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Abstract. Aberrant communication between striatum, the main information processing unit of the basal ganglia, and cerebral
cortex plays a critical role in the emergence of Huntington’s disease (HD), a fatal monogenetic condition that typically strikes
in the prime of life. Although both striatum and cortex undergo substantial cell loss over the course of HD, corticostriatal
circuits become dysfunctional long before neurons die. Understanding the dysfunction is key to developing effective strategies
for treating a progressively worsening triad of motor, cognitive, and psychiatric symptoms. Cortical output neurons drive
striatal activity through the release of glutamate, an excitatory amino acid. Striatal outputs, in turn, release y-amino butyric
acid (GABA) and exert inhibitory control over downstream basal ganglia targets. Ample evidence from transgenic rodent
models points to dysregulation of corticostriatal glutamate transmission along with corresponding changes in striatal GABA
release as underlying factors in the HD behavioral phenotype. Another contributor is dysregulation of dopamine (DA), a
modulator of both glutamate and GABA transmission. In fact, pharmacological manipulation of DA is the only currently
available treatment for HD symptoms. Here, we review data from animal models and human patients to evaluate the role of
DA in HD, including DA interactions with glutamate and GABA within the context of dysfunctional corticostriatal circuitry.
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INTRODUCTION

Huntington’s disease (HD) is a fatal monogenetic
neurodegenerative disorder that affects approxi-
mately 10-12 individuals per 100,000 of European
ancestry [1]. Clinical manifestations include progres-
sively deteriorating motor, cognitive, and psychiatric
symptoms [2]. The motor phenotype normally begins
with gait disturbances and a lack of coordination
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followed by chorea and jerky body movements [3, 4].
In late stages of HD, the motor alterations switch to
bradykinesia and dystonia [5]. Although the motor
signs are typically the trigger for seeking medical
attention, cognitive symptoms often develop first.
Early-stage cognitive decline is characterized by dif-
ficulties in decision-making, planning, and cognitive
inflexibility [6, 7] followed in late stages by demen-
tia [8]. Psychiatric signs also can emerge in HD
and are frequently reported as “changes of person-
ality” with symptoms such as impulsivity, irritability,
aggression, and altered mood regulation, which lead
progressively to apathy and depression [9]. Symp-
toms generally begin in the prime of life between

ISSN 1879-6397/16/$35.00 © 2016 — IOS Press and the authors. All rights reserved

This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0).


mailto:rebec@indiana.edu

304 C. Rangel-Barajas and G.V. Rebec / Corticostriatal Dysfunction in HD

35-45 years of age and progressively worsen until
death; survival after motor onset is approximately
15-20 years [10].

Although the etiology of HD has been broadly
identified, its underlying neural mechanisms have
been difficult to establish. The most prominent neural
change is a massive loss of neurons in the striatum,
which receives information from all areas of cere-
bral cortex and processes it for behavioral output via
downstream loops that converge back onto cortex,
especially motor regions [11, 12]. Cortical neurons
also degenerate in HD, creating a widespread pattern
of corticostriatal neuropathology [13, 14].

Long before cortical and striatal neurons die, how-
ever, they become dysfunctional, setting the stage for
the emergence of the HD behavioral phenotype. In
this review, we discuss corticostriatal connectivity
and its dysfunction in HD, including alterations in
downstream information flow through the circuitry
of the basal ganglia (BG). The two most prominent
transmitters in these circuits — glutamate, the excita-
tory amino acid released by corticostriatal neurons,
and <y-amino butyric acid (GABA), the inhibitory
amino acid released by striatal output neurons — are
closely tied to HD neuropathology and have been
discussed extensively [15-22]. We review both trans-
mitters here to provide context for a more detailed
discussion of dopamine (DA), a key modulator of
corticostriatal information flow, along with evidence
for its emerging role in HD.

Clinical overview

HD is an autosomal dominant neurodegenerative
disorder caused by a trinucleotide repeat expan-
sion within the huntingtin gene (HTT). The repeat
involves the CAG codon, which translates into a
long poly-glutamine (polyQ) sequence insertion in
the mutant huntingtin protein (mHTT). Abnormal
aggregates of mHTT have been proposed to cause
cellular dysfunction and ultimately neuronal death
[23-25]. Clinical manifestations are fully penetrant
when the CAG repeat number exceeds 39. The num-
ber of repeats in the mutant gene (mHTT) roughly
corresponds to an inverse association with HD onset
such that the greater the number, the earlier the onset
[26, 27]. A less common form of HD begins in
childhood or adolescence and is known as juvenile
HD. In this case, symptoms occur before the age of
20 years and usually include changes in handwrit-
ing along with learning disabilities, motor problems
(such as slowness, rigidity, tremor, and muscular

twitching), and, most commonly, epileptic seizures
[28, 29].

Medium spiny neurons (MSNs), which account for
more than 90% of the striatal neuronal population, are
particularly vulnerable. Also known as striatal projec-
tion neurons (SPNs), their progressive degeneration
is the main feature of HD [30]. Because mHTT
is expressed throughout the body [31], the role of
mHTT aggregates in causing the relatively selective
loss of MSNss in striatum is unclear, but ample evi-
dence shows that mHTT underlies MSN dysfunction
as well as abnormal communication between cortical
and striatal neurons [32-37]. In fact, data obtained
from transgenic animal models of HD indicate that
dysfunction of corticostriatal circuitry precedes frank
degeneration and likely plays a key role in symptom
onset [19, 38-40].

Rodent models

The generation of transgenic mice and rats has
greatly advanced understanding of HD pathology
by identifying potential mechanisms underlying
HD progression [2]. Transgenic rodent models can
be classified into three groups: truncated models
(expressing only the first exon of the mutant gene),
full-length models (expressing the complete mutant
gene), and knock-in (KI) models (with direct inser-
tion or “knock-in” of the CAG repeat expansion into
the HTT gene).

Truncated models

Two of the most widely used truncated models
belong to the R6 mouse line and are designated
as R6/1 and R6/2. R6/1 mice contain about 115
CAG repeats, display symptoms from 4-5 months of
age and live approximately 10-14 months. Robust
motor symptoms do not occur until approximately
5-7 months of age [41]. In contrast, R6/2 mice, which
can carry upwards of 150 CAG repeats, display a very
early onset (4-5 weeks of age) and rapid progression
of neurological signs leading to death by 15 weeks
of age [41, 42]. Although the behavioral phenotype
is robust and easy to characterize, the short lifespan
limits the usefulness of this model for identifying the
pre-symptomatic triggers of HD onset and the grad-
ual progression of HD through adulthood. Like HD
patients with a high number of CAG repeats, the R6/2
model appears to recapitulate juvenile HD [43, 44].

A truncated rat model, the tgHDS51, carries a
truncated mHTT cDNA fragment with 51 CAG
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repeats [45]. This model exhibits a high degree of
similarity to the late-onset form of HD due to the rel-
atively small number of CAG repeats. These animals
survive up to 24 months and exhibit a slow cognitive
decline and relatively mild motor deficits [46, 47].

Full-length models

Compared to truncated models, full-length models
display a slower disease progression. In this group,
two types of mice have been generated: the yeast
artificial chromosome (YAC) mouse and the bacte-
rial artificial chromosome (BAC) mouse. Three YAC
models are available based on different CAG repeat
lengths: YAC46, YAC72, and YACI128. The most
commonly used is the YAC128 model. Although
behavioral changes occur at approximately 7 months
of age, YAC128 mice show some aspects of the
human motor phenotype, such as hyperkinesia fol-
lowed by bradykinesia [48, 49], but the overall
symptom profile is relatively mild and the animals
typically survive for more than 18 months. A BAC
HD model carries 97 repeats and exhibits similarly
late-onset motor deficits [50, 51]. Both YAC and BAC
models display evidence of corticostriatal degenera-
tion [49, 50].

KI models

Widely varying CAG repeat lengths, ranging from
Q71 and Q9%4 to Q140 and Q175, characterize cur-
rently available KI models [52-54]. Although the
inverse correlation between age of onset and num-
ber of CAG repeats (see above) would suggest a
robust and early phenotype similar to the R6 line,
KI mice more closely resemble the full-length rather
than the truncated model. Heterozygous Q175 KIs,
for example, exhibit first motor signs at 3-4 months
of age and survive well past 18 months [55, 54]. An
extensive evaluation of these mice reported subtle but
significant cognitive and motor impairments along
with alterations in the level of intracellular proteins
involved in synaptic function and axonal transport
[35]. These molecular changes may correspond to
common HD neuropathological features such as stri-
atal atrophy, cortical thinning, degeneration of MSNss,
and dense mHTT inclusions [33].

Dysfunctional neuronal activity also has been
found in KI models. The Q140 mouse shows many
of the same neurological abnormalities in stria-
tum and cortex as the R6/2 model [56, 57]. In
addition, reduced synaptic transmission in the stria-
tum has been correlated with hypokinetic symptoms
in homozygous Q175 mice [58]. Although Q175s

display slow disease progression and relatively sub-
tle behavioral changes, this animal model contains the
human mHTT allele with the expanded CAG repeat
within the native mouse HTT gene.

CORTICOSTRIATAL CONNECTIVITY
AND DYSFUNCTION

Alterations in the flow of information from cere-
bral cortex to striatum play a key role in the onset
and progression of HD. Virtually all areas of cere-
bral cortex have the ability to activate striatal neurons
through a massive topographically organized pro-
jection system. Cortical input to striatum is driven
by glutamate. The corticostriatal system, however, is
tightly regulated by dopamine (DA), a monoamine
modulator, and y-amino butyric acid (GABA), an
amino acid synthesized from glutamate that exerts a
strong inhibitory influence. Together, DA and GABA
provide a critical counterbalance to the glutamate-
induced excitation of striatal neurons, which in turn
modulates the activity of downstream targets in the
BG. Thus, DA- and GABA-mediated control of the
activation of striatal neurons by glutamate allow
for the motor and cognitive responses that define
healthy BG function. HD disrupts all three trans-
mitter systems, creating a slowly progressing motor
and cognitive phenotype that ends in death. To gain
some perspective on this disruption, it is important
to understand the basic organization of cortico-BG
circuits.

According to the classical model proposed more
than 25 years ago [59, 60], cortical pyramidal neu-
rons (CPNs) activate the striatum where they target
interneurons as well as MSNs, which project to other
BG targets. Without excitatory input, MSNs, because
of a relatively high potassium conductance at rest,
are in a hyperpolarized or “down” state. Glutamate
input is required to move MSNs into a depolarized
or “up” state where they are readily excitable by
additional glutamate input. But even under excitatory
drive from cortex, MSNs typically discharge at a rel-
atively slow rate (<15 spikes/s). GABA may account
for some of this inhibitory influence since MSNs
receive input from GABA-releasing interneurons that
typically discharge at a fast rate (see below). More-
over, MSNs, which also release GABA, send axon
collaterals within the striatum. Thus, even though
MSNs receive direct glutamate input from cortex,
there are sufficient constraints on their activity to
ensure that they are not chronically hyperactive.
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MSNs send their GABA projections to two seg-
ments of the globus pallidus, forming the so-called
direct and indirect pathways. Direct-pathway MSNs
send axons to the internal segment of the globus pal-
lidus (GPi) and the substantia nigra pars reticulata
(SNpr). This pathway is considered direct because
the GPi/SNpr is the output nuclei of the BG cir-
cuit, and thus these MSNs exert a direct influence
on BG output. In contrast, indirect-pathway MSNs
sends axons to the external segment of the globus
pallidus (GPe). The GPe sends axons to the subtha-
lamic nucleus (STN), which in turn projects to the
GPi/SNpr. Thus, multiple synapses intervene before
striatal information traveling via the indirect pathway
reaches BG output.

Direct- and indirect-projecting MSNs can be dis-
tinguished by the peptides they contain. MSNs that
stain positively for dynorphin (DYN) and substance-
P (SP) project directly to the GPi/SNpr, whereas
a positive stain for enkephalin (ENK) identifies
indirect-projecting MSNs [61-63].

Interestingly, all these neuronal projections are
GABAergic except for the STN projection to
GPi/SNpr, which releases glutamate. As shown in
Fig. 1, activation of the direct pathway inhibits BG
output, and the opposite occurs when the indirect
pathway is activated. Accordingly, these pathways

can be considered to have opposite effects on behav-
ior because the GPi/SNpr sends inhibitory GABA
projections to thalamus, which in turn activates motor
cortex via glutamate. Thus, based on the classical
model of BG circuits, the direct pathway disinhibits
movement by suppressing inhibitory input to thala-
mus, whereas the indirect pathway has the opposite
effect on the GPi/SNpr and suppresses movement.
Recent studies using optogenetic technology, how-
ever, have proposed that both pathways are necessary
for the initiation of movement because both have been
found to be simultaneously active during the per-
formance of motor sequences [64, 65]. In addition,
both pathways are required not only for the initiation
of sequential movements, but also for the perfor-
mance of learned action sequences [66]. Importantly,
despite concurrent activation of the two pathways,
their motor contribution is not identical. Direct path-
way inactivation has been shown to slow initiation of
movement but indirect pathway activation terminated
it, whereas activation of the direct but not indirect
pathway prolonged action sequences, suggesting that
both pathways trigger movements by acting in con-
cert rather than in opposition [66]. Together, this
evidence suggests that BG circuitry is more complex
than activation or inactivation of direct and indirect
pathways in the control of movement. In fact, it has
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Fig. 1. Schematic illustration of basal ganglia circuitry. Striatal medium spiny neurons (MSNs) receive excitatory corticostriatal input from
IT and PT pyramidal neurons in cerebral cortex. Intra-telencephalic (IT) neurons preferentially activate substance P/D; receptor (SP/DR)
MSNss that project to the internal globus pallidus and sustantia nigra pars reticulata (GPi/SNpr) forming the direct pathway. Pyramidal tract
(PT) neurons activate enkephalin/D, receptor (ENK/D,R) MSNs that form the indirect pathway and send projections to the external globus
pallidus (GPe). GPe neurons in turn send axons to the subthalamic nucleus (STN), which projects to GPi/SNpr. GPi/SNpr is the basal ganglia
output system that integrates direct and indirect pathway information and sends it back to cortex via thalamus.
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been reported that activation of the direct pathway
can evoke both excitatory and inhibitory actions in
different cell populations within the GPi/SNpr [67].
Thus, the BG output nuclei appear to integrate infor-
mation from these two pathways by acting as a gate
that can be opened or closed to release coordinated
movement [67].

In HD, the indirect pathway seems to deteriorate
first as denoted by the preferential loss of striatal
ENK neurons [68], and decreased ENK immunore-
activity in GPe [69]. This loss, according to the
canonical model of BG connectivity, would bias the
system toward activation of the direct pathway and
thus induce chorea [70]. The model is further sup-
ported by evidence that cortical input to the indirect
pathway is higher than that for the direct pathway
[71], which may contribute to the vulnerability of
the indirect pathway in HD since glutamate in high
concentrations can be neurotoxic [72]. But in addi-
tion to the neuropathology of the indirect pathway, it
is likely that direct pathway MSNs can be dysfunc-
tional even though they may not show early-stage
deterioration. Recent in vitro evidence, for exam-
ple, indicates that selective activation of the direct
pathway in either YAC128 or R6/2 mice results in a
decreased SNprresponse relative to healthy wild-type
controls [73]. Thus, both striatal projections are likely
to make important contributions to the HD behavioral
phenotype.

Glutamatergic cortical pyramidal neurons

Despite the topographic organization of cortical
pyramidal neurons (CPNs) and their striatal projec-
tions, the potential influence of these projections on
striatal activity is complex [71, 74—78]. This section
highlights important characteristics of the control that
corticostriatal connectivity exerts over the direct and
indirect BG pathways.

The CPN projection to the striatum can be divided
into two main types: the intra-encephalic tract (IT)
and the pyramidal tract (PT). Each type has distinct
connectivity with the striatum and involvement in
motor control. For example, IT neurons from the
motor cortex but not from sensorimotor cortex project
both contralaterally and ipsilaterally, whereas PT
neurons only project to the ipsilateral striatum [77].
The distribution of IT and PT neurons in cortical layer
5, which is highly involved in voluntary movement, is
about 65% for IT and 90% for PT [74-77, 79]. In an
elegant series of studies, Reiner and colleagues [77]
demonstrated that these two types of neurons show

very distinct and preferential synaptic contact onto
striatal MSNs. These researchers found that 50.9%
of IT-type corticostriatal neurons project to DYN/SP
MSNs that form the direct pathway and only 12.6%
to the indirect pathway. While 50.5% of PT-type cor-
ticostriatal neurons target ENK MSNs, which form
the indirect pathway, only 21.3% project to the direct
pathway [71, 77, 79]. In addition, PT neurons show
complex firing activity during movement, while IT
neurons fire during motor planning before movement
occurs [80, 81]. These different electrophysiological
properties also correspond to differences in glutamate
release. For example, PT neurons that target the indi-
rect pathway have a higher probability of glutamate
release than IT neurons that target the direct pathway
[82, 83]. This difference may make indirect pathway
MSNs more susceptible to degeneration and death
[68, 70, 84]. Nevertheless, dysregulated corticostri-
atal activity seems to be critical in the neuropathology
of HD [40, 57, 85, 86].

Although the specific involvement of IT and PT
corticostriatal connectivity has not been associated
with the pathological features of HD, several stud-
ies have noted cortical alterations in HD patients
and animal models. Both show evidence of cor-
tical deterioration such as atrophy, demyelination,
and decreased size of soma and dendritic field [35,
87-90]. Moreover, GABA transmission is decreased
in HD patients [91] and in BACHD mice [92],
suggesting a reduction of inhibitory tone. In HD
mice, increased calcium currents were reported for
CPNs [93], which also have hyperexcitable mem-
branes [51]. Consistent with increased excitability of
CPNs is evidence of altered firing patterns in vivo,
including a decrease in synchronized activity among
simultaneously recorded neurons [57]. Furthermore,
preventing the expression of mHTT in cortical effer-
ents improved striatal neuronal activity [36, 94],
suggesting that mHTT alters striatal activity via dys-
regulated cortical input.

GABAergic medium spiny neurons

The neuronal population of the striatum is divided
into two groups: projection neurons and interneurons.
Projection neurons account for more than 90% of
the neuronal population and include all MSNs [95,
96], while the remaining includes GABA- and acetyl-
choline (ACh)-containing interneurons [97, 98].

The projection system is an integral part of the
cortico-BG-thalamo-cortical loop (see above). Stri-
atal MSNs are activated by glutamate input from
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IT and PT cortical neurons, and information flows
through the direct and indirect pathways to the BG
output nuclei, the thalamus, and back to cortex
(Fig. 1). Importantly, a separate region of thala-
mus, the intralaminar nuclei, also sends glutamate
input to both direct and indirect MSNs as well
as striatal interneurons [99-101]. Thalamostriatal
axon terminals have a higher probability of glu-
tamate release than corticostriatal axon terminals
[102, 103]. Interestingly, the thalamic projection
to striatum also shows signs of neuropathology
in HD and is a likely contributor to the motor
phenotype [104], much as the thalamostriatal pro-
jection also contributes to the motor signs of
Parkinson’s disease [105]. In fact, using in vitro co-
cultured thalamostriatal axons from YAC128 mice,
investigators reported that functional synapses on
MSNs are significantly altered. For example, tha-
lamostriatal afferents showed decreased membrane
capacitance and increased membrane resistance com-
pared to corticostriatal afferents, suggesting that
thalamostriatal axons are affected earlier [103]. Thus,
thalamostriatal involvement in HD deserves further
investigation.

Striatal MSN activity is often linked to movement.
For instance, the motor-activating effects of psy-
chomotor stimulants as well as spontaneous episodes
of rearing or stepping excite many MSN populations,
although some MSNss fail to respond to movement or
are inhibited [ 106—109]. Moreover, after intra-striatal
infusion of amphetamine, a widely studied stimulant,
the activity of motor-related MSNs increases prior to
behavioral activation, suggesting that MSN activity is
not secondary to movement [110]. In addition, MSN
motor-responsiveness is region-specific with dorsal
and especially dorso-lateral striatum most sensitive
to motor activation [106]. Thus, striatal activity can
be key in cases of motor dysfunction.

In HD mouse models, one of the most consistent
electrophysiological alterations in MSNs is a change
in membrane properties. For example, in R6/2 mice,
MSNs have a depolarized resting membrane poten-
tial and reduced membrane capacitance [88, 111],
consistent with a significantly elevated firing rate
during behavior relative to wild-type controls [112].
MSN calcium conductance is also increased, but at
late stages, when R6/2s become hypokinetic, calcium
conductance decreases [113]. Notably, these elec-
trophysiological changes occur in conjunction with
such morphological changes as decreased number of
dendrites, loss of spines, decreased soma size, and
decreased dendritic spread [22, 35, 88, 111]. Thus,

MSNSs undergo both functional and morphological
changes over the course of HD.

MSN activity also is regulated by interneurons,
and interestingly, the relationship is not reciprocal:
interneurons innervate MSNSs but not vice versa [20,
97, 114, 115]. Despite their small numbers, striatal
interneurons exert a large influence on MSN activity
owing to their extensive pattern of axonal branching.
Thus, the interneuron population, which also receives
glutamate input from cortex and thalamus, is another
important factor in MSN dysfunction in HD.

Striatal interneurons

There are two main types of striatal interneurons:
ACh and GABA. Early reports suggested that the
interneuron population remained morphologically
intact in HD [43, 116], but further assessments have
found that degeneration of striatal GABA interneu-
rons might be associated with dystonia [117].

GABA interneurons are classified according to
the type of co-localized protein, peptide, or enzyme,
which would include calcium-binding proteins (e.g.,
parvalbumin or calretinin), tyrosine hydroxylase
(TH), neuropeptide Y, somatostatin, nitric oxide syn-
thase and NADPH diaphorase [98, 118-120]. The
best characterized is the parvalbumin-positive or
fast-spiking interneuron (FSI), which accounts for
approximately 20% of the total interneuron popula-
tion [95]. FSIs show an increased expression gradient
from medial to lateral dorsal striatum [121], which
parallels input from motor and sensorimotor cor-
tical regions [122], suggesting a selective role in
motor integration. An important feature of FSIs is
that they connect with other interneuron dendrites
by gap junctions, which may provide strong con-
trol of striatal activity forming a large meshwork of
interneuron-interneuron communication [123, 124].
In fact, data from electrophysiological studies sug-
gest that FSIs participate in MSN spike initiation
[125]. For instance, FSIs make synaptic contact with
hundreds of MSNs, and many of these contacts are
onto the somatic region. In contrast, MSN-to-MSN
synaptic contacts occur distal to the cell body [126].
FSIs exhibit a brief action potential and a significantly
higher firing rate than MSNs [115]. FSI activity, char-
acterized by irregular, high frequency bursting, is
believed to induce gamma oscillations in local field
potentials (LFPs) [97, 127, 128], which sample pre-
and postsynaptic activity within a relatively large area
surrounding the recording electrode (see below). FSI
burst firing may be important for the synchronous
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recruitment of MSNs throughout the sensoriomotor
striatum causing LFP high-voltage spindles (HVSs),
which have been reported to occur when there is no
motivation to act or move [129].

Gap junctions seem to play an important role
in spindle synchronization [130]. Because of the
inhibitory influence of FSIs on MSNs [97, 115] hypo-
function or loss of FSIs is associated dystonia [131,
132]. In fact, FSIs are lost in HD, suggesting a mech-
anism for dystonia onset [117].

Another striatal neuron type is the TH-positive
interneuron. This cell type, named after TH, the
rate-limiting step in DA synthesis, appears to play
an important role in the pattern of striatal activ-
ity by making synaptic contact with MSNs [119,
120]. Although these interneurons are not DAer-
gic, they have the unique capability of producing
widespread and effective inhibition of both direct
and indirect pathway MSNs [133]. Interestingly, it
has been shown that DA enhances the ability of
TH-positive interneurons to generate long-lasting
depolarizing potentials [134]. Few studies have tar-
geted TH-positive interneurons for analysis in HD,
but available evidence from HD patients suggests that
they are decreased in number [135]. As data accumu-
lates on this particular class of interneurons, further
studies of their role in HD, including the behavioral
phenotype of HD mice, are needed.

ACh-containing interneurons appear to correspond
to the group of tonically active neurons (TANs)
identified in striatal electrophysiological recordings
[136]. Unlike FSIs, TANs have a very long-duration
action potential [137]. They receive prominent gluta-
mate input from intralaminar thalamus [99, 101], and
seem to control MSN activity through the release of
ACh and consequent activation of postsynaptic mus-
carinic receptors, which increase MSN excitability
[138, 139].

The activity of choline acetyl transferase, the
enzyme that synthetizes ACh, is significantly
decreased in HD patients [91] along with decreased
binding and expression of the ACh vesicular trans-
porter [140, 141]. In addition, HD patients treated
with inhibitors of acetyl cholinesterase, to elevate
Ach levels, showed some improvement in both cog-
nitive function and motor performance [142]. Recent
evidence also showed that deficient thalamic input to
the dendrites of ACh interneurons occurs early in the
lifespan of Q140 mice [143]. Collectively, these data
suggest that altered ACh interneuron activity may
play a role in the emergence of the HD behavioral
phenotype.

DOPAMINE MODULATION

Because DA plays an important role in the
modulation of excitatory and inhibitory signaling
in both cortex and striatum to control the flow
of information through cortico-BG circuits, DA
dysfunction deserves attention as another poten-
tial mechanism underlying HD neuropathology.
DA and its receptors have been broadly stud-
ied in the neuropathology of Parkinson’s disease,
a progressive neurodegenerative disorder char-
acterized by motor disturbances. Although DA
system alterations in HD remain elusive, neuro-
chemical findings have shown important changes
in DA transmission that emerge at early stages
of the disease and might be related to motor
impairments, cognitive dysfunction, and psychiatric
symptoms.

Dopamine overview

Two major DA pathways innervate cortical and
striatal areas: nigrostriatal and mesocorticolimbic.
The nigrostriatal pathway, which modulates the activ-
ity of striatal neurons in the control of movement
[144], is defined by the projection of DA neurons
from the substantia nigra pars compacta (SNpc) to
dorsal striatum (Fig. 2). The degeneration of this path-
way in Parkinson’s disease is the primary mechanism
underlying the slowness of movement and shuffling
gait of Parkinsonian patients. This pathway also
has been implicated in cognitive function. Striatal
regions with high DA innervation play an impor-
tant role in cognitive tasks and cognitive flexibility
[145, 146].

Psychiatric symptoms, which can also emerge in
HD, are associated primarily with mesocorticolimbic
dysfunction, although nigrostriatal abnormalities are
likely to contribute [147-149]. The mesocorticolim-
bic pathway originates from DA cell bodies in the
ventral tegmental area (VTA) with axons ascending
to the nucleus accumbens or ventral striatum as well
as large areas of frontal cortex, including the prelim-
bic and infralimbic areas of prefrontal cortex [144].
In the target areas of both pathways, DA modulates
the influence of glutamate by adjusting the strength of
the glutamate signal relative to background activity
[150].

Several steps are involved in DA transmission
as outlined in Fig. 2. Multiple pharmacological
approaches have been developed to modulate each
of these steps.
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Fig. 2. DA synthesis, vesicular loading, and release. DA
is synthetized from tyrosine, which is converted to L-3.4-
dihydroxyphenylalanine (L-DOPA) by tyrosine hydroxylase.
Decarboxylation of L-DOPA by the L-amino acid decarboxylase
(AADC) produces DA. Newly synthesized DA is incorporated
into vesicles by vesicular monoamine transporter-2 (VMAT-2).
Action potential activity allows the vesicles to fuse with the plasma
membrane and release their contents into the synaptic cleft. Extra-
cellular DA can activate postsynaptic receptors and be transported
back to the terminal by the DA transporter (DAT). Remaining
extracellular DA is metabolized by catechol-O-methyltransferase
(COMT) or by monoamine oxidase (MAO). Presynaptic D, recep-
tors play an important role in the feedback regulation of DA release.

Dopamine in HD

In postmortem studies, HD patients lose more than
40% of DA neurons in SNpc relative to controls [151,
152] along with a significant decrease in DA terminals
in the striatum [140]. This evidence is consistent with
a significant decrease in immunoreactivity for TH in
the SNpc and striatum [153, 154] and a significant
decrease in striatal vesicular monoamine transporter-
2 (VMAT-2), which transports newly synthesized DA
into presynaptic vesicles [140]. Similarly, the DA
transporter (DAT), located on DA axon terminals and
removes extracellular DA after its release, shows a
50% reduction in HD postmortem specimens [140,
155] and in binding studies of HD striatum [156]. In
line with this evidence, DA uptake is reduced in stri-
atal tissue of HD patients relative to controls, and the
volume of the HD substantia nigra is also decreased
[157].

Evidence for altered DA transmission also appears
in HD models. For example, decreased neuronal size

in the SNpc of R6/1 mice correlates with an increase
in mHTT aggregates [158]. In addition, an expan-
sion of CAG repeats in SNpc is associated with
decreased DA content [159]. Evoked DA release in
brain slices also is decreased in R6/1 [160] and R6/2
mice relative to controls [161]. Microdialysis studies,
moreover, indicate a 70% reduction in striatal extra-
cellular DA content [158]. Interestingly, however,
although decreased DA was found in symptomatic
R6/1s relative to control mice, the opposite effect was
reported for pre-symptomatic mice [159], suggest-
ing that nigrostriatal DA transmission is differentially
affected over the course of HD progression. In sup-
port of this view, TH activity relative to control was
increased at 4 weeks of age in R6/2 mice with no
changes in TH expression, but a decrease of both
protein and activity occurred at 12 weeks of age
[154]. In the same animal model, DAT was signifi-
cantly reduced at late but not at early stages, although
no DAT change was found in BACHD mice [162].
Interestingly, a decrease in striatal DA content was
correlated with a reduction in total locomotor activity
in both R6/2 and YAC128 mice [163]. Gait distur-
bances in tgHD rats also were also associated with
decreased DA release from 12 to 15 months of age as
measured by fast scan cyclic voltammetry [160].

Curiously, however, studies of the Q175 mouse
model fail to present a consistent DA picture. In het-
erozygous Q175s, for example, hypokinesia is not
accompanied by decreased DA content; in fact, the
alteration in DA did not occur until the mice reached
12 months of age, and no changes in DA fibers
were found [35]. In contrast, homozygous Q175s
show decreased DA release in striatum accompa-
nied by reduced TH immunoreactivity and VMAT-2
expression along with hypokinetic symptoms [58].
Furthermore, evidence of decreased DA content in
the heterozygous nucleus accumbens is believed to
contribute to cognitive neurological signs [164]. It
appears that additional research is needed to clarify
DA changes in the KI-Q175 model and to determine
the extent to which the DA changes in this model
parallel the changes in truncated and full-length HD
models.

DA metabolism also is altered in animal models,
but again with some inconsistency. For example, a
significant decrease in the DA metabolite homovanil-
lic acid was found in Q175, R6/2 and YACI128
mice [35, 165, 166], while DOPAC was found to
be decreased in R6/2 and YAC128 mice [163] but
increased in KI-Q175 at 6 months with no change
at 12 or 16 months [35]. Collectively, these animal
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Fig. 3. D; and NMDA receptor signaling pathways and mHTT aggregates. The activation of D; receptors results in G protein as/olf coupling
and the stimulation of adenylyl cyclase (AC), which transforms adenosine triphosphate (ATP) into 3’-5'-cyclic adenosine monophosphate
(cAMP). This messenger activates protein kinase dependent cAMP (PKA), which phosphorylates cAMP-regulated phosphoprotein-32
(DARPP-32) leading to inactivation of phosphatase-1 (PP1). PKA can also phosphorylate NMDA receptors enhancing its activity. Through
the phosphorylation of extracellular regulated kinase (ERK) and subsequent phosphorylation of mitogen- and stress- protein kinase-1 (MSK-
1), PKA may activate the cAMP response element-binding protein (CREB), which is involved in gene transcription processes. Activation
of the D; receptor induces mHTT aggregations [202, 203], possibly by activating CREB. NMDA receptors interact with the postsynaptic
density-95 (PSD-95) protein, which contains the domain Src homology 3 that interacts with HTT; mHTT prevents the interaction causing
sensitization of NMDA receptors and promoting apoptosis. Stimulatory effects are indicated with arrows; inhibitory effects with a line ending

in a circle. Broken lines indicate possible mechanism of action.

data suggest that DA transmission is altered in HD
perhaps even at very early stages when no motor
symptoms are apparent, but the lack of consistency
across models suggests the data should be interpreted
with caution.

Receptor expression and signaling

DA receptors belong to the large family of G-
protein-coupled receptors. There are five types of
mammalian DA receptors divided into two sub-
families according to their amino acid structure,
homology, and biological response. The D1-like sub-
family includes D; and D5 receptors, while the
D2-like subfamily consists of D», D3 and D4 recep-
tors. DI1-like receptors are positively coupled to
adenylyl cyclase (AC); their activation induces the
intracellular accumulation of cyclic 3,5 adenosine-
monophosphate (cAMP), which in turn, activates
protein-kinase dependent cAMP (PKA) (Fig. 3).

PKA is an important intracellular kinase directly
involved in the phosphorylation of ion channels and
activation of phosphatases such as DA regulated
phosphatase-32 (DARPP-32) that play an important
role in the electrophysiological properties of the neu-
ronal membrane [167]. D2-like receptors, in contrast,
are negatively coupled to AC. As a result, their
activation decreases cCAMP accumulation and PKA
activation (Fig. 4) [168-170]. Growing evidence has
shown, however, that activation of DA receptors is
not only restricted to modulation of AC but also other
complex transduction signaling pathways, depending
on the brain area and any ongoing physiological and
pathological conditions [171].

Striatal MSNss that comprise the direct pathway
(SP/DYN), preferentially expresses D1-like recep-
tors [62, 172, 173]. When activated, these receptors
increase MSN activity by increasing time spent in
the “up” or depolarized state [174]. Because these
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Fig. 4. Alteration of the D, receptor signaling pathway in HD. D, receptor activation decreases cAMP signaling. D, receptors can also
activate B-arrestin2, which recruits phosphatase-2A (PP2A). PP2A in turn interacts with thymoma viral protoncogen (Akt). The PP2A-Akt
complex promotes activation of glycogen synthase kinase-3 3 (GSK-33), which induces phosphorylation of 3-catenin, a protein involved
in the activation of the ubiquitin-induced proteasomal degradation system [209, 210]. Because GSK-3f3 expression is decreased in HD [90,
207] the decrease in phosphorylated 3-catenin causes cellular toxicity [211]. Decreased activation of D, receptors may be involved in the
reduced degradation of mHTT. Stimulatory effects are indicated with arrows; inhibitory effects with a line ending in a circle. Broken lines

indicate possible mechanism of action.

receptors are also located presynaptically on striaton-
igral terminals, they also increase GABA release in
the GPi/SNpr [175, 176, 177]. Thus, the end result
of Dl-like activation of striatal MSNs is GABA-
mediated inhibition of BG outputs, which in turn
disinhibits the thalamic projection to motor cortical
areas and promotes movement.

In contrast, D2-like receptors are found prefer-
entially on striatal indirect pathway neurons [60],
which project to the external segment of the globus
pallidus (GPe). Activation of D; receptors has been
reported to have an inhibitory effect on MSNs by
preventing the transition to an “up” state [62, 66,
172, 178]. In striatopallidal terminals, the presynap-
tic activation of D; receptors will inhibit GABA
release through the inhibition of PKA activity [179,
180, 181]. The inhibition of GABA release in GPe
will activate the inhibitory GPe projection to the
subthalamic nucleus (STN). Because the STN acti-
vates GPi/SNpr by releasing glutamate, inhibition
of the STN ensures inhibition of BG outputs, and
thus activates the thalamocortical system to promote

movement. Without DA, however, cortical activation
of indirect MSNss will tend to suppress movement by
activating BG outputs.

Coordinated movement, therefore, depends on bal-
anced DA transmission between DI1- and D2-like
receptors. In fact, recent evidence indicates that both
pathways regulate movements by acting in a com-
plementary manner [66]. In HD, a change in the
D1- D2-receptor balance could trigger either excess
of movement (chorea), an early-stage phenotype, or
bradykinesia, which emerges later.

Transcriptional dysregulation of DA receptors has
been found in HD patients. For instance, the mRNA
for MSN D, receptors is significantly decreased and
this effect is exacerbated in advanced stages of HD,
whereas the mRNA for D receptors showed an ini-
tial reduction and then a slight increase with HD
progression [182]. Quantitative autoradiography has
confirmed a loss of D and D; receptors in striatum
and also in corresponding terminal areas. A 55% loss
of D receptors in the GPi/SNpr was found in patho-
logical grade 1 HD, but no further loss in grade 3,



C. Rangel-Barajas and G.V. Rebec / Corticostriatal Dysfunction in HD 313

while D, receptors in GPe showed a 30% decrease
in grade 1 that jumped to 55% in grade 3 [183].
Similar stage-dependent D; receptor loss was found
with positron emission tomography (PET) imaging
such that the severity of neuropathological signs was
strongly correlated with decreased expression of D;
receptors [155, 184—186]. Moreover, in R6/1, R6/2,
and YAC128 [187-189] but not BACHD mice [162,
189], the binding and mRNA expression of D and
D, receptors were decreased, and again, the changes
were correlated with disease progression.

DA signaling also changes in HD. In pre-
symptomatic R6/2 mice, for example, striatal D
receptor signaling is increased [113]; the same effect
has been reported for pre-symptomatic Q175 mice
[58]. In symptomatic R6/2 and YAC72 mice, D
receptor expression is decreased [188, 190], but both
cAMP and the level of phosphorylation of DARPP-32
are increased [113, 188].

Under normal conditions, the activity of DARPP-
32 would be inhibited by calcineurin (phosphatase-
2B), but the expression of calcineurin is decreased
by about 30% in pre-sympomatic R6/2s and Q175s
but further downregulated when motor signs appear
[191], suggesting that D receptor signaling might
be chronically activated. In support of this view, the
expression of immediate early genes, which occurs
after chronic activation of Dj receptors [192], is
elevated in R6/2 mice [190], indicating augmented
neuronal activity in this model and confirmed by
recording of striatal MSNs in behaviorally active
R6/2s [112]. Because D; receptors are decreased
but cAMP and DARPP-32 signaling are increased in
HD models, one possibility is over-activation of AC
(Fig. 3). Interestingly, increased AC activity has been
found in other motor complications such as L-DOPA-
induced dyskinesia [176, 177, 193, 194], autosomal
dominant familiar dyskinesia, and myokymia [195].

Interestingly, D receptor agonists activate extra-
cellular regulated kinase (ERK), and in HD, ERK
signaling is consistently altered in striatum but not
cortex [196, 197]. The increased phosphorylation
of ERK can phosphorylate cAMP response-element
binding protein (CREB), which is an important reg-
ulator of D; receptor signaling [198, 199]. In fact,
this pathway has been associated with movement
disorders perhaps mediated by supersensitive Dj
receptors [63, 200]. Increased CREB phosphoryla-
tion has been found in striatum but not cortex in R6/2
mice at late stages of disease [196], suggesting that
striatal postsynaptic signaling transduction pathways
might be involved in transcriptional alterations. In

line with this point of view, massive transcriptional
dysregulation has been reported in HD (see review
[201]).

D; receptors also could play a role in HD pro-
gression. Pharmacological activation of D receptors,
for example, accelerates the formation of mHTT
nuclear aggregates, and again the effect is mediated
by the activation of transcription factors [202]. Fur-
thermore, the same result was found with forskolin,
which directly activates AC, further implicating the
D receptor signal transduction pathway in the aggre-
gation of mHTT (Fig. 3) [202, 203].

Altered D, receptor signaling also is a likely con-
tributor to the neuropathology of HD. In addition
to modulation of cAMP signaling, D, receptors can
activate [3-arrestin2, which recruits phosphatase-2A
(PP2A), enhancing its interaction with thymoma viral
protoncogen (Akt) (Fig. 4). This complex inacti-
vates Akt, which in turn induces stimulation of the
glycogen synthase kinase-3  (GSK-3(3) pathway
[204-206]. Importantly, altered GSK-33 signaling
is associated with HD neuropathology [90, 207].
Activation of GSK-3f3 induces phosphorylation of 3-
catenin, which can stimulate the ubiquitin-induced
proteasomal degradation system [208]. Moreover,
activation of this system induces disposal of mHTT,
preventing its cellular aggregation (Fig. 4) [209,
210]. Interestingly, B-catenin phosphorylated lev-
els were found to be decreased in HD cell lines,
causing toxicity [211]. Recent studies using post-
mortem HD specimens found a 50% reduction of
GSK-3p in frontal cortex [90, 207]. In R6/2 mice,
decreased GSK-3[3 protein levels and activity were
found in cortex and striatum but not hippocampus,
and this corticostriatal change contributes to brain
atrophy, behavioral alterations, and learning deficits
in early symptomatic and symptomatic but not in pre-
symptomatic HD mice [90]. Restoring expression of
GSK-3f resulted in amelioration of the behavioral
phenotype [90]. In primary striatal neurons cultured
from the Q111 KI mouse, Akt signaling contributed
to mHTT localization and this occurred prior to cell
death [212].

In conditions of decreased DA transmission, the
lack of D, receptor activation would result in
prolonged inactivation of GSK-3 and probably
decreased ubiquitin-induced proteasomal degrada-
tion. To the best of our knowledge, the role of DA and
its receptors in relation to GSK-3f3 signaling in HD
has not been studied. Intriguingly, in conditions of
DA depletion with subsequent chronic L-DOPA treat-
ment, which is widely known to cause dyskinesia,
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constitutive Akt signaling was found in striatum
[213]. Given the likely biphasic change in DA trans-
mission observed in HD, this receptor pathway may
play a role in the formation of mHTT aggregates.

Collectively, these data suggest a broad spectrum
of changes in the DA system ranging from synthesis
to release to receptors. But changes in DA are closely
tied to changes in glutamate, and the interaction of
these two systems has been associated with several
aspects of HD neuropathology.

Interaction with glutamate

Dysregulation of DA and glutamate in HD has been
widely proposed [17, 214-218]. In corticostriatal
circuitry, DA modulates the glutamate system by con-
trolling glutamate release or by the direct regulation
of glutamate receptors [219-222]. For example, early
studies showed that D; receptors and N-methyl-D-
aspartate (NMDA) receptors co-immunoprecipitate,
suggesting a protein-protein interaction [223, 224].
This interaction prevents D; receptor internaliza-
tion [225]. Furthermore, activation of D; receptors
increased the expression of NMDA receptors at
the membrane surface of corticostriatal axon ter-
minals [226], as well as the membrane expression
of both NMDA and a-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptors in
striatum. D receptors not only regulate NMDA
surface expression, but the phosphorylated state of
NMDA receptors through activation of PKA [222,
227], which can increase NMDA receptor ion cur-
rents [228]. In striatum, D; receptor activation
enhanced the NMDA response, indicating an impor-
tant functional interaction [229-231].

In an interesting contrast, D> receptor activation in
striatum decreases the glutamate response evoked by
AMPA [229]. D, receptor activation also decreased
the glutamate-evoked NMDA response by presynap-
tic modulation of glutamate release [232].

Abnormal DA and glutamate transmission has
been associated with dysfunction and loss of MSNs
in HD [214, 233]. It has been shown, for example,
that increased NMDA activity could promote HD
neurodegeneration [234, 235]. Interestingly, DA and
glutamate act synergistically to induce apoptosis in
YAC128 MSNs [214].

An important consideration regarding this inter-
action is the location of NMDA receptors. They are
composed of different subunits that confer different
properties on their activity [215, 236]. In the synapse,
for example, NMDA receptors are mainly composed
of NR1 and NR2B subunits, while extra-synaptic

locations results in NR1, NR2B, and NR2A sub-
units [237]. The differential expression of these
subunits has implications for the activation of specific
intracellular signaling pathways. Synaptic NMDA
receptors, for example, appear to activate anti-
apoptotic pathways, whereas extra-synaptic receptors
are associated with mitochondrial dysfunction and
cell death [238]. Accordingly, YAC128 mice have
increased expression of extra-synaptic NMDA recep-
tors [239]. Blockade of these receptors, moreover,
resulted in amelioration of striatal synaptic dysfunc-
tion and cell death [240]. Thus, itis possible to assume
that the differential expression of synaptic and extra-
synaptic NMDA receptors determines the extent of
neurotoxicity, suggesting that a sustained increase in
extracellular glutamate is the sole mechanism under-
lying cell death. DA, however, has been found to
differentially modulate synaptic and extra-synaptic
receptors. For instance, D receptor-mediated poten-
tiation of NMDA responses is increased by genetic
deletion of the NR2A subunit [236]. Moreover,
NMDA receptors dominated by NR2A subunits are
linked to glutamate responses in MSNs expressing D
receptors, while NR2B-dominated NMDA receptors
are associated with MSNs expressing D, receptors
[236]. This interplay is also important in neuronal
morphological changes. Analysis of corticostriatal
morphology after treatment with a D; receptor ago-
nist revealed an increase in the width of spine heads,
and co-treatment with a NR2A antagonist, further
enhanced this effect [241], suggesting that NMDA
receptors counterbalance DA effects.

Another line of evidence indicates that in stria-
tum proteins involved with postsynaptic receptor
stabilization are dysregulated in HD [35]. NMDA
and AMPA receptors interact with the postsynaptic
density-95 (PSD-95) protein, a scaffolding protein
that recruits receptors and signaling molecules. The
interaction of glutamate receptors with PSD-95 has
neuroprotective implications for HD [242]. PSD-95
contains the domain Src homology 3 (SH3), which in
normal conditions interacts with HTT. An important
feature of HD is that mHTT fails to bind to PSD-
95 (Fig. 3) and also prevents the interaction with
non-mutant HTT causing sensitization of NMDA
and promoting apoptosis [242]. In both YACI128
and YAC72 mice, there is evidence of increased
NMDA interaction with PSD-95 mediated by mHTT
with implications for increased neurotoxicity [243].
PDS-95 is also decreased in Q175 mice [35].

PSD-95 also interacts with D receptors located
in spines and prevents activation of Dj receptor
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signaling [244]. Moreover, PSD-95 forms ternary
protein complexes with D; and NMDA receptors
[225]. Both receptors are expressed in MSN spine
heads, where the majority of corticostriatal gluta-
matergic synapses are found [245]. Thus, failure of
PSD-95 function would over-activate both NMDA
and D; receptors, resulting in dysfunctional corti-
costriatal communication. The modulation of DA by
PSD-95 is still elusive, but evidence suggests that
the genetic deletion of PSD-95 produces concomi-
tant activation of D1 and NMDA receptors, resulting
in motor impairments and striatal degeneration [246].
In addition, signaling pathways associated with D
but not D, receptors induce cell-death mediated by
mHTT[202,215]. Itis likely, therefore, thatincreased
expression of mHTT triggered by D; receptors may
prevent binding between NMDA-PSD-95 to promote
sensitization of NMDA receptors.

In a further link to D receptors, glutamate release
onto D1 - but not D;-receptor-expressing striatal neu-
rons is increased early in YAC128 mice, but later
switches to a decrease [217]. Moreover, although D4
receptor expression may decrease, receptor signal-
ing is increased as shown by enhanced cAMP and
DARPP-32 phosphorylation [58, 113, 182, 183, 188],
suggesting augmented PKA activation, which in turn
will increase NMDA receptor phosphorylation [222,
227, 228, 247]. Increased NMDA receptor activity
and the synergistic action of D receptors on intra-
cellular calcium could activate apoptosis [214, 234,
235]. The over-activation of D receptor signaling
may contribute to an increase in mHTT aggregates,
which in turn could disrupt the binding of NMDA
and PSD-95 causing further sensitization of NMDA
receptors, increased calcium signaling, neurotoxicity,
and overall dysregulation of neuronal activity [202,
214, 242, 243]. Apart from modulation of NMDA
receptors, D1 receptor activation in normal conditions
increases L-type calcium channel currents [248, 249],
decreases somatic Kt currents [250], and decreases
activation of currents evoked by N- and P/Q-type
calcium channels [251]. These channels control the
small conductance calcium-activated K+ channels,
which play an important role in slowing MSN spiking
activity [252]. The end result is increased neuronal
activity in the direct pathway [253].

DA in motor alterations

Early evidence for the contribution of DA dysfunc-
tion to the motor alterations of HD emerged from
a report that L-DOPA, widely used to treat Parkin-
son’s disease, caused dyskinesia in asymptomatic HD

patients [254]. There also was evidence of exten-
sive atrophy of the SNpc in HD patients [255] as
much as a 40% decrease of DA neurons has been
reported [151, 152]. Nevertheless, increased levels
of DA were found in the nigrostriatal pathway of
HD patients who showed chorea-like motor symp-
toms, but not rigidity [91]. Interestingly, YAC128
mice also display motor hyperactivity at early stages
followed by motor deficits at late stages [49]. Similar
effects are found in Q175 mice, including reduced
DA release in the striatum consistent with late-stage
hypokinetic symptoms [35, 58]. There is evidence
that binding of tetrabenazine (TBZ), which decreases
DA release by blocking VMAT-2, is significantly
decreased in patients with akinesia and rigidity com-
pared to patients with chorea [156]. Because motor
symptoms vary with the stage of the disease, a thor-
ough understanding of DA involvement is difficult to
achieve when most postmortem studies are based on
late-stage data.

In animal models, DA has been widely implicated
in motor symptoms. For example, in hypokinetic
Q175 homozygous mice, a loss of DA in the cor-
ticostriatal circuit impaired glutamate transmission
and low gamma oscillations in striatal LFPs [58].
The change in gamma is interesting because in nor-
mal conditions an interaction between low and high
gamma oscillations plays a role in motor states.
Low gamma power in striatum, for example, occurs
in response to movement initiation [256], while
high gamma oscillations predominate during run-
ning [257]. In YAC128 mice, D; receptor-expressing
MSNs show an age-related increase in the frequency
of excitatory postsynaptic currents [217]. Because of
the location of D receptors on striatonigral axon ter-
minals, Dj receptors are closely related to movement
disorders. It seems likely, therefore, that increased
activity in the direct pathway is in part responsible
for chorea-like symptoms. In agreement with this
view, targeted ablation of striatal D receptors in
mice is sufficient to cause gait disturbances and invol-
untary movements [258]. In addition, optogenetic
approaches have revealed that selective activation
of the striatonigral pathway is directly involved not
only in movement initiation but also in motor action
sequences [66, 173]. This effect, moreover, seems
to be mediated by the inhibition of subsets of SNpr
neurons [67, 173]. In symptomatic Q140 KIs, when
motor activation declines, burst firing increases in
SNpr compared to wild-type controls [259]. More
studies are needed to identify the role of D; receptors
in SNpr activity and its relation to movement.
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It is widely accepted that alterations in DA trans-
mission in HD are biphasic with an increase in release
occurring at early stages [260, 261] corresponding to
chorea and hyperkinesia, and a subsequent decrease
leading to late-stage hypokinesia [163, 165]. Changes
in DA receptors are likely to accompany changes in
release. To be effective in ameliorating motor symp-
toms, therefore, opposing DA treatments may be
required for early- versus late-stage HD (see below).

DA in cognition and behavioral inflexibility

Cognition includes a wide range of mental process-
ing such as attention, memory, perception, learning,
decision-making, and problem-solving. All these
aspects of cognition involve corticostriatal circuits.
Here, we focus on cognitive flexibility, which is rou-
tinely affected in HD.

Cognitive flexibility is the ability to switch strate-
gies during learning and refers to how rapidly a
subject is able to adapt to changing circumstances
[262]. The lack of cognitive flexibility or behavioral
inflexibility can be measured in learning tasks, for
example, by assessing perseverative responses during
reversal learning [262-265]. Repetitive sequential
behaviors are another extreme form of behavioral
inflexibility also associated with some psychi-
atric conditions such as Tourette’s syndrome and
obsessive-compulsive disorder. Behavioral inflexibil-
ity has been observed in both HD patients and animal
models [6, 7, 266].

Reversal learning impairments in HD were noted
when HD patients performed significantly lower than
controls in the Wisconsin Card Sort Task (WCST)
[267], which measures abstract reasoning and the
ability to change problem-solving strategies when
needed. The impairment, moreover, was found in
late but not early stages of HD [268, 269]. In
another study, however, the only predictor of cog-
nitive decline among nine neuropsychological tests
was significantly poor WCST performance in asymp-
tomatic patients at approximately 3.72 years before
HD onset [270]. Reversal learning deficits also have
been found in HD animal models. In R6/2 mice,
reversal learning was altered along with presynaptic
proteins associated with glutamate transmitter release
[271]. Q175 mice also showed deficits in reversal
learning [6]. In tgHD rats, both reversal learning and
fear conditioning were impaired [272], similar results
were found in YAC128 mice [273, 274]. Similarly,
R6/2 mice have difficulty extinguishing conditioned
fear, an effect that correlated with altered activity in
prefrontal cortex [275]. In a two-choice swim test,

Q175 mice showed an increased latency in decision
making [55].

Motor activity also seems inflexible. Repeti-
tive, inflexible or stereotypic behaviors have been
observed in HD patients [276] and HD animal mod-
els [85, 86, 217, 277]. Interestingly, DA innervation
of the striatum has long been known to play a critical
role in the repetitive movements triggered by psy-
chomotor stimulants [278], and D; receptor agonists
administered systemically or directly in the ventri-
cle produce robust stereotypic grooming [279-281].
Whether a hyperdopaminergic state underlies the
chorea and related-motor signs of HD remains to be
established.

Flexibility in learning appears to involve the cir-
cuit from prefrontal cortex (PFC) to dorsomedial
striatum [282-284], while the neural pathway from
sensorimotor cortex (SMC) to dorsolateral striatum
is associated with repetitive behaviors [285, 286] and
decision-making [287]. Corticostriatal dysfunction
has been correlated with cognitive impairment even
at very early stages of HD [288, 289]. When striatal
feedback to cortical areas via striato-BG-thalamo-
cortical loops becomes dysfunctional, an inability to
switch behavior is the result (for review [285]).

In pre-symptomatic and symptomatic HD patients,
striatal D, receptors are significantly decreased in
patients with poor cognitive performance, but a D,
receptor decrease was associated only with altered
sequential organization tasks [269]. Interestingly,
increased activation of PKA was associated with
disrupted recognition and spatial memory in HD
[247], which could be explained by the lack of
activation of Dy receptors or increased D recep-
tor signaling [113]. Accordingly, both receptor types
decrease gradually with progression of HD as the pre-
symptomatic patients approached clinical onset [269,
290]. In addition, aberrant cortical synaptic plasticity
and DA dysfunction has been reported for R6/1 mice;
both Dy and D, receptors are decreased in perirhinal
cortex and the effects are reversed by quinpirole, a
D; receptor agonist [291]. Taken together, these data
suggest that the ability of DA and its receptors to
modulate corticostriatal circuitry contributes to the
cognitive decline in HD.

DA in psychiatric symptoms

Although the diagnosis of HD is mostly based
on motor and cognitive symptoms, psychiatric alter-
ations also can be present, sometimes even years
before the other symptoms become prominent [292,
293]. The prevalence of psychiatric symptoms in
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HD is variable, but mood disorders, irritability,
aggression, impulsivity, psychotic episodes, rigid-
ity, compulsive behavior and sexual disorders have
been found in pre-symptomatic gene carriers [10,
293, 294]. Apathy is one of the most prevalent psy-
chiatric symptoms in HD. A lack of interest in life
activities and social interactions appears early and
continues during HD progression, becoming one of
the most disabling symptoms over time. Although
62% of early symptomatic patients show apathy, this
trait is already evident in 32% of pre-symptomatic
patients [2, 295-297].

Depression is the most common mood disorder in
HD and has an early onset in about 50% of symp-
tomatic patients [298, 299]. In fact, suicide among
HD patients is 4 to 6 fold higher than in the gen-
eral population [10, 300]. Irritability, impulsivity, and
aggression can be additional reasons for hospitaliza-
tion but are less prevalent than apathy and depression
[301-303]. Psychotic episodes are even less common,
but the data are difficult to interpret because antipsy-
chotic medication, which blocks D2-like receptors,
is sometimes used to ameliorate the chorea or motor
hyperactivity that appears in early stages of HD.
The frequency of paranoia, delusional states, anxiety,
compulsive behavior, obsessive thoughts, and hallu-
cinations has been estimated to range from 35-75%
in HD patients [10, 302].

The collective group of psychiatric symptoms has
been linked to dysfunctional activity in the PFC [149,
304-306]. For example, PET studies have reported
evidence of hypometabolism in the PFC of depressed
patients [307], and increased DA transmission has
been found in the PFC during hallucinations and delu-
sions [304, 305]. The PFC receives DA innervation
from the ventral tegmental area (VTA) [170, 308].
This pathway also innervates the nucleus accum-
bens or ventral striatum, which plays a key role in
reward [261]. DA in cortical areas can modulate
synaptic responses controlling glutamate transmis-
sion [309, 310].

Neuroimaging studies of HD patients have impli-
cated the PFC in these same psychiatric symptoms
[298]. It already is clear from work on the R6/2
mouse model that information processing in the PFC
is altered in HD mice [57]. In fact, abnormal neuronal
activity in the prelimbic cortex, a region of the PFC
with close ties to the amygdala, is correlated with
reduced fear conditioning [275]. Although dysregu-
lation of the corticostriatal circuit has been linked to
motor and cognitive alterations in HD [36, 85, 86,
275, 311], very few studies have addressed the issue

of DA system changes in HD associated with psychi-
atric disorders. Renoir and colleagues [312], using the
forced swim test, found impaired DA transmission in
R6/1 mice. This effect was reversed by bupropion,
a weak DAT blocker, and a D; receptor antagonist
prevented the effect of bupropion, suggesting that
D; receptors might be involved in depression-like
behaviors in HD. In fact, among the wide range of
psychiatric symptoms identified in HD, depression is
the only one associated with a decrease in DA trans-
mission [306]. Interestingly, however, depression is
not commonly associated with the progression of HD
neuropathology, most likely because this symptom is
sensitive to social and family environmental factors,
which can vary widely among HD patients [297,313].

DOPAMINE AS THERAPEUTIC TARGET

Because of DA involvement in motor control,
cognition, and psychiatric symptoms, HD pharma-
cotherapy has targeted the DA system. To date,
however, the overall success of this approach has
been limited owing, in part, to side effects result-
ing from actions at non-DA receptors and, perhaps
most importantly, from the increasing severity of HD
progression, which limits long-term efficacy.

Inhibitors of vesicular monoamine transport

The VMAT-2 inhibitor, TBZ (Xenazine®), is the
only federally approved drug in the United States
used to treat HD, specifically chorea or episodes of
uncontrollable movement [314-317]. TBZ inhibits
VMAT-2 with a K; ~100 nmol/L [316, 318, 319]. By
preventing the loading of DA into presynaptic vesi-
cles, TBZ makes less DA available for release when
DA neurons are activated [320].

Although VMAT-2 operates in norepinephrine and
serotonin as well as DA neurons [315], TBZ has a
higher affinity for striatal VMAT-2, making it pos-
sible to adjust the dose to limit the effects of this
drug on monoamines in other brain regions [319]. The
TBZ-induced reduction in chorea is evidence that this
can be an effective strategy. Side effects, however,
are still common. TBZ, for example, can exacer-
bate symptoms of depression and cognitive decline
in HD patients [321]. Chronic treatment, moreover,
results in the loss of efficacy and, more ominously,
may cause cell death in the SNpc [322], suggest-
ing that at least some of the side effect of TBZ
could be caused by neurotoxicity. The pharmaco-
genetics of TBZ is another reason for concern. For
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instance, the activity of the cytochrome involved in
TBZ metabolism, CY2D6, is genetically determined,
making for fast or slow TBZ metabolizers. Thus, an
effective dose with few side effects in one person may
not apply to another [323].

Interestingly, a novel VMAT-2 inhibitor, NBI-
641449, is undergoing phase III clinical trials for the
treatment of hyperkinetic disorders. This compound
has a higher affinity for VMAT-2 in DA neurons
than in other monoamine neurons. Importantly for
HD, NBI-641449 also decreases mHTT aggregates
in cortex [324]. Further testing will determine if this
compound is a viable alternative to TBZ.

DA antagonists

DA antagonists, including both typical and atyp-
ical antipsychotic drugs, have been used to block
the hyper-DA state that contributes to the motor
and psychiatric disorders in HD. Typical and atyp-
ical antipsychotics such as haloperidol, sulpiride,
pimozidem, flufenazine, clozapine, olanzapine and
risperidone have been used for some HD symp-
toms treatment. Haloperidol, a typical antipsychotic,
is a potent antagonist of D2-like receptors with a
slow kinetic dissociation and a high affinity for D3
receptors (0.74nM) followed by Dy (1.55nM) and
D4 receptors (5-9nM) [325-327]. Haloperidol is
effective in reducing chorea [328-330] and also has
been used for treating episodes of psychosis, aggres-
sion, and impulsivity [331]. Severe side effects, such
as akathisia, dystonia, tardive dyskinesia, and neu-
roleptic malignant syndrome, have limited its use
[331-333].

Sulpiride, another highly selective D2-like antago-
nist that has been used to treat dyskinesia in HD, has
not been found to be very effective and induces side
effects, such as drowsiness, in about 45% of patients
[334]. Fluphenazine and pimozide are also typical
antipsychotics that have been used to treat chorea
[335]. The affinity of fluphenazine for DA receptors
families is slightly higher for D1-like than D2-like
receptors (Kp~0.7 and ~3.2 nM, respectively) [336].
Pimozide has a higher selectivity for D2-like recep-
tors [332]. Both of these antipsychotics have shown
some efficacy in the treatment of chorea but side
effects are common, and in the case of fluphenazine,
low white blood cell levels limit its long-term use
[337].

Clozapine and olanzapine belong to a group of
atypical antipsychotics that show differential affini-
ties for DA receptors. In fact, the affinity for the

D, receptor is lower (K; =157 nM) than for the D4
receptor (Kj =25nM). Clozapine also displays affin-
ity for the D1-like receptor family [338]. Although
the drug has shown some efficacy in reducing chorea
[339], high doses were needed and the effect was
seen only in antipsychotic naive patients. No benefi-
cial effect was reported for patients with a history of
antipsychotic treatment. Clozapine also had several
side effects, including drowsiness, fatigue, hyper-
salivation, dizziness and walking difficulties [340].
Olanzapine, which also has an affinity for serotonin
receptors, induces less akathisia and no dystonia or
dyskinesia compared to haloperidol [333, 341], and is
helpful in treating chorea and gait disturbances [342,
343]. Using the unified HD rating scale (UHDRS),
olanzapine improved scores for chorea, depression,
anxiety, irritability and obsessive thinking, but none
reached statistical significance [344]. Increasing the
dose appeared to have helped, but side effects also
increased, resulting in a high risk of dyslipidemia,
hyperglycemia and weight gain [345].

DA agonists

Unlike DA antagonists, which have been used to
treat chorea, DA agonists, including L-DOPA, have
been used as a treatment option for the hypoki-
netic symptoms or bradykinesia of HD. Aripiprazole
(Abilify®) displays a very complex pharmacological
profile. It is a partial agonist of D2-like recep-
tors, with higher affinity for D, and D3 receptors
(Kj=1.6 and 5.4 nM, respectively) than D4 receptors
(Kj=514nM). Adding to the complexity, aripipra-
zole also displays high affinity for SHT o, SHT24,
and SHT»p receptors with Kj values ranging from 0.4
to 8.7nM [346]. Aripiprazole also has been found
to bind to adrenergic and muscarinic receptors but
with lower affinities [347]. In clinical practice, treat-
ment with aripiprazole showed improvement in motor
disturbances and reduction of depression with fewer
sedative effects than TBZ [348, 349]. Bromocrip-
tine, another potent agonist of D, receptors, was
proposed as potential therapy for HD bradykinesia
after the drug was shown to be effective in treating
the bradykinesia in Parkinson’s patients, but despite
some success in tests of animal models, no efficacy
was found in HD patients [350].

L-DOPA, a DA precursor and hallmark treatment
for Parkinson’s disease, has been found effective in
treating gait disturbances and rigidity in HD, but L-
DOPA-induced dyskinesia is a common side effect
[351-353].
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DA stabilizers

Two pharmacological properties play an important
role in DA receptor operation: kinetic dissociation
and intrinsic activity. DA receptors have dual intrin-
sic activity referred to as a high-affinity (Meh) state
or low-affinity (%) state. The effect of DA greatly
depends on this particular pharmacological property.
For example, tonic firing of DA neurons would acti-
vate '°V_state affinity receptors, while burst firing
would activate M&"_state affinity receptors [354]. The
affinity of a compound for its receptors depends of
the type of interaction between association and dis-
sociation constants (Ko, or Ko, respectively) [355].
This is an important characteristic because DA has
a higher affinity for D1-like receptors than for D2-
like receptors [355]. Evidence suggests, however,
that D, receptors located pre-synaptically to mod-
ulate the release of transmitters are in a high-affinity
state (Dzhigh) and display slower Ko, while post-
synaptic receptors are equally distributed between
high and low affinity states [356]. Thus, it may be
possible to use the affinity state of DA receptors
to develop more effective treatments. For exam-
ple, we recently proposed that D3 receptor-selective
compounds with bitropic activity may be effec-
tive antipsychotics with relatively few side effects
[357, 358].

In this context, a novel class of compounds
known as dopidines was found to be effective in
differentially activating high or low state affinity
receptors depending on DA concentration. Thus,
these drugs became known as “DA stabilizers”.
Pridopidine, the representative compound in this
class, binds with different affinities to D> recep-
tors. It has a K; =7521 nM for D, receptorshigh but
a K;=17550nM for D, receptors!®?. In addition,
pridopidine rapidly dissociates from the receptor
(Kofr) and binds primarily to activated D, receptors
[356].

Pridopidine has been shown to modulate motor
activity by a dual action, antagonizing D, receptors
and modulating glutamate [359]. In HD, pridopidine
has shown promising results, although some individ-
ual differences and side effects have been reported
[360, 361]. In R6/2 mice, pridopidine improved
motor behavior, showed anti-apoptotic effects, pro-
moted release of brain-derived neurotrophic factor, a
neuroprotectant, and reduced mHTT aggregates. In
HD clinical trials, pridopidine has been reported to
cause small improvements in global motor scores,
hand movements, and gait balance, but side effects

such as falls, chorea, dizziness, and nausea also have
been reported [360, 361].

Surprisingly, however, the effects of pridopidine
are likely to include an action at sigma-1 recep-
tors [362]. Several studies have reported potential
benefits of selective sigma-1 receptor compounds in
neurodegenerative diseases and stroke [363—-365]. In
fact, we have reported a highly selective sigma-1
receptor compound (Kj = 3.5 nM) that is neuroprotec-
tive, increases brain-derived trophic factor, reverses
cognitive impairments, and decreases the behavioral
effects of a potent hallucinogen [363, 366, 367]. Fur-
ther confirmation of the pharmacodynamics of this
compound is needed but seems a promising new
treatment. Perhaps an action at both D, and sigma-
1 receptors could lead the way toward an effective
treatment.

CONCLUSIONS

Corticostriatal dysfunction is an early contribu-
tor to the HD behavioral phenotype. Abnormalities
in cortical glutamate input to striatal MSNs and
interneurons disrupts the activity of the direct and
indirect pathways, changing GABA transmission in
the direct and indirect downstream pathways of the
BG. DA, a key modulator of these pathways, also has
arole to play in HD. Both D1- and D2-like receptor
families have been implicated in the motor, cogni-
tive, and psychiatric symptoms. Dysregulation of D
receptor signaling, moreover, has been linked to the
aggregation of mHTT and abnormal modulation of
NMDA receptor activity. In fact, the majority of treat-
ments for HD target DA even though the precise DA
dysfunction has yet to be identified. DA, like glu-
tamate and GABA, is intricately involved in striatal
processing of cortical information and its progression
through downstream BG circuits. Improved under-
standing of the mechanisms by which DA participates
in the corticostriatal dysfunction underlying HD can
have far-reaching effects in the ongoing search for an
effective treatment.
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