [44] and the D1 and D2
dopamine receptors [45, 46], have shown decreases
in patients with HD; however, these studies did not
differentiate if this decreased binding was due to
focal synapse loss/dysfunction or general cell loss.
Another imaging study in HD shed light on the tem-
poral pattern of synapse loss relative to cell death
by demonstrating impairments in sensorimotor tracts
in participants classified as having pre-manifest HD,
and in multiple white matter tracts, including those of
the sensorimotor cortex, corpus callosum, prefrontal
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cortex, and thalamus in early HD [47]. These affected
tracts correlated with deficits in behavioral tasks,
but atrophy was only identified in the caudate and
corpus callosum, not the thalamus, suggesting that
the tract changes to this latter region may predate
cell death in the thalamus. Addressing this question
from a longitudinal perspective, results of TRACK-
HD demonstrated a correlation between the degree
of white matter atrophy and progression during the
phase of disease prior to onset of motor symptoms,
whereas an increase in grey-matter atrophy correlated
with impending clinical (i.e., motor) onset [16].

Experimental model systems also strongly sup-
port the observation that synaptic dysfunction is an
early change in HD. As with human disease, mutant
Htt forms neuropil aggregates in mice transgenic
for mutant Hrt [48], and although mouse models of
HD can vary significantly in design, nearly every
model demonstrates synaptic pathology and synap-
tic plasticity deficits prior to outright cell loss or
motoric changes [49—62]. This has been extensively
reviewed previously [63], but it is important to note
that these synaptic changes are found even in those
models that aim to recapitulate HD genetically. For
example, knock in mouse models of HD demonstrate
neuropil aggregates [62], axonal degeneration [60],
and electrophysiological changes [50]. The electro-
physiological changes are not limited to hippocampal
circuits but in transgenic models, extend broadly to
cortico-thalamic and cortico-striatal projections [53,
56, 57, 64]. Moreover, biochemically, changes in
synaptic protein levels have been noted in animal
models of HD [65—69], and are associated with a
decrease in dopamine release in the striatum, even
after controlling for a decrease in overall dopamine
content [70]. Work in these animal models suggests
that early changes in synaptic signaling may then
lead to cell toxicity [71], although cell death is not
a common feature in the mouse models. Broadly,
the synaptic changes observed in HD are similar
to other neurodegenerative diseases of cognition, in
that post-mortem samples from patients with AD
and DLB show early synaptic pathology, and animal
models of AD and of synucleinopathies demonstrate
electrophysiological changes and abnormal synapse
morphology in relevant brain regions [9].

Although in broad strokes the early cognitive
changes coupled with synaptic alterations make HD
similar to AD, DLB and FTD, it is important to
note that there are also clear distinctions, espe-
cially clinically. For example, AD demonstrates early,
prominent changes in information encoding due

to pathology within the hippocampal circuit [72].
Similarly, although the term FTD includes a hetero-
geneous group of disorders, this class of degenerative
conditions tends to demonstrate executive or lan-
guage impairments, which correlate anatomically
with the pathology seen in the frontal and temporal
lobes [73]. These differences likely reflect discrete
regional vulnerabilities of the disease-initiating pro-
tein, but once initiated, the resultant pathological
cascade may be very similar at the molecular level
[74].

SYNAPTIC AUTOPHAGY AND
COGNITIVE DECLINE

Although early synaptic dysfunction and cogni-
tive decline may be found across neurodegenerative
disorders, including HD, what causes this dysfunc-
tion remains unclear. Growing evidence suggests
that the lysosome-mediated degradation pathway
autophagy contributes to maintenance of the synapse
(Fig. 1) and, as such, it may be involved in the
pathologic cascade leading to synapse dysfunction in
neurodegenerative conditions. Given the importance
of autophagy in maintaining protein and organellar
homeostasis, this might be unsurprising. The spe-
cialized pre- and postsynaptic sites are adapted for
constant activity, with a high density of proteins
that are regularly undergoing assembly and disas-
sembly processes [75]. Studies indicate that many
synaptic proteins have regions that are disordered
[76], making them vulnerable to changes in protein
homeostasis which can drive their irreversible aggre-
gation, and thereby disrupt function. Moreover, pre-
and post-synaptic sites are brimming with mitochon-
dria, which are used broadly for ATP production,
regulation of reactive oxidative stress, and calcium
buffering. Autophagy is the only degradation path-
way in the cell that can handle the breadth of cytosolic
cargoes at the synapse, with the ability to transport
individual proteins to entire organelles to the lyso-
some [77]. The flexibility of this pathway is achieved
by two key facets of this pathway: the autophago-
some, a double membrane structure that forms de
novo to capture cargo; and fusion to the lysosome,
an organelle that has the capacity to degrade almost
every component of the cell [78].

In model systems, interventions that alter the
amount of autophagic activity (both increases and
decreases) lead to impairments in learning and mem-
ory [79-84], and it is notable that behavioral changes
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Fig. 1. Simplified schematic of autophagy at the synapse. It has been suggested that pre-synaptically, autophagosome formation is initiated
at the synapse by the generation of an isolation membranes that then close to become autophagosomes. These structures then mature as they
travel retrogradely up the axon prior to fusing with lysosomes in the cell body [93—100]. The molecular players governing this pathway are
still being investigated but may include the proteins Rab-interacting lysosomal protein (RILP) [138] and Endophilin A [94]. Autophagy has
been implicated in the processing of various synaptic proteins (see Table 2) and may be involved in the degradation of entire synaptic vesicles
[86, 93]. It is unclear how those proteins and organelles are targeted to the autophagosome, but likely requires adaptor proteins such as p62
[106] and Rab26 [93]. The movement of autophagosomes in dendrites has been less thoroughly studied, although autophagy does seem to
be playing a role in this compartment as well, as multiple post-synaptic proteins are also implicated as targets of autophagy (see Table 2).

(Figure created with BioRender.com).

in response to modulation of autophagy are seen
primarily in the cognitive realm. For example, mod-
ulation of autophagy in the hippocampus may be
important for memory formation, and reversing its
decline in aging animals can improve age-related
memory deficits [79, 85]. In contrast, disruption
of autophagy in dopaminergic neurons does little
to disrupt motor performance [86], suggesting that
either the reliance on synaptic autophagy is neuronal
subtype- or circuit-specific, or that the task itself
is less reliant on synaptic flexibility. Interestingly,
modulating autophagy in cell culture and animals
leads to alterations in dendritic spine morphology
and synaptic function [79, 86-92], further support-
ing the hypothesis that the above changes in learning
and memory tasks are mediated by dysregulation of
synaptic autophagy.

In animal tissue and neuronal cultures, machinery
important for autophagosome formation can be found
in the synaptic compartment [93, 94] and autophago-
somes that form at the axon terminal mature while

travelling retrogradely up the axon to the soma
[95-100]. A large number of synaptic proteins have
been implicated as targets for autophagy (Table 2)
[84, 85, 91, 92, 100-109], suggesting that synap-
tic proteins are locally taken up by autophagosomes.
Many of these proteins are components of the synapse
that need to be turned over rapidly in order to facil-
itate synaptic plasticity, such as proteins required
for synaptic vesicle exocytosis, dendritic scaffolding
proteins, and post-synaptic neurotransmitter recep-
tors (Table 2). Another feature shared by many of the
target proteins is that they have regions that are intrin-
sically disordered [76], and thus they are aggregation
prone, especially if the rate of turnover is decreased.
As such, even modest impairments in this function
of autophagy could lead to cognitive deficits in tasks
that rely on synaptic flexibility.

As further evidence that autophagy plays a special-
ized role in the healthy synapse, synaptic activity can
reciprocally regulate autophagic activity, especially
through neuronal electrical activity [90, 94, 101, 105,
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Table 2
Synaptic proteins implicated as targets of autophagy

Presynaptic proteins

Ca2 +/calmodulin-dependent protein kinase II (CamK2) [84]

Synaptic Vesicle Glycoprotein 2B (SV2b) [103]

SYD-1 [107]

SYD-2/liprin [107]

Synaptobrevin [103, 107]

Tropomyosin receptor kinase B (TrkB) [108]

Synaptotagmin [100]

Synaptophysin [109]

Postsynaptic proteins

Activity-Regulated Cytoskeleton-Associated Protein
(Arc/Arg3.1) [85]

a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptor [104]

glutamate receptor 1 (GIuR1) subunit of the AMPA receptor
[101, 102]

glutamate receptor 2 (GluR2) subunit of the AMPA receptor
[102]

N-Methyl-D-aspartic acid or N-Methyl-D-aspartate receptor
2A (NMDAR?2A) [84, 92]

N-Methyl-D-aspartic acid or N-Methyl-D-aspartate receptor
2B (NMDARZ2B) 84, 92]

Post-synaptic density protein 95 (PSD-95) [85, 91, 92, 136]

vy-aminobutyric acid A (GABA ) receptor [105]

cholinergic receptor, nicotinic/nicotinic acetylcholine receptor
(CHRN) [106]

PTEN-induced kinase 1 (PINK1) [91]

SH3 and multiple ankyrin repeat domains 3 (SHANK3) [91]

Table 3
Synaptic proteins implicated in regulation of autophagy

Snapin [112]

RAB26 [93, 137]

Endophilin A [94]

V100 [113]

Synaptobrevin [114]

Bassoon [103, 115]

Synaptojanin [116]

Brain derived neurotrophic growth factor (BDNF) [91]

107, 110, 111]. Additionally, training on memory-
related tasks leads to region-specific increases in
markers of autophagic activity, which localize to the
brain region necessary for learning of the task [79].
Further, proteins that play a role in synaptic signal-
ing may also regulate autophagy (Table 3) [91, 103,
112-116]. Together, these studies suggest that synap-
tic signaling fine-tunes autophagic activity as a way to
regulate the turnover of proteins in this compartment
(Fig. 2).

Despite the accumulation of data supporting the
importance of synaptic autophagy in synaptic plas-
ticity, there is still much left to be done in the field.
For example, the spatial understanding of where
autophagy occurs has been gained largely from
embryonic neurons isolated in culture, but has not

Synaptic activity

Changes in the
strength of Modulation of
synaptic autophagic activity
connections

Increases or
decreases in
synaptic protein
turnover

Fig. 2. The interplay between autophagy and synaptic activity. In
the normal cell, autophagy is both modulated by [90, 94, 101, 105,
107, 110, 111] and modulates [79, 86, 89, 91] synaptic activity to
fine-tune synaptic function. Theoretically, autophagic activity can
therefore be up or down regulated to either increase or decrease
the amount of synaptic protein turnover. This would modulate the
strength of the synaptic connections, and thus the amount of synap-
tic activity. Synaptic activity can then, in turn, feed back to affect
the degree of autophagic activity.

been confirmed in neurons within adult brains. More-
over, many of the synaptic proteins suggested to
be potential autophagic cargo were identified using
nonspecific interventions that among other effects,
affected levels of autophagic activity, or were sim-
ply shown to co-localize with markers of autophagic
machinery. Similarly, the studies suggesting a recip-
rocal relationship between autophagic activity and
synaptic signaling did not discern between direct and
indirect responses. Although altogether the data is
still compelling, the field would benefit from studies
using less correlative techniques and, especially in
the context of neurodegeneration, studies in the adult
and aging brain.

DISRUPTION OF SYNAPTIC
MAINTENANCE BY MHTT AND THE
ROLE OF AUTOPHAGY

The synapse is an active site that is particu-
larly sensitive to protein homeostasis and membrane
trafficking events. Consequently, the mutation under-
lying HD may be disruptive to the synapse in multiple
ways. For example, the expansion of the CAG repeat
in the HD gene can affect the normal function of
the Htt protein, which has been strongly implicating
in membrane trafficking. Htt facilitates the transport
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of vesicles, including synaptic vesicles, through its
interaction with dynein [117], or indirectly with dyn-
actin or with kinesin through Htt-associated protein
1 (HAPI1) [118-123]. Further, through interactions
with Htt-associated protein 40 (HAP40) [124], Htt
also participates in the regulation of endosomal traf-
ficking [125]. As such, the presence of the poly-
glutamine (polyQ) expansion may interfere with the
ability of Htt to interact with its partners, thereby
disrupting the trafficking of proteins necessary for
synaptic maintenance. Moreover, this disruption in
membrane trafficking can also impede autophagy
[126] by interfering with the retrograde transport
of autophagosomes [127, 128]. Consistent with this,
elimination of Htt in Drosophila and the mouse CNS
has been reported to decrease autophagic activity
[129, 130]. In addition to a direct impact on mem-
brane trafficking, the polyQ expansion can drive
aggregation of both the Htt protein as well as its
mRNA (reviewed in [127]), placing an increased bur-
den on autophagy as a result of Htt accumulation and
thereby impairing autophagic efficiency. Htt may also
impact autophagy directly, as it interacts with multi-
ple autophagy related genes, suggesting that it may
act as a scaffold for autophagic machinery [129, 130].
Finally, mutant Htt can inhibit Rhes, which through
its interaction with mTORC1 can regulate autophagy
[131]. Taken together, these data support a model by
which mutant Htt leads to decrease in autophagic
efficiency, leading to reduced turnover of synaptic
proteins and thus cognitive impairment (Fig. 3).

CONCLUSIONS

In summary, there is pathologic and imaging data
in individuals with mutations in Htt, as well as evi-
dence from animal models with HD, that suggests
that synapse dysfunction may occur early in HD,
prior to cell death. Autophagy plays a specialized
role in the maintenance and function of the synapse,
and mHtt may disrupt this function, leading to the
early synaptic changes seen in HD patients and model
systems. These synaptic changes may then mani-
fest as impairments in synaptic plasticity and thus
cognitive changes early in the disease course. Given
that neurons rely on synaptic input and feedback for
cell health [132], it is possible that this disruption
in synaptic signaling in and of itself contributes to
cell death in HD (Fig. 3). There is much work yet to
be done in this field — although various groups have
demonstrated individual components of this pathway,

mHTT interferes with
autophagic turnover
of synaptic proteins

Impaired synaptic
plasticity

Loss of normal
synaptic input and
feedback

Cognitive dysfunction

Cell death

Fig. 3. Proposed pathway of mHtt contribution to cognitive dys-
function and cell death through impairments in synaptic autophagy.
mHitt interferes with autophagic efficiency [128-131], leading to
a decline in synaptic autophagy. This may in turn interfere with
synaptic plasticity, causing both cognitive dysfunction and loss of
normal synaptic input to post-synaptic cells and feedback to presy-
naptic cells. Loss of normal synaptic feedback and input may then
contribute to cell death.

a direct causal relationship of mutant Htt leading to
synaptic dysfunction and, in turn, cognitive impair-
ments, has not yet been demonstrated. However, if the
model described herein is born out, targeted interven-
tions to improve the efficiency of synaptic autophagy
early in the course of HD could be protective against
early cognitive changes and potentially degeneration
itself.
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