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Abstract. Huntington’s disease is a fatal, hereditary, neurodegenerative disorder best known for its clinical triad of progressive
motor impairment, cognitive deficits and psychiatric disturbances. Although a disease of the central nervous system, mortality
surveys indicate that heart disease is a leading cause of death. The nature of such cardiac abnormalities remains unknown.
Clinical findings indicate a high prevalence of autonomic nervous system dysfunction – dysautonomia – which may be a result
of pathology of the central autonomic network. Dysautonomia can have profound effects on cardiac health, and pronounced
autonomic dysfunction can be associated with neurogenic arrhythmias and sudden cardiac death. Significant advances in the
knowledge of neural mechanisms in cardiac disease have recently been made which further aid our understanding of cardiac
mortality in Huntington’s disease. Even so, despite the evidence of aberrant autonomic activity the potential cardiac consequences
of autonomic dysfunction have been somewhat ignored. In fact, underlying cardiac abnormalities such as arrhythmias have
been part of the exclusion criteria in clinical autonomic Huntington’s disease research. A comprehensive analysis of cardiac
function in Huntington’s disease patients is warranted. Further experimental and clinical studies are needed to clarify how the
autonomic nervous system is controlled and regulated in higher, central areas of the brain – and how these regions may be
altered in neurological pathology, such as Huntington’s disease. Ultimately, research will hopefully result in an improvement of
management with the aim of preventing early death in Huntington’s disease from cardiac causes.
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INTRODUCTION

Huntington’s disease (HD) is an inherited, progres-
sive neurodegenerative disorder that results from an
expanded CAG triplet repeat sequence within the hunt-
ingtin gene [1]. It is found throughout all racial groups
but shows highest prevalence in the Western world,
where about 7–10 individuals per 100,000 are affected
[2]. Clinically, HD is characterised by progressive
motor impairment, cognitive deficit, and psychiatric
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symptoms, most likely as a result of neuronal dysfunc-
tion and neuronal apoptosis [3–5]. In most patients HD
becomes symptomatically detectable between 30 and
40 years of age, although the disorder can manifest
at anytime between infancy and senescence [2, 6, 7].
There is currently no cure or effective modifying treat-
ment for HD, and death usually occurs 15–20 years
after clinical onset [8].

Although primarily a disease of the central nervous
system, recent research has revealed a variety of abnor-
malities in peripheral tissues or organs in patients with
HD [9, 10]. Whether these defects are a direct con-
sequence of peripherally expressed mutant huntingtin
protein, or secondary to either a general decline in
health or the onset of neurological dysfunction, is yet to
be fully understood. Interestingly, a review of available
epidemiological and research data indicates that heart
disease is the second most common cause of death in
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patients with HD, following pneumonia [11–17]. Car-
diac failure is implicated in about 30% of HD patients,
in contrast to less than 2% of age-matched non-HD
patients in the general population [10, 18, 19]. Pro-
gressive cardiac dysfunction has also been reported in
the transgenic mouse models of HD [20–23]. Nonethe-
less, the mechanisms of cardiac pathophysiology in
HD patients remain unknown.

Transgenic HD mice have recently been studied
looking for evidence of cardiac abnormalities asso-
ciated with the mutant huntingtin expression. Poly-Q
aggregate pathology has been identified in R6/2 mice
and in the HdhQ150 knock-in model. Mihm et al.
[20] found significant levels of mutant huntingtin
aggregation in the nucleus and mitochondria of car-
diomyocytes, which was associated with modified
mitochondrial structure and myocardial atrophy in
the R6/2 mouse. Left ventricular dilatation and con-
tractile dysfunction was reported and cardiac output
reduced by 50% by 12 weeks of age compared to
controls [20]. In addition, generation of mice with
cardiomyocyte-specific expression of poly-Q preamy-
loid oligomers under the control of the �-myosin heavy
chain promotor lead to protein aggregate formation,
necrosis, cardiac dilation, and reduced lifespan [21].
Even though these findings suggest that heart disease
in HD could be a result of intrinsic cardiomyocyte dys-
function, one should be cautious in interpreting these
results. The cardiac pathophysiology may be due to
non-physiological levels of poly-Q, resulting from the
over-expression of the protein. Thus, these transgenic
mouse models might not directly mimic the situation
in human HD. Indeed, in studies of the R6/1 mouse,
a model displaying less aggressive and slower onset
of HD symptoms, the cardiac phenotype has shown
no overt histological abnormalities [23]. Moreover,
there is no data to date showing expression of mutant
huntingtin in the human heart. This might, of course,
be simply due to the lack of post mortem specimen
available for analysis. Further study of the possible
cardiotoxic entities of mutant huntingtin in human HD
tissue is warranted.

Clinical data also suggest that profound autonomic
nervous system (ANS) dysfunction often accompanies
HD, and this might be associated with widespread
pathology of the central autonomic network [9, 24,
25]. It has thus been suggested that aberrant activity
of the ANS in HD plays a role in the increased risk of
succumbing to cardiac events [10, 26, 27]. The poten-
tial cardiac consequences and possible mechanisms
of ANS dysfunction in HD patients have, however,
received little attention.

In this brief review, we discuss the current knowl-
edge of cardiac autonomic dysfunction in clinical
and experimental models of HD. By drawing evi-
dence from recent data within the field of HD, and
other neurocardiology studies, we provide a possible
explanation of the mechanisms of neurocardiac abnor-
malities, as well as cardiac causes of death in HD.

CARDIAC DYSAUTONOMIA IN
HUNTINGTON’S DISEASE PATIENTS

Autonomic dysfunction frequently accompanies
HD. Patients report of significantly more gastroin-
testinal, urinary, sexual and cardiovascular problems
relative to age- and sex-matched controls [24]. Accord-
ingly, clinical HD studies using various testing
methods such as heart rate variability (HRV) analyses
have revealed aberrant activities of both the sym-
pathetic and parasympathetic branches of the ANS.
Early data demonstrated hypofunction of the ANS
in advanced HD patients [28, 29]. Using classical
HRV bedside tests, Sharma and colleagues concluded
from their investigation of 22 HD patients that auto-
nomic neurocardiac regulation was characterised by
an imbalance between sympathetic and parasympa-
thetic control of the heart [29]. Similarly, decreased
cardiovagal activity was found in the middle stages of
HD indicated by a decline in HRV at rest and dur-
ing deep respiration, both resembling vagus-dominant
autonomic test conditions [26]. It is worth mentioning
here that patients taking medication known to possess
an anticholinergic effect were still enrolled in these
studies, and this might have had an impact on the
results. Spectral analysis of HRV, in contrast, advocates
increased sympathetic activity in presymptomatic HD
mutation carriers and mildly disabled HD patients [30].
This was in line with the clinical symptoms indicative
of sympathetic dysfunction, such as orthostatic dizzi-
ness and tachycardia. Bar et al. [27] predominantly
found parasympathetic dysfunction in their study of
mid-stage HD patients compared with healthy subjects,
with similar findings reported in a group of advanced
HD patients [30].

Although the clinical data above is implying that car-
diac autonomic control might become deregulated in
HD, the evidence should, however, be interpreted with
caution. First, the methods of the available studies were
such that onset and timing of autonomic dysregulation
was hard to establish and generally lacked specificity
and sensitivity. Second, ANS activity was evaluated
indirectly by analysis of HRV parameters on short-term
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(1–10 min) electrocardiographic recordings in subjects
commonly presenting with an arbitrary psychological
state. Despite the HRV technique being a popular non-
invasive method of testing cardiac ANS activity, this
analysis has significant limitations in its interpretation,
and its accuracy is highly controversial [32, 33]. In
addition, the power spectrum HRV analysis only mea-
sures changes in ANS discharge and not the absolute
intensity of sympathetic and parasympathetic activity.
Detailed reviews on this matter have been published
elsewhere [33–36].

It has been suggested that sympathovagal dysau-
tonomia in favour of sympathetic drive could possibly
result in fatal cardiac arrhythmias and/or cardiac fail-
ure and could, in turn, account for the unknown nature
of heart related mortality in HD [26, 27, 37]. In gen-
eral, augmented sympathetic outflow and/or decreased
vagal activity is considered to be pro-arrhythmic, as
evidenced by a variety of experimental models [38, 39].
A reduction in HRV and enhanced sympathetic activ-
ity is associated with increased risk of cardiovascular
morbidity and mortality, and sudden cardiac death in
even apparently healthy subjects [40–44].

No study has investigated the plausible cardiac
consequences of dysautonomia in the HD patient pop-
ulation. In fact, underlying cardiac abnormalities such
as arrhythmias have been part of the exclusion criteria
in clinical autonomic HD research. An in dept study of
cardiac function needs to be undertaken.

FINDINGS FROM TRANSGENIC MICE

Over the years, a variety of animal models for the
study of HD have been developed. Transgenic mice
expressing mutant forms of the huntingtin protein are
the most commonly used models in HD research and
are important for examining the pathophysiology of
the disease. However, no mouse model mimics the
human condition in its entirety, nor displays the degree
of neurodegeneration that occurs in humans (recently
reviewed in [45]). The inherent differences between
human HD and experimental models must be kept in
mind when interpreting any results. Nevertheless, each
model supplies relevant data for the understanding of
HD mechanisms.

Recently, ANS dysfunction has been reported in
several transgenic lines [23, 46–48]. In the BACHD
model (transgenic mouse expressing 97 glutamine
repeats [49]), significant increased blood pressure and
heart rate, together with a blunted baroreceptor reflex
response was observed when compared to wild type

controls [47]. The baroreflex plays a dominant role
in maintaining overall circulatory homeostasis and
short-term regulations of blood pressure by dynamic
autonomic modulation of cardiac output and total
peripheral resistance [50, 51]. Thus, baroreflex sen-
sitivity is often used as a marker in the assessment of
autonomic neural control of the heart. Dysregulation
of this reflex may, in the long run, have a deleterious
effect on cardiac function [51]. Human studies test-
ing the baroreceptor reflex in HD have, nonetheless,
generated mixed results [52, 27–29].

Telemetry recordings from different HD models
including BACHD, R6/2 and R6/1 have indicated
abnormalities in sleep patterns, body temperature and
heart rate changes over a 12-hour light/dark cycle,
and in circadian rhythm measured during 12-hour
dark/dark conditions [23, 46, 47, 53]. Similar to find-
ings in HD patients, BACHD mice displayed a decrease
in HRV [47]. Compromised function of the ANS was
further evident by increase in heart rate and body
temperature, loss of day/night differences in the PR
interval (time taken of the electrical impulse from
sinus node to the atrioventricular node), as well as the
decrease in the amplitude of rhythmicity in heart rate
and body temperature [47].

In a recent comprehensive study, the neurocardiac
phenotype in R6/1 transgenic mice, covering early (3
months old) to advanced (7 months old) stages of HD
was investigated [23]. The data indicates pronounced
cardiac ANS malfunction from an early HD phase.
R6/1 mice displayed continuous long-term cardiac
sympathetic enhancement as evidenced by increased
heart rate levels and significant raised plasma levels of
noradrenaline, along with a reduced content of cardiac
noradrenaline at 7 months old [23]. The intra-neuronal
metabolite of noradrenaline, dihydroxyphenylethylene
glycol was, however, the same in R6/1 mice and con-
trols, suggesting neuronal reuptake of noradrenaline
was not altered [23]. Interestingly, similar alterations
have been documented in the context of cardiac fail-
ure [54, 55]. Analysis of 24-hour telemetry ECG
recordings in R6/1 mice revealed unstable and chaotic
heart rhythms with a variety of arrhythmias including
atrial flutter, atrial fibrillation, supra-ventricular and
ventricular premature beats, episodes of ventricular
tachycardia and, even, sudden cardiac death (Fig. 1A)
[23]. Of note, heart rate variations were attenuated by
administration of atropine, suggesting the erratic heart
variations were due to augmented parasympathetic
activity [23]. A hyperactive parasympathetic nervous
system has also been reported in human HD, particu-
larly in patients with juvenile HD [56].
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Fig. 1. Similarity of arrhythmias recorded from R6/1 mice (A) and during autonomic conflict in an isolated rat heart (B). Panel A shows ECGs
recorded by telemetry from R6/1 mice. Arrhythmias include sinus arrhythmias (note absence of a consistent P-R interval), A-V block, atrial
flutter, paroxysmal atrial fibrillation (AF: as indicated by the lack of P waves, unstable baseline and irregular R-R intervals) and re-entrant
arrhythmias in the form of both ventricular tachycardia (VT) and ventricular fibrillation (VF). Panel B shows similar arrhythmias recorded via
an epicardial electrode in a Langendorff-perfused rat heart subjected to an autonomic conflict protocol. This protocol consisted of perfusion
with a constant background of adrenaline (75 nM) and noradrenaline (313 nM) on which a 1 min period of acetylcholine (ACh: 5 �M) was
superimposed as indicated. The top trace shows a slow time-base recording and the arrhythmias recorded at the points marked a–d on this trace
are expanded below. Solid circles indicate P waves and asterisks indicate ventricular premature beats (VPBs). The time-bars on the expanded
ECG traces are 500 msec. Arrhythmias are classified according to the Lambeth Conventions II [131]. Panel A is redrawn from reference 23 and
Panel B is redrawn from reference 58, by permission.

The findings of augmented sympathovagal activ-
ity leading to cardiac arrhythmias and sudden death
provide new clues for possible neurocardiac causes
of death in patients with HD. Similarly hyperactiv-
ity of sympathetic and parasympathetic activity is
thought to play a role in sudden cardiac death after
ischaemic stroke [57]. Autonomic conflict, i.e. coin-
cidental overactivity of both limbs of the ANS, can
also lead to cardiac arrest as evident by investigation
of sudden death by cold water immersion [58–60].
Data from ambulatory animals have illustrated that
dual sympathovagal discharges can contribute to
development and maintenance of atrial flutter and

paroxysmal atrial tachycardia [61–63]. Furthermore,
it was recently reported that superimposing pulses of
acetylcholine (to simulate burst of parasympathetic
activity) on a background of moderate sympathetic
drive (adrenaline-noradrenaline administration) in iso-
lated Langendorff-perfused rat hearts produce an array
of arrhythmias, such as AV block, bradycardia, tachy-
cardia, ventricular premature beats, and a rhythm
resembling life-threatening polymorphic ventricular
tachycardia – torsades de pointes (Fig. 1B) [58]. The
similarities between the traces in Fig. 1A and B are
striking. Ex vivo isolated Langendorff investigation of
R6/2 mice hearts has also demonstrated abnormalities
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of cardiac function in form of impaired myocardial
contractility and relaxability, and attenuated left ven-
tricular developed pressure and coronary flow rate [22].
Autonomic function was, however, not investigated.

HUNTINGTON’S DISEASE BRAIN
PATHOLOGY AND CARDIAC
DYSAUTONOMIA

The regulation of the heart by the ANS has been
widely discussed in the literature. While classical
neurocardiological research on central control and reg-
ulation of cardiac functions has generally focused
on parasympathetic and sympathetic circuits at the
spinal and brainstem level, more recent evidence has
demonstrated cardiac autonomic regulation to be under
widespread cortical and subcortical influence [64,
65]. Clinical and experimental observations strongly
suggest autonomic control by the prefrontal cortex,
bilateral insular cortex, anterior cingulate gyrus, amyg-
dala, and hypothalamus [66–68]. However, direct
evidence linking brain pathology in HD to cardiac
autonomic dysfunction is sparse. Investigations using
autonomic cardiovascular challenge tests, cognitive
stress (mental arithmetic) and cold pressor tests, to
challenge higher-ordered ANS centres suggest dys-
function in these regions in both pre- and early
symptomatic HD patients [37, 69]. These tests have,
however, low sensitivity and specificity in detecting
autonomic malfunction and have a variable inter-
subject response [70]. Several brain regions associated
with regulation of cardiac autonomic control have been
found affected in the disorder [8, 71–75].

New results from the TRACK-HD study indi-
cate significantly greater progressive grey-matter,
white-matter, whole-brain, and regional atrophy in
pre-manifest and early HD groups than in control
groups [76]. This is in line with other data using
imaging modalities and a recent coordinate-based
meta-analysis for structural changes in HD based on
voxel-based morphometry [77] – all demonstrating
neurodegeneration in the main the components of the
central autonomic network [77–80]. The insular cortex
is an important region in controlling sympathovagal
tone [68]. Both right and left insular lesions, often
as a result of a stroke involving the middle cerebral
artery, have been associated with cardiac autonomic
derangement, arrhythmias and an increased risk of car-
diac death [81–83]. Moreover, animal models using
electrical stimulation, together with clinical data and
positron emission tomography neuroimaging suggest a

lateralisation of cardiac regulation in this brain region
– with right insular region chiefly controlling sympa-
thetic tone, and parasympathetic tone mediated by the
left insular [57, 67, 84–88]. A noteworthy observation
is the report of insular atrophy predominating in the left
hemisphere in HD patients which, to some extent, may
account for the sympathetic dominance and parasym-
pathetic withdrawal demonstrated by HRV analysis in
HD patients [89–91].

Known to have crucial neurotrophic functions in
both the embryonic and adult brain, brain-derived neu-
rotrophic factor (BDNF) also appears to play a major
part in ANS regulation of heart rate and cardiovascular
health. Humans displaying polymorphism (Val66Met)
in the BDNF gene, leading to attenuated BDNF secre-
tion, have sympathovagal imbalance [92]. BDNF and
its receptor TrkB are expressed in higher cardiac con-
trol regions such as amygdala, frontal cortex and
hypothalamus, along with central autonomic nuclei of
the brainstem [93–97]. It was recently reported that
BDNF expression protects against cardiac dysfunction
via a central nervous system-mediated pathway [88].
Interestingly, levels of BDNF in the striatum, cortex,
and brainstem of HD patients are reduced [99, 100].
An in vitro model of HD also suggests that aberrant
expression of BDNF perturbs microcircuitry and sig-
nalling in the cerebral cortex, and overexpression of
BDNF in the striatum ameliorates HD phenotypes in
R6/1 mice [101, 102]. HD mice (N171–82Q) exhibit
attenuated expression of BDNF and TrkB in brain-
stem cardiovascular nuclei, and also elevated heart
rates and dysregulation of heart rates during restraint
stress [48]. Intracerebroventricular administration of
BDNF decreases and restores heart rates to wildtype
levels. Future studies of HD should investigate BDNF
signalling in higher autonomic cardiac control sites.

Although incompletely understood, neuronal dys-
function and neuronal cell death are also likely to
be causing the neuropsychiatric symptoms associated
with HD. The possible implication of psychiatric dis-
turbances on cardiac health should not be ignored.
Severe depression, anxiety, irritability, and anger are
extremely common in HD patients [2, 103, 104].
Mounting evidence indicates that, in particular, depres-
sion and anxiety are risk factors for cardiac events such
as coronary heart disease, atrial and ventricular fib-
rillation, and sudden cardiac death [105–107]. While
behavioural risk factors may account for this correla-
tion, autonomic dysregulation has been suggested to
play an important role in the increased risk for cardio-
vascular events in patients with depressive and anxiety
disorders [108].
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From a broader perspective it is interesting to note
that cardiac dysautonomia is a common feature of neu-
rodegenerative disorders. Orthostatic hypotension is a
frequent characteristic of parkinsonian disorders such
as Parkinson’s disease and multiple system atrophy
and autonomic impairment has also been reported in
a variety of neurodegenerative dementias [109–113].
Recent studies have revealed a high prevalence
of cardiac ectopy associated with supine hyperten-
sion, baroreflex-cardiovagal failure, and baroreflex-
sympathoneural failure in patients with chronic auto-
nomic failure [114, 115] Parkinson’s disease patients
have also been reported to have increased mortality due
to heart disease with autonomic dysregulation being
suggested as a possible contributing factor [116–118].

DYSAUTONOMIA AND CARDIAC
MORTALITY IN HUNTINGTON’S DISEASE
– POSSIBLE MECHANISMS

The data discussed here suggest that cardiac auto-
nomic control can become deregulated in HD. A direct
link between ANS dysfunction and the cause of death
in HD patients remains however tenuous. Nonetheless,
it could be speculated that impairment of central auto-
nomic cardiac control may lead to dysautonomia and
autonomic conflict and, in turn, trigger heart rate insta-
bility and cardiac arrhythmias which may ultimately be
lethal. Moreover, the toxic mutated huntingtin protein
may cause in vivo cardiomyocyte malfunction of car-
diac efficiency and perturb intracellular signalling and
protein expression – all which could destabilise cardiac
electrophysiology and therefore increase the suscep-
tibility to cardiac death during autonomic imbalance
(Fig. 2).

Different theories could explain the arrhythmo-
genic mechanism of dysautonomia, and the substrate
for arrhythmias could be enhanced by various
predisposing factors in HD. Sympathetic and parasym-
pathetic stimulation, acting through beta-adrenergic
and muscarinic receptors respectively, induce their
effect by causing electrophysiological changes in the
myocardium. Sympathetic stimulation and its resulting
increase in heart rate (i.e. the R-R interval of the ECG
decreases) will lead to a reduction in action potential
duration and hence QT interval. In contrast, the action
potential and QT interval are prolonged as the heart rate
slows. Thus, on a background of increased sympathetic
stimulation, co-incident parasympathetic overactivity
could lead to a fair imitation of QT/RR hysteresis;
that is the heart rate increases but with no accompa-

nying decrease of the QT interval. Indeed, evidence
implies that the failure of the QT interval to decrease
in response to a rise in heart rate may be a feature of
vagal activation [119–121]. A prolonged action poten-
tial conjoined with an increased heart rate may cause
myocardial cells to be depolarised for a larger fraction
of the cardiac cycle. Together with a rate-dependent
rise in calcium influx, this will increase the probability
of calcium overload – an established mechanism giving
rise to membrane oscillations, ventricular automaticity
and arrhythmias [122].

Patients with long QT syndrome (a congenital dis-
order with mutations in a specific potassium channel,
leading to prolonged repolarisation) are highly sus-
ceptible to arrhythmias, torsades de pointes and are at
increased risk for sudden cardiac death [123]. Delay-
ing repolarisation experimentally can cause a 57-fold
reduction in the diastolic interval (TQ interval) and
a marked increase in the QT/TQ ratio (ECG restitu-
tion) during heart rate acceleration with sympathetic
stimulation using isoproterenol challenges [124]. In
other words, the ability of the heart to recover (e.g.
for oxygenation and return of ion kinetics to nor-
mal state) from one beat to the next is significantly
reduced, making it vulnerable to unstable re-entry
and arrhythmias. Of interest, several drugs implicated
in prolonging the QT interval may predispose HD
patients to lethal arrhythmias. These drugs include
certain antipsychotics (eg, chlorpromazine, haloperi-
dol, thioridazine, mesoridazine) and antidepressants
drugs (eg, amitriptyline, mirtazapine, citalopram),
antibiotics (eg, erythromycin, clarithromycin), and
gastrointestinal prokinetics (eg, cisapride, domperi-
done) [125].

The heterogeneity of both pre- and postsynaptic
autonomic cardiac innervation may also exacerbate the
pro-arrhythmic potential of dysautonomia. In normal
human hearts, and those of other mammals, parasym-
pathetic nerves and muscarinic receptors are largely
located in the atria and nodel tissue. Conversely,
innervation of the ventricles is predominantly by sym-
pathetic neurons, displaying a gradient morphology
with the highest density of nerve endings found at
the base, decreasing to the lowest levels at the apex
[126–128]. Under pathological and extreme conditions
where the ANS becomes dysregulated, these regional
variations may be in favour of compounding electrical
inhomogeneity and trigger arrhythmias [58].

Lastly, long-standing persistent arrhythmia is a well-
known cause of heart failure and cardiomyopathy and,
in most cases, sudden unexpected death is caused by
fatal cardiac arrhythmias [122, 129]. Any pre-existing
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Fig. 2. Possible mechanisms of cardiac mortality from dysautonomia in Huntington’s disease. The central autonomic network is likely to be
affected by pathological processes and psychiatric disturbances in Huntington’s disease leading to dysfunction in both limbs of the autonomic
nervous system. Altered and conflicting inputs to the heart can result in arrhythmias causing cardiac dysfunction and could, ultimately, be lethal.
Various predisposing factors may enhance the arrhythmogenic potential of dysautonomia. Cardiomyocyte dysfunction due to intrinsic mutant
huntingtin (HTT) expression might also induce abnormalities and could directly, or in combination with altered autonomic tone, be detrimental
to cardiac health. Adapted from reference 58.

coronary atherosclerotic changes or myocardial injury
are also likely exacerbate arrhythmias during cardiac
autonomic dysfunction. Indeed, evidence supports the
role of autonomic imbalance in neurogenic myocardial
injury [57, 130].

CONCLUSION AND FUTURE RESEARCH

Despite the evidence of cardiac dysautonomia in
HD, the complex interactions between the brain and
the heart are incompletely understood. The cause of
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cardiac associated death in HD is likely to be multi-
factorial. Further research is needed to fully elucidate
the pathophysiology and the involvement of ANS dys-
function. A detailed analysis of cardiac function in
HD patients is warranted, preferably using 24 h Holter
monitoring of ECG. A better understanding of cardiac
electrophysiology and its interaction with sympathova-
gal activity is necessary. Additionally, a clarification of
how the ANS is controlled and regulated in higher cen-
tral areas of the brain – and how these regions may be
altered by pathology – remains crucial. Functional neu-
roimaging and spatialtemporal mapping should allow
for a better characterisation of key areas of autonomic
control and alteration in HD. From a clinical per-
spective, this knowledge should help to identify the
causative factors that make the HD heart vulnerable
to cardiac events, and would also aid the development
of therapeutic approaches with the aim of preventing
early death from cardiac causes. Finally, a better under-
standing of the link between HD brain pathology and
cardiac dysautonomia would also increase our knowl-
edge of the neurogenic connections between the brain
and heart.
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