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Abstract. Though 20 years have now passed since the cloning of the huntingtin gene (HTT), there remains no treatment for
Huntington’s Disease (HD) that alters the course of disease or lifespan of patients. The reasons for this are manifold, and
likely have to do with the diverse cellular pathways disrupted by mutant HTT (mHTT) protein expression. Furthermore, the
evaluation of efficacy using a putative intervention is complex, largely due to the slow course of disease and variability in the
classic techniques for evaluating patient symptoms and quality of life, which make the patient populations and duration of trials
particularly imposing. However, there are signs for hope both in the clinic and at the bench. This review serves three purposes. It
discusses the known cellular pathologies in HD, the current and upcoming methods for clinical evaluation of disease progress,
and the tested and untested interventions proposed to counter the progression in animal models and patients. With the vast
knowledge of pathology accumulated over two decades of modeling HD in animals and following it in patients, as well as the
advances in intervention techniques both pharmaceutical and genetic, there is reason for optimism in the field. Such optimism
can only be tempered by the lack of success in the clinic to this point, though patients, scientists, and clinicians all remain
enthusiastic about each new trial, and progress can only continue until an effective treatment is found.
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INTRODUCTION

Huntington’s Disease (HD) is a progressive, fatal
neurodegenerative disorder, characterized by motor,
cognitive, behavioral, and psychological dysfunc-
tion. Affecting approximately 1 in 10,000 people
worldwide, HD is caused by an expansion within a
poly(CAG) tract in exon 1 of the huntingtin (HTT)
gene. Age of onset is roughly inversely correlated with
the length of the CAG tract [1-3]. Disease occurs
with 100% penetrance when 40 or more CAG repeats
are present [2]. Pathology in HD is characterized by
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progressive neurodegeneration, particularly within the
cortex and the striatum (caudate and putamen), lead-
ing to the characteristic motor dysfunctions of HD,
such as uncontrolled limb and trunk movements, dif-
ficulty maintaining gaze, and general lack of balance
and coordination [4], as well as cognitive problems,
behavioral abnormalities, and psychological dysfunc-
tion. Although 20 years have passed since the discovery
of the causative gene, there is no disease modifying
treatment for HD. Treatments providing temporary
symptom relief are the only interventions currently
available to patients. Significant strides have been
made in understanding the gene and its dysfunction
when mutated, but the complexities of the cellular
pathology observed in HD make it clear that curing
HD will not be a simple task.
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mHTT AGGREGATES: TOXIC, OR
BYPRODUCT?

After HTT was cloned and mutant HTT (mHTT)
expressed in mice (a variety of which are illustrated
in brief in Fig. 1) to generate the first genetic animal
model [5-8], its subcellular localization was investi-
gated. This led to the discovery that mHTT-expressing
cells contain inclusions, small (~1 wm) aggregates that
stain strongly for mutant HTT protein (mHTT) and are
found in either the cytosol or nucleus, depending on the
model. They were also seen in HD patient samples [9]
and became one of the hallmarks of neuropathology.

As reviewed by Yamada et al. [10], there are at
least nine disorders involving a coding polyglutamine
(polyQ) expansion: Huntington’s Disease, spinal
and bulbar muscular atrophy (SBMA, also known
as Kennedy’s Disease), dentatorubral-pallidoluysian
atrophy (DRPLA), and spinocerebellar ataxia (SCA)
1,2, 3, 6,7, and 17. There is no overarching pattern
to their linkage or even the function of the proteins
involved. This results in vastly different protein con-
texts in which the polyQ tracts are embedded, which
likely leads to the different regional susceptibilities
involved. The SCA diseases tend to cause degen-
eration in the cerebellum and brainstem, but with
variable pathologies, including basal ganglia involve-
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Fig. 1. Gene structure of common mouse models of HD. There
are many genetic mouse models of HD. In general, they can be
divided into 3 categories. Those with the most striking pathology
and lethality are the Exon 1 and N-terminal transgenics (R6/2 and
N171-82Q are most common). Full-length transgenic strains use
human mHTT as a transgene under endogenous human transcrip-
tional control. YAC128 has been used most commonly in this group.
Knockin strains can be subdivided into those with human DNA in
exon 1 (HdhQ111 is a prominent example; CAG140 is also known as
HdhQ140) versus those with pure mouse mHtt and only an expanded
CAG tract knocked in to the endogenous locus, such as CHL2 (also
known as HdhQ150). Additional endogenous Htt alleles are listed as
areminder that the transgenic strains have both Hrt alleles present and
unaltered, while the knockin strains have 1 (if mHtt is heterozygous)
or O (if mHtt is homozygous).

ment (striatum and globus pallidus) in SCA1, SCA3,
and SCA17. DRPLA strongly affects the globus pal-
lidus and other forebrain subcortical structures, while
SBMA is primarily a disease of lower motor neuronal
and spinal motor nuclei loss. All of the known polyQ
diseases are neurodegenerative (which may be a result
of the postmitotic nature of neurons lacking the abil-
ity to remove damaged proteins through dilution upon
division), and they all demonstrate neuronal intranu-
clear inclusions and eventual neuronal death as a result
of the gain of toxic function imparted by the polyQ
expansion.

Like wild type HTT (wtHTT), mHTT is largely
cytosolic [11], but N-terminal mHTT, either the result
of cleavage or due to the expression of an N-terminal
fragment of mHTT, can form inclusions in the cell
soma or nucleus [12-14]. These inclusions are pre-
sumed to be rich in -sheet amyloid, as they bind
thioflavin T and congo red, and the CD spectra of iso-
lated polyQ amyloid is demonstrably (3-sheet rich [15].
mHTT aggregation is currently thought to begin by
seeding of small oligomers, facilitated by the amphi-
pathic helical N17 region and which can be modulated
by posttranslational modifications in the region. Once
there is a local increase in the concentration of polyQ
regions in close apposition, the structure reorganizes to
a more regular B-sheet amyloid [16, 17]. In support of
this, congo red, which binds amyloid and mHTT inclu-
sions in patient samples [18], was shown to inhibit
the formation of mature amyloid fibrils [19]. Many
groups theorized that these inclusions were the source
of mHTT toxicity; for example, it was tested whether
in vivo treatment of HD model mice with congo red
could prevent toxicity, but the data were inconclusive,
as one group showed improvement of weight, survival,
and aggregate formation, while a second failed to show
any of those improvements [20, 21]. These, and other
studies, caused the field to re-think the relationship
between inclusions and HD.

In an elegant imaging study, it was demonstrated
that, in PC12 cells transfected with an exon 1 frag-
ment containing 47Q, inclusion formation correlates
with survival, rather than toxicity. Instead, soluble
mHTT levels are a stronger predictor of death [22].
Meanwhile, in mouse models of HD and in two other
polyQ disease models, aggregates either fail to cor-
relate with neuron death or actually correlate with
survival [23-25]. Perhaps most compelling is an N-
terminal mouse model known as shortstop (Ss). Ss
mice were the result of an unintended truncation in
exon 2 during integration of a full-length YAC con-
struct of mHTT, resulting in the expression of a short
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N-terminal protein reminiscent of that in the highly
toxic R6/2 line, albeit with some of exon 2 present.
Like R6/2 mice, inclusions are pervasive in neurons,
but this line exhibits no behavioral or neuropatholog-
ical defects [26], although this may also be related to
transgene expression levels and/or background strain,
as a different transgenic mouse line expressing a pro-
tein of the same length under a strong prion promoter
does indeed show reduced lifespan [27]. Later work
showed that Ss constructs in vitro don’t form soluble
oligomers and more readily interact with the chaper-
one Hsp70, suggesting that oligomers, now thought
to be the toxic species, are not a kinetically favorable
state for Ss constructs. Other N-terminal mHTT con-
structs known for toxicity readily form oligomers [28].
Yeast models provide additional insight into the reg-
ulation of aggregation kinetics, as they suggest there
are distinct classes of genes either facilitating small
oligomer formation or the transition from oligomers
to inclusions. Knockouts in the former pathway were
protective, while loss of those in the latter enhanced
the 103Q construct’s toxicity [29].

All told, there is strong evidence that inclusions
appear in the presence of neurotoxic species in patients
and most mouse models, but there is stronger evidence
that this is little more than correlative, and that such
inclusions may be protective or benign. One might
think of the inclusions as the cell’s landfill. If there is
garbage (mHTT) in the cell, it is better that it ends up in
the landfill (inclusions) rather than littering the streets
(cytosol and nucleus). If an intervention is altering the
size of the landfill/inclusion, this makes it crucial to
distinguish whether the trash is being disposed of (for
example, by autophagy), which would be healthy, or
whether the garbage now isn’t getting to the landfill
in the first place (remaining as oligomers), increasing
toxicity.

SEQUESTRATION OF PROTEINS IN
INCLUSIONS

The study of oligomer seeding and amyloid inclu-
sion formation in vitro has helped better define the
polyQ-driven kinetics of N-terminal mHTT aggre-
gation, but in vivo, these inclusions can have quite
complex structures and are not simple amyloid fib-
rils. The core of such inclusions is largely made
of N-terminal mHTT fragments as well as other
small proteins including ubiquitin and Hsp40 [30].
Ubiquitination of inclusions is not necessary for
their formation, though, as both model mice and

juvenile cases demonstrate mHTT+ inclusions that
stain negative for ubiquitin [9, 31, 32]. The surface of
these aggregates, once established, contains full-length
wtHTT and mHTT, and also Hsp70, dynamin, the pro-
teasome, and others [30]. These more surface-oriented
proteins are susceptible to protease digestion, while the
core proteins are not.

Many believe that some of the molecular pathology
is the result of proteins being titrated out of solution
in the cell, caught in these aggregates. Proteins found
in aggregates include mTOR, p53, Mdm?2, Hsp70, cas-
pases, and nuclear pore proteins [33, 34]. mHTT also
aberrantly interacts with many transcription factors
(reviewed in [35]) resulting in transcriptional profile
alterations that have wide-ranging effects (to be dis-
cussed later). However, bound transcription factors
were not found in macroscopic aggregates [36] and
soluble monomers found in the nucleus can suppress
transcription [37], so sequestration in an aggregate is
not required for mHTT to disrupt a transcription fac-
tor’s function.

mHTT, MISFOLDED PROTEINS, AND
CHAPERONES IN HD

As mentioned above, mHTT is a target for chap-
erones, proteins that aid in the proper folding or
degradation of misfolded proteins. The presence of
heat shock proteins (Hsps) and ubiquitin in insolu-
ble inclusions demonstrates that cells are attempting
to refold or mediate degradation of mHTT [33, 38],
and there is a wealth of data on mHTT’s effects on
chaperone pathways and vice-versa (Fig. 2).

The interaction of Hsps and inclusion bodies seems
to be polyQ and age-dependent. Hsps are mainly found
on the periphery of inclusion bodies [30], and are only
found there in older HD model mice [39]. Hsp70 may
play an active role in facilitating the degradation of
mHTT under normal HD conditions, as its knock-
out significantly worsens symptoms of HD mice and
increases the size of inclusions [40], though it is possi-
ble that these effects are indirect through dysregulation
of proteostasis. On the other hand, Hsp90 seems to
protect mHTT from proteasomal degradation, and its
knockdown reduces mHTT levels [41]. Basal levels of
Hsps may contribute to the specific toxicity of medium
spiny neurons (MSNs) in the striatum, as Hsp70 is par-
ticularly highly expressed in the cerebellum, a tissue
with little to no neuropathology in HD [42].

Drosophila models have been especially instructive
for the relationship between Hsp70 proteins, ubig-
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Fig. 2. Disposal of mHTT. Cells can safely dispose of mHTT through one of four routes. Inclusion bodies represent a relatively safe place for
mHTT. Non-toxic isoforms of mHTT (like Shortstop) bind Hsp70 and Hsp40 readily and do not form toxic oligomer species, and Hsp70/40
overexpression suppresses toxic oligomer formation. However, non-toxic mHTT isoforms still form inclusion bodies, so either Hsp70/40 facilitate
oligomer sequestration into inclusion bodies, or they prevent toxic oligomerization, allowing mHTT to join inclusion bodies through alternate
pathways. The proteasome can also degrade mHTT after Hsp70-aided ubiquitination and IKK-mediated phosphorylation, while SUMOy]lation
by RHES opposes it. Autophagy can also be employed to destroy mHTT. Acetylated mHTT (regulated by CBP and HDAC1) is a target for
LC3-mediated macroautophagy, while Hsc70 promotes passage of mHTT through Lamp2a channels for chaperone-mediated autophagy. These
routes of disposal are clearly insufficient as cells age, but experiments demonstrating enhanced toxicity upon impairment of these pathways

demonstrate that they each contribute to survival.

uitination, and neurodegeneration. PolyQ-expanded
androgen receptor (AR), HTT, and MJDI (the fly
homolog for the gene mutated in Machado-Joseph
Disease) all cause degeneration of the retina when
expressed in the fly eye [43—45]. When Hsp70 is
overexpressed in the context of many of these polyQ
proteins, degeneration is suppressed, while its deletion
or dominant negative expression exacerbate the degen-
erative phenotype. Hsp70 does not function alone
in this regard, as the cochaperones HIP and CHIP
facilitate ubiquitination of polyQ substrates [45, 46].
Interestingly, CHIP, an E3 ubiquitin ligase functioning

through Hsp70, appears to depend on the protein con-
text for its activity. CHIP overexpression can suppress
toxicity of polyQ mHTT, but not that of a protein only
consisting of an HA-tagged polyQ tract of identical
length [45]. Furthermore, the ubiquitination of polyQ
proteins by Hsp70-aided processes also depends on
SUMOylation [43]. This may be particularly relevant
to HD because SUMO, a similar protein to ubiqui-
tin, was recently found to be conjugated to mHTT by
Rhes in human cells. Rhes is a striatal-specific protein,
and its SUMOylation of mHTT is competitive with
pro-survival ubiquitination [47].
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Given the interesting data on mHTT’s interaction
with Hsps (particularly Hsp70), many groups have
tested whether the overexpression of Hsps is protective
in mammalian HD models. Tissue culture cells overex-
pressing Hsc70, Hsp40, and Hsp84 are protected from
a polyQ construct [39, 48], but mice were not so eas-
ily treated by single-gene overexpression. Unlike data
seen in flies, even a massive congenital overexpression
of Hsp70 only modestly rescued the weight loss pheno-
type of R6/2 mice, without affecting neuropathology
[49, 50]. It’s possible that in adult neurons, multiple
Hsps need to be overexpressed if a significant alter-
ation of mHTT aggregation kinetics is to be seen. To
that end, overexpression of a constitutively active Hsf1,
a positive regulator of many Hsps, was tried in R6/2
mice. Though this transgene did not express well in the
CNS, the mice survived longer and showed reduced
inclusion body formation in skeletal muscle [51], indi-
cating that modulating levels of Hsps may be a viable
strategy in HD.

However, a note of caution is warranted regarding
modulation of proteostasis for a therapeutic option. It
is plausible that steady state increases in a person’s
proteostasis capacity could promote tumorigenesis, as
it is well known that many oncoproteins are clients
of Hsp90 or other chaperones [52]. While tumors are
commonly seen to overexpress chaperone proteins, we
are unaware of whether pharmacologic upregulation of
chaperone activity has been shown to induce tumori-
genesis. However, it is worth mentioning that polyQ
disease patients (including both manifest and preman-
ifest HD) have roughly half the rate of cancer, after
correcting for age and other factors, as family mem-
bers without the polyQ expansion [53]. It is therefore
worth investigating whether mHTT’s disruptive effect
on proteostasis is preventing chaperone pathways from
facilitating hypertrophy and uncontrolled cell division.
If this were true, rescue of this pathway may also lead
to normalization, or even a further elevation, of cancer
incidence rates, though this is purely speculative.

The classical chaperones Hsp40, 70, and 90 are not
the only members of the protein folding machinery
known to interact with and modify mHTT toxicity.
The chaperonin TRiC is a large ~1 MDa complex that
actively refolds proteins through sequestration within a
cavity, providing an optimal entropic folding environ-
ment [54]. It may work by exposing client proteins to
a highly hydrophilic environment, essentially prevent-
ing cargo from “bumping into” other proteins or lipids
and allowing secondary and tertiary folding to take
place in seclusion. Initially, client protein interaction
takes place through the apical lid subunit that tends to

bind hydrophobic, disordered proteins. Its interaction
with mHTT was established when overexpression of
TRiC subunits in yeast prevented N-terminal mHTT
constructs from aggregating [55]. Interestingly, this
only occurred when all 8 subunits were expressed, indi-
cating that this may require an intact complex. Further
work, though, showed that the apical domain alone can
suppress aggregation and toxicity [56, 57], even when
applied exogenously to the cell culture media. Clearly
the apical domain alone would have a very different
function than an intact TRiC, and it is possible that api-
cal domains of TRiC subunits simply suppress toxicity
by interacting with mHTT in such a way that it alters
aggregation kinetics rather than actively refolds it.

Alltold, chaperones and chaperonins are responsible
for maintaining protein folding homeostasis, and there
is sufficient evidence that not only is protein folding
deranged in mHTT-expressing cells, but that toxicity
can be ameliorated by artificially increasing the cell’s
capacity to deal with misfolded proteins.

PLEIOTROPIC TRANSCRIPTIONAL
PROFILE CHANGES IN
mHTT-EXPRESSING CELLS

Shortly after the cloning of the causative gene, post-
mortem HD patient brain samples were analyzed for
levels of neurotransmitter receptors to investigate the
cause of the complex motor and psychiatric symptoms
displayed by patients. Several receptors expressed
on the vulnerable MSNs demonstrated robust reduc-
tions, particularly dopamine receptors D1 and D2 [58,
59]. Intracellular markers of these neurons were also
reduced, namely substance P and enkephalin [60].
Even interneurons, spared from cell death, are nonethe-
less subject to dysregulation in the form of reduced
neuronal NOS and somatostatin levels [61]. These
receptor or antigen reductions were determined to be
not simply total tissue loss, but the result of reduced
transcripts on a cell-by-cell basis.

Reduced transcript levels of receptors led to stud-
ies on the mechanism of transcriptional dysregulation
in HD (Fig. 3). Many groups have established aber-
rant interactions between mHTT and the transcription
factors CBP, TBP, p53, NCoR, and Spl, in addi-
tion to some of the core transcriptional machinery
[35, 62]. Additionally, the transcriptional repressor of
neuronal genes REST/NRSF, normally sequestered in
the cytosol by a complex including wtHTT, cannot
efficiently form a complex with mHTT. Due tomHTT’s
reduced ability to bind HAP1, another component of
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Fig. 3. Transcriptional dysregulation by mHTT. Many classes of genes are dysregulated by mHTT. Genes such as DRD/ have reduced tran-
scription due to sequestration of transcription factor Spl by nuclear N-terminal mHTT. BDNF levels are repressed by REST/NRSF, which is
normally excluded from the nucleus by a complex including wtHTT and HAP1. mHTT also directly represses PGClo (gene name PPARGCIA)
expression, a process normally induced by wtHTT. However, the presence of protein folding stress and oxidative stress also cause Hsp90 to
release HSF1, allowing it to upregulate heat shock proteins like HSP70.

the REST/NRSF sequestration complex, REST/NRSF
now enters the nucleus more freely, reducing the levels
of its target neuronal transcripts [63, 64].

Given the large number of transcription factors
affected by HTT polyQ expansion, global transcrip-
tional profiles are highly informative. In patient tissues
studied by array-based transcriptional profiling, many
categories of genes are significantly dysregulated.
These include synaptic transmission, neurogenesis,
ATP synthesis, CNS development, and Ca?t trans-
port, among others [65], and similar alterations are
present in blood and skeletal muscle samples from
patients [66, 67]. Studies in mouse models gave similar

results, indicating that this is a shared and consis-
tent feature of mammalian mHTT expression [68—70].
REST/NRSF targets are of particular interest, based
on two lines of study. First, it was determined that
those genes that are most strongly downregulated in
HD brain are most highly enriched for being tar-
gets of REST/NRSF, suggesting that of all of the
transcription factors with altered activity in mHTT-
expressing neurons, REST/NRSF plays a particularly
central role (Reviewed in [71]). Second, a particu-
larly crucial gene for striatal health is BDNF, which
encodes a neurotrophic factor mainly produced in the
cortex and trafficked by afferent projections to the
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striatum [72]. There are four alternative promoters
for BDNF, and it is promoter II that is responsible
for most of the physiological BDNF present in the
striatum. REST/NRSF controls transcription from this
promoter, resulting in significantly reduced levels of
this transcript in HD mice and cell models (Reviewed
in [73]). REST/NRSF-mediated suppression of BDNF
and other transcripts is observed in mice and patient
samples [74]. Loss of wtHTT recapitulated some of
these effects in embryonic stem cells, and surpris-
ingly, the transcriptional profiles of HD model mice
and patient samples are remarkably similar to that of a
heterozygous knockout BDNF mouse [70].

Dysregulated REST/NRSF targets (BDNF' in par-
ticular) are not the only disease-relevant dysregulated
genes. As an additional example, PGCla (gene name
PPARGCIA), a central regulator of mitochondrial bio-
genesis, activity, and structure, is itself dysregulated
in HD. Given striatal cells’ particular vulnerability to
perturbations of electron transport chain (ETC) func-
tion (to be discussed later), this may go a long way
to explaining striatal vulnerability in HD. mHTT is
found at the PPARGCIA promoter [75], and PGCla
levels are reduced in striatal but not cortical samples
from HD mice [76]. In addition, its loss in wild type
animals results in striatal lesions, while its loss in HD
mice exacerbates symptoms [75, 77]. Mitochondrial
energetic problems in HD are manifold, and will be
discussed in more detail later, but reduced levels of
PGCla only worsen energetic demands on already
fragile MSNs.

TAKING OUT THE TRASH: AUTOPHAGY
AND mHTT

For all the focus on transcription and translation
in modern molecular biology, it’s easy to forget that
in general, for every protein produced, another is
degraded. In protein folding disorders like HD with
impaired degradation of a misfolded toxic protein, this
process is clearly deranged, if only subtly.

Proteins are largely degraded either by the
proteasome, which typically requires interaction
with ubiquitinated substrates that are brought to
the proteasome by chaperones, or by the lyso-
some/autophagosome processes when the protein in
question is too large or aggregated to be fed into the
proteasome (Fig. 2). It is well known that mHTT is
often ubiquitinated, particularly in inclusions, and that
chaperones also are readily found in association with
it [9, 30]. There is also evidence that impairment of the

proteasome worsens mHTT toxicity [78, 79]; this may
be of limited direct relevance, though, as the protea-
some is relatively poor at degrading polyQ proteins.
The eukaryotic proteasome’s three protease activities
cut after hydrophobic, basic, and acidic residues, but
glutamine fits none of these criteria, and is thus resis-
tant to proteasome-mediated proteolysis [80].

Autophagy, on the other hand, is more amenable
to not only degrading polyglutamine-bearing proteins,
but at engulfing and disposing of insoluble inclusion
bodies (Fig. 2). Cells expressing mHTT seem to detect
this protein homeostasis threat and increase autophagy
signals, particularly cathepsins [81], and impairment
of proteasome function increases autophagy-mediated
degradation of mHTT fragments [82]. Increased
autophagy through starvation or dietary restriction also
reduces the toxic effects of mHTT [82, 83].

HTT, being often membrane-associated, is found on
autophagosomes (WtHTT, full-length mHTT, and N-
terminal mHTT are all seen there) [84, 85]. Targeting
to the autophagosome is carefully regulated by acety-
lation at K444. This residue is acetylated by CBP and
deacetylated by HDACI, and mutating this residue,
preventing acetylation, increases mHTT levels and tox-
icity in vitro and in vivo [86]. This effect is dependent
on macroautophagy (as it is LC3-dependent), which
is one of two autophagy pathways relevant to mHTT
degradation, the other being chaperone-mediated
autophagy. Macroautophagy plays an important role in
removal of toxic mHTT, as LC3 knockdown increases
the presence of mHTT aggregates. However, macroau-
tophagy is reduced in general in mHTT-expressing
cells, while chaperone-mediated autophagy seems to
try to compensate, as it increases in such cells. This
phenomenon may partly explain the late onset nature
of the disease, as this LAMP-2 and Hsc70-dependent
chaperone-mediated autophagy pathway becomes less
effective in aged HdhQ111 mice [87]. Lastly, an essen-
tial regulator of autophagy, ATG7, houses a SNP
that reduces the age of onset in patients [88], giving
autophagy additional credibility as a potential thera-
peutic target.

mHTT AND MITOCHONDRIA: ALTERED
ACTIVITY, MORPHOLOGY, AND
PERMEABILITY

Mitochondrial function has long been a crucial
player in HD pathology (Fig. 4), and may be more
important to striatal neurons than those of other parts
of the brain such as the cortex and cerebellum. Some
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Fig. 4. Glutamate Receptors Cause Calcium-mediated Toxicity in HD. Glutamate activates two classes of receptors, leading to toxicity due
to hypersensitive mitochondrial permeability transition pores (mPTPs). mGluRs activate PLCy, causing IP3 to allow IP3 receptors on the ER
(hypersensitized by mHTT) to release Ca* into the cytosol. Meanwhile, extrasynaptic NMDARs open to glutamate, allowing Ca>* into the
cytosol. This increase of Ca?t leads to many toxic pathways. Calpain activity increases, causing among other things increased extrasynaptic
NMDAR presence. The phosphatase calcineurin is also activated, reducing pS421 levels on HTT which hampers the vesicle transport of cargo
like BDNF. Calcineurin also activates Drp1, causing mitochondrial fission that hampers ATP production. More directly, Ca>t causes opening
of the mPTP, which has three effects. First, mitochondrial potential drops, reducing ATP production. Second, reactive oxygen species (ROS)
production spikes. Third, cytochrome C (CytC) is released, activating apoptotic pathways.

of the first evidence for this was the demonstration
that systemic treatment with 3-nitropropionate (3-
NP), a specific mitochondrial Complex II (succinate
dehydrogenase) inhibitor, induces neurotoxicity that
is reminiscent of HD in terms of its cell-type speci-
ficity [89]. Intraperitoneal injection of the drug induces
striatal lesions (cell death and gliosis) due to death
of MSNs but, similarly to brains of HD patients and

genetic animal models, the cholinergic interneurons
are spared. This made 3-NP treatment a simple, rapid
animal and cell model of HD, and its continued study
demonstrated further similarities in mitochondrial dys-
function to cells expressing mHTT.

3-NP’s inhibition of the ETC has many interest-
ing effects, most of which seem to damage MSNs
disproportionally. Its overall effects on mitochondrial
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energetics and ATP production play arole, as treatment
results in depolarization of MSNs but not HD-resistant
interneurons [90]. Energetics don’t tell the whole
story though, as the effects of 3-NP can be ame-
liorated without rescuing succinate dehydrogenase.
3-NP-treated samples generate reactive oxygen species
(ROS) and produce DNA oxidative damage [91].
Antioxidants and free radical scavengers protect striata
from lesions and protein carbonylation [92], so the stri-
atal specificity of 3-NP seems to rely in some part on
ROS generation. 3-NP also appears to induce toxic-
ity via sensitization of mitochondrial permability, as
inhibitors of the permeability transition pore (PTP)
prevent damage in culture [93, 94]. The effects of dis-
ruption of the ETC were also examined genetically
when a restriction enzyme (Pstl) was directed to the
mitochondria in transgenic mice, producing a condi-
tion of chronic mitochondrial DNA (mtDNA) damage
and reducing ETC activity under careful transcriptional
control. In this study, as is the case with 3-NP treat-
ment, MSNs of the striatum are particularly sensitive
to mtDNA damage/reduced ETC activity. Addition-
ally, the mitochondria specifically were hypersensitive
to challenge with Ca>* [95], a response that will be
covered in more detail in the next section.

Once the HTT gene was cloned and mouse and cell
models of mHTT expression were more prominent,
studying the interplay between mitochondrial function
and mHTT was possible. Based on the 3-NP stud-
ies and its demonstrated ability to selectively damage
MSNs in an HD-like pattern, patient and cell sam-
ples were tested for mitochondrial activity. Striatum
from late-stage patients demonstrates reduced activity
of multiple complexes of the ETC, and DNA oxidation
is also increased [96-98]. The cortex and cerebellum
are relatively spared in this regard, suggesting a mecha-
nism of those tissues’ relative protection from mHTT.
Furthermore, ATP levels (reported as the ATP/ADP
ratio) were reduced in lymphoblastoid cell lines gen-
erated from patients [99]. Two points are notable
from this study. First, there was exquisite CAG-length-
dependence, as the correlation between high repeat
length and low ATP/ADP ratio was strikingly strong,
and second, there was even a reduction in ATP/ADP
ratio in cells expressing HT7T with high-wild-type
repeats (30-35), a range not known to produce
neuropathology.

Mouse models of HD show similar ETC abnormal-
ities. Striatal slices in culture from mice expressing
an N-terminal transgene have half of the respiratory
capacity of their wild type littermates, though inter-
estingly, this effect was rescued by perfusion with

succinate, indicating that in spite of 3-NP’s ability to
mimic HD, it may not specifically be succinate dehy-
drogenase that is the defective enzyme in HD striatal
cells limiting their respiratory capacity [100]. R6/2
mice, expressing a particularly lethal mHTT transgene,
have elevated striatal DNA oxidation and glutathione
levels [101, 102], and mHTT primes their mito-
chondria to depolarize more readily upon exposure
to 3-NP [90, 103]. Their sensitivity could be com-
pounded by impaired mtDNA repair, a phenomenon
shared between R6/2 mice and 3-NP-treated mice
[91]. ETC defects are not limited to mouse neurons
in the brain, as immortalized striatal precursors from
knockin mice behave similarly to patient-derived lym-
phoblasts by demonstrating reduced ATP/ADP ratios
[104].

Many studies have also demonstrated that mitochon-
drial morphology and movement are altered in HD
samples, and not only is this not a simple byproduct
of toxicity, but its prevention can ameliorate toxicity.
Initially, it was demonstrated that increased fragmen-
tation and reduced movement are observed in cells
expressing mHTT [105], possibly relating to aber-
rant trafficking to the mitochondria of mHTT [106].
Further studies have revealed aberrant morphology
of mitochondria in HD patient lymphoblastoid cells,
myoblasts, and fibroblasts [107, 108], effects that are
more severe in homozygote samples than heterozy-
gotes. Altered mitochondrial morphology is highly
dependent on a subset of genes involved in fission
and fusion of the mitochondrial reticulum, and Drpl
has been studied in some detail in this regard. Drpl,
a mitochondrial GTPase enzyme, positively regulates
mitochondrial fission [109]. Drp1 levels are increased
in mid- to late-stage HD patient striata [110, 111], and
its GTPase activity is increased upon interaction with
mHTT [112, 113]. Phosphorylation of Drp1 suppresses
its activity, while both the increased basal levels of cal-
cineurin seen in HD (a phosphatase of Drpl among
many targets) and impairment of its phosphorylation
by staurosporine increase its activity and resulting
mitochondrial fragmentation [114]. This can be res-
cued by dominant negative (DN) Drpl [109], and in
fact, DN Drpl expression in a C. elegans polyQ model
partially rescues its motor defect [115].

EXCITOTOXINS AND STRIATAL
VULNERABILITY

The specificity of neurodegeneration in HD (selec-
tively killing the GABAergic MSNs of the striatum
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while cholinergic interneurons are spared) is striking.
In trying to explain this pattern, a popular hypothesis is
that mHTT-expressing MSNs are particularly sensitive
to the glutamatergic inputs from the cortex. Glutamate
normally activates many receptors, among which are
ionotropic NMDA receptors and metabotropic mGluR
receptors, which lead either directly or indirectly to
increases of intracellular Ca®t (Fig. 4). An excellent
review on calcium’s role in neurodegeneration [116]
summarizes it thusly: as Ca>* levels rise in the neu-
ron (from both NMDA receptor influx and from Ca*
escaping the ER by way of hyperactive IP3 receptors),
three things happen. First, calcium-mediated proteases
(e.g. calpains) are activated, degrading substrates that
can include cytoskeletal components and neurotrans-
mitter receptors. Second, levels of reactive oxygen
species rise via perturbations of oxidative phosphory-
lation. Third, mitochondrial permeability is induced,
flooding the cytosol with proapoptotic factors such as
cycochrome C. mHTT appears to prime mitochondria
for this toxic insult, as mitochondria from HD mouse
models (both brain and muscle), patient lymphoblas-
toid cells, and knockin mouse striatal precursors all
permeabilize in response to lower levels of Ca>*t
than is seen in wild type samples [117-119]. In all
of these cases, mitochondrial permeability transition
pore (mPTP) opening not only releases proapoptotic
factors but also depolarizes mitochondria, hampering
ATP production, and allows glutathione and calcium to
escape, exacerbating damage from ROS and cytosolic
Ca’* levels.

The observation that NMDA receptor agonists,
many of which are analogs of glutamate, can cause tox-
icity when administered at highly supraphysiological
concentrations (termed “excitotoxicity””) [120] led to a
great deal of research on how normal excitatory stimuli
cause apoptosis when present in excess. One such exci-
totoxin, kainic acid, specifically lesions the striatum
when administered intracranially [121]. Kainic acid is
not an endogenous metabolite, unlike quinolinic acid
(QA), an excitotoxin that is a product of tryptophan
metabolism. When administered intrastriatally to rats,
QA’s effects, much like those of 3-NP, are strikingly
similar to HD (albeit occurring acutely rather than over
weeks to years) in that the MSNs are destroyed rapidly
but cholinergic interneurons are spared [122, 123].
This effect is not rodent specific, having been demon-
strated in primate brains and additionally establishing
that NMDA receptor activation mediates the toxicity,
as an antagonist prevented the damage [124]. At this
point, it was commonly proposed that much of HD
pathology stems either a) from endogenous excitotoxic

metabolites like QA leading to degeneration of mHTT-
expressing neurons, or b) because mHTT-expressing
neurons are hypersensitive to normal glutamate inputs
from the cortex.

There is intriguing recent data to suspect the former
(endogenous tryptophan metabolites like QA) plays
a role. Typically studied by delivery of synthetic QA
to the brain, as it is an endogenous metabolite, it has
been investigated in animal models whether modula-
tion of steady state tryptophan metabolism may play
a role in HD. In fly HD models, administration of 3-
hydroxykynurenine (3-HK), a precursor of excitotoxic
QA, enhances neurodegeneration, while deletion of the
enzyme just upstream of 3-HK, kynurenine monooxy-
genase (KMO), rescues the effect [125]. Furthermore,
some benefit to survival and reduction in inflammatory
microglial activation were seen in R6/2 mice treated
with a specific KMO inhibitor [126].

Much of the HD/excitotoxicity subfield has
focused on calcium currents from NMDA receptors
(NMDARS). They can be found at the synapse or on the
extrasynaptic plasma membrane, where their activa-
tion evokes different responses [127], and are heterote-
tramers composed of two NR1 and two NR2 subunits.
NR2 comes in two main subtypes, NR2A and NR2B,
and aside from different developmental functions, they
appear to elicit different responses to the presence
of mHTT. NR2B-containing NMDARSs, both synap-
tic and extrasynaptic, have higher Ca’* currents in
cells expressing mHTT when challenged with chemi-
cal agonists or synaptic glutamate [128, 129]. This may
be a minor effect on cellular health compared to the
sensitized mPTP on mitochondria of mHTT-expressing
cells [118, 130], but increased NR2B levels compound
neurodegeneration [131] and are normally found in
tissues that are more vulnerable to mHTT [129].

If increased Ca®" currents are not responsible for
excitotoxicity [118], how does NR2B play a role?
Subcellular localization and posttranslational modi-
fications of NR2B seem important to the specific
response to agonists evoked by their NMDARs. Many
studies suggest it is extrasynaptic NMDARs that
mediate much of the toxicity from agonism. Synap-
tic/extrasynaptic localization is regulated by both
cleavage of the C-terminus by calpain and dephos-
phorylation by the phosphatase STEP, both of which
reduce its synaptic presence [132]. This may alter
the balance of downstream CREB-mediated transcrip-
tion pathways, which are activated by synaptic NR2B
NMDARs but inhibited by the extrasynaptic ones.
[133]. Extrasynaptic NR2B-containing NMDARSs are
more common in HD mice, possibly in part because
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both STEP and calpain levels are increased in mHTT-
expressing animals [132, 134, 135].

Given the relationship between mHTT and NMDAR
activity and locations, many HD model mouse strains
have been tested for their response to excitotoxic stim-
ulus, generally via intrastriatal injection of kainic acid
or quinolinic acid. The particulars of each strain’s
response to such stresses are reviewed elsewhere [134,
136, 137], but a basic trend is apparent, and the
correlation involves mHTT aggregation. As was previ-
ously discussed, it is still unclear what role aggregates
play in disease, and it is likely that visible aggre-
gates have little to no role in disease other than as a
histological byproduct of polyglutamine stress. How-
ever, over many studies, it seems that the appearance
of aggregates (but not necessarily visible behavioral
symptoms) correlates with a transition from mouse
models being hypersensitive to excitotoxicity to being
resistant to such insults. While cells with mHTT aggre-
gates are not necessarily as healthy as cells only
expressing wtHTT, it seems clear that aggregation is a
sign of a cellular attempt to cope with such stress. Both
visible aggregation and survival of cells expressing
polyQ proteins are influenced by chaperone proteins
like Hsp40, Hsp70, and Hsp90, and mice challenged
with the mitochondrial toxin 3-NP suffer less dam-
age when overexpressing Hsp70 [91, 136]. Given that
a) 3-NP and other electron transport chain inhibitors
generate prodigious oxidative stress [91, 124], b) exci-
totoxins largely kill cells through the Ca?* influx from
NMDA receptors [93, 118, 124], c) neuronal death
from both ETC poisoning and excitotoxic stress can be
reduced significantly by inhibiting mitochondrial per-
meability [26, 28, 93, 118], and d) cells and mice that
are better capable of promoting aggregation of mHTT
survive longer in general [26, 28, 138], one can imagine
the following path to resistance to excitotoxicity.

— Initially, expression of mHTT causes reorga-
nization of NMDAR location, activity, and
NR2B/NR2A ratios. This puts neurons under
steady state Ca>* elevation, or at least puts them at
risk of mitochondrial permeability transition due
to mHTT’s effect on its sensitivity. Under these
conditions (elevated Ca>* and/or mPTP opening
sensitivity), mHTT-expressing neurons are subject
to oxidative stress.

— Increased oxidative stress leads to general pro-
tein homeostasis defects [138, 139], and over
time, Hsps are recruited, promoting aggrega-
tion of mHTT along the way. This could be
aided by a steady-state increase of pro-survival

Akt signaling (which can induce HSFI1) [139,
140], since NMDAR-dependent Akt activation has
been demonstrated in cultured knockin mHTT-
expressing cells [26, 140-142].

— When such neurons are later subject to excito-
toxicity, they are better equipped to handle acute
mitochondrial oxidative stress. Hence, they are
resistant to excitotoxicity. wtHTT-expressing cells,
on the other hand, have no such steady-state ele-
vation in acute oxidative stress response and are
normally vulnerable. Meanwhile, cells with mHTT
but which are incapable of generating aggre-
gates instead have tremendous amounts of toxic
oligomers, which prime mitochondria for perme-
ability under lower Ca?t levels but without an
elevated proteostasis response, hence rendering
them hypersensitive to excitotoxicity.

Excitotoxicity, despite being an artificial condition, can
also inform us about mHTT modifications that may
be relevant to steady state conditions. We know that
increased levels of non-toxic HTT render cells resistant
to excitotoxicity [26, 141-143], which in the context of
excitotoxins’ mitochondrial-mediated toxicity, lends
importance to the fact that many proteins involved in
mitochondrial function bind with HTT [142-144]. We
use the phrase “non-toxic HTT”, because in this case,
we also mean mHTT that does not cause toxicity, evi-
denced by caspase-6-resistant (C6R) mHTT (a strain
carrying a version of mHTT that is resistant to caspase-
6 cleavage, limiting the production of N-terminal
fragments) and the previously-mentioned Shortstop
(Ss) strain, both of which have an expanded polyQ tract
but neither of which induces neurodegeneration in vivo
or in vitro when expressed from an endogenous human
HTT promoter [28, 142, 144]. Because C6R mHTT
has reduced production of toxic N-terminal fragments
while Ss mHTT appears to aggregate too readily for
toxic oligomers to occupy a significant population in
this strain [28, 145], it seems all the more apparent that
mHTT fragment oligomers, but not full length mHTT
or aggregated mHTT, are what render mitochondria
hypersensitive to Ca>* fluctuations. Such Ca®* fluctu-
ations likely occur in the absence of excitotoxicity and
are carried out by corticostriatal glutamatergic inputs,
because decortication relieves some neurodegenera-
tion in R6/2 mice [145-147].

Excitotoxic stimulation also informs us about
the steady state phosphorylation dynamics of cer-
tain disease-relevant residues within HTT. One such
residue, serine 421 (S421) has been studied in detail
and its phosphorylation influences vesicle transport
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Fig. 5. Toxicity at the Synapse. mHTT impairs transport down the axon towards the synapse. Mitochondria are not efficiently trafficked,
impairing energetics at the synapse. BDNF also is not efficiently transported, so postsynaptic TrkB receptors less efficiently activate prosurvival
MAPK and Akt pathways. Additionally, mHTT results in fewer synaptic NMDARs, so prosurvival CREB activity (specifically the result of

synaptic Ca?* influx) is reduced.

(discussed in the next section). S421 phosphorylation
isreduced after excitotoxic stimulation, and is also seen
in YAC128 transgenic mice [146—148]. The likely cul-
prits are the phosphatases calcineurin and PP1, which
have altered activity in mHTT-expressing cells. Cal-
cineurin levels and activity are elevated, directly or
indirectly, by mHTT [147, 148]. Meanwhile, PP1 is
inhibited by activity at the dopamine D1 receptor,
whose levels drop over time in HD patients and model
mice [147, 149-152]. As phosphorylated S421 is well
known to reduce mHTT toxicity [149-152], it is clear
that excitotoxic stimuli are also acting direcly on HTT
(rather than solely on mitochondrial permeability) to
contribute to neurodegeneration.

BDNF TRANSPORT ALTERATIONS AND
STRIATAL VULNERABILITY

While we see that phosphorylation of mHTT S421
rescues cells from excitotoxicity, it also modulates a

vesicle trafficking defect seen in HD cortical neurons
[149, 151] (Fig. 5). These vesicles are carried by the
dynactin/microtubule network via a complex involv-
ing HTT, HAPI1, and p1508"°, This requires HTT
S421 phosphorylation for proper directional move-
ment along the microtubule network [72, 151, 153].
A major cargo delivered by these vesicles is BDNF.
Striatal degeneration is seen in Bdnf knockout mice,
while its overexpression reduces neuropathology in
YAC128 HD model mice [72, 153, 154]. Its altered
transcript levels clearly play a role in pathology, but
even if transcribed properly, it must be efficiently deliv-
ered to the striatum from its site of production in
the cortex. Calcineurin-regulated dephosphorylation
of phosphoS421 is an attractive target, and inhibition
of calcineurin by FK506 rescues phosphoS421 levels
and BDNF vesicle transport in vitro [154]. Delivery of
exogenous BDNF may go a long way towards therapy
in HD, and it has been demonstrated to be beneficial
in model mice with many delivery modes [1-3, 153,
155-157].
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FROM TARGETS TO THERAPEUTICS:
IDENTIFYING AND TESTING CANDIDATE
INTERVENTIONS

There are no validated neuroprotective therapies
for Huntington’s Disease, but if the previous sections
are any indication, we understand a great deal about
the pathways leading to neuropathology. For the last
10 years, it has been fairly well known that rescu-
ing mitochondrial energetics, reducing corticostriatal
glutamate signaling, scavenging free radicals, normal-
izing protein homeostasis, or reversing transcriptional
dysregulation at a single-transcript (e.g. BDNF) or
global level could eventually be viable options for ther-
apeutic intervention. The crux of the issue, now, is
not just continuing to identify new targets, but also
sifting through the potential interventions, whether
drug or otherwise, and evaluating their efficacy in
patients. The slow course of the disease may be prefer-
able for patients when contrasted with a rapid, deadly
neurodegenerative disorder like Amyotrophic Lateral
Sclerosis. However, the slow and steady nature of HD
also makes conclusive determination of a candidate
therapeutic’s ability to alter disease progression very
difficult.

DIAGNOSING HD AND MEASURING ITS
PROGRESS

HD’s progressive nature makes it possible to quan-
tify the degree to which the disease is impairing neural
pathways or social functions. The Unified Hunting-
ton’s Disease Rating Scale (UHDRS) was developed
in the mid 1990’s to attempt to standardize diagnos-
tic parameters across many sites and as performed
by different investigators [158]. With an eye on clin-
ical trial facilitation, it places an emphasis on those
symptoms which advance most rapidly but all of
which can ideally be evaluated within a 30 minute
period. The UHDRS divides symptoms into four cat-
egories: 1) Motor symptoms, including oculomotor,
dysarthria, chorea, dystonia, gait, and posture. 2) Cog-
nitive symptoms, including phonetic verbal fluency,
symbol digit modalities, and the Stroop word test.
3) Behavioral Assessment, organized into subscales
of mood, behavior, psychosis, and obsessiveness. 4)
Functional capacity, a questionnaire covering a wide
range of functional impediment, from the subtle to the
highly disruptive.

Nearly every HD Phase II or III clinical trial since
the mid-1990’s has used this or a subsection of this

as a primary endpoint, often Motor Score or Total
Functional Capacity, as worsening scores in these cat-
egories are highly associated with patients’ quality of
life decline. While it is clear that improvement in these
real-life behavioral derangements is the overall goal for
patients, many of these are by their very nature subjec-
tive and variable. A patient may be more likely to be
depressed if a family member died, or more irritable
after an argument with his or her spouse, or have better
chorea depending on the time of day. Efforts can be
made to normalize and reduce variability in these, but
it is well appreciated that other measurement tools, not
subject to day-to-day randomness or bias, can augment
the evaluation of disease progression. This is not just
essential for drug rescue measurements, but for giv-
ing accurate assessments of whether a patient’s acute
worsening is likely a “bad day” at the test, or a sign
that a change in his or her medical care is in order.

The field has made advancements in disease
progress measurement in two main areas: brain vol-
umetric or activity imaging, and peripheral biomarker
discovery. Imaging is the area with the most precision
at the moment, though its high cost and the challenges
of standardizing techniques center-to-center remain
to be solved. Soon after postmortem tissue evalua-
tion detected loss in neurotransmitter receptor levels,
Positron Emission Tomography (PET) was used in liv-
ing patients. Using specific ligands for dopamine D1
and D2 receptors, it was determined that binding of
these ligands sharply decreases in patients [159]. Fur-
thermore, D2 receptor signal loss was found to agree
almost perfectly with postmortem tissue analysis in a
specific way: 35.5 CAG repeats represent a clinical
threshold of sorts, wherein any increase of repeats past
35.5 presents a proportionally increased rate of cell
loss, pathological grade advancement, and D2 recep-
tor binding loss [160, 161]. In other words, a patient
with 48 repeats (12.5 over the threshold) at age 60 will
have lost roughly twice as many neurons and twice
as much D2 binding as a 60 year old patient with 42
repeats (6.5 over the threshold).

Given what we know about the specificity of degen-
eration, it is no surprise that progression can be
followed by MRI volumetric measurements. There is
a wealth of knowledge in this regard, and many stud-
ies have been focused on presymptomatic individuals
(to be discussed in more detail later), but in general,
the common sites for measureable changes are the
striatum (both caudate nucleus and putamen), globus
pallidus, nucleus accumbens, and cortical white mat-
ter [162, 163]. Loss of volume or neuronal numbers
in other regions, such as the thalamus, hypothalamus,
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hippocampus, and other subcortical structures are
commonly observed in patient samples and mouse
models and can alter non-motor pathways such as the
hypothalamic-pituitary-adrenal axis [164—169]. How-
ever, because motor and cognitive symptoms are
ubiquitously used as primary outcome measure in
clinical trials, those structures whose degeneration cor-
relates most closely with these measures (the striatum
and cerebral cortex) are best studied. This regional
degeneration is not uniform patient-to-patient, particu-
larly in the cortex, and this variation is likely to underlie
and explain at least a portion of symptom variability
from patient to patient. Through careful postmortem
stereology, it was determined that patients with strong
motor symptoms consistently demonstrate more cell
loss in the primary motor cortex, whereas cell loss in
the anterior cingulate cortex was strongly associated
with mood dysfunction [170]. Such information could
help stratify patients in clinical trials to improve the
power of trials that use volumetric MRI as an end-
point. Volumetric analysis is not the only use of MRI
technology with practical applications to HD. Another
useful technology is functional MRI, which measures
the uptake of glucose molecules radiolabeled to emit
positrons, which are visible to MRI. As neurons take
up glucose in proportion to their rate of action potential
firing, such images can be taken during tasks to mea-
sure brain activity (or lack thereof). In one such study,
caudate and putamen activities were seen to rapidly
decline in HD patients, with slower declines seen in
many cortical structures [171].

MRI is powerful, but due to its high cost and the
necessity of bringing patients to the testing centers,
peripheral biomarkers of disease progression are sorely
needed. There is some progress in this regard, as
blood can be collected easily and HD patient sam-
ples have already demonstrated differences in a subset
of transcripts [66] as well as creatine kinase levels
[172]. Gene-positive individuals have also demon-
strated increases in oxidative damage markers, namely
8-OHdG DNA [173] and lipid peroxidation [174]. The
former may not have robust utility [175], but lipid
peroxidation correlated well with patients’ UHDRS
motor scores and independence scales. Remarkably,
mHTT itself can be measured in patient leukocytes,
using a highly quantitative fluorescence assay [176].
This may be particularly useful if an attempt is made
to knock down HTT levels systemically using oligonu-
cleotide therapeutic approaches. Muscle biopsies have
also been analyzed by transcriptomics, and there are at
least 100 transcripts showing strong changes between
patients and controls [67]. More studies are needed to

arrive at a workable group of tests to assess progres-
sion with minimal invasiveness, but the progress so far
is encouraging.

PATHOLOGY BEFORE
PHENOCONVERSION: PREMANIFEST HD

As demonstrated by MRI and postmortem studies,
significant tissue damage and neuronal loss is apparent
even early in manifest disease [ 162, 163]. However, the
HD community is in the unique position of being able
to conclusively identify individuals who, assuming no
accidents occur, will eventually get the disease. Of
course, many individuals at risk for HD (those with an
affected parent) choose not to be genotyped, an under-
standable decision given the future implications that
such a genetic diagnosis carries [177, 178]. Neverthe-
less, populations of such genotyped individuals allow
for a wealth of research into the dysfunctions prior to
visible symptoms. Just as importantly, clinicians can
use premanifest populations for the development of
neuroprotective therapeutics with the hope of fore-
stalling or preventing pathology altogether. As an
aside, nomenclature in these studies is not uniform
when referring to individuals with the mutation but
who do not yet have conclusively-diagnosed HD. So,
despite their subtle differences in the medical litera-
ture, for clarity, “presymptomatic”, “asymptomatic”,
“prodromal”, and “premanifest” will all be referred to
as premanifest when discussing the below studies.

All of the above diagnostic tools have been brought
to bear to monitor the progression of neuropathology
in premanifest populations, revealing some interest-
ing clues to the disease process. Several early studies
using PET ligands for dopamine receptor D2 demon-
strate loss of signal in premanifest patients [58, 161,
179, 180]. This loss of signal may be attributable
to the loss of caudate and putamen volume in pre-
manifest patients [181], but it likely isn’t that simple.
The transcription factor Spl is partly responsible for
control of dopamine receptor D2 (DRD?2) transcrip-
tion, and its binding to the transcriptional coactivator
TAFII130 is weaker in both manifest and premanifest
brain tissue samples [182], so transcriptional dysregu-
lation is likely also occurring very early in pathology.
The presence of blood mRNA biomarker elevations in
premanifest patient samples supports this [66].

Structurally, many of the alterations observed in
manifest HD are present in a lesser form in premani-
fest HD. Studies have demonstrated reductions in the
volumes of the whole brain, striatum, cortical white
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matter, and globus pallidus, with an expected increase
in the size of lateral ventricles [181, 183—-187]. Most
of these changes are progressive, and tracking these
changes longitudinally within a patient will allow clini-
cians to have a better idea of whether their interventions
are having a beneficial effect on halting pathology.
However, even measurements taken in single visits for
premanifest patients are informative. It was demon-
strated that both '8F-FDG uptake and the ratio of
striatal to total brain volume can be used to augment
standard predictive measures (CAG repeat length and
age) to more accurately predict the age of onset for
patients [186, 188]. This may allow patients to bet-
ter plan for future medical care. Additionally, it can
help clinicians to further stratify premanifest patients in
clinical trials into those who are, or are not, expected to
phenoconvert (progress from premanifest to manifest)
during the trial or follow up period.

Brain activity changes and structural alterations in
the premanifest period may come as no surprise, as
a late onset, slowly-progressive disease like HD is
not going to demonstrate its characteristic degenera-
tive pattern overnight. However, there are also many
behavioral symptoms that appear in patients not yet
diagnosed with HD. This may seem counterintuitive,
but it’s worth remembering that an HD diagnosis does
not necessitate just any neurological or neuropsycho-
logical impairment often present in HD patients. It
requires that the neurologist can be certain that this
patient has HD, based on the presence of many HD-like
behavioral, psychological, and motor manifestations
(as laid out in the UHDRS). This array of symp-
toms is clearly not going to appear all at once. With
this in mind, the behavioral alterations present in pre-
manifest individuals have some patterns. Almost by
definition, total functional capacity scores are rarely
worsened in premanifest patients, but motor, cogni-
tive, and behavioral alterations are commonly observed
and worsen as patients approach the expected age of
onset [181, 189]. These commonly include bradykine-
sia (specifically, finger tapping impairment), impaired
circle drawing, poor performance at smell tests, and
failures of emotion recognition [183, 187, 190-192].
Detailed analyses demonstrate that word learning and
smell tests begin to decline ~15 years before diag-
nosis, while motor scores like tapping don’t decline
until ~10 years before diagnosis [193]. This seems
to add detail to the pattern of cortical white mat-
ter degeneration apparent in premanifest patients. Not
surprisingly, these behavioral changes are often sub-
tle, and it still appears that volumetric changes of
premanifest patients are more quantitative and statisti-

cally significant than most UHDRS tests [183]. Some
metrics may be more useful than others, though, and
tapping, being highly quantitative in nature, might be
the best candidate, as it correlates well with striatal and
cortical volumetric changes [191].

Such tools to measure premanifest disease progres-
sion are of great use to clinicians in trials, but they are
still highly variable in this population. This is hardly a
criticism, as clinicians don’t have the advantage of age-
matched, inbred populations used in preclinical trials.
Nevertheless, many clinical trials likely fail simply due
to small sample size, and this is an even greater issue
when assessing the power of the subtle premanifest
changes. Various studies using volumetric imaging or
behavioral alterations, even those of a highly quantita-
tive nature, still estimate sample sizes of approximately
100-350 premanifest individuals would be needed to
reliably detect a disease-altering effect of 20-50%,
which would be a substantial alteration [ 184, 187, 194].
Such clinical trials are often difficult to organize for
a rare disorder, particularly one whose premanifest
population often chooses not to be tested. Therefore,
this places particular emphasis on the efficient culling
of ineffective candidate therapeutics in the preclinical
setting.

In spite of the difficulties in organizing and fund-
ing trials that often take a minimum of 1-2 years for
confident “go/no go” assessment, there is a tremen-
dous potential market for an HD treatment. Estimates
for the market for such a treatment [195], in the US
alone, may conservatively assume a patient population
of 30,000 with diagnosed HD, and another 170,000
individuals who may elect to take the drug because
they are at risk or have a related disorder. In the case
of this population, and assuming a conservative esti-
mate of $15 per day for drug costs, the potential market
exceeds $1 billion per year even before accounting for
increased survival, such as was seen for patients with
chronic myelogenous leukemia taking Gleevec. Com-
bined with the similarities between the cellular and
molecular pathogenesis of HD and many more com-
mon neurodegenerative diseases, it is easy to see why
there is not only a medical need for a treatment, but a
commercial motivation for one as well.

THE CURRENT THERAPEUTIC
LANDSCAPE: SMALL MOLECULES,
SMALL EFFECTS

Therapeutics for HD (and for neurodegenerative dis-
eases in general) are generally classified into either
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symptom management or disease modifying drugs, the
latter of which can be further differentiated into neuro-
protective (preventing neurons from being damaged)
or neurorestorative (either promoting the regrowth of
neurons or strengthening the pathways crippled by the
absence of the degenerated connections) [196, 197].
The neuroprotective vs. neurorestorative distinctions
are important in the context of patient populations.
Premanifest individuals can benefit from both neuro-
protection and neurorestoration. However, given the
degree of degeneration that has occurred by symp-
tom onset in manifest patients [198], neurorestorative
strategies may prove more effective than neuropro-
tective therapies in such individuals. At this point,
there are no approved disease-modifying therapeu-
tics for patients. Symptom management has improved,
but thus far, no drugs given to patients extend life
expectancy.

After diagnosis, patient therapies are highly indi-
vidualized. They often include antichoreics, of which
tetrabenazine (TBZ) has become the most popular
choice and is the only FDA approved drug for HD
chorea. However, it has some unfortunate side effects,
commonly including depression, drowsiness, fatigue,
and parkinsonism [199-201]. A depressive effect is
not surprising from a drug with a dopamine deplet-
ing function (TBZ inhibits VMAT?2, the transporter
that loads dopamine into presynaptic vesicles) [202,
203], but given that depression is already a common
psychiatric symptom for HD patients, an alternative
antichoreic without these side effects would be pre-
ferred. Pridopidine is a putative dopamine stabilizer
that may serve such a purpose, as a relatively small
clinical trial in HD patients demonstrated trends toward
improvement of both voluntary and involuntary move-
ment [204]. Importantly, it had no significant side
effects, and larger clinical trials are ongoing. Other
symptom management interventions include SSRIs
for depression, atypical neuroleptics for psychosis,
and benzodiazepines for anxiety [196, 205]. Non-
pharmaceutical therapies are also crucial for patient
care, particularly as patients lose independence in
late stage disease [206]. This includes physical ther-
apy, occupational therapy, speech therapy (including
swallowing training), and even simple exercise, all of
which can improve quality of life in all of the disease
stages.

Symptom management is necessary and helpful,
but there are also many potential disease-modifying
therapeutics already in the clinical pipeline. Those
that have made the most progress concern the path-
way that was perhaps earliest connected to HD, that

of mitochondrial dysfunction. Creatine and coenzyme
Q10 (CoQ10) both restore mitochondrial function as
antioxidants and also aid energy production through
oxidative phosphorylation, and are furthest along in
clinical trials. Creatine is well tolerated in doses up to
10 g/day but showed no benefit to symptoms after up to
2 years of treatment [207-209] other than a reduction
of serum 8-OHdG levels [210], a readout whose sig-
nificance has been challenged [175]. However, there is
reason to believe that higher dosing may be required, as
the mouse trials on which these were founded supple-
mented the mouse chow with as much as 2% creatine.
This would correspond to ~25 g for a patient that eats
1.25 kg/day. Hence, there are two ongoing large clini-
cal trials with higher doses of creatine, one in manifest
HD (CREST-E), and another in premanifest HD (Pre-
CREST) both of which dose up to 30 or 40 g/day of
creatine.

CoQ10 has a similar history. Early clinical trials
demonstrated no benefit [211, 212], but the dose was
on the low side (600 mg/day). Upon successful dose
escalation trials to demonstrate peak tolerability at
2400 mg/day without adverse events [213], two trials
are ongoing at this higher dose. As with creatine, one
targets manifest HD (2CARE) and another premanifest
HD (PREQUEL), the latter of which is mainly assess-
ing safety and tolerability at this point. Creatine and
CoQI10 are also among the few items in clinical tri-
als available as over the counter supplements, another
being highly unsaturated fatty acids. A clinical trial
has been completed with only a trend towards benefit
in the UHDRS motor scale and total functional capac-
ity (P=0.08 for each), but most interestingly, there
seemed to be not just a halting of progression but an
improvement [214]. This may warrant more testing as
a potential neurorestorative therapy.

Cystamine and its redox partner cysteamine (upon
administration, they rapidly interconvert) are another
pair of antioxidants with strong interest from the HD
clinical community. Like creatine and CoQ10, they are
present in tissues already and represent little risk in
high doses, having been given at up to 20 g/day [215].
Originally thought to function through transglutam-
inase inhibition but now found to primarily protect
neurons as an antioxidant, cysteamine is fairly effective
in mouse trials (10-20% enhanced lifespan, reduced
weight loss and motor phenotypes, and less striatal
degeneration) [216-218], and a Phase II clinical trial
is ongoing in France (CYST-HD).

Given that mHTT’s toxicity is mediated at least par-
tially (if not entirely) by altered protein folding, efforts
to facilitate its refolding or degradation are ongoing. As
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discussed previously, the upregulation of heat shock
proteins has therapeutic potential. While no specific
HD trials have been completed, low doses of the Hsp90
inhibitors geldanamycin or 17-AAG have been tested
in many cell and animal models of polyQ diseases with
promising results [219, 220]. They have been shown to
both alter Hsp90 client protein proteasomal targeting
and to disrupt Hsp90/HSF1 binding, which releases
HSF1 to the nucleus for induction of Hsps like Hsp70
and Hsp40 [221-223]. 17-AAG doesn’t cross the blood
brain barrier efficiently, but other Hsp90 inhibitors
with similar mechanisms of action are in the pipeline.
Ganetespib, currently in clinical trials for some can-
cers, is more lipophilic and less toxic than 17-AAG
[224]. Additionally, a novel Hsp90-inhibiting com-
pound called AT13387 has very long lasting effects,
and an interesting (if somewhat disconcerting) side
effect of blurred vision with light flashes may be indica-
tive of CNS penetrance [52, 225].

Some other disease-modifying therapeutics are not
as far along or have been demonstrated ineffective.
Autophagy augmentation through mTOR inhibition
has promise, but may require more specificity of action.
For example, a rapamycin analog everolimus has good
pharmacokinetics, but was ineffective in R6/2 mice
[226]. This may be because mTOR has two main
downstream pathways, and rapamycin analogs target
mTORC]1 but not mTORC2, the latter of which has
more efficacy at reducing aggregated mHTT proteins
in cells [82]. Minocycline was enthusiastically stud-
ied 10 years ago and reduces cytochrome C release
from mitochondria in HD models [227, 228]. In mice,
the results were conflicting [229-231], and a futility
trial in HD patients demonstrated no efficacy and sug-
gested halting its study for HD [232]. A DNA-binding
compound mithramycin seems to rescue histone H3K9
hypermethylation and rescues pathology in R6/2 mice
[233], but has not made it to clinical trials, possibly
because it has demonstrated transcription factor Spl
inhibition [234], so there may be worry of worsening
an already present phenotype.

The pleiotropic effects of mHTT on transcriptional
profiles, primarily downregulation of neuroprotective
genes, have led to investigation of histone deacety-
lase (HDAC) inhibitors, which might globally relieve
this transcriptional repression. Many have therapeu-
tic potential in mouse models (Reviewed in [235]).
Sodium phenylbutyrate is one such HDAC inhibitor
of interest in HD. It has minimal adverse effects,
and a 16-week safety and tolerability trial in HD has
been completed, with the results yet to be published
(PHEND-HD). The potential of HDAC inhibitors to

reverse the global transcriptional dysregulation seen
in HD is tempered by the fact that they would be quite
likely to have significant adverse effects in patients
if treated at high doses, as has been demonstrated
in mice alongside neuroprotective benefit [236-238].
Because there are many different histone deacetylases,
a targeted pharmaceutical approach may be warranted.
With that in mind, strides are being made to identify the
particular HDACs whose modulation is most likely to
have therapeutic impact [239-241], with the hope that
specific inhibitors to those HDACs could be developed
with reduced adverse effects and improved efficacy.

Neurotransmitter modulation aimed at neuroprotec-
tion has also been attempted, with little success so far.
Memantine, an NMDAR antagonist, demonstrated a
trend towards motor rescue, but the trial was small
[242]. Riluzole, a glutamate antagonist with a some-
what unknown mechanism of action, has been tested
numerous times in animals, with demonstrated protec-
tion against mitochondrial toxins and excitotoxicity
[243-245]. However, its trial was halted in patients
due to liver enzyme elevation, despite a benefit for
patients in total chorea score and UHDRS motor score
[246].

Based on these and other clinical and preclini-
cal studies, there is clearly no shortage of targets in
deranged HD pathways for small molecule therapeu-
tics. At this point, the motivation at the bench needs
to be generating compounds with safe toxicity profiles
that effectively target these pathways, and using avail-
able models to more efficiently weed out ineffective
drugs or subtherapeutic dosing regimes. The latter is
perhaps hardest to predict from preclinical trials, given
the differences in pharmacokinetic properties between
rodents and humans (primates are simply too expensive
to be a standard in-between step, but novel ovine and
porcine models are a promising step-up) (Reviewed
in [247]). Alternative strategies using cell, gene, or
oligonucleotide therapeutics are younger in their devel-
opment, but as they are more targeted than most small
molecules (e.g. delivery of a growth factor rather than
a drug that could upregulate many genes, including
the desired growth factor), they may provide better
predictability in the transition from bench to bedside.

CELL GRAFTING FOR TISSUE
REPLACEMENT OR TROPHIC FACTOR
SUPPLEMENTATION

One of the main impediments of small molecule
therapeutics is the blood brain barrier (BBB), a
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specialized membrane surrounding blood vessels in
the CNS that gives an extra layer of protection from
the likes of blood borne pathogens and hyperactive
immune insults, among others. However, this also lim-
its the passage of potential therapeutic small molecules
or proteins. Without a doubt, patients would tolerate
continuous intracranial dosage if such an intervention
promised significant improvements in longevity and
quality of life compared to current treatment options.
Nevertheless, cerebral pump implantation and mainte-
nance is fraught with risks of infection. To avoid this
problem, cell and gene therapies that only require sin-
gle dose implantations to bypass the BBB are being
rigorously investigated.

Cell implantation first began as a simple neuronal
replacement strategy with the hope that implanted fetal
neuronal precursor cells would differentiate into neu-
rons and become useful parts of the corticostriatal
network, restoring motor control to patients. Several
small patient cohorts have been tested, with varying
degrees of success [248-253]. While cell growth is
often shown and proper nigrostriatal dopaminergic
connections can occasionally be seen, in general the
results are only an occasional benefit to the patients’
motor scores or total functional capacity. Immunosup-
pression is often needed, which can lead to infections.
It may be possible to get around this using mod-
ern induced pluripotent stem cell (iPSC) technology,
where it has been demonstrated that patient fibrob-
lasts can not only be reprogrammed into transplantable
MSN-like cells [254], but that the cells can be genet-
ically corrected beforehand [255]. In such grafts in
patients, though, rejection is likely not the cause for
failure. As reviewed in Cicchetti et al., 2011 [256],
which discusses the fetal grafting clinical history in
HD and Parkinson’s Disease, the likely reason for
such failures is the death of the engrafted cells, prob-
ably as a result of poor trophic support. This makes
sense in the context of the hampered delivery of neu-
rotrophic factors from cortex to striatum that plays a
well-established role in HD neuropathology.

Hence, for HD and other neurodegenerative dis-
eases, the delivery of such growth factors by way
of transduced cells has been rigorously investigated.
Many such growth factors may be therapeutic in HD;
in 3-NP-treated rats, fibroblasts expressing the fac-
tors BDNF, neurotrophin-3 (N7-3), neurturin (NTN), or
GDNF all suppressed neurotoxicity [257]. BDNF has
perhaps been the best studied in this context, as it has
demonstrated protective efficacy in toxin and genetic
models, via cell delivery methods including mesenchy-
mal stem cells, fibroblasts, and bone-marrow stem cells

[258-265]. Among these varied studies, two are of par-
ticular interest. Astrocytes often become activated in
HD patients and animal models, as demonstrated by
increased presence in the tissue and elevated GFAP
expression. These astrocytes, when altered to express
BDNF under the control of the GFAP promoter, can be
cultured and transplanted, and there is evidence sug-
gesting that BDNF expression from these cells may
selectively increase when neurotoxic stress is present
[260, 261].

BDNF has incontrovertible therapeutic potential,
primarily by activating several pro-survival kinase
pathways (including Akt and MAPK), and has rel-
evance in many neurodegenerative diseases [266].
However, despite the recent development of effective
small molecule agonists for the BDNF receptor [267],
the directed implantation of BDNF-secreting cells into
a confined area may be safer in the long run. This is
due to evidence that brain-wide hyperactivity of BDNF
activity has been associated with a number of disor-
ders including epilepsy, addiction, chronic pain, and
depression [268].

Other neurotrophic factors have been delivered
by transduced secreting cell implantation, includ-
ing GDNF [269-271], Neurturin [272], and CNTF
[273-275]. The CNTF studies are particularly interest-
ing in that they were xenografts, but the cells survived
in vivo by being encapsulated in a semipermeable
membrane that renders them immunoisolated. How-
ever, this also prevents the cells from growing, which
is safe in the context of undesirable hypertrophy but
also necessitates a large amount of engrafted material
for sufficient dosage. In the Phase I clinical trial [275],
some electrophysiological improvements were seen in
patients for whom the implanted capsules released the
largest amount of CNTEF, but cell survival was poor in
more than half of the patients’ capsules, stressing the
need for improving both implanted cell survival and
neurotrophic factor production.

GENE THERAPY DELIVERY OF GROWTH
FACTORS

Implantation of transduced, engrafted cells is not
the only way of achieving long-lasting growth factor
supplementation. Gene therapy approaches (transduc-
tion of patient cells in vivo) are also beginning to
be investigated for neurodegenerative diseases. Viral
vectors for accomplishing this task are varied, but
mainly are limited to vectors based on adenovirus,
lentivirus, or adeno-associated virus (AAV), as all three
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can transduce postmitotic neurons. Adenovirus has
fallen out of fashion due to high immunogenicity, but
preclinical studies for all three have been effective.
AAV and adenovirus have delivered a combination
of Bdnf and noggin (Nog) in R6/2 transgenic mice
and rat toxin models [156, 276]. These studies were
notable because the combination of neurotrophic fac-
tors actually induced neurogenesis. While this carries
with it the risk for uncontrolled cell growth, it also
offers the potential for neurorestoration in manifest
patients whose striata have already suffered significant
deterioration.

AAV-delivered Gdnf is also therapeutic in 3-NP-
treated rats and N171-82Q transgenic mice [277, 278],
but neurturin (Nrtn) has perhaps the most immedi-
ate potential due to the clinical trial safety data in
the Parkinson’s Disease field. AAV-delivered neurturin
therapy, known as CERE-120, was tested in 6-OHDA
treated rats (6-OHDA destroys dopaminergic nigrostri-
atal neurons, causing PD-like symptoms) and produced
substantial therapeutic rescue with evidence of Nrtn
expression out to at least 1 year post-transduction
[279]. Clinical trials were initiated, with enough mod-
est success to warrant protocol alterations and further
clinical investigation [280-282]. Given the protective
evidence of neurturin-secreting engrafted fibroblasts
[257, 271] and demonstrated protection for AAV-Nrn
in toxin rat models of HD [283], the HD field will
be anxiously watching CERE-120 progress, and if
promising, its evaluation in HD could initiate before
the end of the decade.

HD gene therapy treatment need not be limited to
endogenous growth factors, and the immune privi-
leged state of the CNS may in fact be the perfect place
for expression of novel molecular therapeutics with
minimal risk of inflammation due to the presence of
foreign epitopes. Intracellular antibodies, single-chain
non-secreted antibody fragments known as intrabod-
ies, have significant potential. They can be directed
to specific portions of the mHTT protein [284], and
after delivery by AAV or lentivirus, have demon-
strated significant neuroprotective potential [285, 286]
likely by hastening mHTT turnover. In the context of
mHTT’s toxic oligomers but likely benign inclusions,
demonstration that mHTT is actually degraded after
intrabody treatment rather than simply showing reduc-
tion of inclusion size is the most promising part of
this avenue. In that vein, using polyQ-binding pep-
tides with Hsc70-recognition domains to directly drag
mHTT to autophagosomes for chaperone-mediated
autophagy is also promising, and reduces pathology
in transgenic mice [287].

PREVENTION RATHER THAN RESCUE:
KNOCKDOWN APPROACHES FOR HD

Growth factors, intrabodies, and peptides may have
therapeutic potential by aiding the degradation of
mHTT or reversing some of its downstream toxic
pathways, but recent advances in RNAi therapeu-
tics may soon make it possible to prevent mHTT’s
production in the first place. Making use of endoge-
nous microRNA (miRNA) transcriptional regulation
pathways, artificial short hairpin RNAs (shRNAs) or
genetically modified miRNAs altered to target differ-
ent sites have been investigated for safety and efficacy.
Safety has a specific focus for such approaches in HD.
The mutation in mHTT is relatively subtle, so RNAi-
based therapeutics against the HTT transcript don’t
always differentiate between mutant and wild type alle-
les, depending on the target site. We know that wtHTT
is essential, but heterozygous knockout mice have only
subtle phenotypes [288]. Thus, it may be necessary
to only transiently reduce mHTT transcript levels and
allow neurons the chance to “hit the reset button” on
proteotoxic stress [289]. Limiting the effects on wtHTT
and evaluating the safety of partial wtHTT knockdown
have been just as much a focus of the HD RNAI ther-
apeutic field as demonstrating therapeutic efficacy.

AAV-delivered shRNA constructs have been evalu-
ated in transgenic murine HD models. The first such
published study showed a strong ability to reduce
mHTT RNA, protein, and inclusion levels, and to
improve transcriptional dysregulation and behavioral
dysfunction [290]. However, of the two constructs
tested, both were equally effective at reducing mHTT
RNA and proteins, but one of the two was highly toxic
and actually exacerbated transcriptional profile alter-
ations. This was likely the result of off target effects, a
risk for any RNAI therapeutic as they often depend on
the 6-base seed sequence to mediate most of their target
specificity, and such 6-base sequences in shRNAs can
be toxic if promiscuous [291]. Nevertheless, careful
evaluation of off target risks can yield safe knockdown
vectors, which have been evaluated and proven tolera-
ble in primates [292, 293] and effective in murine HD
models [294-296].

Harnessing the miRNA pathway is only one way
nucleic acids can suppress mHTT levels, the other
being chemically-modified oligonucleotides (oligos).
Most promising is a chemically-modified oligo versus
human HTT that specifically reduces human mHTT
levels by >50% in transgenic mouse models, and was
somewhat effective in rhesus after intrathecal injection.
Most remarkably, the protein reduction was maintained



424 Z.R. Crook and D.E. Housman / Surveying the Landscape of Huntington’s Disease

for up to 3 months in mice from a single 2-week-long
intracranial infusion [297]. This surprising longevity is
the result of the modified nucleic acid chemistry. Its cell
penetrance was sufficient when the oligo was simply
provided in a saline suspension. Additionally, altered
oligonucleotide chemistry facilitates binding, cellular
uptake, and nuclease resistance. This was achieved
by using phosphorothioate rather than phosphodiester
bonds between bases, as well as a base structure includ-
ing 2’-O-methoxyethyl nucleosides on the outermost
5 bases rather than standard deoxynucleotides. Unlike
small RNAs that use the RNAi pathway to reduce tran-
script levels, it requires no interaction with the RISC
complex, instead relying on RNase H degrading the
RNA portion of the RNA-DNA hybrid. That the mod-
ified DNA oligo is not degraded in the process allows
it to be recycled, enhances longevity without diluting
its knockdown capabilities, and avoids potential unin-
tended modulation of the RNAi pathway by not serving
as a substrate.

The above study was allele-specific only insofar as it
was species specific. For true allele-specificity, one can
potentially take advantage of common patient single
nucleotide polymorphisms (SNPs). There is evidence
that only 2 SNP-targeting oligos are needed to differ-
entially target mHTT in 2/3 of patients [298]. Potent
oligos have been targeted to SNP-bearing sequences
in HTT [299], and humanized mouse models are being
used to test them in a preclinical setting [300]. Nev-
ertheless, it is worth noting that the presence of a
SNP in a transcript does not necessarily mean that
location would make a good target site for an oligo,
as local secondary structure and RNA binding pro-
teins in the region might modify an oligo’s binding
strength. Indeed, in the above studies, only four such
SNP targets were found to provide both significant
allele specificity and sufficient knockdown strength.
The CAG repeat itself may also serve as an effective
target for RNaseH mediated degradation of mHTT tran-
scripts, which would by definition be allele-specific
[301]. However, there are many other mRNAs that
include CAG repeats of significant length. This makes
the evaluation of potential off target effects particularly
important for this approach.

FUTURE STRATEGIES FOR
THERAPEUTIC ADVANCEMENT

One of the primary reasons for the lack of an
effective disease altering therapeutic in HD may be
the diverse number of cellular pathways impacted by

mHTT. For drug trials, both preclinical and clinical,
it is often difficult to specify the target and its effects,
but with HD, careful targeting may not always be desir-
able. Given the diverse suite of symptoms, a drug with
multiple effects may be ideal. For example, the com-
pounds that are furthest along in the clinic (cysteamine,
coenzyme Q10, and creatine) are all antioxidants, but
coenzyme Q10 and creatine aid mitochondrial func-
tion [302, 303], while cysteamine has documented
transcriptional rescue effects [304, 305]. An addi-
tional example of this would be the green tea extract
compound EGCG, which not only can alter mHTT
aggregation and toxicity in cell and fly models of HD,
but also has antioxidant properties [306]. With these
situations in mind, a viable strategy could be to iden-
tify those drugs with the greatest pleiotropic impact
on the various phenotypes. This is not to suggest that
the most worthy treatment modalities are only those
with nonspecific targets; pleiotropic therapeutic res-
cue can also be achieved by highly targeted approaches
such as the inhibition of specific histone deacetylases
(HDACSs). Because HDACSs reduce access to chromatin
(and hence transcription of genes) in a pleiotropic but
predictable pattern, the objective is to identify drugs
that only interfere with the function of the HDAC or
HDACSs most associated with targets of particular ther-
apeutic value, while minimizing off target and harmful
side effects [236, 237].

Furthermore, toxicity in HD affects multiple path-
ways, but there is nothing to say that multiple drugs
cannot be co-administered. The progressive degenera-
tion is clearly the result of the disruption of multiple
pathways, so it is only logical that multi-drug regimens
should be more thoroughly explored. This has already
been attempted with coenzyme Q10 administered with
remacemide (an NMDA receptor antagonist) [211,
307]. While this combination had no significant protec-
tive effect after 30 months of treatment in patients, it is
remarkable in that it provided a substantial increase to
survival in mice, greater than 30% in R6/2 (an impres-
sive feat given the strain’s strong phenotype).

The different pathways to toxicity can be catego-
rized any number of ways, but for simplicity’s sake,
let us divide them into four: trophic support, mito-
chondrial health (including Ca?* homeostasis defects),
transcriptional dysregulation, and proteostasis (both
protein folding and degradation). All four of these
categories contain both genetic modifier studies and
pharmaceutical trials that significantly alter the motor
phenotype and/or survival in mice. For trophic sup-
port, Bdnf overexpression is protective, as is the
administration of agonists for its receptor [153, 267].
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Mitochondrial health was impaired by Ppargcla (the
gene for PGCla) knockout and is boosted by crea-
tine and coenzyme Q10 [75, 302, 303]. Transcriptional
dysregulation is improved (albeit confusingly) by Sp/
knockout and by a number of HDAC inhibitors, such as
SAHA [308, 309]. Finally, proteostasis is aided by Hsf1
overexpression and modestly improved in a different
polyglutamine disease model (polyQ androgen recep-
tor) by the Hsp90-inhibitor and geldanamycin analog
17-AAG [51, 220].

Considering that all of these individually aid
HD mice, some of which with crossover effects in
other pathways (cysteamine, a mitochondrial energetic
booster and andioxidant, also improves BDNF protein
levels in the brain) [304], it should be fairly straightfor-
ward to test combinations of them. The best candidates,
with the fewest predicted contraindications, can be
selected and initially tested pairwise and singly. Such
experimental paradigms, particularly in animal mod-
els, could require a significant resource investment to
robustly execute. Our lab is one of many that have
worked to improve experimental throughput in mouse
models [310]. Overall, clinical trials might produce
more success if they are not dependent on a signifi-
cant health improvement to neurons arising from only
a single pathway’s repair.

SUMMARY

This review has focused on well-established effects
of mHTT on neuronal viability, the tools to measure
the progress of disease in both manifest and preman-
ifest patients, and the progress of current therapeutic
efforts. Advancements in drug delivery, such as the
use of nanoparticles for drug encapsulation or non-
surgical viral vector administration, and the strategies
from the various CNS disease fields for penetrating the
blood brain barrier after systemic drug delivery, are
treasure troves of knowledge with relevance to HD,
but the exploration of which were omitted for space
and scope reasons. As a field, there is much known
about the pathogenic processes in HD and the possi-
ble treatments for them. The progress and enthusiasm
at the bench for developing putative interventions for
the bedside is encouraging, but patient populations for
such trials are limited, and must be husbanded con-
servatively. Not every trial needs to be a sweeping
success to have been worthwhile, but the failure rate of
clinical trials in recent history tell us that that improve-
ments are necessary. Firstly, the clinical trials likely
need to be longer with better sensitivity and power to

detect a reduction in symptoms, both behavioral and
neuropathological. Secondly, preclinical models must
improve in identifying when a therapeutic interven-
tion has little to no potential in the clinic. The clinical
and preclinical research communities have tremendous
tools for both administering these potential treatments
and, more importantly, assessing their efficacy with
minimal invasiveness. The hope for a cure is there-
fore two-fold: that an effective treatment is found, and
that its efficacy can be proven beyond doubt in patients.
Both are necessary, and we believe that both are within
reach.
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