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Computer networks and productivity revisited: Does
plant size matter? Evidence and implications
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Numerous studies have documented a positive association between information technology invest-
ments and business- and establishment-level productivity. Most of these studies, however, rely on empir-
ical specifications that over-represent small businesses. In this paper, we revisit one piece of evidence,
the Computer Network Use Supplement to the 1999 U.S. Annual Survey of Manufactures, which has
previously been used to show that there is a positive relationship between computer networks and pro-
ductivity in manufacturing plants. We show that this is only true for small- and medium-sized plants, and
that for larger plants the relationship is negative. We give critical consideration to alternative methods for
weighting these data, and show that employment-weighted estimates indicate the presence of a computer
network has, on average, a negative relationship with the productivity of employees.
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1. Introduction

During the last decade, an increasing number of empirical studies have explored
the relationship between information technology (IT) investments and economic per-
formance, and most find that IT investments are a significant source of additional
productivity. For example, Jorgensen and Stiroh [13], Jorgenson [12], Stiroh [15],
and Triplett and Bosworth [21] use industry-level data to demonstrate that IT plays
an important role during the surge of productivity growth in the U.S. economy in the
late 1990s. While in aggregate, U.S. labor productivity clearly grew during the 1990s
while businesses were investing in IT, the story becomes more complex when stud-
ied at the business or establishment level. One crucial limitation, which we address
in this study, is that most previous researchers have used empirical specifications that
give all firms or plants equal weight. This method treats the relatively infrequent large
businesses with the same weight as that of the much more numerous small plants,
which only yield consistent estimates of the effects of IT investments on productivity
if they affect businesses similarly, regardless of size.
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Under this (generally implicit) assumption of homogenous effects by size, IT in-
vestments have been associated with productivity increases. In a study of large firms,
Brynjolfsson and Hitt [6] find that computer investments yield large productivity re-
turns over a five-year time horizon. Using panel data for the manufacturing industry,
Dunne et al. [8] document that increases in computer investment are associated with
increases in the plant-level wages and productivity. Shin [17] analyzes the relation-
ship between software usage and productivity on a sample of 525 small to medium
size firms, and finds evidence of enhanced productivity in both manufacturing and
service firms. Atrostic and Nguyen [2,3] and Atrostic et al. [1] use plant-level data
to study the relationship between computer network use and the labor productivity
of manufacturing plants, and find that computer networks are associated with higher
productivity.

Less attention has been devoted to the role of business size in the effect of IT
investments on productivity, and there is almost no empirical evidence on this sub-
ject. A recent exception was provided by Tambe and Hitt [20], who explore tabula-
tions that distinguish between the effects of the presence of different numbers of IT
workers on the productivity of Fortune 500 vs. non-Fortune 500 firms, the former of
which are in general larger. Otherwise, studies contain at most provide a discussion
of mechanisms by which IT investments may produce different productivity returns
for businesses of different sizes, but without empirical evidence. For example, Bryn-
jolfsson et al. [7] assert that higher IT investments will lower “coordination costs”
within and between firms that would lead to smaller, more specialized firms. Sim-
ilarly, Iansiti et al. [11], discussing their sample of firms that employ between 100
and 500 employees, suggest that in larger firms, successful implementation of an IT
infrastructure may be hindered by conflicts between the business units dedicated to
IT and other units within a business. The implication of the listed mechanisms is
that productivity returns to the implementation of an IT solution may be greater for
small entities than large ones. In this study, we consider manufacturing plants oper-
ating in the United States in the late 1990s, and we offer evidence that a particular IT
investment, a computer network, is associated with higher productivity for smaller
business establishments (specifically, manufacturing plants) but not larger ones.

To do so, we exploit a unique survey, the Computer Network Use Supplement
(CNUS) to the 1999 Annual Survey of Manufactures (ASM), linked with longitudi-
nal data on plant size and productivity from the 1992 and 1997 Census of Manufac-
tures (CM). The Supplement asked about whether manufacturing plants employed
any sort of telecommunications infrastructure in which computers were able to in-
teract with one another, including general connectivity through internet access, or
something more specific to the location such as a local area network or intranet.
This survey took place when most, but not all, manufacturing plants, had adopted
some sort of computer network, and so it allows comparison between the technology
adopters and non-adopters.

Atrostic and Nguyen [3] and related studies have used the CNUS linked with
the CM to demonstrate that manufacturing plants with computer networks, on aver-
age, exhibit 5% higher productivity than those without a network. In this study, we
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measure how the relationship between computer network adoption and productiv-
ity varies by plant size. We document that the relationship between computer net-
works is strongly positive only for the more numerous small- to medium-sized es-
tablishments in this dataset, but is strongly negative for larger plants. These different
computer network productivity differentials have implications for how to interpret
the previous finding that a computer network is associated with higher plant-level
productivity. In this study, we argue that the Atrostic and Nguyen [3] regression
specification, in which all plants are given equal weight, recovers the productivity
difference associated with the presence of a computer network for the typical plant,
but it does not represent the association for the rypical worker, or the economy as a
whole.

We give critical consideration to the implications of different weights that can be
applied to plant-level regression specifications. Weighting all plants equally produces
regression estimates that represent the relationship between computer networks and
productivity that exists for the much more numerous smaller plants. However, large
plants, by definition, constitute a share of aggregate labor productivity that is propor-
tionate to their size. In order to recover the impact of computer networks on aggregate
labor productivity, we estimate regression models in which plants are weighted by
total employment. In order to do so, we construct weights that are appropriate to the
ASM, which over-samples larger plants. We also consider the components of this
product as alternative weights, the total employment of plants, as well as the ASM
weights alone.! We find that both sets of employment-weighted estimates indicate a
substantially different relationship between computer networks and labor productiv-
ity: estimates from the employment-weighted regressions indicate a strongly nega-
tive association between the presence of a computer network and productivity rather
than the more commonly reported strongly positive one. This finding suggests that
researchers should pay careful attention to weighting when estimating the productiv-
ity impacts of technology adoption.

We would like to caution readers that, in the 1999 ASM, nearly 90% of sampled
plants have a computer network, although after applying the ASM sample weights
this frequency drops to 77%. However, of the largest plants, 97% report operating
a computer network (because the largest plants nearly all have weights of exactly
one by construction, this fraction does not change materially after the application of
ASM sample weights). In order to provide an additional empirical reference point in
the presence of different levels of adoption of this technology among establishments
of different sizes, we estimate regression specifications similar to those in Atrostic
and Nguyen [3] separately for three broad size categories. However, this disaggrega-
tion of our results does not overcome the fundamental difficulty of conducting our
empirical analysis using the 1999 ASM, which is that, by 1999, most manufacturing
plants had adopted computer networks. Therefore, the cross-sectional differences in

1We thank an anonymous referee for this suggestion.
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our sample of plants may not represent productivity differentials that are implicit in
studies of longer time periods, such as the national accounts estimates in Jorgen-
son [12] or manufacturing plant-level estimates in Dunne et al. [8]. We also would
like to caution readers that we only consider one sort of technology that businesses
adopt, that is, computer networks, and that investments in this sort of technology
may not be representative of technology investments more generally.

The paper proceeds as follows. In the next section, we describe our data and vari-
ables. Section 3 presents the empirical model and estimation method. We present the
empirical results in Section 4. Section 5 concludes the paper.

2. Data sources and variable construction
2.1. Data sources

The Computer Network Use Supplement (CNUS) to the 1999 ASM provides the
first large-scale picture of the prevalence and use of computer networks in U.S. man-
ufacturing. The CNUS was sent to manufacturing plants in the year 2000, and asked
about whether manufacturing plants had some computer network such as an internet,
intranet, LAN, EDI, extranet or some other type of computer network. The survey
confirmed that computer network adoption was widespread, see Mesenbourg [15].
The ASM is sent to U.S. manufacturing establishments, and the frequency with
which firms are selected for the ASM varies by size: the largest establishments (those
that employ 250 or more employees) are sampled with certainty, and those who em-
ploy fewer people are selected with a probability that is increasing in their size. The
Census Bureau’s Longitudinal Research Database maintains longitudinally consis-
tent identifiers between successive waves of the ASM, as well as the CM, which is
the quinquennial (1992, 1997, etc.) census of all manufacturing plants in the U.S.

We use data from the Supplement to the 1999 ASM data and any linked data from
the 1992 and 1997 CM in order to obtain data for our empirical analysis. This link
to the CM provides observable characteristics of the plants in previous years. The
Supplement contains responses for 39,056 plants of which 30,313 merge with the
1992 and 1997 CM and have all values of the key variables in the estimation of
labor productivity, total employment and total value of shipments, greater than zero.
Deleting observations with total employment less than five and observations with
missing values in 1997 and 1999 further reduces the sample to 29,177. Additional
removal of any observations with missing values for any other variable in 1992 (to
be used in the two-stage regressions) described below yields 27,007 plants.?

2For more details on deriving a sample from these data sources, see Atrostic and Nguyen [2,3] and
Mesenbourg [15]. We deleted plants with 4 or fewer employees because data on these small plants are
largely imputed based on administrative records. In our preliminary work, we included plants with less
than 5 employees and found similar results.
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2.2. Variable construction

Variables in our models are defined as follows. Subscript ¢ takes the values 92, 97
and 99, which imply source data is from the 1992 and 1997 CM, and the 1999 ASM,
respectively.

Output (Q)): A plant’s total value of shipments serves as a revenue proxy for
output.

Labor (L;): The labor input is the total number of employees working at the plant.’

Capital (K¢): The book value of a plant’s gross capital stock (including buildings
and machinery assets) serves as a proxy for capital services. While book values are
likely to be subject to measurement error, this approach is well established and is
used in, for example, McGuckin et al. [14], Greenan and Mairesse [10] and Atrostic
and Nguyen [3]. Because this variable is only available in CM years, we use Ko7
(and, for calculating the capital-to-labor ratio, Kg97/Lg7) when estimating empirical
specifications that otherwise employ data from the 1999 ASM.

Materials (M}): The materials input is the sum of values of materials, parts, energy
and contract work. Expenditures on materials is an important control variable when
estimating the relationship between computer networks on productivity because it
permits comparison between plants that have an in-house IT department and those
who outsource their IT services. Outsourcing plants may have a lower number of
individuals that are included in payroll and, therefore, raw labor productivity will
increase. However, these same plants will have a higher materials expenditure to
labor ratio. This control variable accounts for what might otherwise cause omitted
variables bias in our regression specifications.

Labor Productivity (LP;): Labor productivity is revenue output divided by labor
(the number of employees), or Q;/ L.

Total Factor Productivity (TFPg7): In a robustness check for the validity of our
labor productivity measure, we also use a multi-factor productivity measure. This
variable was only available with a two year lag (the constraint is that the capital
stock is only reported in a CM year), and so it is not our preferred specification. We
compute a multi-factor measure of productivity that computes efficiency using cost-
shares allocated to capital, labor, and materials assuming a Cobb-Douglas production
technology as in our theoretical framework below and follows the standard method
used by, for example, Baily et al. [4] and Olley and Pakes [16]. Specifically, we
estimate

Log(Qo7) = wo + w1 log(Lor) + w2 log(Ke7) + w3 log(Mor) (D

using data from the 1997 CM, where (g7 is the quantity of output, Q97 is the quantity
of output, Ko7 is the book value of capital, and My is expenditure on materials. This

3We also used hours worked instead of total employment and obtained similar results. In keeping with
Atrostic and Nguyen [3], we use total number of employees as a proxy for labor.



92 H.R. Hyatt and S.V. Nguyen / Computer networks and productivity revisited

recovers the productivity parameters w1, wo, and ws, which are the estimated returns
to labor, capital, and materials, respectively. We then plug in these globally estimated
parameters into our data at the plant level to recover total factor productivity through
the calculation

TFPy; = Log(Qg7) — wilog(Lg7) — welog(Kg7) — wslog(Mor). 2)

Computer Network (Networkgg): This variable takes on a value of 1 if the plant’s
response to the CNUS indicated any kind of computer network, and 0 otherwise. The
Supplement allowed respondents to report operating an internet, intranet, Local Area
Network, Electronic Data Interchange, Extranet, or an “other” computer network.

Multi-unit firm status (Multi): This variable takes on the value of 1 if the plant is
part of a multi-unit firm, and equals O otherwise.

Industry (Industry; ;): We construct two different sets of dummy variables for 3-
digit NAICS industries for 1999 and 2-digit SIC industries in 1992, that is, for each
industry j.

Relative labor Productivity (RLPys): This variable is the plant’s labor productivity
divided by its industry-average labor productivity, measured at the 2-digit SIC from
the 1992 CM.

Computer Expenditures (Computergz). This variable is defined as the computer
expenditure of the plant divided by total number of employees in the 1992 CM.

Skill;: We use the number of non-production workers divided by total number of
employees in the plant as a proxy for skill.

Sizegg s: We define six size classes based on total employment in the 1999 ASM,
Lt:

— Sizegg.1 = 11if 5 < Lgg < 50, Sizegg,1 = 0, otherwise;

Sl'Z€9972 = 1if 50 < Lgg < 100, SiZ€9972 = 0, otherwise;

— Sizegg 3 = 11f 100 < Lgg < 250, Sizegg 3 = 0, otherwise;
- Sl'Z€9974 = 1if 250 < ng < 500, Size99,4 = 0, otherwise;
— Sizegg 5 = 11f 500 < Lgg < 1000, Sizegg 5 = 0, otherwise;
- Sl'Z€9976 = 11if Lgg > 1000, Sizeggﬁ = 0, otherwise.

Small, Medium and Large: In some estimates, we split the dataset into 3 size
classes and estimate separate regressions by 1999 ASM categories, as follows:

— Small: 5 < Lgg < 100 employees;
— Medium: 100 < Lgg < 250 employees;
— Large: Lgg > 250 employees.

We emphasize that it is impossible to offer universally accepted definitions for
small, medium and large plants, and that the terms should be viewed as relative.
However, our results are not particularly sensitive to the values used to define the
categories.

Weight: We utilize three weights in this paper (we also present unweighted spec-
ifications implicitly assign a weight of one to all observations). The meaning and
proper interpretation of these weights are discussed further in the next section, but
we list them here for completeness:
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— ASM: This is the ASM sample weight, and reflects the sampling rate and the
influence of ex-post edits and non-response to ensure that ASM-weighted re-
sponses reflect the averages associated with the manufacturing sector or its dif-
ferent subcomponents;

— Employment: This is the employment count in the 1999 ASM, and is identical
to the Labor (L;) variable defined above;

— ASM*Employment: We calculate an “employment weight” as the 1999 ASM
sample weight (not adjusted for non-response) multiplied by total employment.

3. The empirical model and estimation method
3.1. The empirical model

Following Atrostic and Nguyen [3], we specify a three-factor Cobb-Douglas pro-
duction function, extended to incorporate plant characteristics as control variables,
and estimate log-labor productivity with corresponding marginal effects, as follows:

Log(Qoo/Lgg) = Bo + B1Networkgg + a1log(Ko7/Lor) +
O[glog(Mgg/ng) + a510g(Skillgg) + agMultigg + 3)

Z vjIndustrygg ; + Z AsSizegg, s + €,

where the variables are as described above with corresponding marginal effects and
€ is an error term. We estimate Eq. (1) using Ordinary Least Squares using SAS
Version 9.*

Note that the empirical specifications in this paper differ from that in Atrostic and
Nguyen [3], who measure size as a continuous variable, using total employment.
Since we focus on the productivity differentials for plants of different sizes, we in-
corporate categorical variables for size. Another advantage of this approach over
the use of total employment as a right-hand variable is to avoid potential bias from
measurement error.’

As Atrostic and Nguyen [3] point out, the estimated coefficient for the Network99
variable Eq. (1) is most likely subject to endogeneity bias.® Thus, following Atrostic

4SAS was employed because most Census Bureau datasets, including the CM, ASM, and CNUS, are
stored as SAS datasets. For our regressions in SAS, we use the GLM procedure. Furthermore, all tabula-
tions were done on a Linux server.

5We note, however, that using the size variables does not significantly affect the estimated coefficient
of the Network variable.

6Readers may be tempted to refer to our two-step estimation procedure as a “causal” estimate. We
caution that both regressions are essentially descriptive, and that the two-step estimator only corrects for
selection bias implied by the functional form.
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and Nguyen [3] we employ a two-step specification in which the presence of a com-
puter network is related to its past characteristics according to the following probit
regression:

Pr(Networkgg) = ®(no + n1 log(RLPg2) + n2 log(Skillg2) + @)
N3 log(Computergy,) + naMultigy + pjlndustryg, ;)

where variables are as described above with corresponding marginal effects.

We first estimate Eq. (2) and use its parameter estimates to calculate probability of
a plant having a computer network, and use this in the estimation of Eq. (1) to account
for possible endogeneity bias associated with the Networkgg variable. Specifically,
Pr(Networkgg) = §U(—Networkhat), where € is the cumulative density function for
the standard normal variable and Networkhat is the fitted value of Networkgg. In
short, we estimate the equation

Log(Qoo/Lgg) = Bo + BrsPr(Networkgg) + a1log(Ko7/Lo7) +
O[glog(Mgg/ng) + a510g(Skillgg) + agMultigg + 5)

Z vilndustrygg ; + Z AsSizegg s + €

To estimate this two-step procedure and obtain appropriate standard errors, we apply
Stata’s treatreg procedure with robust standard errors.’

3.2. Weights and size categories

We estimate both weighted and un-weighted versions of our Ordinary Least
Squares and two-stage estimation strategies described above. Note that an “un-
weighted” empirical specification implicitly assigns a uniform weight to all obser-
vations. Our weighted specifications use employer size to recover the aggregate re-
lationship between computer networks and productivity. If the computer network
differential is similar for both small and large plants, this weight will not alter the
point estimate associated with the computer network variable. Because our empirical
evidence suggests differences by plant size, any single summary statistic for the aver-
age association between computer networks and a given worker’s labor productivity
will need to weight by total employment. It proved necessary to use ASM sample
weights to adjust the total employment weight because plants are sampled for the
1999 ASM with greater probability as they increase in size, with plants of greater
than 250 employees being sampled with certainty. Weighting by total employment
alone under-represents the employment of smaller plants, and this correction affects
the weighted estimates that we report in this paper.

7 At this point, we switched to Stata specifically to have the standard errors for two-step estimation
procedure correctly specified.
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Note that we estimated two additional sets of empirical specifications, which we
also include in this paper. One specification weighted the Atrostic and Nguyen [3]
regressions by ASM sample weights. This provides appropriate weights to smaller
plants sampled with lower probability in the ASM. However, because the productiv-
ity differential is so similar among small plants, estimates that weight by the ASM
sample weights are nearly identical to unweighted estimates. Furthermore, we esti-
mated regression models in which plants are weighted by total employment, without
an ASM correction. This specification produces empirical estimates of the associa-
tion between computer networks and productivity that were also negative and some-
times more than twice the magnitude of employment-weighted estimates that employ
the ASM correction. These larger negative estimates do not have a straightforward
interpretation, but we include them for completeness.

To summarize, in the following section we report results for the two weighting
methods that best describe the patterns in the sample under consideration: “un-
weighted” regressions refer to ASM-based regressions that weight all respondents
equally, as in Atrostic and Nguyen [3], and “weighted” or “employment-weighted”
results refer to those specification in which the weight is calculated as total employ-
ment multiplied by the ASM sample weight.

In order to provide an additional empirical reference point, we estimate regres-
sion specifications similar to those in Atrostic and Nguyen [3] separately for plants
we categorize as Small (5-99 employees), Medium (100-249) and Large (250+), to
obtain the relationship between computer networks and productivity for each size
class. These regression specifications may prove informative to readers who, in light
of later evidence that we present on the presence of different levels of adoption of
this technology among establishments of different sizes, and the heterogeneous rela-
tionship between computer networks and productivity, do not find the estimation of
an average association between computer networks and productivity meaningful.

4. Results

Table 1 shows average plant productivity and employment by whether or not the
plant has a computer network, disaggregated by size and whether the firm that op-
erates the plant is multi-unit or not. Employment characteristics are as follows. The
average employment per plant is 237 employees. Among these plants, 45.2 percent
are small plants (<100 employees), 29.2 percent are medium plants (100-249 em-
ployees), and 25.5 percent are large plants (250+ employees). The average employ-
ment counts for small, medium and large plants are 46.8, 161.6, and 661.4 workers,
respectively. While small and medium plants account for 74.5 percent of the total
number of plants in the sample, they employ only 29 percent of total employment.
In contrast, large plants account for only 25 percent of total plants, but employ 71.0
percent of the sample’s employment. Note that while our sample includes less than
10 percent of 350,000 establishments in the U.S. manufacturing sector, it accounts
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Table 1
Plant size, productivity, and employment
Productivity Employment Observations
With  Without  All With  Without All With  Without  All
network network network network network network
By Size
Small 261.3 198.6  249.9 198.6 34.6 46.8 11,245 2,468 13,713
Sizegg,1  266.6 200.7 251.1 28.2 22.8 27.0 5972 1,834 7,806
Sizegg,2  255.2 1924 2485 75.5 68.9 73.0 5,273 634 5,907
Medium  249.7 201.1 2473 201.1 151.6 161.6 8,409 451 8,360
(Sizegg,3)
Large 255.6 270.5 256.0 270.5 990.7 661.4 7,508 232 7,740
Sizegg,a  244.2 184.2  242.7 350.4 341.6 350.2 4,379 118 4,497
Sizegg,5  251.3 290.3 2525 677.8 658.9 677.2 2,167 69 2,236
Sizegg,6  316.7 466.6 3234  1960.9 3201.5 20164 962 45 1,007
By multi-
unit status
Single 157.6 148.7 1559 44.2 44.2 87.8 8,102 1,867 9,969
Multi 298.0 285.0 297.0 234.5 234.5 310.2 19,060 1,284 20,344

All plants 256.1 2042 250.7 250.4 250.4 237.0 27,162 3,151 30,313

Notes: Employment is the average number of employees employed by a manufacturing plant in a year.
Productivity is the total amount of revenue at a plant, measures in thousands of dollars, divided by the
plant’s employment. See text for exact definitions of different size categories.

for more than 40 percent of all manufacturing employment in the U.S. because the
ASM over-samples large plants.

These descriptive statistics indicate that computer networks are associated with
higher productivity among smaller plants, and lower productivity among larger
plants. Note that there are different degrees of computer network penetration by
size. While 10.4 percent of all plants do not have a computer network, 18 percent
of Small plants, 5 percent of Medium plants, and only 3 percent of Large plants do
not have a computer network. Among plants with fewer than 250 employees, labor
productivity is approximately 25% higher among plants with a computer network, in-
dicating a strong, positive relationship between the presence of a computer network
and productivity. However, the productivity differential is clearly negative among
larger plants. Based on simple averages, the largest plants with a computer network
are roughly 25% less productive than those that do not operate a computer network.
Regression adjustment reduces the magnitude of the productivity differences, but not
their direction.

Our regression results using all 29,261 observations (for OLS) are shown in Ta-
ble 2. The un-weighted and ASM-weighted estimates, which over-represent small
plants, indicate that computer networks are associated with 4.3%—4.5% higher la-
bor productivity. The positive estimates obtained from un-weighted regressions con-
firm the Atrostic and Nguyen [3] finding that computer networks are associated with
on the order of 5% higher labor productivity among plants, and who used an un-
weighted empirical specification. Note that un-weighted regressions assign equal
weight to every plant and small and medium plants dominate the sample, and weight-
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Table 2
OLS regression results: All observations
Un-weighted ASM Employment ASM*Empl.
weighted weighted weighted

Intercept 2.781** (170.33)  2.923** (208.66)  2.857** (133.72)  2.808** (169.11)
Networkgg 0.045** (5.83) 0.043** (7.63) —0.075** (7.99) —0.033** (3.97)
Log(Skillgg) 0.044** (13.15) 0.053** (14.71) 0.051** (15.98) 0.053** (16.24)
Log(Ko7/Lo7) 0.089** (40.30) 0.072** (42.94) 0.098** (44.71) 0.093** (42.94)
Log(Mogg/Lgg) 0.491** (197.67)  0.430** (178.64)  0.513** (201.77)  0.492** (195.78)
Multigg 0.124** (22.02) 0.143** (24.91) 0.104** (13.94) 0.107** (16.50)
Sizegg, 2 —0.047** (7.00) —0.017** (2.66) —0.034* (2.14) —0.016+ (1.72)
Sizegg 3 —0.079** (12.23) —0.025** (3.52) —0.060** (4.21) —0.028** (3.20)
Sizegg 4 —0.091** (11.56) —0.002 (0.16) —0.066** (4.58) —0.016+ (1.66)
Sizegg 5 —0.082** (8.33) 0.031* (2.10) —0.058** (4.00) —0.005 (0.56)
Sizegg,6 —0.016 (1.23) 0.117** (5.52) —0.010 (0.73) 0.098** (9.82)
R2 0.7375 0.7033 0.7244 0.7211
Number of plants 29,261 29,261 29,261 29,261

Notes: Table contains results of OLS regressions with plant-level log-labor productivity in 1999 as the
dependent variable. See the discussion of equation (3) for additional details. t-statistics are in parentheses.
**denotes “significant at the 1 percent level”, *denotes “significant at the 5 percent level”, and + denotes
“significant at the 10 percent level”. All empirical specifications include dummy variables for 3-digit
NAICS industry. See text for exact variable definitions.

ing by the ASM provides even more weight to the smaller plants, which are sampled
less frequently.

The simple and composite employment-weighted estimates, by contrast, indicate
a negative relationship. However, even here, there are noticeable differences: the un-
adjusted employment weight indicates that the presence of a computer network is
associated with a 7.5% lower labor productivity, while the employment weighted es-
timate that corrects for ASM sampling indicates that labor productivity 3.3% lower
at plants with a computer network. When weighted by employment, the association
is significantly negative, indicating that computer networks have a strong negative
relationship with the typical worker exposed to them. Note that all estimates of the
coefficient on the computer network variable are statistically significant at the 1 per-
cent level, and so all of the specifications, whether weighted or unweighted, are ro-
bust to sampling error. The results that follow show that the basic distinction — that
the unweighted and ASM weighted estimates show a positive relationship between
computer networks and labor productivity, while the employment weighted estimates
show a negative one — appears in all the subsequent results.

Our empirical specifications also employ a number of control variables. Those
in Table 2 show expected relationships between observable characteristics and la-
bor productivity, however, many of the characteristics are correlated with each other
because larger plants often have higher material-to-labor ratios and capital-to-labor
ratios, and have a higher share of non-production workers. The sign and magnitude
of these other controls are similar across weighting methods. Higher capital-to-labor
and material-to-labor ratios are also consistently associated with higher productivity.
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Table 3
OLS regression results: All observations
Un-weighted ASM Employment ASM*Empl.
weighted weighted weighted

Intercept 0.268** (20.97)  0.168** (15.40) 0.415** (22.40) 0.289** (21.14)
Networkgg 0.025** (3.42) 0.043** (7.88) —0.094** (10.24) —0.039** (5.02)
Log(Skillgg) 0.023** (7.06) 0.032** (9.07) 0.022** (7.13) 0.027** (8.76)
Multigg 0.058** (11.11)  0.057** (10.85) 0.051** (7.18) 0.054** (8.94)
Sizegg 2 0.004 (0.64) 0.024** (3.91) 0.008 (0.54) 0.026** (2.98)
Sizegg,3 —0.007 (1.18) 0.022** (3.18) 0.006 (0.48) 0.035** (4.26)
Sizegg 4 —0.024** (3.19) 0.029** (2.74) —0.012 (0.84) 0.038** (4.27)
Sizegg 5 —0.036** (3.94) 0.025+ (1.74) —0.025+ (1.81) 0.031** (3.31)
Sizegg,6 —0.026* (2.00) 0.0.35+ (1.71) —0.008 (0.59) 0.050** (5.39)
R2 0.0439 0.0408 0.0829 0.0715
Number of plants 29,254 29,254 29,254 29,254

Notes: Table contains results of OLS regressions with plant-level total factor productivity in 1997 as the
dependent variable. See the discussion of equations (2) and (6) for additional details. t-statistics are in
parentheses. **denotes “significant at the 1 percent level”, *denotes “significant at the 5 percent level”,
and + denotes “significant at the 10 percent level”. All empirical specifications include dummy variables
for 3-digit NAICS industry. See text for exact variable definitions.

Those plants that have more non-production workers also exhibit higher productiv-
ity. The size category controls are somewhat less consistent: the larger size category
dummy variables indicate that a higher size is associated with lower productivity in
the unweighted and ASM weighted specifications, but when larger plants are given
a weight according to their size, the size categories indicate that larger plants exhibit
higher productivity.

The basic result also appears when we employ a multi-factor productivity mea-
sure from the 1997 CM, which precedes the 1999 ASM by two years. This follows
the calculation method described in Eq. (2) above to estimate total factor produc-
tivity. Although we have chosen to focus on labor productivity in this paper, note
that the main results of our paper are qualitatively similar if we use an alternative
specification that uses a multi-factor measure of productivity,

LOg(TFP97) = Bo + B1Networkgg + a510g(Skillgg) + agMultigg
+ Z vilndustrygq ; + Z AsSizegg s + €,

and results are shown in Table 3. Readers should exercise caution, because the tim-
ing of the dependent variable, total factor productivity, is 1997, while the computer
network status refers to a plant’s status in 1999. Nevertheless, the results indicate that
the overall findings in Table 2 are robust to the particular productivity measure em-
ployed, as the point estimates show similar effects for lagged total factor productivity
and contemporaneous labor productivity. The estimates that weight large plants with
exactly (unweighted) or approximately (ASM weighted) the same weight as small
plants show an indicates that the presence of a computer network is associated with
2.5%—4.3% higher total factor productivity, whereas the labor productivity specifi-
cation indicated 4.3%—4.5%. The employment weighted estimates also agree in sign

(6)
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and approximately in magnitude: the unadjusted employment weight indicates that
the presence of a computer network is associated with 9.4% lower total factor pro-
ductivity, whereas the labor productivity estimate only suggested a 7.5% penalty, and
the final correction of both productivity measure indicates a smaller penalty, of 3.9%
for total factor productivity, but only 3.3% for the labor productivity specifications.
These results are quite similar despite the lag because productivity is relatively per-
sistent within U.S. manufacturing plants, see Foster, Haltiwanger, and Syverson [9].
Readers should also note that the assumed production function underlying the func-
tional forms in both sets of specifications is a Cobb-Douglas function of capital,
labor, and materials.

Results for the two-stage estimation technique include 27,007 observations, and
are shown in Table 4.3 The two-stage regression results in Table 4 are similar in
sign to those obtained from OLS regression in Table 2: the unweighted and ASM-
weighted estimates both indicate a positive relationship between the presence of a
computer network and labor productivity, while the employment-weighted and com-
posite weights indicate that computer networks are associated with lower productiv-
ity. This indicates that the direction of the OLS results (see our discussion of Table 6
below for the magnitude) are robust to instrumenting: they are apparent even when
we restrict identification to differences in the presence of a computer network could
be predicted based on computer expenditures in 1992.

Table 5 shows the regression results by our three broad size categories. It is clear
that the effect of computer networks on productivity is positive and significant for
plants in our Small and Medium categories. However, for larger plants in our Large
category, which have 250 or more employees, computer networks are clearly asso-
ciated with lower productivity, and this relationship is robust to both control for ob-
servable characteristics and our two-stage approach. Specifically, OLS results show
that computer networks are associated with a 4.6 percent increase in labor productiv-
ity for Small plants and 7.6 percent increase for Medium plants. However, computer
networks are associated with a 6.4 percent decline in labor productivity among the
set of largest plants.

The interpretation of the magnitudes of the two-step estimates in Tables 4 and 5
is less straightforward than those of the OLS regressions. This is because the vari-
able Networkgg in the OLS regression is a dummy variable whose value is either 0
or 1, whereas the Pr(Networkgg) variable in the two-stage regressions is continuous
and has value between 0 and 1. Therefore, following Atrostic and Nguyen [3], we
compare the effects of computer network on plant productivity at two points in the
predicted productivity having a computer network. These comparisons are reported
in Table 6. The percentage productivity increase (or decrease) is calculated by mul-
tiplying the difference in the predicted probability of having a computer network by

8The sample reduced to 27,007 observations due to missing values in 1992 for certain variables such as
COMPy2 (computer investment in 1992) and SKILLg2 (non-production workers/total employment ratio).
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Table 4
Two-stage regression results: All observations
Un-weighted ASM Employment ASM*Empl.
weight weight weight
Intercept 2.688** (135.41) 2.890** (48.39) 3.316%* (61.31) 3.314*%* (72.69)
Pr(Networkgg ) 0.310** (17.86) 0.504** (18.32) —0.628** (17.96) —0.616™* (25.35)
Log(Skillgg) 0.044** (12.50) 0.051** (6.28)  —0.035** (4.10) 0.036** (5.09)
Log(Ko7/Lo7) 0.091** (39.95) 0.072** (12.22) 0.098** (15.54) 0.093** (15.73)
Log(Mogg/Lgg) 0.488** (184.37) 0.406** (38.08) 0.510** (46.54) 0.448** (55.18)
Multigg 0.091** (15.04) 0.072** (5.00) 0.118** (11.43) 0.151** (15.17)
Sizego,2 —0.048** (6.87) —0.018+ (1.71) —0.027** (3.27)  —0.009 (0.82)
Sizego,3 —0.078** (11.51)  —0.022* (2.05) —0.047** (5.29)  —0.017+ (1.61)
Sizegg 4 —0.087** (10.72) 0.007 (0.57) —0.050** (4.62)  —0.005 (0.38)
Sizego, 5 —0.082** (8.19) 0.033* (2.20) —0.047** (3.78) 0.020 (1.48)
Sizeg9,6 —0.014 (1.06) 0.123** (6.68) 0.024 (1.37) 0.105** (5.26)
Number of plants 27,007 27,007 27,007 27,007

Notes: Table contains results of OLS regressions with plant-level log-labor productivity in 1999 as the
dependent variable, see the discussion of equation (3) for additional details; also the results of two stage
regressions with plant-level log-labor productivity in 1999 as the dependent variable, see the discussion
of equations (4) and (5) for additional details. t-statistics are in parentheses. **denotes “significant at
the 1 percent level”, *denotes “significant at the 5 percent level”, and + denotes “significant at the 10
percent level”. All empirical specifications include dummy variables for 3-digit NAICS industry. See text
for exact variable definitions.

Table 5
Regression results by plant size

Small plants Medium plants Large plants
5 < Lgg < 100 100 < Lgg < 250 250 < Log
OLS Two-stage OLS Two-stage OLS Two-stage
Intercept 2.821** 2.788** 2.561** 2.448** 2.853** 3.406**
(117.46) (95.35) (82.21) (64.87) (70.20) (83.31)
Networkgg 0.045** =) 0.076** -) —0.063** =)
(4.86) (4.48) (2.60)
Pr(Networkgg ) -) 0.443** -) 0.356** -) —0.667**
(20.18) (11.37) (25.43)
Log(Skillgg) 0.053** 0.051** 0.025** 0.023** 0.051** 0.044**
(9.52) (8.60) (4.29) (3.83) (8.17) (7.08)
Log(Ko7/Lo7) 0.073** 0.075** 0.096** 0.095** 0.099** 0.099**
(21.52) (20.43) (24.21) (23.84) (23.03) (23.053)
Log(Mogg/Lgg) 0.475** 0.461** 0.512** 0.506** 0.498** 0.500**
(131.25)  (112.63) (110.61)  (105.98) (93.67) (93.93)
Multigg 0.148** 0.108** 0.088** 0.083** 0.111** 0.116**
(18.52) (12.08) 9.51) (8.66) (2.60) (6.94)
R2 0.7547 - 0.7442 - 0.6924 -
Numbers of plants 12,887 11,117 8,726 8,400 7,648 7,490

Notes: Table contains results of two stage regressions with plant-level log-labor productivity in 1999 as
the dependent variable. See the discussion of equations (4) and (5) for additional details. t-statistics are in
parentheses. **denotes “significant at the 1 percent level”, *denotes “significant at the 5 percent level”,
and + denotes “significant at the 10 percent level”. All empirical specifications include dummy variables
for 3-digit NAICS industry. See text for exact variable definitions.
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Table 6
Two-stage estimates by percentile

Percent (%) increase
in labor productivity

Percentiles (%) of Pr(Networkgg ) Unweighted ASM*Empl. Weighted
Small 1% (0.5049) versus 99% (0.9805) 21.06%
plants 5% (0.6219) versus 99% (0.9805) 15.87%
18% (0.7535) versus 99% (0.9805) 10.06 %
25% (0.7885) versus 99% (0.9805) 8.51%
Medium 1% (0.8386) versus 99% (0.9886) 5.34%
plants 5% (0.8861) versus 99% (0.9886) 3.65%
10% (0.9042) versus 99% (0.9886) 3.00%
25% (0.9365) versus 99% (0.9886) 1.85%
Large 1% (0.9228) versus 99% (0.9929) —4.67%
plants 3% (0.9379) versus 99% (0.9929) —3.67%
10% (0.9464) versus 99% (0.9929) —3.10%
25% (0.9577) versus 99% (0.9929) —2.35%
All 1% (0.6085) versus 99% (0.9941) 11.95% —23.75%
plants 5% (0.7320) versus 99% (0.9941) 8.12% —16.14%
10% (0.7941) versus 99% (0.9941) 6.20% —12.32%
25% (0.8725) versus 99% (0.9941) 3.77% —7.49%

Notes: The estimated increases in labor productivity are calculated by comparing different points in the
distribution of the predicted probabilities of having a computer network (i.e., Pr(Networkgg )). For exam-
ple, the first row compares plants in the 15¢ and 99t percentiles of the predicted probability of having a
computer network. Bolded lines indicate the percentile closest to the sample average for ownership of a
computer network. See text for exact variable definitions.

the estimated coefficient of the Pr(Network) variable. For example, a Small plant at
the 99*" percentile of the probability distribution (0.9805) enjoys a labor productiv-
ity that is higher than that in the plant at the 15t percentile (0.5049) in the predicted
probability distribution by 21.06 percent (= (0.9805-0.5049) x 0.443). Since 18
percent of Small plants in our working sample do not have a computer network, we
compare a plant at the 18" percentile (likely not having a computer network) to
a plant at the 99*" percentile of the probability distribution (most likely to have a
computer network). We find that computer networks are associated with 10.06 per-
cent higher labor productivity in Small plants. For Medium plants, only 5 percent
do not have a computer network. Comparing a Medium plant at the 5*" percentile
to its counterpart at the 99*"" percentile in the probability distribution, we find that
the association between computer networks and labor productivity among medium
plants is 3.65 percent. Finally, comparing a Large plant at the 3" percentile and its
counterpart at the 99*" percentile in the productivity distribution, we find that the
productivity difference is —3.67 percent.

5. Discussion and concluding remarks

The empirical phenomenon that establishments with computer networks exhibit
higher labor productivity, presented in Atrostic and Nguyen [3], is entirely due to
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small- and medium-sized establishments. Larger plants that employ 250 or more
employees but lack a computer network exhibit higher productivity than similar
large plants with a computer network. Regression specifications that weight all plants
equally indicate a positive relationship between the presence of a computer network
and productivity, while employment-weighted regressions indicate a negative rela-
tionship. This indicates that although the typical plant exhibits an increase in labor
productivity in the presence of a computer network, the trypical worker exhibits lower
productivity in the presence of a computer network.

This apparent negative employment-weighted effect of computer network sug-
gests that empirical evidence on the effect of computer networks on small- to
medium-sized manufacturing establishments has limited ability to explain aggre-
gate trends in economic growth. For example, Stiroh [19] notes that IT-intensive
industries have grown at a 1% faster rate than industries that use IT less intensively.
Jorgenson [12] furthermore argues that information technology during the 1990s ac-
counts for roughly 0.5% percent of GDP growth and around 1% of GDP growth in
later years, for a total of on the order of 10% or so to U.S. GDP. The unweighted
point estimate in this study and in Atrostic and Nguyen [3] indicates that the adop-
tion computer networks adds around 5% to manufacturing plants’ productivity. This
implies that the near-universal (90%) adoption of computer networks by the man-
ufacturing industry in 1999, which at the time had about 15% of U.S. employment
would contribute roughly 5%*15% = 0.75% to U.S. GDP, and so could plausibly
explain some of these overall gains. However, the micro-level gains from computer
networks seem only to represent the effects of computer networks at smaller plants,
and when considering aggregate output, these gains are outweighed by a negative
relationship among the relatively small number of large plants.

Our results demonstrate the importance of considering sample weights when con-
ducting establishment-level efficiency analyses. Un-weighted regressions give estab-
lishments that employ few people as much influence on the parameter estimates as
larger plants. While this makes sense when treatment effects do not vary by plant
size, we have showed that this is clearly not the case in our dataset. Regression
specifications that measure the relationship between computer networks and labor
productivity, even those that include control variables for establishment size, show
a positive relationship. Assigning establishments weights commensurate with estab-
lishment size highlights the negative relationship between computer networks and
labor productivity, and, therefore, represents aggregate relationships more clearly.
While we do not want to discourage un-weighted regression specifications, we hope
that this study highlights the danger of using un-weighted establishment-level esti-
mates to explain economy-wide trends. We furthermore recommend that researchers
who have an establishment size variable either run results separately by plant size
to test for heterogeneous treatment effects, or compare unweighted estimates with
employment-weighted ones as a more general test for model misspecification, see
Solon et al. [18].
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We would like to point out the greatest limitation of our results is the fact that the
negative effect of computer networks on productivity is driven by a relatively small
number (3%) of large employers. This limitation is inherent to the measure of IT in-
tensity employed, and may be able to be overcome using different data that permits
IT investments to be captured with a continuous rather than a binary variable. An-
other potential concern is whether large, productive plants may have become smaller
due to the presence of a computer network. There is some evidence that manufactur-
ing plants employ fewer people when they utilize IT more intensively. For example,
Brynjlofsson et al. [7] show that IT investment leads to a shift in the firm size distri-
bution in favor of smaller firms. Similarly, Bardhan, Whitaker and Mithas [5], using
CM data and a supplemental survey, find that information technology investments
are positively associated with outsourcing decisions, which naturally may allow es-
tablishment sizes to decrease.

We would like this paper to serve as a reference point in how to interpret the
computer network productivity differential. An increasing number of studies note
positive effects of computer networks on business outcomes, and discussion of dif-
ferential effects generally considers which point estimate is the “most positive.” We
have found using data that produces the “standard” result of IT investments on pro-
ductivity, that weighting by employment actually produces a negative effect. This
may be because small establishments outsource their computer network rather than
having an in-house IT department, or there could be some ability for small establish-
ments to increase productivity based on the fact that the information managed by the
computer network is shared among fewer individuals. We hope that future studies
can re-assess this productivity differential to see whether it holds more generally,
and, if it does, attempt to provide a mechanism by which it occurs.
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