
Journal of Embedded Computing 1 (2005) 435–436 435
IOS Press

Guest Editorial

Cache exploitation in embedded systems

Jingling Xue
School of Computer Science and Engineering, The University of New South Wales, 2052 Australia
Tel.: +61 2 9385 4889; Fax: +61 2 9385 5995; E-mail: jxue@cse.unsw.edu.au

Memories determine to a large extent the perfor-
mance and energy cost in contemporary embedded sys-
tems. In most high-end embedded systems, on-chip in-
struction and data caches are introduced to improve the
performance and energy of a program by exploiting the
available locality in the program. Hardware-managed
caches allow easy integration and are effective for appli-
cations that exhibit sufficient locality in their memory
accesses. However, applications with excessive cache
misses often suffer from poor performance and energy
efficiency. Scrachpads are more energy-efficient than
caches since they do not need complex tag-decoding
logic. Unlike caches, however, scratchpads require ex-
plicit support from the compiler. To exploit the benefits
of these two approaches, some high-end embedded mi-
croprocessors such as ARM10E and ColdFire MCF5
include both on-chip caches and a scratchpad.

Unlike in the case of general-purpose desktop sys-
tems, power consumption is an essential concern for
embedded systems and is also an important design con-
straint where power supply capacity is limited. In ad-
dition, embedded systems are designed to run a set of
well-defined applications, which can be highly tuned
by the application programmer.

This special issue aims at providing a snapshot of
the current state of the art in the areas of cache anal-
ysis techniques, energy-aware code optimizations, and
energy-efficient cache architectures for improving the
performance and energy of embedded applications.
The first two papers are related to instruction caches,
the next four papers on data caches, and the last paper
on scratchpads.

In “Procedure Placement using Temporal-Ordering
Information: dealing with Code Size Expansion,”Guil-

lon, Rastello, Bidault and Bouchez address the intel-
ligent procedure placement in a direct-mapped instruc-
tion cache, for reducing conflict misses. Reducing con-
flict misses without resulting in a large code size ex-
pansion is important for reducing energy costs in em-
bedded systems. The authors improve Gloy and Smith
algorithm by making it conscious of code size expan-
sion. They prove that the cache-placement phase is NP-
complete and that the memory-placement phase is opti-
mal. They obtain nearly the same cache miss reduction
with far less code size increase (only 8% compared to
previous 177%). Moreover, this work provides a useful
theoretical underpinning for the approach used.

The instruction cache on modern microprocessors
consumes a significant fraction of the total processor
power. Tag comparison elimination (TCE) techniques
have been proposed to achieve power reduction by
avoiding unnecessary tag comparisons. In their arti-
cle, “Reducing I-cache Energy of Multimedia Applica-
tions through Low Cost Tag Comparison Elimination,”
Zhang and Yang present two TCE solutions to reduce
the hardware cost of TCE in the design of a low-energy
instruction cache.

Some embedded processors such as Intel Stron-
gARM SA-1110 and Intel XScale include a mini-data
cache to help avoid thrashing of the main data cache for
frequently changing data streams. In addition, these
processors also provide flexible control over the cache
management to achieve better cache utilization. Pro-
grams can specify the cache mapping policy for each
virtual page by mapping it to the main cache, the mini-
cache or neither. In “Page Mapping for Heteroge-
neously Partitioned Caches: Complexity and Heuris-
tics,” Li and Xu deal with the problem of deciding

ISSN 1740-4460/05/$17.00 © 2005 – IOS Press and the authors. All rights reserved

436 J. Xue / Cache exploitation in embedded systems

where virtual pages are mapped, in the main cache,
mini-cache or by-passed from main memory. They
show that the optimal cache mapping assuming the
trace of all memory access is known is NP-complete.
In addition, they provide a mapping heuristic that im-
proves the performance and energy of benchmark pro-
grams compared to the default policy that maps all vir-
tual maps to the main data cache.

In “Improving Power Efficiency with Compiler-
Assisted Cache Replacement,” Yang, Govindarajan,
Gao and Hu present a compiler approach to making a
better data cache replacement decision for processors
that support cache hints or cache locking/unlocking
mechanism. They formulate the optimization problem
as a 0/1 Knapsack problem and solve it using a dy-
namic programming algorithm. In comparison with
data prefetching on an Intel XScale processor, their
approach yields improved performance at a similar or
reduced level of power consumption.

Leakage energy consumption in caches is significant
since they contain a significant fraction of the on-chip
transistors in a microprocessor. In “Exploiting Loop
Behavior for Data Cache Leakage Reduction,” Zhang
introduces a compiler-directed approach to reducing the
data cache leakage energy for loop-oriented programs.
By placing cache lines into low leakage mode during
the execution of the innermost loops, the author shows
that this software approach is competitive in terms of
improved energy consumption and energy-delay prod-
uct, compared to a recently proposed hardware-based
solution.

In “Iterative Compilation for Energy Reduction,”
Gheorghita, Corporaal and Basten study the appli-

cability of iterative compilation to reduce energy con-
sumption, extending previous work on iteration com-
pilation that looked at performance only. They show
that in most cases, optimizing for performance and op-
timizing for energy can coincide, and sometimes there
can be a noticeable difference between the two ob-
jectives. Thus, they recommend a combined energy-
performance factor to be used to evaluate the compiled
code in order to have good compromises.

In “Heap Data Allocation to Scratch-Pad Memory
in Embedded Systems,” Dominguez, Udayakumaran
and Barua present a compiler-assisted approach to al-
locating a portion of the heap data to scratchpad mem-
ory. When compared to placing all heap variables in
DRAM and only global and stack data in scratchpad
for the same-sized scratchpad, they achieve better av-
erage execution times and energy savings for bench-
mark programs. In addition, their approach equals or
slightly outperforms a cache-only architecture and pro-
vides slightly better runtime and energy in a cache +
scratchpad architecture.

Finally, I would like to thank the authors of all sub-
mitted papers, including the authors of papers that could
not be included in this special issue. The tight publi-
cation schedule did not allow any extensive revisions,
so several good papers could not be included due to the
requests for such revisions by the reviewers. I would
also like to thank the reviewers of the submitted papers
for their dedication and effort in providing timely and
thorough reviews. This special issue would not have
been possible without their hard work. I hope that the
readers find this issue enlightening and enjoyable.

