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Abstract. Walking is a fundamental daily activity of humans. Therefore, the walking ability is regarded as a valuable predictor
of mortality rate and activities of daily living (ADL). In this paper, we propose a walking ability assessment system that can
be installed easily in a home. The main component of this system is a low-cost distance sensor array, which allows walking
speed and step length measurements. Furthermore, the proposed system can accurately extract regular walking data. Results of
an experiment conducted with elderly people show that the system has adequate performance; Mean absolute relative errors are
6.5% (walking speed) and 3.8% (step length). Those superior results demonstrate that the proposed system can be a promising
tool for daily assessment of walking ability.
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1. Introduction

Walking, the most fundamental form of mobility, is
extremely important for humans to maintain normal
activity in society. Declining walking ability in older
adults causes mobility limitation [17,19]. Thereby, it
brings about functional limitations and disability [18].
Walking ability can be a predictor of mortality [9] and
decline in activities of daily living (ADL) [7]. Con-
cretely, walking speed and step length reportedly have
a relation to survival rate and fall risk [14,25]. More-
over, that ability can be an index predicting cognitive
decline [15] because walking is a complex cognitive
task [10]. To summarize, “daily” assessment of walk-
ing ability is necessary for detecting decline in walk-
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ing ability. Our target is non-diseased older people who
can walk without a cane and who live alone in their
homes. Early detection of walking ability deteriora-
tion in homes makes it possible to offer elderly peo-
ple suitable medical treatment before their condition
worsens.

However, conventional walking ability measure-
ment methods present important problems hindering
the realization of daily measurement. Table 1 presents
benefits and shortcomings of respective methods. Fea-
tures of each method are described below.

The 10-meter or 5-meter walking test is widely
adopted as a simple method. Walking speed is mea-
sured mainly using a stopwatch. Supplementarily, step
length or cadence is calculated by counting steps. This
method requires elderly people to go to a medical in-
stitution or a nursing facility for measurements.
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Table 1

Qualitative comparison of potential home-based methods for gait
measurement

For studies that have undertaken detailed walking
analyses in the medical field, floor pressure sensor sys-
tems are usually used [4,5]. Floor sensor systems can
measure not only temporal and spatial parameters (i.e.
cadence and step length), but also the floor reaction
force. However, such systems are extremely expensive
and can be used only in limited locations, such as some
research institutions or medical facilities. It is difficult
for this method to become widespread as a daily means
of walking ability assessment.

Many systems incorporating wearable sensors have
been proposed in recent years because they facilitate
continuous assessment by automating measurement
procedures. These studies, which use gyroscopes or
accelerometers in most cases [1,2,20,21], can assess
walking ability in an unstructured environment. How-
ever, such systems have a critical weak point: they re-
quire a user to wear a device continuously which might
be troublesome, especially for elderly people.

Home monitoring systems have been proposed for
the assessment of residents’ walking ability. For exam-
ple, Stone et al. [23] use cameras to estimate walking
speed and step length. The latest work [24] uses Kinect
(Microsoft Corp.) equipped with an RGB camera and a
depth sensor. Those methods are vulnerable to illumi-
nation change and occlusion. In addition, when those
systems are installed in a home, the preservation of pri-
vacy can pose a severe problem.

Passive infrared (PIR) sensors are inexpensive and
non-invasive. They have been used in homes for as-
sessment of walking [3,8]. In these studies, walking
speed is estimated using an array of PIR sensors in-

stalled on a ceiling. Although PIR sensor systems can
detect human motion roughly, they are incapable of
measuring foot movements. Furthermore, initial con-
struction costs present a barrier for installation in a
home because PIR sensors are usually mounted on a
ceiling to prevent thermal disturbances.

As stated above, these conventional methods present
some problems in terms of price, ease of installation,
and privacy preservation. Moreover, walking param-
eters should be estimated without troublesome initial
configurations that requires a person’s individual cal-
ibration or learning from previously acquired training
data. We propose a system using a distance sensor ar-
ray device as a practical system satisfying these re-
quirements. The proposed system uses our original al-
gorithm for step length and walking speed estimation.
The algorithm requires no complicated calibration or
learning procedures.

The organization of this paper is as follows. Sec-
tion 2 presents an overview of the distance sensor ar-
ray device and discusses the possibilities of the pro-
posed system. Section 3 explains the development of
the distance sensor array device. In Section 4, walking
ability estimation algorithms are presented: (1) regular
walking data extraction algorithm, (2) step length es-
timation algorithm, and (3) walking speed estimation
algorithm. Section 5 describes experiments conducted
to evaluate the performance of the proposed system,
not only with healthy young adults but also with older
adults. Section 6 presents important conclusions.

2. Easy-to-install system for daily walking ability
assessment

2.1. Overview of distance sensor array device

Precise measurement of foot movement is indis-
pensable to measure walking ability. A distance sen-
sor is selected as a basic element of our device. The
device comprises multiple distance sensors, constitut-
ing a distance sensor array. The proposed system mea-
sures walking along the sensor array and estimates the
walking indexes from data acquired by the device.

Figure 1 shows a conceptual sketch of the distance
sensor array installed in the hallway of a house. To ob-
tain standardized walking data, this device should be
installed in a hallway along which a resident usually
walks straight. The distance sensor array measures dis-
tances between sensors and resident’s feet while the
resident is walking. Time series data of walking are ob-
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Fig. 1. Conceptual sketch of system installation in a house.

tained by sampling the output of each sensor with high
frequency. Finally, walking ability can be estimated by
analyzing the time series data. The device length is
expected to be about 1.0 m for easy installation and
for a resident’s comfortable life. In one day, multiple
walking data are expected to be obtained by our sys-
tem.

2.2. Possibility of the proposed system

This system presents important benefits from the
perspective of privacy, ease of installation, and cost.
First, the device will not be rejected by users because
the device cannot reveal details of their personal life.
Second, installation of this device can be done sim-
ply by putting the device on a floor. Finally, the dis-
tance sensor is an inexpensive sensor in itself. It is nec-
essary to optimize the number of distance sensors to
realize an inexpensive device. The benefits explained
above enable us to infer that the proposed system us-
ing a distance sensor array has high implementability
and practicality for automatic walking measurement in
a home.

Fig. 2. PSD sensor and its principle.

Fig. 3. Electro-optical characteristics of the PSD sensor
(GP2Y0A21-YK0F). This graph is made from the data-sheet [6].

3. Development of distance sensor array device

This section presents details of the developed dis-
tance sensor array device.

3.1. Distance sensor specifications

We adopted a distance sensor module (Sharp Corp.;
GP2Y0A21YK0F, Fig. 2, left) as the main component
of this device. This sensor module is composed of an
infrared light emitting diode (LED) and a position sen-
sitive device (PSD). The LED emits infrared light one
thousand times per second. Then a target object re-
flects it. As Fig. 2 shows, the PSD detects the posi-
tion of the light spot on a sensor surface. Then the dis-
tance between the sensor and a target object is mea-
sured by triangulation. This sensor can measure from
100 to 800 mm. Figure 3 portrays the electro-optical
characteristics of the PSD sensor.

3.2. Device specifications

Figure 4 presents an overview of the developed dis-
tance sensor array device. Distance sensors are ar-
ranged at intervals of 50 mm. Because the ankle width
is about 60–90 mm, this device can absolutely de-
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Fig. 4. Overview of distance sensor array device.

Fig. 5. Close-up view of the measurement circuit and connections
among multiple circuits.

tect a human ankle. Every four sensors are attached
to one measurement circuit module. Six modules are
connected and embedded in a case. Figure 5 shows a
close-up view of the measurement circuit and connec-
tion between multiple circuits. Those six modules use
the same electronic circuit board. Their identifiers are
configured simply by changing jumper settings. Using
the same circuit board to replace six different boards
can reduce costs. The total number of sensors is 24.
The full length of the device is 1200 mm, which is
short enough to install in a hallway, but long enough

Fig. 6. Block diagram of distance sensor array.

Fig. 7. Data processing flow in the system.

to capture two or more steps for measuring step length
because one step is generally 800 mm long, at most, for
an adult male [11]. In our design, the distance sensors
are placed vertically at 50 mm height above the floor.
These specifications are based on the results of a pre-
liminary experiment. Appendix A presents the details
of the preliminary experiment.

Figure 6 is a block diagram of the distance sensor ar-
ray. The distance sensors output is sent to multiplexers
in a control circuit. A microcontroller operates analog-
to-digital conversion and sends values to PC through
wireless module XBee. The output voltages of 24 dis-
tance sensors can be acquired at 60 Hz. A PC program
estimates the step length and walking speed by analyz-
ing time series distance data.

4. Walking ability estimation algorithm

Figure 7 portrays the system flow from data acqui-
sition to data processing. First, regular walking data
are extracted from the output of a distance sensor ar-
ray device. Second, the step length is estimated from
the extracted data. Finally, the walking speed is esti-
mated. To estimate the walking speed, the estimated
step length value is used. In these estimation processes
of step length and walking speed, no troublesome cal-
ibration is necessary. The following sections describe
algorithm details.
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Fig. 8. Binary image generated from raw data.

4.1. Regular walking data extraction algorithm

In an actual home environment, not all output of
the device is a response to regular walking. Output in-
cludes noise and data obtained when a resident wan-
ders around the device. It is necessary to extract only
regular walking data as a result of straight walking.
This section describes a process for extracting regular
walking data from the device output.

The top of Fig. 8 depicts the conversion of raw data
to a graph. The horizontal axis shows the time. The
vertical axis shows the sensor output (distance). The
middle of Fig. 8 shows converted sensor output as a
grayscale image. The bottom of Fig. 8 shows a binary
image. The binary image is created from the grayscale
image by binarizing with a threshold (800 mm) be-
cause the maximum measurement distance of the sen-
sor is 800 mm and the output distance is 800 mm or
less when the sensor reacts to a foot or an obstacle.
One pixel of this binary image has information related
to the reaction of each time and each sensor. We ex-

plore a regular walking data extraction algorithm using
this binary image.

The extraction of regular walking data is conducted
in two steps, as Fig. 9 shows. In the first step, a period
during which at least one sensor reacts is extracted. For
example, Fig. 9 shows four candidates of regular walk-
ing data. Only (3) shows regular walking data, (1) and
(2) are noise, and (4) is obtained when a person stops
on the way. The following two conditions can be crite-
ria to extract regular walking data from the candidates
in the first step:

– Condition 1: All the sensors react at least one
time.

– Condition 2: The elapsed time of data is less than
3.0 s.

Condition 1 means that all the sensors from one end
to the other end should detect feet in regular walk-
ing data. Condition 2 means that people are expected
to walk 1.2 m within 3.0 s when they walk straight.
Under this condition, the system misinterprets a per-
son walking straight at less than 0.4 m/s. This misin-
terpretation is not a severe problem because 0.4 m/s
is not a normal walking speed, even for elderly peo-
ple.1 Through these processes, only candidate data (3)
are recognized as regular walking data, as shown in
Fig. 9.

4.2. Step length estimation algorithm

This algorithm aims to determine the lengths be-
tween various steps during human walking. Our pro-
posed algorithm estimates the step length by measur-
ing two foot-landing positions. When a person walks
along the distance sensor array device and the person’s
foot lands near a specific sensor, that sensor detects
it for a long time. Here, we define “reaction weight”
at each sensor as the summation of outputs at a cer-
tain time. In the top image of Fig. 10, the hatched area
shows the reaction weight at each sensor. The bottom
part of the figure presents a bar graph showing all sen-
sors’ reaction weights. Because reaction weights near
landing positions become larger, peaks are extracted
as the landing positions. The bottom part of Fig. 10
shows data obtained when two foot landings are ob-
served. Two peaks are evident in this chart. The follow-
ing peak-extractor-processes detect abstract positions
of peaks.

1Generally speaking, anyone who can not walk at more than
0.4 m/s should go to adequate facilities for medical care.
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Fig. 9. Regular walking data extraction procedure from time-series data.

Fig. 10. Step length estimation algorithm.

1. Apply a moving average filter calculated from
three data points.

2. Calculate the increase and decrease of three ad-
jacent points. If a point is a local maximum, the
point is recognized as a peak.

Next, the local center of gravity of reacting weights
is calculated from five neighboring sensors. The local
center of gravity xc is calculated as

xc =
∑n+2

k=n−2 mkxk
∑n+2

k=n−2 mk

(1)

where k is a sensor ID, xk denotes the sensor position,
mk is the reaction weight of sensor k, and n represents

Fig. 11. Binary image created from distance sensor array data and
motion capture data. Horizontal axis shows time. Vertical axis shows
the foot moving distance.

the sensor ID of the abstract peak. The local centers of
gravity are treated as estimated landing positions. Then
the step length is calculated as the distance between
the adjacent local centers of gravity.

4.3. Walking speed estimation algorithm

Next, this section describes a walking speed esti-
mation algorithm. First, a walking movement is not
a uniform motion involving the whole human body.
Consequently, it is difficult to estimate walking speed
merely by monitoring the speed of a specific human
body part. For this reason, we devised the following
technique to extract one walking movement sequence.
The predefined binary image can be a good clue for
this technique. Figure 11 portrays a binary image ob-
tained when a person walks along the device and tra-
jectories of right and left foot movement acquired by a
motion capture system. This motion capture data show
that the right foot is moving forward while the left foot
is contacting the ground – and vice versa. Similarly,
the binary image shows the trajectory of the move-
ment of both feet. For this study, we use the binary
image and estimate walking speed by extracting one
cycle of walking. The cycle starts at the heel strike of
a foot and ends at the other foot heel strike. Detailed
procedures of walking speed estimation are shown in
Fig. 12.

Step 1: Dilate and erode the binary image for elimi-
nating small holes and filling gaps [22].
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Fig. 12. Walking speed estimation algorithm.

Step 2: Detect the lines denoting landing in the bi-
nary image using a Hough Transform [12]. These lines
are parallel to the time axis because the sensor ID val-
ues are constant. Consequently, in a parameter space
for the voting procedure, the angle parameter is re-
stricted to 0 deg (parallel to the time axis) so that un-
necessary lines might not be detected. Two foot steps
are detected as multiple lines as shown in the third im-
age of Fig. 12.

Step 3: Classify these detected lines in Hough pa-
rameter space. At this point, because the number of
landings in the sensing area is unknown, the number of
clusters is also unknown. Therefore, aggregative hier-
archical clustering is adopted as the clustering method
because it is not necessary to define the cluster num-
bers in advance. The minimum pixel number in the
sensor ID axis between two lines is the stopping cri-
teria of clustering. If the distance between the clos-
est two lines from different clusters is greater than a
threshold value (4 pixels; 200 mm in our implemen-
tation), then the clustering process stops. In fact, two
steps are classified as two clusters in the fourth image
of Fig. 12. Pixels of the end points of the detected lines
show the time when the sensors begin to react to the
landings. The median of the end points is defined as the
estimated landing time because one landing includes
multiple lines. Two consecutive landing times are esti-

mated in this way. Step duration, the total time spent on
a step, is calculated by subtracting these times. Walk-
ing speed is calculated as the estimated value of the
step length divided by this step duration.

4.4. Benefits of estimating algorithms

These algorithms entail no troublesome calibration.
Nevertheless, it is difficult for these algorithms to be
applied to extremely slow walking. For walking when
the step length is shorter than the foot length, peak de-
tection is difficult in the step length estimation process
because landing positions overlap. In addition, these
algorithms require no complex calculations. Moreover,
the system processes walking data in real time.

5. Experiments

5.1. Experiment of regular walking data extraction

In the regular walking data extraction procedure,
our proposed system eliminates action data other than
that of regular walking. The algorithm is applied to
regular walking data and other action data. Its per-
formance is evaluated. Four healthy men (aged 21–32
years, mean age 25.0 years) participated in the exper-
iment. They walked 20 times straight and smoothly
along the sensor array device. In addition, non-walking
pseudo-action data were collected by the device. The
participants were given some instructions to play non-
walking actions. Collected data were classifiable into
five action groups based on the home monitoring result
presented in Appendix B. Each participant did each
non-walking action twice. Figure 13 depicts examples
of collected data. The data are shown as binary images.
In summary, we obtained 80 regular walking data and
40 non-walking action data.

“Precision”, “Recall (Sensitivity)”, and “Speci-
ficity” described in Eqs (2), (3), (4) are used as evalu-
ation indexes.

Precision = Nwe/Ne (2)

Recall (Sensitivity) = Nwe/Nrw (3)

Specificity = Nnwe/Nnw (4)

Therein, Nwe denotes the number of regular walking
data among extracted outputs through the algorithm,
Ne is the number of all outputs extracted as regular
walking,2 Nrw denotes the number of all regular walk-

2This includes non-regular walking data.
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Fig. 13. Measurement and example data of various actions.

Table 2

Regular walking data extraction performance

Precision Recall (Sensitivity) Specificity

97.6% (80/82) 100% (80/80) 95.0% (38/40)

ing data collected in this experiment, Nnwe represents
the number of non-walking data among not-extracted
outputs, and Nnw is the number of all non-walking data
collected in this experiment.

Results are shown in Table 2. All regular walking
data are extracted, which means that Recall (Sensitiv-
ity) is 100%. In contrast, Precision is 97.6% and Speci-
ficity is 95.0% because of the incorrect extraction of
two other action data. These two data are “Stop on
the way” data that were collected from two different
participants. 21 data including incorrect data were tar-
gets of step length and walking speed estimation for
these two participants. Estimation results are shown
in Fig. 14. The estimated values from regular walking
data are concentrated in a certain area. However, the
estimated value from “Stop on the way” is plotted at
a distant position from the area. Non-walking data can

Fig. 14. Results of step length and walking speed estimation for ex-
tracted data as regular walking.

Fig. 15. Close-up view of floor sensor and acquired data sample.

be excluded easily based on the average and distribu-
tion of regular walking data.

5.2. Basic performance evaluation

To examine the basic performance of walking ability
estimation, we conducted an experiment with healthy
young adults. This experiment was conducted to ver-
ify the feasibility of our system and to fix experimen-
tal procedures before conducting an experiment with
elderly people. Participants were 8 men (aged 21–32
years, mean age 23.5 years). In the experiment, a high-
resolution floor pressure sensor system [16] was used
for acquiring reference data. Figure 15 (left) portrays a
close-up view of the floor pressure sensor system. Ta-
ble 3 shows specifications of the floor pressure sensor
system. To collect walking data using both the distance
sensor array device and the floor pressure sensor sys-
tem, we constructed a walkway as shown in Fig. 16.
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Table 3

Sensor Floor Specifications

Sensing Area 2000 × 2000 mm

Sensor Pitch 7 mm

Output Data ON-OFF (1 bit)

Transition Pressure 25 kPa

Sampling Frequency Approx. 20 Hz

Data Transfer Rate 115200 bps

Data Type Compressed Character

Fig. 16. Walkway used for the experiment.

From floor pressure sensor system data, two steps’
footprints were extracted using a labeling process. Fig-
ure 15 (right) portrays an example of extracted foot-
prints. Tail ends of two footprints are designated re-
spectively as x1 and x2. The first time stamps, when
the footprints are detected, are designated as t1 and t2.
Consequently, step length l and walking speed v are
calculated in Eq. (5).

l = x2 − x1, v = l

t2 − t1
(5)

Participants walked 20 times. Although the total num-
ber of walking samples was 160, 158 data were used
for evaluation. Two data were excluded because two
steps were not detected. When a step length was too
long compared with the distance sensor array device,
only one step was detected. Sometimes more than
three steps were detected. However, the first two steps
were used to estimate the step length and walking
speed.

Evaluation indexes were mean absolute error
(MAE), mean of the absolute relative error (MARE),
and standard deviation of the absolute relative er-
ror (σARE). MAE is an average of the absolute error
value and calculated in Eq. (6). MARE is calculated
as shown in Eq. (7). Absolute relative error (ARE) is
calculated in Eq. (8).

MAE is a metric used to evaluate how precisely the
algorithms estimate walking ability in the view of its
original unit. In contrast, MARE shows the accuracy
ratio: relative performance. Compared to root mean

Fig. 17. Comparison of estimated and reference values in the basic
experiment.

squared error (RMSE) and relative root mean squared
error (RRMSE), they are stable against outliers.

MAE = 1

N

N∑

k=1

|yk − ŷk| (6)

MARE = 1

N

N∑

k=1

|yk − ŷk|
ŷk

(7)

ARE = |yk − ŷk|/ŷk (8)

In those equations, yk is a value estimated by the dis-
tance sensor array device, ŷk is the ground truth mea-
sured by the floor pressure sensor system, and N is the
number of data.

Figure 17 presents scatter diagrams of the step
length and walking speed. Reference values are plot-
ted on the horizontal axis. Estimated values are plot-
ted on the vertical axis. Almost all obtained data are
distributed over step length 500–700 mm and walking
speed 0.8–1.2 m/s. As shown in Table 4, the step length
and walking speed can be estimated with high accu-
racy. MARE is less than 5% for both these indexes.
The superior estimation accuracy was demonstrated in
step length (about 15 mm), although distance sensors
are arranged at intervals of 50 mm.

5.3. Experiment with elderly people

Based on the result of the basic performance evalua-
tion, we conducted an experiment with elderly people,
who are the main target of this research. Ten partici-
pants (5 men and 5 women, aged 72–86 years, mean
age 78.5 years) participated in the experiment. All par-
ticipants were attendees of “the Japanese Red Cross
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Table 4

Error scores in the basic experiment

Walking Speed Step Length

MAE 0.046 m/s 15.1 mm

MARE 4.8% 2.6%

σARE 3.8% 2.5%

Fig. 18. Snapshot of the experiment with elderly people.

Day Care Center”. However, they were able to walk
without a cane. Before the experiment, we obtained
permission to conduct the experiment from the Center
Director. All participants were informed of the purpose
and methods of this study. Written informed consent
was obtained from each participant’s family. The ex-
perimental setup was the same as that of the basic per-
formance evaluation experiment. Figure 18 presents
a snapshot of the experiment. Ten walking sequences
were observed for each participant. We analyzed 100
walking sequences.

Experimental results are presented in Fig. 19 and Ta-
ble 5. Obtained data are distributed over step lengths
of 300–600 mm and walking speed 0.5–1.0 m/s. Step
length and walking speed were estimated with high ac-
curacy, as shown also for the prior experiment. How-
ever, MARE and σARE, which show relative error, are
worse than the results of the prior experiment. This
is because denominators of those indexes are smaller,
which means that the step length is shorter and walk-
ing speed is slower for elderly people than for healthy
young participants. In fact, MAE, which corresponds
to the resolution of estimation, shows a superior score
that is equivalent to that of the prior experiment.

6. Conclusion

We proposed a system for the daily assessment of
walking ability using a distance sensor array device.

Fig. 19. Comparison of estimated and reference values for the ex-
periment with elderly people.

Table 5

Error scores of the experiment with elderly people

Walking Speed Step Length

MAE 0.051 m/s 17.4 mm
MARE 6.5% 3.8%
σARE 4.3% 3.3%

The system uses a simple device comprising inexpen-
sive distance sensors. The proposed system has several
benefits: preservation of privacy, ease of installation,
and cost.

The system performance was verified in several ex-
periments. First, non-walking action data can be ex-
cluded with high probability using simple conditional
processes. Second, we conducted experiments not only
with younger people, but also with elderly people. The
experimental results prove that walking parameters can
be estimated with high accuracy using the proposed
system. Especially, the proposed algorithm can esti-
mate step length with 15 mm accuracy and walking
speed with 0.05 m/s accuracy on average. Based on
these results, we conclude that the proposed system
can be a useful tool for the daily assessment of walking
ability.

In future work, the algorithm will be extended to
the estimation of parameters related to walking bal-
ance such as single supporting time and double sup-
porting time. In addition, this paper is merely the first
step for daily gait monitoring. We must study whether
our system can detect signs of specific diseases such as
Parkinson’s disease.
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Fig. 20. Two design parameters: height and direction of sensors.

Fig. 21. Snapshot of the distance sensor array prototype.
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Appendix A. Preliminary experiment for design of
distance sensor array specifications

We must conduct a preliminary experiment to de-
cide how the sensors are placed in the device. Two de-
sign parameters are the height and direction of sensors.
Figure 20 presents definitions of those parameters. To
ascertain the optimal parameters, a prototype device
was developed, as Fig. 21 shows. This prototype has
21 distance sensors in 50 mm pitch. The height and
the direction of those sensors can be changed arbitrar-
ily. The seven various conditions in Table 6 (left) are
evaluated in this experiment.

The three variations in height correspond to differ-
ent targets of foot parts, as shown in Fig. 22.

A motion capture system (NaturalPoint OptiTrack
FEX:V100 [13]) was used as a reference. Four healthy
young men participated in this experiment, for which
32 data were acquired. Table 6 (right) shows results
for different configurations. The performance evalua-
tion index is MARE calculated in Eq. (7). As might
be apparent in condition No. 3, No. 6, and No. 7,
it is impossible to distinguish the stance phase and
the swing phase because sensors in those conditions

Table 6

Experimental conditions and results of the preliminary experiment

No. height
(h) [mm]

direction
θ [deg]

MARE of
speed [%]

MARE of step
length [%]

1 50 0 4.6 2.8

2 50 10 8.3 2.8

3 50 20 –* –*

4 100 0 7.5 4.4

5 100 10 14.6 6.5

6 100 20 –* –*

7 200 0 –* –*

*Not measurable in the condition.

Fig. 22. Targeting points in three different conditions.

Fig. 23. Experimental results of condition No. 1.

target the shank. Moreover, no great difference ex-
ists between sensor data of the stance and swing
phases.

Figure 23 shows the experimental results obtained
for condition No. 1: the best condition. Results show
that both walking speed and step length are estimated
precisely in this configuration. Finally this configura-
tion was adopted: height of 50 mm and direction of 0
deg.

Appendix B. Observation of action patterns in
daily living

The distance sensor array device proposed in this
paper is assumed to be installed in a hallway. Ap-
parently the device obtains various action data other
than regular walking data. To ascertain what actions
are performed, we monitored an actual home environ-
ment for 12 days. A man in his twenties who lives
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Fig. 24. Setup for home monitoring. Examples of recorded picture.

Fig. 25. Aggregate results of action patterns in a home.

alone was monitored. Figure 24 shows the monitoring
configuration and examples of recorded pictures. The
resident’s actions in the hallway were filmed contin-
uously by a camera installed near the ceiling. Action
patterns were classified by the resident’s foot motion.
The results are shown in Fig. 25. Foot motions were
detected 149 times. The rate of smooth walking, which
is the object of walking ability assessment, is about 90
% of all data. Non-walking actions were detected 19
times. These actions can be classified broadly into five
groups.

– Turn back
– Stop on the way
– Wander
– Clean using a vacuum cleaner
– Clean using a floorcloth

Home monitoring described in this appendix revealed
the approximate rate of regular walking data among all
detected data. Moreover, it clarifies what kind of non-
walking actions are detected by our device in a home
environment.
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