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Abstract. Huntington’s disease (HD) is a fatal, inherited neurodegenerative disorder caused by a mutation in the huntingtin
gene (HTT). While mutant HTT is present ubiquitously throughout life, HD onset typically occurs in mid-life, suggesting
that aging may play an active role in pathogenesis. Cellular aging is defined as the slow decline in stress resistance and
accumulation of damage over time. While different cells and tissues can age at different rates, 9 hallmarks of aging have
emerged to better define the cellular aging process. Strikingly, many of the hallmarks of aging are also hallmarks of HD
pathology. Models of HD and HD patients possess markers of accelerated aging, and processes that decline during aging also
decline at a more rapid rate in HD, further implicating the role of aging in HD pathogenesis. Furthermore, accelerating aging
in HD mouse and patient-derived neurons unmasks HD-specific phenotypes, suggesting an active role for the aging process
in the onset and progression of HD. Here, we review the overlap between the hallmarks of aging and HD and discuss how
aging may contribute to pathogenesis in HD.
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INTRODUCTION

Huntington’s disease (HD) is an autosomal
dominant, progressive and eventually fatal neu-
rodegenerative disease caused by an expanded
polyglutamine-encoding CAG tract in the Huntingtin
(HTT) gene, which gets translated into a mutant
HTT (mtHTT) protein [1]. mtHTT disrupts several
processes in the cell, eventually leading to dysfunc-
tion and death of the caudate and putamen, and the
cerebral cortex. HD is characterized by psychiatric,
cognitive, and progressive movement abnormalities
[2]. Age-of-onset of disease is negatively correlated
with the number of CAG repeats [3-6], with motor
symptoms beginning between ages 35-45 and death
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occurring 10-20 years after motor-onset [2]. How-
ever, the number of repeats only partially explains
age-of-onset; individuals with identical tract lengths
can have disease onset many decades apart [7]. This
suggests that both genetic and environmental fac-
tors outside the CAG repeat can influence disease
pathogenesis.

Although there is evidence which suggests that
neurodevelopmental abnormalities can occur in
adult-onset HD [8, 9], those with the mutation
that causes adult-onset HD can live several decades
without overt symptoms. This suggests that aging,
particularly in adult-onset HD, may play a role in
pathogenesis. However, how aging may contribute
to HD pathogenesis is controversial. Two primary
hypotheses have arisen: (1) Aging passively con-
tributes to HD by the simple passage of time,
where mtHTT-induced microdamage accumulates
over many decades before reaching a threshold of
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disease onset, or (2) events that occur during the aging
process sensitize neurons/the brain to the mtHTT
insult and actively contribute to disease onset and/or
progression.

Aging is arisk factor for many diseases, including
neurodegenerative disease [10]. While chronolog-
ical aging is defined as the number of years an
organism is alive, biological aging describes the
overall health of the organism [11, 12]. Biolog-
ical aging is defined by 9 hallmarks: telomere
attrition, epigenetic alterations, altered intercellular
communication, dysregulated nutrient sensing, loss
of proteostasis, mitochondrial dysfunction, genomic
instability, stem cell exhaustion, and cellular senes-
cence [13]. While both chronological and biological
age arerisk factors for disease, biological aging seems
to play a larger role in disease burden of many age-
related diseases [14—16]. This suggests that processes
that decline during aging play an active role in dis-
ease. In HD, many of these aging hallmarks are also
hallmarks of disease pathogenesis. Here, we discuss
the evidence for accelerated aging in HD, the over-
lap between the cellular hallmarks of aging and the
cellular pathogenesis of HD, and how aging may
exacerbate toxicity in HD.

EVIDENCE FOR ACCELERATED AGING
IN HUNTINGTON’S DISEASE

Telomere attrition

Telomeres are repetitive TTAGGG nucleotide
sequences that act as a cap at the end of chromosomes
that insulate them from attrition during replication
[17]. Telomeres are maintained by telomerase, an
enzyme that is relatively silent throughout the body
shortly after birth. Thus, telomeres undergo succes-
sive shortening with age, and biological aging has
been linked to shortened telomeres [18]. In addition
to biological age, shortened telomeres are associ-
ated with several diseases, including mood disorders,
cancer, type 2 diabetes, and chronic obstructive pul-
monary disease [19-22]. While telomere attrition
may not occur is post-mitotic neurons [23], several
neurodegenerative diseases have shortened telom-
eres in leukocytes compared to age and sex-matched
control individuals [24, 25]. Interestingly, of all neu-
rodegenerative diseases, HD leukocytes have the
shortest telomeres [24]. This was also shown in a
follow-up study [26], and could potentially be used
as a peripheral blood biomarker for HD progression
[27, 28]. In addition, there is an association between

age-of-onset of HD and SNPs that influence telom-
ere length [29], further demonstrating an association
between telomere shortening, a marker of advanced
biological aging, and HD.

Epigenetic alterations

The epigenetic landscape of DNA and histones
changes with age. Widespread DNA hypomethyla-
tion and loss of heterochromatin have been described
[30]. In addition, in the aging brain, distinct pat-
terns of epigenetic and, consequently, transcriptional
changes occur. In this way, the epigenetic landscape
of DNA and chromatin has come to be a predic-
tor of biological age [31-33]. In the brains of HD
patients, accelerated epigenetic aging has been shown
in the striatum, the most affected part of the brain in
HD [34]. Taken together with data from telomeres
in HD, this demonstrates that HD brains also have
accelerated biological age compared to age-matched
controls. This is in concordance with the findings of
others that show accelerated brain epigenetic aging in
other neurological disorders, including Alzheimer’s
disease, Down’s syndrome, and HIV-associated neu-
rocognitive disorders [35-37].

OTHER HALLMARKS OF AGING
INVOLVED IN HUNTINGTON’S DISEASE
PATHOGENESIS

Altered inter- and intra-cellular communication
and stress signaling

Intercellular communication refers to the non-
autonomous signaling between cells and tissues,
whereby one tissue can have an effect on the other.
One of the most common examples of intercellu-
lar communication is inflammation. Immune cells
such as neutrophils, B cells, T cells, macrophages,
astrocytes and microglia release inflammatory sig-
nals to surrounding cells as a defense system against
cellular harm [38]. Additionally, non-immune cells
under stress can release cytokines and chemokines
to surrounding cells to boost defenses against for-
eign pathogens [39]. Together, this response is meant
to be acute and resolved by subsequent release of
anti-inflammatory factors and tissue remodeling [40].
Throughout aging, however, pro-inflammatory sig-
naling is elevated, and anti-inflammatory factors
become diminished, leading to chronic inflammation,
deemed “inflamm-aging.” For a detailed review of
inflamm-aging pathways, we refer the reader to [41].
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Reactive microglia have been found in HD
brains that correlate with HD pathology [42, 43].
Macrophages, monocytes, and microglia isolated
from YAC128 and R6/2 mice as well as from periph-
eral blood of HD patients are hyperactive upon
stimulation [44, 45], similar to the stimulus-induced
hyperactivity observed in microglia from aged mice
[46]. Astrocytes can also be dysfunctional in HD
brains, with a decreased ability to take up glu-
tamate and increased glutamate release [47, 48].
Interestingly, glial cells from the white matter of
adult brains possess shorter telomeres than grey mat-
ter glial cells [23]. This could contribute to the
observed white matter loss in HD patients prior to
grey matter loss, and may suggest that “older” glial
cells contribute to HD pathology at earlier stages.
Pro-inflammatory markers such as IL-6 and matrix
metalloproteinase 3 (MMP3) are also elevated in the
plasma and CSF of HD patients, respectively [44,
45], suggesting increased systemic inflammation in
HD. Additionally, in mice with mtHTT expressed
only in microglia, there is an increase in neuronal
cell death [49]. Moreover, reducing mtHTT in astro-
cytes slows progression of phenotypes in BACHD
mice [50], further providing evidence for the role
of non-autonomous contributions from glia to HD
pathology.

In addition to glial and peripheral immune cell
contributions to inflammation, several intracellular
pathways can also lead to increased inflammation and
cellular dysregulation in both aging and HD. Elevated
levels of reactive oxygen species (ROS), which we
discuss in greater detail below, can chronically acti-
vate nuclear factor kappa B (NF-«B), a transcription
factor that induces expression of pro-inflammatory
genes [51]. RNA sequencing of HD patient brain
found upregulation of several NF-«B target genes
[52], and inhibition of NF-«B signaling in astro-
cytes is sufficient to delay phenotypes in R6/2 mice
[53]. Mammalian sterile 20-like kinasel (MSTI)
was also found to be activated in post-mortem
HD cortical tissue and CAG knock-in Q111 mice
[54]. MST1 promotes the innate immune response,
increasing inflammation [55]. Furthermore, wild-
type HTT is a stress response protein, serving as a
scaffold protein for the recruitment of DNA dam-
age response proteins and early endosomes [56-59].
mtHTT does not recover from these responses as
quickly, resulting in aberrant signaling and associ-
ated stress responses, which can indirectly activate
immune response pathways. Together, these aber-
rant stress signaling pathways coordinate not only to

increase damage in HD, but can also cause damaging
chronic inflammation.

Dysregulated nutrient sensing

In cells, the master regulator of nutrient sensing
is insulin-like growth factor (IGF-1). IGF-1 is acti-
vated by glucose, in a similar manner to insulin, and
this pathway, which is the most-conserved pathway in
organisms, is referred to as the insulin and IGF-1 sig-
naling (IIS) pathway [60]. In aging, IGF-1 declines
and contributes to aging [61], although paradoxically,
reducing activity of downstream effectors of IGF-1
such as mTOR, FOXO, or Akt promote longevity [62,
63]. This is hypothesized to be because of the slowed
metabolism and growth of organisms with decreased
IIS activity [64].

Dysregulated nutrient sensing also occurs in HD
patients. However, contrary to the hypometabolism
often seen in the elderly, patients with HD most often
exhibit hypermetabolism, with high rates of weight
loss despite an increase in caloric intake [65]. FOXO,
mTOR, and Akt, all downstream effectors of the IIS
pathway are dysregulated in HD patient brains and
models of HD. Activation of the IIS pathway via mod-
ulation of FOXO, mTOR, or Akt is protective in HD
models by ameliorating mitochondrial function and
metabolic rates [66—71]. Somewhat paradoxically,
although IIS activation is protective in HD models,
intermittent fasting, which reduces IGF-1 levels, pro-
motes clearance of mtHTT in YAC128 mice [72]. To
support this, compounds such as rapamycin, which
blocks mTOR activity, and metformin, which inhibits
IS, promote autophagic clearance of mtHTT and
improve phenotypes in HD mice [73-75]. Further-
more, plasma IGF-1 levels were found to be positive
predictor of cognitive decline in HD patients [76];
thus, how exactly the IIS pathway can be protective
in HD is still debated.

Loss of proteostasis

Proteostasis, or ‘protein homeostasis’, refers to the
process of quality control regulating protein abun-
dance and conformation. The network of proteins
involved in maintaining proteostasis include pro-
teins involved in translation, molecular chaperones,
which aid in re-folding misfolded proteins, as well
as the ubiquitin-proteasome system (UPS) and lyso-
some/autophagy machinery, which degrade excess
and damaged proteins [77, 78]. Canonical protein
degradation involves tagging proteins with mono or
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poly-ubiquitin chains to be recognized by the pro-
teasome or autophagosomes [79-81]. During the
process of aging, the proteostasis network in the brain
declines in function, evidenced by the appearance
of protein aggregates even in aging brains without
apparent neurodegenerative disease [82—84]. This is
thought to be due, at least in part, to an increase in
errors in translation and protein misfolding as a result
of accumulated damage and subsequent oxidative and
carbonylation of proteins [84].

Autophagosomes and lysosomes decrease in num-
ber and activity with aging in several tissues [85,
86]. Furthermore, inhibition of autophagy leads to
premature aging phenotypes [87], and stimulating
autophagy by caloric restriction and pharmacologic
stimulation of upstream autophagy pathways pro-
motes longevity in nearly all model organisms from
C. elegans to rhesus monkeys [88]. Additionally, the
UPS and lysosome/autophagy pathway become dys-
regulated with age, with shifts in the ubiquitylation
of the proteome and a decrease in the activity of the
proteasome and autophagic machinery, further con-
tributing to the decline in protein integrity observed
in the aging brain [77].

A decline in overall proteostasis has been linked to
disease progression in models of HD [89, 90]. Aggre-
gates of mutant HTT have been shown to sequester
ubiquitin as well as components of the proteasome
[91], which could result in decreased proteasome
function, although this hasn’t directly been linked
to cellular decline. It is possible that proteasome
sequestration is dynamic, and may not occur at a high
level all the time but may be enough to slow down
the proteostasis network as a whole [92]. Interest-
ingly, while primary cortical neurons from HD mice
do not exhibit aggregation of mtHTT, we recently
found that inducing aging in these neurons caused
oligomers of mtHTT to form [93]. Additionally, the
E3 ubiquitin ligase WWP1 was found to aberrantly
ubiquitinate mutant HTT and impair degradation in
an age-dependent manner [94], further suggesting a
relationship between age and mtHTT toxicity.

Contrary to what is typically observed during
aging, autopsied brains of HD patients have increased
size and number of autophagic vesicles [95]. Addi-
tionally, staining of LC3II, a marker of autophagic
vesicles, is increased in HD striatal neurons [96],
and UBRS, a ubiquitin ligase responsible for pro-
teosomal degradation is increased in HD iPSCs [97].
Despite this increase, overexpression of UBRS is pro-
tective in HD iPSCs, suggesting either dysfunction
in this pathway or an overwhelming of the proteo-

somal system in HD cells [97]. Indeed, despite this
increase in vesicle size and number, actual flux of
some proteins and organelles is decreased, possi-
bly due to defects in cargo recognition [98]. wtHTT
can function as a scaffold for autophagy [99], and
partial loss of this function by mtHTT may con-
tribute to autophagy defects. While the mechanism
of autophagy impairment in aging and HD is slightly
different, the result is similar: an accumulation of
damaged proteins and organelles. One such organelle
is the mitochondria, which are turned over by the
autophagy/lysosomal pathway. Damaged mitochon-
dria accrue in aged tissues as well as HD neurons,
creating a feed-forward loop for both ROS damage
and lysosomal impairment, which are particularly
susceptible to ROS damage [100].

Mitochondrial dysfunction

There is extensive evidence for mitochondrial dys-
function in HD patients and in many models of HD.
This was originally discovered by in vivo positron
emission tomography (PET) imaging of brains of
HD patients, where cerebral metabolism defects and
atrophy were found [101]. These metabolic defects
occurred early and severity was associated with func-
tional decline in HD patients [102—-105]. Follow-up
studies in animal models confirmed altered metabolic
rates and found distinct changes in mitochondrial
complexes [106-111], although this is not always
the case [112, 113]. Decreased cerebral glucose
metabolism is also a characteristic of the aging brain
[114-116].

Nicotinamide adenine dinucleotide (NAD+) is a
metabolite essential for cellular function that has been
shown to decline with age [117-119]. NAD+ can be
synthesized de novo from its precursor tryptophan,
through the Preiss-Handler pathway, or through the
recycling of components from enzymes that consume
NAD-+ to carry out metabolic functions [120]. This
process is dependent on nicotinamide phosphoribo-
syltransferase (NAMPT), an enzyme that converts
salvaged nicotinamide to NAD+ [121]. The main
causes of NAD+ decline in aging are a decrease
in Nampt expression [122] and an increase in
NAD+-dependent activity by the poly-(ADP-ribose)
polymerases (PARPs), Sirtuins (SIRTs), and CD38
[123]. In line with this, exogenous nicatinamide
upregulates BDNF, and PGC-1a gene expression
and improves motor phenotypes in R6/1 HD mice
[124]. PARPs are enzymes that create ADP polymer
chains using NAD+, which occurs during DNA repair
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[125]. PARP activity, particularly PARP1 activity,
is increased in aging tissue, possibly due to the
accumulation of DNA damage [126]. This increased
utilization of NAD+ by PARP1 is hypothesized to be
the cause of the eventual reduction in SIRT activity
[127]. PARP1 hyper-activity has also been observed
in post-mortem HD brains [128]. In addition, inhibi-
tion of PARP1 activity is neuroprotective in R6/2 HD
mice [129]. Similar to findings in aged brains, SIRT1
and SIRT3 expression are decreased in cultured HD
neurons and HD brains [130-132], and SIRT1 and
SIRT3 activation is beneficial HD neurons as well as
R6/1 and YAC128 HD mice [130, 132, 133]. While
accelerated aging has not been directly linked to the
observed changes in enzymatic activity of NAD+-
consuming enzymes, the fact that levels change in a
similar manner in both aging and HD is suggestive of
an accelerated aging component to HD pathogenesis.

In addition to cellular metabolic defects, many
models of HD as well as post-mortem brains from HD
patients have shown defects in mitochondrial struc-
ture and function in similar ways to mitochondrion
from the aging brain. Mitochondria are dynamic,
networked organelles, undergoing fission or fusion
with the network in response to changing cellu-
lar environments [134]. In the aging brain, there is
decreased abundance in mitochondria and a change
in shape toward smaller, rounded, and less-networked
mitochondria in many cell types, including neurons
[135-138]. In addition to changing structure, mito-
chondria from aged tissues have decreased oxidative
phosphorylation and ATP production [139-141]. In
HD, similar observations have been made in neuronal
mitochondria. Abnormal mitochondrial dynamics
and increased activity of the GTPase DRPI, respon-
sible for mitochondrial fission, have been reported in
HD models and post-mortem brains of HD patients
[142-145].

Decreased calcium handling is characteristic of
mitochondria from aging neurons, and is also
observed in HD brains. Mitochondria take up cal-
cium through the calcium uniporter, which helps to
buffer calcium input in neurons [146]. Mitochondria
from aging neurons do not do this effectively [147].
Calcium handling defects are also observed in trans-
genic HD mice and rats as well as lymphoblasts from
HD patients [148—150], although this is not seen in
some HD mouse neurons until they are challenged
with NMDA [151, 152].

ROS are byproducts of cellular metabolism that
are typically cleared by endogenous antioxidants in
the cell [153, 154]. While ROS and antioxidants are

typically in homeostatic balance in the cell, ROS can
overwhelm antioxidant systems, causing damage to
DNA, RNA, proteins, and organelles [155]. Through-
out the process of aging, this homeostatic imbalance
can become pronounced. Antioxidant protein levels
and activity decline [156, 157], and age-related dis-
ruptions in mitochondrial activity cause more ROS
generation, and subsequent damage to DNA and
biomolecules [158]. In a similar manner, HD neurons
have decreased antioxidant activity, and increased
ROS and ROS-induced damage [159-161]. However,
recently, we found that in primary cortical neurons
from humanized HD mice, the ROS-induced dam-
age and hypersensitivity to oxidative stress observed
in HD neurons is dependent upon biological age
[93], suggesting that aging uncovers stress-induced
phenotypes in HD. Moreover, through aging ROS
can promote cellular senescence [162], and recently,
RNA sequencing of brains from HD knock-in mice
revealed that striata from symptomatic HD mice
possess gene signatures associate with cellular senes-
cence [163].

Cellular senescence

Cellular senescence refers to the cell cycle arrest
of replicative cells due to aging-related factors [164].
Senescent cells exist in a pro-inflammatory state and
can release cytokines, proteases, and growth fac-
tors collectively known as a senescence-associated
secretory phenotype (SASP) [165]. While senescence
in this sense doesn’t apply to terminally differen-
tiated cells such as neurons, aged neurons have
increased expression of pro-inflammatory markers,
markers of senescence such as p53 and pl6™NK4A,
tumor suppressors that can also trigger senescence-
related transcriptional changes in aging, and an
increase in senescence-associated [3-galactosidase
activity [166]. In HD, mtHTT can bind to p53
and increase protein activity [167]. pl6 and p53
gene expression are also increased in the striata of
HD knock-in mice [163]. Furthermore, both astro-
cytes and microglia from aged brains acquire SASPs
[168, 169]. Furthermore, there is an increase in
pro-inflammatory cytokines and matrix metallopro-
teinases such as MMP-9 in HD mice as well as
post-mortem brains of patients with HD [170].

DNA damage and genomic instability

Genomic instability refers to the frequency of
mutations within the genome of cells. Chromosomal
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changes and DNA mutation rate increase with age
[171-174]. Mutations in aging are thought to be
caused, at least in part, by failure to repair or
improper repair of DNA damage. DNA damage
continuously occurs in cells due to free radical
damage and environmental agents, such as UV
rays. DNA damage comes in several forms, includ-
ing insertions/deletions/substitutions, bulky adducts,
single-strand breakage and double-strand breakage
[175-177]. Damage accrued independently of repli-
cation can be repaired by one of four known
pathways, each with multiple scaffolds and poly-
merases [178]. While each DNA damage response
(DDR) pathway has a canonical lesion to repair, there
is significant crosstalk between pathways. For a com-
prehensive review on DDR pathways, see [178].

Throughout the course of aging, several forms of
DNA damage can occur, with the oxidative lesion, 8-
oxodeoxyguanine (8-oxo-dG), being one of the most
prevalent [179-182]. 8-0x0-dG is repaired primar-
ily through the base-excision repair (BER) pathway
[182], although both nuclear excision repair (NER)
and mismatch repair (MMR) can also repair oxidative
lesions [183]. Repair of oxidative lesions is initi-
ated by 8-oxoguanine glycosylase (OGG1), which
removes the lesion [184]. The resulting gap in DNA
triggers PARP1, which uses NAD+ to add poly(ADP-
ribose) chains around the gap, recruiting polymerases
to fill the gap [185]. This is important because,
throughout the course of biological aging, there is
evidence that OGG1-dependent activity can trigger
the aging process [183]. Furthermore, aging-related
increases in DNA damage and/or aberrant repair is
hypothesized to be a cause of age-related increase in
cancer risk. However, if too much damage occurs,
cellular senescence or apoptosis can be triggered
[186].

While there is currently no evidence for a change in
overall genomic instability in HD [187, 188], nuclear
DNA modifications and increased double-stranded
breaks have been observed [189, 190], and there is
somatic instability of the CAG repeat itself. Addi-
tionally, there is evidence for disrupted nuclear pore
complexes in HD [191], which also occurs in aging
[192]. Breakdown of the nuclear pore complex can
cause excessive DNA damage and aberrant intracel-
lular communication, another hallmark of aging [193,
194]. These events combined may contribute to or
cause instability in HD neurons.

There is an inverse relationship between somatic
instability of the CAG repeat and age-of-onset of dis-
ease [195-197]. Instability may even be necessary in

the brain for pathogenesis [197-199]. This instability
seems to be dependent upon DNA repair pathways;
crossing mouse models of HD with mice deficient in
MMR (Msh2, Msh3, MIh1, or MIh3 —/— mice) or
BER (Oggl or Neill —/— mice) attenuates instability
of the CAG tract and delays HD-relevant phenotypes
[198, 200, 201]. Furthermore, a GWAS performed
on tissue from HD patients found that several SNPs
which influence age-of-onset of HD were found at or
near genes involved in the DDR [202]. In a follow-up
GWAS investigating genetic modifiers of HD pro-
gression, there was a significant signal in MSH3, an
MMR protein [203]. This provides further evidence
for the role of DNA damage-associated pathways in
HD. Recent work from our group demonstrated that
accelerating biological age of HD mouse neurons or
brains or neurons derived from HD patient iPSCs
results in a dramatic and selective increase in DNA
damage that can be exacerbated by cellular stress
[93], although it is still currently unclear whether
age-associated DNA damage can influence instabil-
ity. Some DDR pathway proteins show a decline in
efficiency with age [204], leaving the possibility that
aging contributes to somatic expansion by creating
heightened, but inefficient DDR pathways. Alterna-
tively, somatic expansion could be triggered as a
direct result of increased DNA damage and associated
increases in repair, before age-associated declines in
DDR efficiency. Both increased DNA damage and
inefficient DDR pathways, specifically in the MMR
pathway, contribute to microsatellite instability in
aging [205]. However, how these pathways change in
the brain with aging is still unknown; therefore, how
exactly this hallmark may contribute to somatic insta-
bility in HD is still unknown and of great importance
to HD research.

CONCLUSION AND FUTURE
PERSPECTIVES

Many of the hallmarks of aging are also mech-
anisms of pathogenesis in HD. While all these
processes decline with age, they seem to decline more
rapidly in patients with HD, suggesting a synergis-
tic interplay. In many adult-onset neurodegenerative
diseases, the role of biological aging in onset and pro-
gression of disease is being actively investigated. In
Parkinson’s and Alzheimer’s diseases, for example,
several groups have found links between aging and
neurodegeneration [206-208]. In adult-onset HD, the
pathogenesis is similar; although HD patients have
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Fig. 1. Proposed pathway for how aging may contribute to HD pathogenesis.

the gene mutation from birth, it takes several decades
for the mutation to manifest; begging the question of
what exactly triggers disease-onset. While it could
simply be the passage of time, there is overwhelming
overlap between the hallmarks of aging and cellular
alteration in HD, creating the hypothesis that delay-
ing biological aging could delay onset or progression
of HD symptoms as well. In this hypothesis, the aging
process plays an active role in HD pathogenesis; exac-
erbating the toxicity of mutant HTT (Fig. 1).

In non-HD neurons, biological aging occurs over
time, which eventually decreases stress resistance in
cells [209, 210]. This decrease in stress resistance
leads to an increase in unrepaired DNA damage,
which is hypothesized to cause damage to telom-
eres leading to telomere attrition [211, 212], and
can lead to instability of the genome, particularly
at microsatellite repeats [213]. Together, this leads
to cellular senescence, another aging hallmark, and
eventual cellular decline. In HD neurons, mtHTT
accelerates aging by exacerbating several hallmarks
of aging. This may lead to the hyper-susceptibility
of HD neurons to stress, a further increase in DNA
damage, and, as a result, accelerated telomere attri-
tion. This increase in DNA damage could also lead to
an increase in somatic instability, further increasing
toxicity of mtHTT.

Another point of investigation in the role of aging
in HD is how inducing aging in model systems may
uncover HD-relevant phenotypes in adult-onset CAG
tract length models. Currently, most models of adult-
onset HD at the most common pathological repeat
lengths display little to no phenotypes. Inducing
aging in these models may not only uncover pheno-
types, but may provide models systems that are more
relevant to the pathology of adult-onset HD.

The overlap between the hallmarks of aging and
cellular pathogenesis of HD as well as the acceler-
ated aging found in HD models and patient brain
provides rationale for further investigation into the
role aging in HD. While we acknowledge the toxic-
ity of mtHTT on its own, in both aging and HD, many
of these ‘hallmarks’ of cellular pathogenesis con-
verge on common pathways and can synergistically
cause cellular toxicity. Thus, anti-aging therapies
could be beneficial for multiple components of
HD. Future work should include how modulating
aging might affect pathogenesis, including somatic
instability.
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