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Abstract. Accidental falls are some of the most common sources of injury among the elderly. A fall is particularly critical 

when the elderly person is injured and cannot call for help. This problem is addressed by many fall-detection systems, but they 

often focus on isolated falls under restricted conditions, not paying enough attention to complex, real-life situations. To 

achieve robust performance in real life, a combination of body-worn inertial and location sensors for fall detection is studied in 

this paper. A novel context-based method that exploits the information from the both types of sensors is designed. It considers 

body accelerations, location and elementary activities to detect a fall. The recognition of the activities is of great importance 

and also is the most demanding of the three, thus it is treated as a separate task. The evaluation is performed on a real-life sce-

nario, including fast falls, slow falls and fall-like situations that are difficult to distinguish from falls. All possible combinations 

of six inertial and four location sensors are tested. The results show that: (i) context-based reasoning significantly improves the 

performance; (ii) a combination of two types of sensors in a single physical sensor enclosure is the best practical solution.  
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1.  Introduction 

Falls are among the most critical health problems 

for the elderly [6]. Approximately 30% of people 

over the age of 65 fall each year, and this proportion 

increases to 40% in those aged more than 70 [30]. 

About 20% of the elderly who fall require medical 

attention [10]. Furthermore, falls and the fear of fall-

ing are important reasons for nursing-home admis-

sion [28]. Falls are particularly critical when the el-

derly person is injured and cannot call for help. The-

se reasons, combined with the increasing accessibil-

ity and miniaturization of sensors and microproces-

sors, are driving the development of fall-detection 

(FD) systems.   

Even though fall detection has received significant 

attention in recent years, it still represents a challeng-

ing task for two reasons. First, most of the current 

approaches define a fall as having greater accelera-

tions than normal daily activities. However, since 

there are several everyday fall-like with high acceler-

ation, such as sitting quickly or lying down quickly, 

focusing only on a high acceleration can result in 

many false alarms. Second, not all falls are character-

ized by a high acceleration. Rubenstein et al. [25] 

showed that 22% of the falls experienced by the el-

derly are slow and are caused by dizziness and verti-

go (13%), and drop attacks (9%). Therefore, the de-

tection of slow falls should be an intrinsic part of a 

successful fall-detection system. 

To overcome the problems of the existing fall-

detection methods discussed above, we propose a 

new approach to detect falls that combines body-

worn inertial and location sensors. The implementa-

tion of the approach is named CoFDILS (Context-

based Fall Detection using Inertial and Location Sen-

sors) and it uses context information from both types 

of sensors to determine whether a fall has occurred. It 

exploits three context components: the user’s activity, 
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body accelerations and location information. The 

recognition of the user’s activity is the most demand-

ing of the three, so we devoted particular attention to 

it. We used a machine learning (ML) approach, and 

the results and the discussion are presented in a sepa-

rate subsection.  

The evaluation was performed on a special real-

life scenario that includes fast falls, slow falls and 

non-fall situations that are difficult to distinguish 

from falls. In addition, we tested 1023 possible body-

placement combinations of six inertial and four loca-

tion sensors in order to find the best-performing sen-

sor placements for FD and activity recognition (AR) 

and therefore to achieve the lowest discomfort for the 

user.  

The paper is organized as follows. First, an over-

view of the related studies on FD is presented in Sec-

tion 2. In the next two sections, the sensor equipment 

(Section 3) and the architecture of our system (Sec-

tion 4) are described. Sections 5 and 6 describe the 

data preprocessing and AR procedures, respectively. 

In the next two sections we describe the context 

components (Section 7) and the context-based rea-

soning in CoFDILS (Section 8). After that, the exper-

imental setup is presented in Section 9, and the re-

sults including the discussion are presented in Sec-

tion 10. Finally, we conclude the paper and propose 

directions for future work in Section 11. 

2. Related work 

FD approaches can be divided into those using 

non-wearable (i.e., ambient) and wearable (i.e., body-

worn) sensors. The most common non-wearable ap-

proach is camera-based [14,21]. Although this ap-

proach is physically less intrusive to the user com-

pared to the body-worn sensors, it suffers from issues 

such as low image resolution, target occlusion and 

time-consuming processing. Probably the biggest 

issue is the user privacy: the user has to accept the 

fact that a camera will record him/her.  

In recent years, studies that use sound and vibra-

tion sensors are gaining attraction. However, these 

sensors proved to be efficient only when combined 

with other sensors, especially the wearable inertial 

sensors [4,5]. We are considering these sensors as 

future addition to our system, since additional sens-

ing modalities would enhance the context-based rea-

soning. 

Another approach using non-wearable sensors was 

proposed by Botía et al. [1] and Muñoz et al. [22]. 

Their system was able to detect most of the alarming 

situations using three types of sensors: infrared mo-

tion sensors, pressure sensors and main door open 

detector. In the first study, by Botía et al., the authors 

mainly focused on finding the best time intervals 

which should be considered in order to raise an 

alarm. In the second study, by Muñoz et al., the au-

thors proposed an alert management tool for support-

ing the caregivers in their task of monitoring and 

validating alerts. The focus of this study is not the 

accuracy of detection of alarming situation, but the 

proposed support tool which enables caregivers to 

easily confirm or dismiss a potential alarming situa-

tion. In both cases, they showed that in the case of 

multiple persons, their system is prone to false 

alarms, which is an important disadvantage of the 

systems that use only non-wearable sensors.  

Most of the studies on FD and AR are based just 

on inertial sensors [16]. Usually, they are focused 

only on fast falls [19,33], which are not difficult to 

detect using the acceleration signal. The non-fall 

events used to test for false positives are usually 

normal, everyday activities [12,21], not events cho-

sen specifically because they are easily mistaken for 

falls. In contrast, we used complex falls and every-

day events that appear like falls. An example where 

FD was evaluated on events difficult to recognize as 

falls or non-falls is the work by Li et al. [17]. By ap-

plying thresholds to two inertial sensors, they detect-

ed a fall with 90.1% accuracy. The recall value of 

their method on a fall event ending with sitting was 

50% and for a non-fall event, quickly lying on a bed, 

was 40%. By combining one inertial and location 

sensor, we were able to achieve 99% and 100%, on 

similar events, respectively. 

A combination of inertial and location sensors was 

described in Zinnen et al. [34]. However, their goal 

was AR for car-quality control and not FD. Their 

approach was based on high-level primitives that 

were derived from a reconstructed human-body mod-

el by using inertial sensor data. The location data was 

mainly used to estimate the person’s location near the 

car. In our approach, beside the location of the user 

in the apartment, the location features were also used 

for the recognition of the user’s activity. 

We are not aware of any prior publication that 

studies a combination of body-worn inertial and loca-

tion sensors for FD and AR, except ours [9,20]. The 

first study, i.e. [9], is a recently published conference 

paper, which is used as a base for this paper. The 

most significant changes are the formal definition of 

the context-based reasoning scheme, and the descrip-
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tion of the activity recognition module as a separate 

task including its results and appropriate discussion. 

In the second study presented by Luštrek et al. [20], 

we focused on location-based FD, and we considered 

only a single accelerometer to detect the impact of 

the fall and the orientation of the user. The main ad-

ditions of the study presented here compared to our 

previous work are: (i) a machine-learning model that 

recognizes the activity of the user; (ii) a thorough 

analysis of the system’s complexity and invasiveness 

to the user by analyzing the performance of all the 

possible body-placement combinations of 10 sensors; 

and (iii) an explicit presentation of the context-based 

reasoning algorithm, the core of our system. 

A context-based approach to FD is presented in the 

study by Li et al. [18]. However, they used a different 

fall-detection method and different types of sensors 

to extract the context information, compared to our 

approach. In particular, they used 5 body-worn accel-

erometers and 2 environmental sensors that moni-

tored the vibration of the furniture. They combined 

the user’s posture information extracted from the 

accelerometers, and the context information extracted 

from the environmental sensors, in order to detect the 

fall situations. Although they also analyzed slow falls 

and fall-like situations, their evaluation was per-

formed on only 3 test subjects, while we tested our 

method on 11 subjects. The advantage of our location 

system, compared to the environmental sensors, is 

that it provides richer information about the user’s 

situation, e.g., the user’s location, the sensor’s height, 

etc. The environmental sensors used in their research 

can only inform about the presence/absence of the 

user at a specific location where the sensor is in-

stalled. We tested all the combinations of 10 sensors 

and found a satisfactory performance with single 

sensor enclosure, while they analyzed only the fixed 

5 accelerometer placements on the body. 

In general, FD approaches that also exploit the ac-

tivity of the user tend to be more successful than 

those relying on high acceleration only. Most of them 

try to recognize if the user is lying after a potential 

fall trigger (e.g., high acceleration) [17,24]. Others 

recognize the fall as one of several elementary activi-

ties [4,5,12,19]. There are also some that use the ac-

tivity information as input to the FD. For instance, to 

recognize a fall, Sixsmith et al. [26] and Naranjo et al. 

[23] used two and four levels of activeness, respec-

tively. In our research, the AR is a separate ML com-

ponent which recognizes not only the level of active-

ness but the appropriate elementary activity of the 

user, which is further analyzed by the CoFDILS 

scheme in order to recognize a fall. 

3. Sensor equipment 

The CoFDILS sensor equipment consists of iner-

tial and location sensors (Fig. 1). These types of sen-

sors were chosen because inertial sensors are rela-

tively cheap and portable, and location sensors pro-

vide rich information about the user without signifi-

cantly compromising the user’s privacy.  

Six inertial sensors were placed on the chest, 

waist, left thigh, right thigh, left ankle and right ankle 

(non-filled circles in Fig. 1). Since only activities that 

are associated with the user’s legs and torso were 

studied, the arm- and wrist-sensor placements were 

not considered. Xsens-MTx inertial sensors [32] were 

used, but the methods developed in this research are 

general and can be applied to any type of inertial 

sensor.  

Four location tags were placed on the chest, waist, 

left and right ankle (filled white circles in Fig. 1). 

They emit UWB radio signals, which are detected by 

sensors fixed in the corners of a room, and their co-

ordinates are computed. The location system used in 

CoFDILS is Ubisense [29]; it is a real-time location 

system used to track subjects indoors. Note that for 

simplicity the term sensor is also used for the body-

worn location tag. 

The data-sampling frequency of the sensors was 

set to 10 Hz because of the Ubisense’s hardware 

limitations. Although the inertial sensors do not have 

the same limitation, the data is sampled at the same 

frequency to simplify the synchronization. 

4. System architecture 

The architecture of the CoFDILS system is shown 

in Fig. 2. It consists of three modules: data prepro-

Inertial Sensor – Xsens-MTx 

• 3-axis Accelerometer

• 3-axis Gyroscope

UWB Location Tag – Ubisense 

Real-Time Location System

 

Fig. 1. Sensor equipment. The non-filled circles represent the 
inertial sensors and the filled circles represent the location tags. 
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cessing (no. 1), activity recognition (no. 2) and con-

text-based reasoning (no. 3).  

In the first module, the data from both types of 

sensors is stored and preprocessed. Next, the flow of 

data splits into two. On the top, the AR is performed: 

first, the data is segmented by applying a sliding 

window, then features are extracted from each data 

segment, and finally, the constructed feature vector is 

fed into a classification model, which recognizes the 

activity of the user. On the bottom, context-based 

reasoning about the user’s situation is performed. 

This module analyzes the recognized activity of the 

user and additional context information from the pre-

processed data. The motivation is that the context 

information depends on the type of sensors. Inertial 

sensors provide body-movement information and the 

detection of a high-acceleration fall pattern, based on 

a threshold-based approach (TBA). Location sensors 

provide the location of the user in the room or in the 

apartment. The system evaluates the information 

from various sources in light of its contexts and con-

cludes whether a fall alarm should be issued. Each 

module in Fig. 2 is presented in more detail in the 

sections that follow. 

5. Data preprocessing 

5.1. Inertial data 

An inertial sensor provides raw data that consists 

of accelerations (from an accelerometer) and angular 

velocities (from a gyroscope) along three perpendicu-

lar axes.  

The raw data was filtered with low-pass and high-

pass filters. The low-pass filter removes the move-

ment of the sensors, which leaves only the gravity 

component. This information is particularly useful 

for the assessment of the sensor-inclination angles. In 

contrast, the high-pass filter removes the gravity and 

leaves only the sensor movements. These filters were 

applied separately: if the gravity component is need-

ed, the low-pass filtered data is used; otherwise, the 

high-pass filtered data is used [27].  

5.2. Location data 

The Ubisense output consists of the 3D coordi-

nates of the sensors that are attached to the user’s 

body. In a typical open environment, the localization 

accuracy is about 15 cm, but in practice it may occa-

sionally drop to 200 cm or more. Therefore, filtering 

was performed in order to tackle the problems with 

the Ubisense system [13].  

First, a median filter computed each coordinate as 

the median of the measured values in a time window. 

This type of filtering removes large, short-term devi-

ations of a measured coordinate from the true one. 

Second, the coordinates were corrected with a filter 

enforcing anatomic constraints based on the user’s 

height and the body proportions. After that, a Kalman 

filter was used to smooth the data. 

6. Activity recognition 

To recognize the activities of the user, machine 

learning (ML) was used [15]. The idea of the ML 

approach was to learn a classification model that will 

be able to classify the current activity of the user. The 

process was divided into three parts: first the contin-

uous sensor data stream was segmented, then for 

each segment features were extracted, and finally the 

trained classification model recognized the user’s 

activity. 

6.1. Data segmentation 

The first step in the ML-based AR is the data seg-

mentation, which uses an overlapping sliding-

 

Classification 

Model

Inertial Data

Feature 

Extraction

Location Data

Context-based

Reasoning

Activity

Location
Data 

Preprocessing

Fall

Inertial

Location

Movement TBA

Sensors

Data 

Segmentation

Activity Recognition

1

2

3
 

Fig. 2. The CoFDILS system architecture. 
 

Fig. 3. Activity recognition flow. 
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window technique, dividing the continuous sensor-

stream data into data segments – windows. A win-

dow of a fixed size (width) moved across the stream 

of data, advancing by half its length in each step. 

Preliminary tests showed that a one-second window 

size and half-second overlapping was a reasonable 

trade-off between the duration of the activities and 

the recognition delay.  

6.2. Feature extraction 

In the feature extraction procedure, the relevant 

features were extracted using the preprocessed sensor 

data in each data window.  

6.2.1. Inertial features 

This subsection briefly describes the features ex-

tracted from the inertial sensors’ data and used in the 

AR [8]. The total number of features per sensor is 25: 

8 for the gyroscope data and 17 for the accelerometer 

data, divided into four groups: 

• Statistical features (total 20). The Mean Value 

and the Standard Deviation were extracted for 

both the acceleration and gyroscope data; addi-

tionally, the Root Mean Square (RMS) was calcu-

lated only for the accelerometer data. A feature-

selection analysis showed that the RMS was a re-

dundant feature for the gyroscope data.  

• Movement intensity feature (AVC feature, ex-

plained in Section 7.1.2).  

• Sensor inclination angles (total 3). Since most of 

the time the main component of the acceleration 

vector was the gravity, they were calculated as the 

angles between the acceleration vector and each 

of the axes. For instance, the angle φx between the 

acceleration vector and the x axis was computed 

as follows: 

)arccos(
222

zyx

x

x

aaa

a

++

=ϕ
 

(1)

where the values ax, ay and az represent the accel-

eration vector. 

• Difference between the maximum and minimum 

value of the acceleration vector in the current data 

window. 

6.2.2. Location features 

The following features were extracted from the lo-

cation sensors data: 

 

• The z (height) coordinate of the sensor 

• The Euclidian distances between each pair of sen-

sors 

• The z-distances between each pair of sensors (dif-

ference in heights) 

• The Euclidian distances between each pair of sen-

sors in the xy plane 

• Two velocity-based features: the first one is the 

absolute velocity of the sensor, and the second 

one is computed as the velocity of the sensor in 

the z direction 

6.3. Classification model 

Once the feature vector was formed, it was fed into 

the classification model, which recognized the activi-

ty of the user. The classification was performed using 

the API of the software toolkit WEKA [31]. Among 

the several methods tested (Decision trees, Naive 

Bayes, KNN, SVM and Random Forest), Random 

Forest yielded the best results in preliminary tests 

[7,11]. Random Forest is an ensemble of decision 

trees in which the final decision is formed by a ma-

jority vote of the tree models [1]. 

7. Context components 

The most important novelty in our fall-detection 

method (CoFDILS) is the use of the context infor-

mation. In general, a context is defined as any infor-

mation that can be used to characterize the circum-

stances in which an event occurs [3]. In CoFDILS, 

the context information consisted of three compo-

nents: (i) the user’s body accelerations, (ii) the user’s 

activities and (iii) the location of the user. 

7.1. Body accelerations 

7.1.1. Threshold-based approach (TBA) 

The threshold-based approach (TBA) was used as 

one of the components in CoFDILS, as well as a 

baseline for comparison. The rationale for this meth-

od was that the acceleration pattern during a typical 

fast uncontrolled fall (shown in Fig. 4) is a decrease 

in the acceleration (free fall) followed by a rapid in-

crease (impact with the ground). For our implementa-

tion of the TBA, the difference between the maxi-

mum and minimum accelerations within a one-

second window was calculated. If the difference ex-

ceeded the threshold and the maximum appeared 
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after the minimum, a fall was declared. The threshold 

was chosen empirically based on preliminary data [7].  

7.1.2. Body movement 

During motion the accelerometers produce a 

changing acceleration signal, and the fiercer the mo-

tion, the greater the change in the signal. Using these 

changes a feature was extracted: Acceleration Vector 

Changes (AVC) [7]. This feature sums up the differ-

ences between consecutive values of the lengths of 

the acceleration vector, and divides the sum by the 

time interval (one second): 

0

11
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TT

lengthlength
AVC

n

ii

n

i

−

−∑
= −=

 

(2)

T0 is the time stamp for the first data sample in the 

window, and Tn is the time stamp of the last data 

sample. By applying a threshold to the AVC value, 

the movement of a sensor is detected. 

7.2. Activity  

Seven elementary activities that can also be inter-

preted as body postures were studied: standing, sit-

ting, lying, sitting unusual, on all fours, going down 

and standing up. We decided only for these activities 

because they are the most common, everyday activi-

ties and are also the most relevant for the detection of 

falls and distinguishing them from non-falls.  

7.3. Location 

The location of the user was provided by the loca-

tion system, which outputs the 3D coordinates of the 

location sensors that were attached to the user’s body. 

This way it captured the location of the user in the 

apartment and also the height of each sensor. Even 

though the location sensors provide relatively rich 

information about the user locations during the day, 

only the user’s presence/absence in locations such as 

the bed, chair and floor (using also the height of the 

sensors) was relevant for the FD. Further and more 

thorough analysis of the location data is not a part of 

this research. 

8. Context-based reasoning 

The context-based reasoning schema in CoFDILS 

is presented in Fig. 5. The general idea is that each of 

the previously described components uses the infor-

mation from the other two as context, and reasons 

about the user’s situation. Therefore, there are three 

possible cases: (i) the body acceleration component 

uses the activity and location as context; (ii) activity 

uses the body acceleration and location as context; 

and (iii) location uses the activity and body accelera-

tion as context.  

To explain the basic principle of the context-based 

reasoning, let us consider the following example in 

which a user is lying down quickly on a bed, i.e., 

a non-fall situation. In this case, the acceleration 

component, i.e., the TBA, recognizes a high accelera-

tion (Case 1 in Fig. 5). If this component reasons by 

itself, a wrong decision would be formed: a fall 

would be detected. If the activity of the user is addi-

tionally evaluated, the decision would still be wrong 

(a high acceleration and lying activity = a typical fast 

fall). However, when the location of the user is eval-

uated (the bed), the final decision is corrected into 

non-fall (quickly lying on the bed).  

Once we designed the reasoning scheme, we used 

context variables to represent the following three 

context components: activity, location and body 

movement. Each context variable contains the value 

of the component at each moment in time. Table 1 

shows the context variables and their possible values. 

Since the activity data was segmented using one-

second window size with half second overlap (Sec-

tion 6.1), we used the same sampling frequency for 

the other two context variables. Therefore, each con-

text variable was updated with a new value twice in a 

second.  

The TBA component is a special case because it is 

instantaneous, happens at a specific moment in time 

and does not last. Therefore, it was used simply as an 

independent indicator of an alarming situation which 

is checked in the context of the other components. 

 

Fig. 4. Acceleration pattern during a fall. 
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The reasoning about the user’s situation was per-

formed using expert rules. An example rule that de-

scribes a situation when the person is lying (“Ly”) on 

the floor (“F”) without movement in the time interval 

[t1, t2] is shown in (3): 

(A[t1,t2] = “Ly”) ||| (B_M[t1,t2] = “no” ^ L[t1,t2] = “F”)   (3) 

The rule consists of two parts: the base (left-side) and 

the contextual (right-side) part, separated by |||. The 

base part represents the trigger which signals when 

the contextual part should be checked. For the exam-

ple rule given in (3), first the lying activity is recog-

nized in the interval [t1, t2]. This triggers the analysis 

of the context variables: body movement (B_M) and 

location (L). We selected the time interval t for the 

reasoning about the user’s situation to be 10 seconds. 

This way, the interval is long enough for a reliable 

recognition, but still negligible compared to the time 

needed for help to arrive.  

During the reasoning time interval, a context var-

iable may contain different values, e.g., 5 lying, 3 

standing up and 2 sitting activities. In order to repre-

sent the whole interval with one context value, we 

empirically selected 80% as the minimum percentage 

of same values that a context variable should have 

(e.g., the activity should be lying 8 seconds out of 10 

to satisfy a rule that requires lying). Otherwise, if the 

context values are represented with smaller percent-

age than 80%, none of the context values is chosen 

for the particular interval.  

Given the values of the context variables shown in 

Table 1, there are 12 possible cases that can be used 

as a trigger to a rule. Each of these cases can be eval-

uated in the context of a one or both other context 

components, resulting in 249 possible rules. However, 

because in this study we only focused on fall situa-

tions, it turned out that only a few context-based 

rules cover all the falls analyzed. Once we estab-

lished the general reasoning scheme, adding more 

rules for different situations is a relatively easy  

task. 

8.1. Inertial + location sensors reasoning 

The reasoning rules, when the two types of sensors 

were combined, primarily relied on the recognized 

activity; the additional context information consisted 

of the location and the body movement. A fall situa-

tion was defined by each of the following rules: 

(A[t1, t2] = “Ly”) ||| (B_M[t1, t2] = “no” ^ L[t1, t2] = “F”)         (4) 

(A[t1, t2] = “SU”) ||| (B_M[t1, t2] = “no” ^ L[t1, t2] = “F”)        (5) 

(A[t1, t2] = “OA4”) ||| (B_M[ t1, t2] = “no” ^ L[t1, t2] = “F”)    (6) 

“Ly” stands for the activity lying, “SU” for sitting 

unusual, “OA4” for on all fours, and “F” stands for 

the floor location.  

We used assumptions that the elderly do not usual-

ly lie or sit on the ground and are not on all fours for 

more than t seconds while not moving.  

8.2. Inertial sensors reasoning 

In this subsection we present the context-based 

reasoning when a conclusion is inferred based on 

inertial sensors alone and therefore a fall situation is 

defined using the activity and the body accelerations 

context variables.  

Our previous experiments and also some related 

work [19,33], showed that it was possible to detect a 

straightforward (fast) fall by using only TBA; how-

ever, lots of false positives appeared in other fall-like 

events: quickly lying down on a bed, quickly sitting 

 

Fig. 5. Context-based reasoning schema. 

Table 1 

Context variables and their possible values. A – activity, 
L – location, B_M – body movement 

A L B_M

standing sitting unusual bed yes 
sitting on all fours floor no 
lying going down chair  
 standing up   
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on a chair, etc. Therefore, a potential fall detected by 

TBA was confirmed by the body movement and ad-

ditional context information, i.e., the user’s activity. 

As an example, a fall situation is defined by each of 

the following rules: 

(TBA[t1] = “yes”) ||| (A[t1, t2] = “Ly” ^ B_M[t1, t2] = “no”)    (7) 

(A[t1, t2] = “SU”) ||| (B_M[t1, t2] = “no”)                               (8) 

(A[t1, t2] = “OA4”) ||| (B_M[t1, t2] = “no”)                              (9) 

TBA[t1] = “yes”, represents the time when a high-

acceleration fall pattern is detected.  

8.3. Location sensors reasoning 

Since the location sensors are better at AR than 

detecting fall accelerations, FD is based on the activi-

ty that may result from a fall, and uses location as the 

context. The first advantage compared to the stand-

alone inertial FD was the location information: the 

system was aware of some predefined “safe” loca-

tions, such as the bed. The second advantage was the 

z coordinate of the sensor location, which provides 

the height of the sensor and therefore distinguishes 

different activities, for example, sitting on the floor 

from sitting on a chair. An example of a rule struc-

ture is presented here: 

(A[t1, t2] = {“Ly” ∨ “SU” ∨ “OA4”}) ||| L[t1, t2] = “F”)       (10) 

9. Experimental setup 

9.1. Experimental scenario 

A complex, 15-minute test scenario was specifical-

ly designed to investigate events that might be diffi-

cult to recognize as falls or non-falls. This scenario, 

shown in Table 2, was created in consultation with a 

medical expert. In Table 2 the numbers in parenthe-

ses represent the event numbers for easier referencing 

throughout the text. The events were recorded in a 

single recording including all the events. 

Because typical fast falls are easy to detect due to 

high acceleration, only one such fall (1) was included. 

Three atypical falls not involving high acceleration, 

i.e., (2), (3) and (4), were included to test the use of 

the contextual activity information, i.e., that a person 

is not expected to sit/lay on the ground (as opposed 

to the chair/bed). Furthermore, the two events (5) and 

(6) involve high acceleration and could thus be mis-

classified as falls by acceleration-based methods, 

such as TBA. However, the methods that use the ac-

tivity and location as contextual information should 

be able to detect that these are non-fall events. An 

event (7) was included that involves voluntarily lying 

on the ground, which could mislead the methods that 

use information other than acceleration. The events 

(8), (9) and (10) are normal and were included to  

 

Table 2 

The events in the scenario, the appropriate activities and event descriptions 

 # Event Activities Description 

F
a
ll
 E
v
e
n
ts
 

(1) Fast fall (tripping) Standing/walking, going down, 
lying, standing up 

Falling performed in different ways: forwards, backwards or to the 
sides 

(2) Slow fall (fainting) Standing/walking, going down, 
lying, standing up 

Losing consciousness and slowly falling to the ground (trying to 
hold onto furniture) 

(3) Falling when trying to 
stand up 

Sitting, standing up, going 
down, sitting on the ground, 
standing up 

Trying to stand up from a chair, but having difficulties and slowly 
falling to the ground, ending up in a sitting posture on the ground 

(4) Sliding from a chair Sitting, standing up, going 
down, sitting on the ground 

Sliding from a chair and ending up in sitting unusual on the ground

F
a
ll
-l
ik
e
 E
v
e
n
ts
 (5) Quickly lying down 

on a bed 
Standing/walking, going down, 
lying, standing up 

Quickly lying down on a bed 

(6) Quickly sitting down 
on a chair 

Standing/walking, going down, 
sitting, standing up 

Quickly sitting down on a chair 

(7) Searching for some-
thing on the ground 

Standing/walking, going down, 
on all fours, lying 

Going on all fours and afterwards going to lying posture in order 
to take an object from the ground 

 
N
o
rm

a
l 

E
v
e
n
ts
 

(8) Sitting down Standing/walking, going down, 
sitting, standing up 

Sitting down on a chair normally 

(9) Lying down Standing/walking, going down, 
lying, standing up 

Lying down on a bed normally 

(10) Walking Standing/walking Walking sequences between events 
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verify that all the methods work correctly during 

normal events. 

Additionally all the target activities mentioned in 

Section 7.2 are contained in the scenario (see Ta-

ble 2): standing, sitting, lying, sitting unusual, on all 

fours, going down and standing up.  

The experimental scenario was recorded with all 6 

inertial and 4 location sensors. Afterwards, the 

CoFDILS was tested with all 1023 combinations of 

sensors (single type, as well as both types). 

The scenario was recorded by 11 young healthy 

volunteers (24–33 years, 7 males and 4 females). It 

was repeated 5 times by each person, resulting in 55 

recordings and a total of 550 events for the FD and 

total number of 105 438 segmented samples for the 

AR. Testing elderly people was not feasible because 

the scenario was too strenuous and risky for them, 

but the volunteers were advised how to act by the 

medical expert in order to mimic elderly. Additional-

ly, the data for 3 more people was recorded for tun-

ing the basic parameters, e.g., thresholds, preliminary 

tests and choosing the best algorithms. 

9.2. Evaluation metrics 

For the evaluation of the AR, the leave-one-

person-out cross-validation technique was used. This 

means the model was trained on the data recorded for 

ten people and tested on the remaining person. This 

procedure was repeated for each person (11 times). 

This evaluation approach is more reliable than using 

the same persons’ data for training and testing. Using 

the same person’s data would give overly optimistic 

results if the intended use of the model is to classify 

the activities of previously unseen people. Several 

evaluation metrics were analyzed, such as the recall, 

precision, accuracy and F-measure. For the final con-

clusions, the F-measure was chosen, since it is a 

harmonic mean of both precision and recall [31] and 

thus treats false negatives and false positives in a 

balanced way. First, for each fold the weighted aver-

aged F-measure (over all activities) was calculated 

and finally the average F-measure over all the folds 

was calculated.  

To evaluate the FD, one must decide how to weigh 

the undetected falls and the false alarms. Both are 

important: not detecting a fall may endanger a per-

son’s health, while false alarms make the system un-

likely to be used in real life. Therefore, we used  

F-measure (F), which weights undetected falls and 

false alarms equally. It is defined as a harmonic mean 

of recall (the percentage of the events recognized as 

falls/non-falls from all the fall/non-fall events) and 

precision (the percentage of the events truly being 

falls/non-falls of all the events recognized as such) 

[31]. In the detailed results in Table 8, the true posi-

tive and true negative rates are also presented. 

10. Experimental results and discussion 

The experimental results and discussions are pro-

vided in the following two subsections. Tests to con-

firm the statistical significance of the results were 

also performed. The best sensor combinations for 

each number of sensors and each sensor type were 

tested separately. Because of the small number of 

folds (11) and because the individual samples are 

paired (the same person’s data for each combination), 

we used paired Student’s T-test with a significance 

level of 5%. 

10.1. Activity recognition 

Figure 6 presents a detailed matrix (5 × 7) of the 

best sensor combinations for the AR. The inertial 

sensors are shown on the horizontal axis and the lo-

cation on the vertical axis. Each rectangle in the ma-

trix contains the sensors placements and the achieved  

F-measure marked with F in percent. For example, 

the (2, 3) rectangle represents the best combination  

of 2 location and 3 inertial sensors. It is also  

the best of all sensor combinations according to the  

F-measure = 98.6%. The dotted lines (diagonal) con-

nect the rectangles that have the same number of sen-

sors. Along each dotted line the best performing sen-

sor combination is marked with a black circle.  

Another representation of the same results is 

shown in Fig. 7. This is a 3D representation, where 

the third axis is the performance − F-measure. The 

points of the graph that are closer to 0 in the xy plane 

(smaller number of sensors), are of the greatest inter-

est for practical usage. These points are marked with 

circles (one-sensor type) and squares (combined-

sensor type). 

Analyzing the results achieved by the inertial sen-

sors only (horizontal axis in Fig. 6), one can see that 

the performance improves by adding inertial sensors 

up to three (see Fig. 7). This was also proved by the 

significance test. Adding more sensors does not sig-

nificantly increase the performance; it only makes the 

system more intrusive and complex. 

The analysis of the AR results for the location sen-

sors (vertical axis in Fig. 6) is different. The increase 
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in the number of sensors has a direct influence on the 

increase in the system performance. There is no con-

vergence or decrease in performance as sensors are 

added, as is the case with the inertial sensors only. 

The statistical tests additionally confirmed this.  

The results for the combined sensors showed that 

the difference in performance is statistically signifi-

cant only when the system is using one, two and 

three sensors. Four sensors or more do not signifi-

cantly increase the performance of the system. In 

general, the results showed that for achieving the 

highest performance only three sensors are needed. 

The improvements of the combined sensors com-

pared to the location sensors alone are evident (Fig. 7 

squares vs. circles). However, when the combined 

sensors are compared to the inertial sensors alone, the 

situation is different. With two and three sensors, the 

inertial sensors alone outperformed the combination 

of both sensors. This means that for the AR, it is bet-

ter to add an inertial than a location sensor. This may 

be a bit surprising, but the probable explanation is 

that the inertial sensors are less noisy and provide 

sensor inclination angles, which are well-suited to 

activity recognition, especially for the static activities.  

Since both sensor types can be put in the same en-

closure, one can also examine the number of enclo-

sures. Tables 3 and 4 show the results for the AR 

when 1 and 2 sensor enclosures (equipped with both 

sensor types) are analyzed, respectively. 

The results in Fig. 6 show that the combination of 

1 inertial and 1 location sensor on the chest clearly 

outperforms each of the sensors used separately. The 

achieved F-measures are 83% for each of the systems 

used separately. Their combination improves these 

 

Fig. 6. Activity recognition detailed results. Matrix representation of the best sensor combinations using the Inertial (I) and Location (L) sen-
sors. F – overall F-measure, C – Chest, W – Waist, AR – Ankle Right, AL – Ankle Left, TR – Thigh Right, TL – Thigh Left. 

 

Fig. 7. Best sensor combinations for activity recognition. 

Table 3 

Activity recognition analysis using only 1 sensor enclosure 
equipped with inertial and location sensor 

1-sensor enclosure (Inertial + Location) 

C W AL AR 

93.3% 90.9% 85.0% 84.4%

Table 4 

Activity recognition analysis using only 2 sensor enclosures 
equipped with inertial and location sensor 

2-sensor enclosures (Inertial + Location) 

C+AL C+AR C+W W+AR W+AL AR+AL

94.5% 93.6% 92.2% 92.1% 91.5% 84.7%
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results significantly (i.e. by 10 pp.). Furthermore, the 

results in Table 3 show that the combination of 1 

inertial and 1 location sensor placed on the chest out-

performs each of the other sensor placement combi-

nations: waist, left and right ankle. 

The results in Table 4 show that the best perform-

ing 2-enclosures-placement (when both types of sen-

sors are included in each enclosure) is the chest and 

left ankle achieving 94.5% performance. However, 

this is not the best performing 2-enclosures-

placement, because the combination of 1 inertial and 

1 location sensor on the chest and 1 inertial sensor in 

the left thigh (shown in Fig. 6) achieves 97.4% per-

formance. Please note that thigh placements were not 

tested for the location sensors. This shows that it is 

better to add inertial sensor alone on the thigh 

(97.4%) instead of adding the both (inertial and loca-

tion) to the left ankle (96.5%). The reason for this is 

that the inertial sensors are better for AR and that the 

thigh placement is better compared to the ankle.  

The best performing combination of three sensor 

enclosures is chest (inertial and location), right ankle 

(inertial and location) and left thigh (inertial only). 

10.2. Fall detection 

Similar to the AR, Fig. 8 presents a matrix (5 × 7) 

of the best sensor combinations for the FD. The iner-

tial sensors are shown on the horizontal axis and the 

location on the vertical axis. Each rectangle in the 

matrix contains the sensor placements and the 

achieved F-measure marked with F as a percentage. 

For example, the (2, 3) rectangle represents the  

combination of 2 location and 3 inertial sensors. It  

is the best of all combinations according to the  

F-measure = 99.7%. The dotted lines (diagonal) con-

nect the rectangles that have the same number of sen-

sors. Along each dotted line the best (according to 

the F-measure) rectangle is marked with a black cir-

cle. These rectangles represent the best combination 

given the number of sensors.  

Another representation of the same results is 

shown in Fig. 9. This is a 3D representation, where 

the third axis is the achieved F-measure. 

Analyzing the results achieved with the inertial 

sensors alone (Fig. 8 horizontal axis rectangles), one 

can see that the only important improvement is 

achieved when using two sensors instead of one. Af-

 

Fig. 8. Matrix representation of the best sensor combinations using the Inertial (I) and Location (L) sensors. F – overall F-measure, C – Chest, 
W – Waist, AR – Ankle Right , AL – Ankle Left , TR – Thigh Right, TL – Thigh Left.  

 

Fig. 9. Best sensor combinations for fall detection.
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ter this, adding up to five sensors did not significant-

ly improve the F-measure; including a sixth sensor 

even decreased the performance.  

For the location sensors, an increase in the number 

of sensors increases the performance all the way. The 

statistical tests proved that there is a significant dif-

ference in the performance of the system using one, 

two, three and four location sensors. Like with the 

inertial FD, the chest is the best-performing place-

ment. 

The statistical tests for the combined FD showed 

that the difference in performance is statistically sig-

nificant only when the system is using two and three 

sensors. Four sensors or more do not significantly 

increase the performance of the system. 

The parts of the graph with a smaller number of 

sensors are of the greatest interest for practical usage 

(squares and circles in Fig. 9). The combination of 

sensors clearly outperforms the individual sensor 

types. For example, the performance values of the 

system using two sensors are 81.5% and 90.8%, for 

the inertial and location sensors, respectively. Their 

combination achieves 96.6%, an improvement of 15 

pp. and 6 pp., respectively. This is the case for each 

number of sensors (dotted lines): the combination of 

two sensor types is better than each of the types used 

separately.  

Since both sensor types can be put in the same en-

closure, one can also examine the number of enclo-

sures. Tables 5 and 6 show the results for the FD 

when 1 and 2 sensor enclosures (equipped with the 

both sensor types) are analyzed, respectively. 

The performance of the system using only one 

sensor of one type is 68% and 88% for the inertial 

and location sensor, respectively. The results in Table 

5 show that by combining them into one enclosure on 

the chest, the achieved F-measure is 96.6%, an im-

provement of 29 pp. and 9 pp., respectively. Fur-

thermore, the combination of 1 inertial and 1 location 

sensor placed on the chest outperforms each of the 

other sensor placement combinations: waist, left and 

right ankle. 

The results in Table 6 show that the best perform-

ing 2-enclosures-placement (when both types of sen-

sors are included in each enclosure) is the chest and 

left ankle achieving 98.3% performance. However, 

this is not the best performing 2-enclosures-

placement, because the combination of 1 inertial and 

1 location sensor on the chest and 1 inertial sensor in 

the left thigh (shown in Fig. 8) achieves 98.5% per-

formance. This shows that it is better to add inertial 

sensor alone on the thigh (98.5%) instead of adding 

the both (inertial and location) to the left ankle 

(98.3%). The reason for this is the improvement in 

the AR module, which is greater when the thigh iner-

tial sensor is introduced compared to the ankle iner-

tial and location. The best performing combination of 

three sensor enclosures is chest (inertial and location), 

right ankle (inertial and location) and left thigh (iner-

tial only).  

The rest of the discussion is a detailed analysis of 

the results achieved by the statistically significant 

simplest and the best combinations of the inertial-

only, location-only and both types of sensors. The 

sensor types and placements are shown in Table 7 

and the results are presented in Table 8. The events in 

Table 8 are divided into three groups: fall, non-fall 

(fall-like), and normal events. The numbers are the 

percentage of all fall/non-fall events being correctly 

recognized as fall/non-fall (true positive and negative 

rate). The last row represents the overall F-measure. 

The first two columns show the results achieved 

for the FD with inertial sensors. The first event in 

Table 8, tripping, is a typical fall that was recognized 

accurately because of the TBA rule. The second 

event, which is falling slowly, was difficult to recog-

nize because of the low acceleration during this event. 

Table 5 

Fall detection analysis using only 1 sensor enclosure equipped with 
inertial and location sensor 

1-sensor enclosure (Inertial + Location) 

C W AL AR 

96.1% 95.6% 75.0% 72.1%

Table 6 

Fall detection analysis using only 2 sensor enclosures equipped 
with inertial and location sensor 

2-sensor enclosures (Inertial + Location) 

C+AL C+AR C+W W+AR W+AL AR+AL

98.3% 98.0% 97.2% 97.6% 97.9% 83.7%

Table 7 

The simplest and the best (statistically significant) combinations of 
the inertial-only, location-only and both types of sensors 

  The simplest 
combination 

The best combination 

Inertial 
sensors 

Chest Chest + Right ankle  

Location 
sensors 

Chest All four sensors 

Combined 
sensors 

Inertial:   Chest 
Location: Chest 

Inertial:   Chest + Right ankle
Location: Chest 
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For this event, additional contextual information was 

necessary (e.g., the location of the user). The effect 

of the activity information of the user can be seen in 

the fall events that end with sitting unusual on the 

ground (events 3 and 4). In these cases the AR model 

correctly recognized sitting unusual on the ground. 

On the other hand, this has a negative impact on the 

performance when the sitting event is analyzed 

(events 5 and 8). In this case, the AR model was not 

accurate enough and recognized sitting unusual on 

the ground, resulting in a false positive. This issue 

was solved by including more sensors, which im-

proved the AR method (e.g., the column Inertial-

best). 

The location sensors based FD was using the ac-

tivity and the location information. Because of the 

location, it recognized all falls with high accuracy 

(events 1 to 4). However, some problems remained 

among the non-fall events, because of the relatively 

low accuracy of the AR model. Namely, sitting 

(events 5 and 8) and searching on the ground 

(event 6) were misclassified as sitting unusual on the 

ground or lying (on the ground), causing the system 

to detect a fall during the non-fall events. Improve-

ments in the performance can be seen when the num-

ber of sensors is increased (the column Location-

best), due to the improvements in the AR method.  

The last two columns show the results achieved 

with the combination of both types of sensors and the 

full context as presented in Section 7.1. The im-

provements are clear in all of the events. The overall 

performance when two sensors (one inertial and one 

location) were used was 96.6%. Some problems only 

appeared among the non-fall events that ended with 

sitting (5 and 8) and the searching on the ground 

event (6). The reason lies in the AR method, which 

misrecognized the appropriate activities (sitting and 

on all fours). These problems were solved by includ-

ing one more inertial sensor, which significantly im-

proves the AR model and consequently the FD (the 

last column in Table 8). 

Finally, two commonly used methods in the litera-

ture, the threshold-based approach (TBA) and the 

machine-learning approach (MLA), were tested for 

comparison. The results are shown in Fig. 10, by 

presenting the true-positive or true-negative rate for 

each fall or non-fall event, respectively. The TBA is 

Table 8 

Detailed FD results for each event and each context-based FD method 

 Context-based Reasoning 

 

 

Inertial 
(Activity + TBA +  

Movement) 

Location 
(Activity + Location) 

Combination 
(Activity + TBA + 

Movement + Location)

 Simplest Best Simplest Best Simplest Best 

F
a
ll
 E
v
e
n
ts
 (1) Tripping − Quick falling  100 100 96  100  100 100 

(2) Fainting − Falling slowly 11 11 100  100  100 100 

(3) Falling from a chair slowly  68 98 95  95  99 99 

(4) Sliding from a chair  72 99 97  97  98 99 

N
o
n
-F
a
ll
 

F
a
ll
-l
ik
e
 

E
v
e
n
ts
 (5) Sit down quickly on a chair 55 97 75  89  91 98 

(6) Searching on the ground  85 88 25  78  80 89 

(7) Quickly lying down on a bed 34 34 100  100  100 100 

N
o
n
-F
a
ll
 

N
o
rm

a
l 

E
v
e
n
ts
 (8) Sitting normally 68 98 80  93  93 98 

(9) Lying normally 100 100 100  100  100 100 

(10) Walking 97 100 92  97  100 100 

 Overall F-measure in % 67.9 81.5  87.7  95.4  96.6 98.5 
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Fig. 10. Comparison of the FD results achieved by our Context-
based approach, the Machine-learning approach (MLA), and 
Threshold-based approach (TBA). The event numbers correspond 
to the events given in Table 2. 
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described in Section 7.1.1. More details about the 

MLA can be found in our previous work (Luštrek 

et al. [20]). The basic principle of MLA is that a ma-

chine-learning model is trained to detect a fall event. 

In our case, features extracted from the chest-inertial 

and chest-location sensor data were used. Therefore, 

the contextual location information was implicitly 

(through features) introduced in the MLA. 

The overall results showed that our method, in 

which the context is explicitly encoded with rules, 

outperformed the other two methods, which use: im-

plicit context information (MLA) or only accelera-

tions (TBA). The TBA outperformed our CoFDILS 

only in two events (6, 8); however, this was due to 

the one-sided performance of the TBA (detects only 

high accelerations) at the expense of the overall per-

formance. 

11. Conclusion 

We presented a novel approach for fall detection 

called CoFDILS, which combines inertial and loca-

tion sensors using a general context-based schema. 

The method exploits three context components to 

detect a fall situation: the activity of the user, the 

body accelerations and the location. Each component 

is formally presented with a context variable that 

contains the value of the component at each point in 

time. The reasoning over the values of the context 

variables is performed by expert rules. There are 249 

possible combinations of the of values of the context 

variables (rules); however, in our tests it turned out 

that only a few of the context-based relations capture 

most of the context information in the FD domain. 

Once we established the general reasoning scheme, 

adding more rules for different situations is a rela-

tively trivial task. Also the addition of new sensors, 

such as sound and vibration, is relatively easy from 

the reasoning point of view; just adding a context 

variable and including it in the rules. Currently, the 

context-based reasoning rules were designed manual-

ly. The automation of learning the best context rela-

tions is considered for future work.  

We tested the performance with all possible com-

binations of the six inertial and four location sensors 

to find the best sensor placements, using the context-

based reasoning schema. The evaluation was per-

formed on a complex test scenario, which included 

real-life, realistic events that are difficult to recognize 

as falls or non-falls. The results showed that by com-

bining the two types of sensors it is possible to detect 

complex fall situations by using the activity and the 

context information from both types of sensors. It is 

essential that both sensor types are employed, since 

they provide complementary information about the 

user’s situation. Finally, the best practical solution 

proved to be the chest placement with a single sensor 

enclosure including one inertial and one location sen-

sor achieving 96.6% for the fall detection employed 

in CoFDILS and 93.3% for the activity recognition 

task only. 

For the future work, we plan to focus more on the 

practical implementation of the system. First, we 

intend to make the system less intrusive and more 

user-friendly. This can be achieved by using com-

pletely wireless inertial sensors. Another improve-

ment in this direction can be achieved by introducing 

specially designed clothes, which will include pock-

ets for the sensors. Additionally, the interaction be-

tween the user and the system can be improved. This 

can be achieved by including the user’s smartphone, 

tablet or PC as a medium for showing system’s noti-

fications (fall detected, system malfunction, etc.).  
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