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Abstract. Inhabitants of today’s smarter homes struggle with complicated user interfaces and inflexible home configurations.
The proposed smart home recommender system addresses these issues by continuously interpreting the user’s current situation
and recommending services that fit the user’s habits, i.e. automate some action that the user would want to perform anyway.
With these recommendations it is possible to build much simpler user interfaces that highlight the most interesting choices
currently available. Configuration becomes much more flexible, since the recommender system automatically learns user habits.
Evaluations on two smart home datasets show that the algorithm produces correct recommendations with 61% and 73% accuracy,

respectively.
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1. Introduction’

The smarter homes of tomorrow promise to increase
comfort, aid elderly and disabled people, and help in-
habitants save energy. Unfortunately, smart homes to-
day are far from this vision. People who already live
in such a home struggle with complicated user inter-
faces, in particular guests that are unfamiliar with the
system are often unable to use it at all [5,17]. Rules
(e.g. at 8 AM ring the alarm and open bedroom win-
dow blinds) and so-called scenes (e.g. at the press of
one button, all lights are turned off) that should reflect
user routines must today be manually programmed
into the system. However, often user routines are sub-
conscious and can not be described in the detail nec-
essary to cover all variations [9]. Consequently, sev-
eral inhabitants of smarter homes complain about in-
conveniences caused by the inflexibilities of rules and
scenes [5,17,20,28].

IThis article is based on Chapter 5 of my doctoral dissertation
“Smart assistants for smart homes”, KTH Royal Institute of
Technology Stockholm, 2013.

The proposed recommender system for smart homes
removes the need to manually describe user routines.
In a training phase, the proposed system learns a model
of the user habits, i.e. learns which actions the user
typically performs in a given situation. The system can
learn user routines from manually performed actions
as well as from commands given through the smart
home user interface (UI). This means that it is not nec-
essary to use a complicated smart home Ul for training
the system, instead users can continue to live in their
home just as normal. The training is unsupervised, i.e.
no manual annotation of smart home data is neces-
sary.

After the training phase, the system continuously in-
terprets the user’s current situation and generates per-
sonalized recommendations. The system tries to rec-
ommend services that would be beneficial for the user
in some way, i.e. can automate some action that the
user would want to perform anyway. In high-level
terms, the output of the system are recommendations
such as “in the current situation you typically perform
actionX, would you like me to perform it for you?”.

For example, consider that the user is preparing din-
ner, opening cupboards and the refrigerator, and using
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the stove. A large number of services will be fairly use-
less in this context, such as opening the garage door
or closing the skylight. Which service is most useful
depends largely on the user’s habits. If the user likes
to listen to the radio while cooking, then a service for
turning on the radio might be relevant. If dinner is
commonly eaten in the dining area, the smart home
may already turn on the lights above the table. The sys-
tem may also automate some tasks that are problematic
for the user, e.g. opening high-mounted cabinet doors.
And if it starts raining, the previously irrelevant ser-
vice for closing the skylight could suddenly become
important.

The recommendations can be used to simplify user
interfaces by removing complicated menus and in-
stead allow the user to select from only the most
relevant choices [14]. They might also be used to
improve recognition rates of alternative input meth-
ods such as speech recognition, or might even allow
the smart home to act autonomously in some situa-
tions.

The proposed recommender system is evaluated on
two publicly available smart home datasets. If the user
is shown only the one best recommendation, the sys-
tem reaches an accuracy of 61% and 73%, respec-
tively. If the user has the choice between five rec-
ommendations, the accuracy reaches 90% for both
datasets. The results are stable with regard to choice
of system parameters, as long as extreme values are
avoided.

The main contributions of the paper are:

— The paper proposes an unsupervised method for
learning an inhabitant’s habits in the smart home.

— The paper proposes a method for generating
service recommendations based on the learned
model and the current user situation.

— The paper outlines several strategies for utilizing
the recommendations that allow users to decide
how much direct control over their home they are
willing to give up for an increase in usability and
comfort.

Section 2 discusses user requirements, gives an
overview of the system and describes different strate-
gies for utilizing the recommendation results. Sec-
tion 3 presents necessary definitions. In Sections 4
and 5, the method’s training and recommendation
phases are described. The method is evaluated in Sec-
tion 6 and compared to related work in Section 7. The
paper concludes with a short summary and some ideas
for future work.

2. Background
2.1. User expectations and experiences

A number of qualitative and quantitative studies
have been performed to find out how people view the
home of the future and what expectations they have of
living in such a home. It turns out that comfort tasks
and home control are the two most interesting appli-
cations for many potential users [4,11,27]; e.g. remote
control of heating, lights and windows, and help with
cleaning tasks are commonly mentioned applications.

Complicated user interfaces Several study partici-
pants that already today live in a smarter home remark
that increased comfort is indeed one of their favorite
aspects [5,17]. However, today’s smart home inhab-
itants struggle with complicated user interfaces. One
participant complains that “things must be simpler to
do than in a normal house ... I don’t want to work
through a menu just to turn off the lights” [20, p. 232].
Eight of the fourteen participants in a 2011 study cite
complex user interfaces as one of the main downsides
of their smart home [5]. Especially guests that are un-
familiar with the system are often unable to use it at
all; one smart home inhabitant describes how his/her
mother sat in the dark during her visit because she was
too scared to touch the controls [5]. Similar sentiments
are also reported in a study from 2012 [17].

Inflexibility Several problems arose in the studied
smart homes because of inflexible rules and scenes.
One inhabitant mentioned that “It bothers me when it
turns on the light ten times and I actually don’t need
it” [17, p. 156]. Another simply accepts the problems
“I just accept that the shades are down and then I just
go to the door to look outside” [17, p. 156]. One user
discussed, how he scaled back from his initial ideas of
a wake scene with music playing and lights switching
on automatically because his life is much less struc-
tured than implied by the setup of the scene [5]. He
concluded “So I don’t think the routineness of automa-
tion is what I was really wanting.” [5, p. 6].

Fear of control loss It is important that researchers
are aware of the fear of a loss of control that is preva-
lent amongst potential smart home users [4,11,23,27].
Often potential users are not comfortable with the idea
that the system autonomously performs some action on
their behalf. Eggen et al. strongly stress that “people
want control over when and how things are done, and
to what degree the home takes over” [11, p. 7]. Other
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participants worry that there may be no way to manu-
ally override any automation [27].

Addressing these issues The proposed recommender
system addresses the inflexible configuration of to-
day’s smart homes by removing the need to manually
describe user routines. The system continuously pro-
duces service recommendations that are fitted to the
user’s current situation and updated whenever the sit-
uation changes. Several strategies for utilizing the rec-
ommendations will be presented, so that users them-
selves can decide how much control they are willing to
give up for an increase in usability and comfort.

2.2. Terminology

Researchers stress that smart homes must be con-
text-aware, i.e. must be attentive to the current sit-
uation and the current needs of the inhabitant. The
context-aware home is always ready to assist the in-
habitant without needing complicated instructions.

User context Information about user context can be
provided by cheap and easy-to-deploy sensors. User
context can contain knowledge about the user (e.g. lo-
cation, medical information) and the user’s environ-
ment (e.g. temperature). The latter also includes the
status of electronic devices (e.g. whether the media
center is currently paused or playing), furniture and
house components (e.g. are doors/windows currently
open or closed?) and usage of items (e.g. whether the
pan is at its normal location). Any sensor event can be
interpreted as a change in the user context.

User action A user action is any action that is man-
ually performed by the user. The action may include
some interaction with the smart home system (opening
a door, using an item) or be self-contained (the user
walks into a different room). User actions cannot be
observed directly by the smart home system. Instead,
it can only observe sensor events (i.e. context changes)
that are caused by the action. Consider opening the
fridge: unless the smart home is equipped with a video
camera system with live-image recognition, the only
way to know that this user action happened is from a
sensor event “fridge = open”. If the user action does
not cause any context changes (e.g. due to lack of suit-
able sensors), the system has no way of knowing that
the action occurred.

System action/service A system action is any action
that can be automatically performed by the system,
typically in form of a service. A service is called
context-altering, if executing it changes the user con-

text in some way [14]. For example, a service “Turn on
dining room lights” would result in a context-change
“dining_lights = on”. A system action matches a user
action, if both result in the same context changes. The
idea of matching system actions to user actions was
inspired by Bellotti and Edwards [3].

2.3. Pro-active service recommendation

Recommender systems are widely used in e-com-
merce applications to provide users with hints on prod-
ucts or services they could be interested in. These rec-
ommendations are based on the user’s personal his-
tory in using the application (e.g. which products the
user bought) and are oftentimes cross-referenced with
other users’ histories (e.g. those who bought bookl,
also bought book?2).

This paper proposes a recommender system for
the smart home that works analogously. In high-level
terms, the output of the system are recommendations
such as “in the current situation you typically perform
actionX, would you like me to perform it for you?”.
The method draws only from the user’s previous be-
havior in the smart home and does not cross-reference
with other users.

Pro-activeness An important aspect of the proposed
system is pro-activeness. Users do not have to manu-
ally query the system for interesting services, instead
recommendations that fit the current user situation are
generated automatically. We have previously investi-
gated pro-active service discovery/service recommen-
dation in [14] (extended in [21]), where we propose a
method for automatically identifying services that can
help users fulfill their preferences. The method pro-
posed in [14] is well suited to support background as-
pects of users home life, e.g. comfortable room tem-
perature and lighting. The method proposed in this cur-
rent paper focuses on the dynamics of home life and
aims to support inhabitants in performing their activi-
ties.

Limitations The proposed recommender system can
currently only be used in single-person households.
The reason is that the recommendations are personal-
ized to one inhabitant’s context and routines. The final
section of this paper considers how it can be extended
to multi-person households.

2.4. Example scenario

The basic idea for the recommender system is
demonstrated in Fig. 1 using a smart home dataset
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Fig. 1. Typical actions after closing front door.

made available by van Kasteren et al. [26]. The fig-
ure shows the four most common actions the user per-
forms within five minutes of closing the front door of
the smart home.

Surprisingly, the most common user action is to im-
mediately open the front door again. However, this ac-
tion is only common within the first 40 seconds of clos-
ing the door — possibly the user has forgotten some-
thing in the car or can not carry all bought groceries
inside at once. If a longer time has passed since closing
the door, the user often heads either to the bathroom
or for the fridge. If one looks even further into the fu-
ture, say 20 minutes since closing the front door, no
dominating actions can be found. Similar observations
can be made in this dataset for many other user rou-
tines. The data supports rather detailed observations,
e.g. after opening the dishwasher, actions concerning
the plate and the cups cabinet are more likely than
other kitchen actions.

2.5. Overview of the recommender system

The proposed method extracts these temporal re-
lationships between user actions from a user’s smart
home history. For any current user context, the system
then tries to identify what the user most likely wants to
do next and recommends some system actions that best
match the user’s intentions. The recommender system
has two phases:

Training phase (Section 4) Input is a sequence of
sensor events which is collected while a user is
living in the smart home. The recommender sys-
tem extracts, how often and under which tempo-
ral relations specific events happen in any given
situation.

Recommendation phase (Section 5) Input is the cur-
rent user context (i.e. the current status of all
available sensors). The recommender system pre-
dicts the most likely next context changes based
on the learned behavior model. The predicted
context changes represent potential next user ac-
tions. The system then identifies which context-
altering services result would result in one of
the predicted changes, i.e. which service can au-
tomate possible next user actions. Output is a
ranked list of service recommendations, plus a
measure of recommendation uncertainty and con-
flict.

2.6. Utilizing the service recommendations

This section presents several strategies for utilizing
the service recommendations and discusses their im-
pact on the issues of control loss and usability.

2.6.1. Active context-awareness

Chen and Kotz [6] make the distinction between ac-
tive and passive context-awareness. An active context-
aware application “automatically adapts to discovered
context, by changing the application’s behavior” [6,
p- 3]. An active context-aware smart home continu-
ously senses the user context, interprets it using the
recommender system and autonomously acts on the
recommendation results by executing the best rec-
ommendation. Active context-awareness requires that
very precise service recommendations are generated.
The smart home must be able to decide (a) if a service
should be executed in the current situation, (b) which
service should be executed and also (c¢) exactly when
to execute it.

Pinpointing the best time of execution may be even
more difficult than identifying the correct service to
execute. For example, imagine that the smart home in-
habitant has just opened the refrigerator to take out
some breakfast ingredients. It is not very hard to pre-
dict that one of the inhabitant’s next actions will be
to close the refrigerator, and hence to identify the
corresponding service close refrigerator as the best
service recommendation. However, the home should
avoid closing the refrigerator before the inhabitant is
finished with retrieving the needed groceries. Even if
the chosen execution time is based on additional data
(e.g. the user is not near the refrigerator anymore), the
user may get annoyed if the refrigerator closes prema-
turely (actually the user was just transporting some in-
gredients to the stove and planned to return to the re-
frigerator).
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There is a risk that active context-awareness elicits
feelings of control loss even if recommendations and
timings are perfect. With imprecise recommendations
and timings, this loss of control may no longer be com-
pensated by an increased level of convenience. The in-
habitant could quickly become frustrated and switch
off the system.

2.6.2. Passive context-awareness

Instead, passive context-awareness [6] might be bet-
ter alternative. With this strategy the smart home also
continuously senses the user context and interprets it
using the recommender system. However, the home
does not autonomously execute some service, but in-
stead waits for input from the user.

To achieve passive context-awareness, the service
recommendations are used to build a very simple
graphical user interface (GUI) that shows only the cur-
rently most relevant choices. In case the user wants to
perform some other, less typical action, a list of all ser-
vices may be hidden behind an additional button. This
solution increases usability but keeps the user still fully
in control.

2.6.3. More natural interaction

Even with a simplified GUI, standard touch-screen
operated devices such as tablets or smart phones will
likely involve too much overhead for most users. In
many cases it will be much simpler to perform the de-
sired action manually than to retrieve the device from
the pocket or wherever it was left previously, switch
it on, and select the correct service. Such an input de-
vice may be most interesting for users that have trouble
performing some tasks manually, e.g. opening heavy
drawers.

Several more natural solutions for interacting with
smart homes have been proposed, e.g. using wear-
able computing devices [15], speech recognition [29]
and gestures [19]. In wearable computing devices,
display space is often severely limited. Here it be-
comes even more important to reduce the selection
choice to only those services that are currently rele-
vant for the user. In speech and gesture recognition
system, service recommendations could be used to im-
prove recognition rates. Whenever recognition confi-
dence is low and there are several potential service
matches for the user’s command, the system can cross-
check with the recommendations to decide which of
the options is most probable given the user’s situa-
tion.

2.6.4. Adding some active context-awareness

If there are several alternative services that all ful-
fill some similar goal, a GUI might show only the
most recommended of these services and indicate that
there are alternatives. One might even combine pas-
sive context-awareness with some aspects of active
context-awareness. Instead of letting the user select
from the alternatives, the GUI presents a summary of
the choices and the smart home chooses which alter-
native to execute. For example, the smart home senses
that it is too dark in the room and recommends that
one or several lamps should be switched on. Instead of
listing specific recommendations, the GUI could sim-
ply display a virtual light switch. When the user selects
this option, the smart home decides which lamp to turn
on.

This mixed strategy avoids the timing issues of ac-
tive context-awareness, since the cue for executing a
service comes from the user. It also lends itself very
well for the use with speech and gesture recognition
systems. Instead of having to specify exactly which de-
vice should execute some service, the user could con-
trol the home using much more imprecise commands.

3. Definitions

The recommender system is built on a formal model
of context that was first proposed in [14]. Some parts
of this model are shortly summarized here, with small
adjustments to allow reasoning about temporal data.

3.1. Context dimension

In the context model, context is represented as a
multi-dimensional space. Each sensor maps to a con-
text dimension d, which has some numeric or nomi-
nal value domain v. In this paper context is restricted
to nominal sensors. The reason is that most user ac-
tions involve changing the internal status of some de-
vice or home component, which is typically expressed
as a nominal dimension, e.g. d = fridge with a value
domain {open,closed}. The user can rarely directly al-
ter any numeric dimensions (e.g. a change in indoor
temperature is a result of interacting with other smart
home infrastructure such as heating and windows).

3.2. Context setting

A context setting on dimension [ is expressed as
d; = vy, e.g. fridge = open. Let C be the set of
all possible context settings, e.g. C' = {fridge =
open, fridge = closed, radio = on, radio = off ,...}.
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Fig. 2. 10 minutes of smart home activity.
3.3. Current user context and context change

The current user context c* is a collection of the
context information from all available sensors:

Definition 1 (User context). The current context of a
user is a tuple ¢ = {(co, Atp), ..., (cn, Aty)), where
each ¢; € C is a context setting and At; is the time
elapsed since this setting has been active.

The current user context also contains information
about the time that the user has been in the current
situation. All temporal information is given in relative
terms, i.e. as the time since something happened. All
timing information will be given in seconds through-
out this paper.

A context change is the result of a sensor event and
is denoted as Ac. Acis a context setting with Ac € C.
After a context change, the user context c* has to be
updated with the new context setting.

3.4. Examples of user context and context changes

Figure 2 shows as an example a short sequence of
six sensor events, which could have been recorded
while the user prepares some light snack.

Table 1 lists some example user contexts based on
this sequence of sensor events. After the fourth event,
the fridge has been closed since 235 seconds, the cab-
inet open since 210 seconds and the dishwasher open
since 0 seconds. Five seconds later, the settings remain
the same, but the elapsed times increased by five sec-
onds. With the fifth sensor event, the user context is
updated with a context change cabinet = closed and
the elapsed time for this specific context dimension is
reset.

4. Training phase

Input to the training phase of the recommender sys-
tem is a sequence of sensor events which is collected
while a user is living in the smart home. The system
extracts, how often specific events happen in any given
situation. Since learning is performed on the basis of
observed sensor events, the system can learn the user
behavior from manually performed user actions as well
as from service invocations. This means that users can

Table 1
Examples for user context and context change

Directly after the fourth sensor event
¢ = {((fridge = closed, 235), (cabinet = open, 210),
(dishwasher = open, 0))
Five seconds after the fourth sensor event
c* = ((fridge = closed, 240), (cabinet = open, 215),
(dishwasher = open, 5))
Context change caused by fifth sensor event (105 seconds after
fourth sensor event)
Ac = cabinet = closed
c* = {((fridge = closed, 340), (cabinet = closed, 0),
(dishwasher = open, 105))

continue to live in their home just as normal and do not
have to switch to a smart home user interface for all of
their interactions with the home.

Typically, there will not be enough training data to
exhaustively cover all possible user situations. With
only ten binary context dimensions, already 2'° dif-
ferent user contexts could occur. For this reason, the
recommender system looks at each context dimension
individually, analogously to established algorithms
such as Naive Bayes.? For example, it will extract in-
formation about which context changes are common
if cabinet = open, which changes are common if
cabinet = closed, if fridge = open, etc.

4.1. Extracting observation tuples

From the training data a set of tuples of the form
(ci, Acj, At;) is extracted, where ¢; is a context set-
ting, Ac; is an observed context change and At; is
the time elapsed since c; has changed at the moment
where Ac; occurred. For example, at 10:06 the user
from Fig. 2 opens the fridge and 30 seconds later
closes it again, so the extracted tuple is (fridge =
open, fridge = closed, 30). Afterwards, fridge =
closed; while this setting is active, four other sensor
events happen, so four further tuples can be extracted:

(fridge = closed, cabinet = open, 25)
(fridge = closed, dishwasher = open, 235)
(fridge = closed, cabinet = closed, 340)
(fridge = closed, dishwasher = closed, 360)

The first tuple expresses that the cabinet door was
opened 25 seconds after the fridge was closed. The
other three tuples express that 235 seconds after clos-

2See [13] for an introduction to Naive Bayes.
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ing the fridge the dishwasher was opened, that the cab-
inet was closed 340 seconds after fridge was closed,
and that the dishwasher was closed 360 seconds after
the fridge was closed.

4.2. Dealing with temporal data

In Section 2.4 it was shown that any prediction about
the next context change must be based on the current
user situation, as well as on the time that the user has
been in this situation. Thus, for any given context set-
ting ¢; the system wants to find out how likely a change
Ac; is, given that the user has been in ¢; since At;
time. Let At,, 4. be the maximum At for which such
temporal information is collected. This maximum re-
flects the loss of correlation between current context
and subsequent context changes if the user has been in
the situation for a long time.

4.2.1. Avoid over-fitting and over-generalizing

When extracting temporal relationships between
user situations and typical context changes, it is im-
portant to avoid over-fitting to the training data. There
will always be some variations in user activities that
should be tolerated by the algorithm. For example, it
should not matter whether the user re-opens the front
door after 3 or after 5 seconds. On the other hand,
there can be a risk of over-generalizing the user be-
havior, e.g. if no difference is made between opening
the front door instantly or after 5 minutes. The test
smart home datasets show a need to be more precise
for small At and more general for large At. To this
end, the [0, At;q.] interval is divided into a number
of intervals with increasing width. For example, for
the Kasteren houseA dataset, At,,., = 300 and an
interval width of 10 seconds for At € [0,60] and 30
seconds for At € (60, 300] were used.

4.2.2. Interval lookup
A function b(At) is defined to look up the correct
interval for a given At (Eq. (1)).

-1 if At > At’maw
b(At) = { index of interval
which includes At

otherwise (D)

4.3. Counting the observations

The final step of the training phase is to aggregate
the extracted tuples (¢;, Ac;, At;) into the defined in-
tervals. To make the intervals comparable with each

other, the number of occurrences in each interval is di-
vided by the interval’s width. Moving average smooth-
ing with window size 10 is applied to the intervals to
further reduce the risk for over-fitting. A number of
look-up functions for the smoothed counts are defined:

count(Ac;|c;) How often Ac; has been ob-
served in ¢;

How often Ac; has been ob-
served in ¢; in time interval with
index b,

count(Ac;|e;, —1) = count(Ac;

count(Ac;|c;, b)

ci)

These functions return the number of observations
of Ac; in a situation ¢; in total and in the different time
intervals. For large At;, temporal information is not
useful, so the system falls back onto the total counts.

Finally, some sums of the counts are defined to sim-
plify later calculations:

Total number of observations for ¢;,
csum(c;) = . count(Ac;lc;)
VAcj
Total number of observations for
¢; in interval b
csum(c;,b) = > count(Ac;
VAc;

csum(c; )

csum(c;, b)

Ci, b)

Maximum number of total observa-
tions for any c¢;
maxtotal = arg max csum(c;)
VCi

Maximum number of observations for
any ¢; in any interval
maxtemp = argmax csum(c;, b)

Ve Vh#—1

maxtotal

maxtemp

5. Recommendation phase

Input to the recommendation phase is the current
user context (i.e. the current status of all available
sensors). The recommender system predicts the most
likely next context changes based on the learned be-
havior model (Section 5.1). It then identifies, which
context-altering services result would result in one of
the predicted changes, i.e. which service can automate
possible next user actions (Section 5.2). Output is a
ranked list of service recommendations, plus a mea-
sure of recommendation uncertainty and conflict (Sec-
tion 5.3).
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5.1. Predicting context changes

5.1.1. Dempster-Shafer theory of evidence

Dempster-Shafer theory is a framework for achiev-
ing a consensus between several different information
sources. It is a generalization of Bayesian probability
theory. The popular Naive Bayes algorithm (which is
compared to our method in Section 6) is one applica-
tion of Bayesian probability theory.

In contrast to Bayesian theory, Dempster-Shafer al-
lows to attribute belief mass not only to individual
hypotheses, but also to combinations of hypotheses.
This makes Dempster-Shafer theory a valuable tool
in human-centered environments, which are typically
governed by variations, and thus uncertainties, in the
subject’s behavior. In the following a short introduc-
tion to the theory is given, more details can be found
in [24].

In Dempster-Shafer theory, the frame of discern-
ment O is the set of all hypotheses of interest. In our
case, the frame of discernment is made up from all con-
text changes that could occur given the user’s current
situation. This means that © changes if c¢* changes,
and thus the frame of ¢" is denoted as ©... For ex-
ample, if ¢* = ((fridge = closed,15), (cabinet =
open, 120), (bedroomdoor = closed, 3400)), then the
frame of discernment will be O.. = {fridge = open,
cabinet = closed, bedroomdoor = open}. For each
available sensor, there is at least one (in case of binary
sensors), but potentially several (for more complicated
sensors) such possible changes in O .

5.1.2. Information sources

Each part of the current user context is considered
a source of information. Above example context con-
tains three information sources: (fridge = closed, 15),
(cabinet = open,120) and (bedroomdoor = closed,
3400). A belief distribution is then calculated for
each source. This means that each source attributes
some masses to context changes in ©.«, which re-
flect how probable each change is according to the
source. E.g., the source (fridge = closed,15) would
probably attribute large masses to fridge = open and
cabinet = closed, but attribute only small masses to
bedroomdoor = open, since the former two are much
more probable in this situation.

Uncertainties are expressed by attributing some
mass to combinations of elements or to O .. itself. For
example, if it is quite likely that some context change
will happen in the kitchen, but there is high uncertainty
exactly which change will happen, one could attribute

a large mass to the combination of all kitchen-related
context changes, but a small mass to each of the indi-
vidual changes. The masses attributed by one source
must always add up to 1.

5.1.3. Source weight

The evidences of a source with a high number of ob-
servations should be trusted more than one with only
a few observations. Sources for which no temporal in-
formation is available, i.e. At > At,,qz, should have
a very small weight. Such sources should only be rele-
vant for finding the combined belief if no source with
At <t is available. i.e. temporal knowledge al-
ways trumps general knowledge.

Equation (2) calculates the weight of a source ¢ with
(ci, At;). If the source has temporal knowledge, its
weight is based on the number of observations in the
current interval, scaled by the maximum number of ob-
servations of any source in any interval. Otherwise, the
weight is a based on the total number of observations
of this source, scaled by the number of observations of
the overall best source. In this case, ¢ is additionally
discounted by a small €,,, e.g. €,, = 1074,

csumlei AK)) - iepney 2 1
maxtemp 1 &

weight; =
csum(c;)

X € otherwise
maxtotal

5.1.4. Attributing the masses

The masses attributed by a source are based on
the counts extracted from the data during the train-
ing phase. A context change with a high number of
observations should be attributed a larger mass than
one with a low number of observations. Equation (3)
calculates the mass for one context change A . for a
source 7 with (¢;, At;). The mass attributed to a change
Acj € O is the ratio of the number of observa-
tions of Ac; in interval b(At;) to the total number of
observations in this interval. The calculated mass is
then discounted by the weight of the source. In a slight
abuse of notation, this paper uses m(Ac;) instead of

m({Ac;}).

count(Ac;|e;, b(At;))
csum(c;, At;)

m;(Acy) = * weight; (3)

Finally, the mass put on .. can be calculated as the
remaining masses for reaching a sum of 1 (Eq. (4)).

mi(Opu) =1— Z m;(Acy) 4)

ACj €O u
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It holds that m;(©..) = 1 — weight,. For a large
weight, much mass is put on the context changes and
only a small mass is put on O, i.e. the uncertainty of
the source is low. For a small weight, less mass is put
on the context changes, more mass is put on O, i.e.
the uncertainty of the source is high.

5.1.5. Combining the sources

The different pieces of evidence are combined us-
ing Dempster’s rule of combination [24]. Dempster’s
rule requires information sources to be independent.
This assumption holds true for the test datasets. In case
of dependent information sources, the cautious rule of
combination can be used instead [10]. Dempster’s rule
is given in Eq. (5a).

miga(4) = Y

BNC=A,A#(

my(B) * ma(C) (5a)

Since masses are only assigned to singleton ele-
ments and to O .«, the calculation can be simplified as
shown in the example in Eq. (5b).

e.g., combine sources 1 and 2 for change Ac;
mie2(Acj) = mi(Ac;) * ma(Ac;)
+mi1(Ac;) * ma(Ocw)
+ mq(Ocu) * ma(Acy) (5b)

The conflict between the sources, i.e. the masses that
can not be attributed to any elements or subsets of O,
can be calculated according to Eq. (6a) [24], an exam-
ple is given in Eq. (6b).

K= Z m(B) *m(C) (6a)
BNC=0

e.g. for sources 1 and 2 and © .. = {Ac;, Acy}:
KLQ = ml(ch) * m2(Ack)
+ ml(Ack) * mQ(ACj) (6b)

More than two sources can be combined iteratively,
i.e. combine the first two sources, then combine the
result with the third source, etc. After combining all
sources in c*, the plausibility that a context change
Ac; will occur next can be calculated: pls .(Ac;) =
Meu (Acj) + Meu(Ocu). One also obtains K. as an
overall measure of the conflict between the sources

and m.u(O.u) as an overall measure of the uncer-
tainty.

In the implementation masses are transformed into
commonalities and Dempster’s rule of commonalities
is used to combine sources [24]. This step converts the
combination equation into a different form, which can
be calculated much faster. The final outcome of the
calculation is the same.

5.2. Service matching

The output of the previous step is a list of possible
context changes with their plausibilities, plus the mea-
sures of conflict and uncertainty. Each of these context
changes can be representative of some user action, i.e.
the context change is a result of performing this ac-
tion. The higher the plausibility of a context change,
the more common is also the respective user action.
The next step is now to match available services to the
predicted context changes. A context-altering service
matches a context change, if executing it has as effect
the desired context change. Information about service
effects is assumed to be available to the recommender
system; see [22] on how the smart home can automat-
ically learn service effects.

Matching between service effect and predicted con-
text change is trivial for nominal context dimen-
sions. In this case, there can only be “match” or “no
match”. The interested reader may refer to [14], where
matching between context descriptions is also defined
for numeric context data, were even partial overlaps
are possible. For now, assume that a context change
fridge = open was predicted. Then a service with ef-
fect fridge = open would be a match. A service with
effect fridge = closed would not be a match, neither
would a service with effect tv = on.

For each of the predicted context changes the al-
gorithm goes through the list of available services. In
some cases, no matching service will be found, ei-
ther because the context change happens automatically
(e.g. the toilet flush sensor will automatically switch to
off) or because there is no service that corresponds to
the user action (e.g. user walks into different room). If
a matching service is found, it will be added to a list of
recommendations. If several services match the same
context change, the services are alternatives, and can
be marked as such in the user interface.

Output of the matching step is a list of service rec-
ommendations. The list is ordered by the plausibilities
of the respective context changes, i.e. first in the list is
the service that matches the context change that has the
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highest plausibility. Only the order of the recommen-
dation list is used at the moment, the actual plausibility
values are currently not used.

The calculated recommendations are only valid for
the current user context, and have to be re-calculated
whenever the context changes. Because the time
passed since a context setting changed is part of the
user context, this means that re-calculation has to be
performed every second (assuming that time resolu-
tion is one second, i.e. each At in the user context is
updated every second). In reality, the service recom-
mendations will be stable for a longer time frame, de-
pending on the selected time intervals. However, since
the algorithm can calculate recommendations within a
few milliseconds (see Section 0), it is very feasible to
simply execute it every second.

5.3. Interpreting conflict and uncertainty

The previous steps returned not only a list of service
recommendations, but also some measure of the con-
flict and the uncertainty in the system. In the following
the edge cases low/high uncertainty and low/high con-
flict are discussed. These considerations will be revis-
ited in the evaluation section.

High uncertainty, low conflict No temporal sources
are available, therefore there is not enough infor-
mation to make reliable recommendations. The
user-interface should present a layout which al-
lows to select from the full list of services. More
common services could be highlighted.

High uncertainty, high conflict Does not occur.

Low uncertainty, low conflict There are one or sev-
eral temporal sources that are in agreement.
This is the best-case scenario. The user-interface
should display only the few best recommenda-
tions. The other recommendations should still be
accessible, but can be hidden behind an extra
button in the interface. Only in this case, active
context-awareness could be feasible.

Low uncertainty, high conflict There are several tem-
poral sources that are in disagreement. The user-
interface should display several of the best recom-
mendations. Again, the other recommendations
should still be accessible, but can be hidden be-
hind an extra button in the interface.

6. Evaluation

In this section the proposed algorithm is evaluated
and compared to a Naive Bayes classifier using two

publicly available smart home datasets. It is also eval-
uated how the choice of time intervals influences the
recommendation results and the usefulness of the con-
flict and uncertainty measures is explored. The section
finishes with an evaluation of the algorithm run-times.

6.1. Procedure

Input to the experiments is a sequence of sensor
events. Since the order of the events is important, the
dataset cannot be randomized. Instead 10-fold cross-
validation is performed as follows: in the first fold, the
first 10% of events are test data, the rest are training
data; in the second fold the second 10% of events are
test data, the rest are training data, etc. Following pro-
cedure is applied to each of the ten folds:

1. Train the model on the training data using the se-
lected method.
2. Then for each sensor event e in the test data:

(i) Update the current user context and calculate
possible context changes.

(ii) Calculate the probabilities for these changes us-
ing the selected algorithm.

(iii) Identify from e which user action a was per-
formed, if e cannot be matched to any user ac-
tion, then do not proceed further for e.

(iv) Calculate service recommendations based on the
predicted context changes.

(v) Compare the highest ranked recommendations
with a.

The necessary descriptions of service effects and
user actions were provided manually, see the sections
on the individual datasets for more details. The method
was implemented in Python, the source code is avail-
able online.> Experiments were performed on a PC
with an Intel Core 2 Duo CPU 3 GHz and 4 GB RAM.

6.2. Metrics

The recommendation results are evaluated using the
standard metrics of precision, recall and F1.* For each
service, count the number of true positives (tp), false
positives (fp) and false negatives (fn). Table 2 explains
true positives, false positives and false negatives using
as example the service/action Open frontdoor.

3The source code is available at https:/github.com/krasch/
smart-assistants.

4Further information on these standard metrics can be found in 2,
Chapter 4].
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Table 2

True positives, false positives and false negatives for example Open
frontdoor

Table 3

Results for both datasets when only the best service recommendation
is used

Recommended service Actual action

true positive Open frontdoor Open frontdoor

false positive Open frontdoor any other action

false negative any other service Open frontdoor

Recall corresponds to the true positive rate (recall =
tpi%): whenever the Open frontdoor user action oc-
curs in the test data, how often is the correct ser-
vice recommended? Precision measures, how rele-
vant the recommendations are (precision = tpfffp) -
whenever Open frontdoor is the best recommenda-
tion, how often does it actually occur? FI1 is the
harmonic mean of precision and recall (FI = 2 x
I%) The overall precision, recall and F1 are
calculated as the average over all services, weighted
by number of their occurrences. Precision, recall
and F1 all fall into range [0.0,1.0]. All results are
listed using the 90% confidence interval over 10

folds.

6.3. Used datasets

Kasteren houseA dataset This dataset was made
available by van Kasteren et al. [26]. It contains ob-
servations of the inhabitant of a smart home over a
period of 25 days. Fourteen binary sensors are used
for the open/close status of frontdoor, kitchen cabi-
nets, bedroom door, fridge, freezer, dishwasher and
washing machine, plus whether the toilet flush is on or
off. For all sensors except the toilet flush, two match-
ing services and human actions were identified: open
door/fridge/etc and close door/fridge/etc. The con-
text change toiletflush = off happens automatically,
so the toilet flush can only be described by one ser-
vice/human action “activate flush”. In total the dataset
contains thus 28 context settings and 27 services. Since
the sensor are binary, at any given moment there are
at most 14 possible context changes and possible user
actions. The experiments use At,,., = 300 and an
interval width of 10 seconds for At € [0, 60] and 30
seconds for At € [60, 300].

Kasteren houseB dataset 'The second test dataset was
also made available by van Kasteren et al. [25]. This
dataset was recorded over the course of 13 days, in
a different smart home, which was equipped with
23 binary sensors. Some of these sensors (pressure
mats on bed and chairs, infrared sensors) can not be

Method Recall Precision F1
houseA dataset

Our method 0.61 +0.02 0.63 = 0.04 0.59 £ 0.02

Naive Bayes 0.48 +0.03 0.38 £ 0.03 0.40 +0.03

Random 0.08 +0.01 0.30 £ 0.05 0.10 £ 0.02
houseB dataset

Our method 0.73+0.12 0.78 +0.10 0.724+0.12

Naive Bayes 0.55 +0.20 0.50 £0.21 0.51+0.21

Random 0.11 +0.04 0.49 £0.19 0.16 £ 0.07

mapped to any services. The toilet flush and mercury
switches (used to detect if there is some movement at
drawers and doors) can only be mapped to one ser-
vice each. Overall there are 44 possible sensor sta-
tuses, but only 26 available services. The same inter-
val setup as for houseA dataset was used in this exper-
1ment.

6.4. Comparison with Naive Bayes

The proposed method is compared with a Naive
Bayes classifier. Since Dempster-Shafer theory is a
generalization of Naive Bayes, this method is equiv-
alent to the proposed method without the temporal
properties and without any non-specificity. A ran-
dom classifier is used as a baseline in the compari-
son.

6.4.1. Only the best service recommendation is used

Table 3 lists evaluation results when only the one
best service recommendation is used, i.e. the user is
shown only one service. On the houseA dataset our
method achieves a recall of 0.61. This means that in
61% of cases the recommended service matches ex-
actly the action that the user would perform next.

For the houseB dataset, the recall is 0.73, i.e. the
correct service is recommended in 73% of all cases.’

Our method significantly outperforms Naive Bayes
for both datasets. The Naive Bayes algorithm will al-
ways predict the most common context change with-
out any regard for temporal relations, i.e. it will always
predict “Close cupboard”, regardless of how long the
cupboard has been open. The evaluation results show
that this approach is too coarse and results in much

SFor the houseB dataset some confidence intervals are rather
wide. The reason is that the dataset is partially dominated by one
of the mercury switch sensors. In some of the folds, events for this
sensor occur extremely often, which makes prediction easier.
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Fig. 3. Number of recommendations vs precision and recall for houseA dataset.

lower recall and precision when compared to our ap-
proach.

6.4.2. Results when showing several services

In the next experiment, the user can select from sev-
eral services. If several service recommendations are
displayed in the user interface, then often recall in-
creases (only one of the recommendations has to be
correct) and precision decreases (several of the recom-
mendations are irrelevant).

The results of the experiment for the houseA dataset
are shown in Fig. 3. On the left-hand side, it can be
seen that the recall increases with the number of ser-
vice recommendations for all methods. If the user is
shown five services, the recall reaches 0.9, i.e. in 90%
of cases the correct service is included in the top five
recommendations. For less than 13 recommendations,
our method always outperforms Naive Bayes. In this
dataset, the user can typically be recommended at most
14 services,® thus for 14 recommendations all algo-
rithms achieve similar results. For up to 9 recommen-
dations, our method has higher precision than Naive
Bayes; for more than 9 recommendations both algo-
rithms have similar precision.

The same experiment was performed with the
houseB dataset, and it was found that in 90% of cases
the correct service is contained in the four best recom-
mendations calculated by our method.

6 An exception is the initial phase of the evaluation, where the ini-
tial status of the devices is not known. For example, since it is not
known, whether a door is open or closed at the beginning of the
dataset, the user is shown both services for opening and closing this
door.

6.5. Choice of time intervals

It is important to evaluate, how susceptible predic-
tion accuracy is to the choice of time intervals. Table 4
lists recall, precision and F1 for the houseA dataset
for several different interval choices. In the first half
of the table, shorter and longer settings for At are
evaluated. When decreasing At,, ., the algorithm is
quite stable and recall degrades only slowly. Only very
short At,,q, <= 30 should be avoided. Increasing the
Atz to 1200 has no significant effect on the algo-
rithms performance.

In the second half of Table 4, the algorithm is tested
with different interval widths, while At,,.. = 300.
The results show that even very short intervals do not
lead to over-fitting to the test dataset. However, for
long intervals, the prediction accuracy degrades due to
the over-generalization of the user behavior. The re-
sults indicate that the algorithm is quite stable with re-
gard to the choice of time intervals, as long as very
wide intervals and very small At,,,, are avoided.

6.6. Exploring conflict and uncertainty

The potential use of the measures of conflict and
uncertainty was discussed earlier. In the following a
first evaluation of the actual information value of these
measures is presented. Please note that a partially su-
pervised approach is used for this initial evaluation, in
contrast to the rest of this paper.

6.6.1. Exploration experiment
For this experiment, the algorithm was applied to
the whole Kasteren houseA dataset, without any cross-
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Table 4
Influence of time intervals on prediction accuracy for houseA
Intervals Recall Precision Fl1
baseline (Table 3) 0.61 4+ 0.02 0.63 +0.04 0.59 £ 0.02
Influence of Atyaz
Atmaz = 60 0.59 +0.02 0.66 +0.03 0.58 +0.02
Atmaz = 30 0.58 £ 0.02 0.66 + 0.02 0.57 £0.01
Atmaz = 20 0.55 £ 0.02 0.66 +0.03 0.54 +£0.02
Atymaz = 10 0.21 +£0.04 0.11 +0.03 0.11+0.03
Atmaz = 1200 0.61 £+ 0.02 0.64 +0.03 0.58 +0.02
Influence of interval widths (same width for all intervals)
width =25 0.60 £+ 0.02 0.66 +0.03 0.59 +£0.02
width =45 0.61 +0.02 0.67 +£0.04 0.59 £ 0.02
width =65 0.61 4+ 0.02 0.66 +0.03 0.59 £ 0.01
width = 30s 0.58 +0.02 0.58 +0.02 0.55 +0.02
width = 100's 0.54 +£0.02 0.59 +£0.02 0.52 £ 0.02
1.0 1.0

z z > |

£ £ £ X

© © ©

£ £ 0.5 £ 05 x

[ [ I X

g g g ~

=) =) =)

%
e EXX 8 X X
0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Conflict Conflict Conflict

(a) First recommendation is correct

(b) At least 3 recommendations needed

(c) At least 5 recommendations needed

Fig. 4. Recommendation success vs conflict and uncertainty.

validation. Each cross in the scatter-plots in Fig. 4 rep-
resents one service recommendation; the x-coordinate
of a cross represents how much conflict the system
had when making this recommendation and the y-
coordinate represents how much uncertainty there was
in the system. Scatter-plot (a) shows only the most
successful service recommendations, where the ser-
vice with highest probability matches the actually
performed user action. It is not possible to identify
any conflict-uncertainty region where the algorithm is
more or less successful.

Scatter-plot (b) shows less successful recommenda-
tion results, where the correct service was not in the
best two recommendations, i.e. the user would have
to be shown three or more service recommendations.
There is a much lower density of data points in the
lower-lefter corner of the plot compared to plot (a),

while there are still a large number of points in the
upper-left corner. The final scatter-plot (c) shows even
less successful results, where the correct service was
not in the best four recommendations. It can be seen
that there are no longer any data points in the lower-
left corner of the plot, i.e. for low conflict and low un-
certainty, the correct service is found within the four
best recommendations.

6.6.2. Using conflict and uncertainty to reduce the
number of recommendations

A second experiment was performed to show how
the number of recommendations that are presented to
the user can be reduced based on conflict and uncer-
tainty. Let cutoff be the maximum number of recom-
mendations that are shown to the user. However, if un-
certainty < 0.4, show only dynamic cutoff < cutoff rec-
ommendations, i.e. make the selection easier for the
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Results for dynamic selection of number of recommendations

Cutoff # of Recs. Recall Precision
Maximum 5 recommendations (cutoff = 5)
fixed cutoff = 5 5.00 £ 0.00 0.89 +0.01 0.43 +£0.02
dynamic cutoff = 4 4.86 +0.03 0.89 +0.01 0.43 +£0.02
dynamic cutoff =2 4.57 +£0.09 0.88 £ 0.01 0.44 +0.02
Maximum 10 recommendations (cutoff = 10)
fixed cutoff = 10 10.00 £ 0.00 0.98 +0.01 0.38 £ 0.03
dynamic cutoff = 4 9.134+0.19 0.98 +0.01 0.38 +0.03
dynamic cutoff =2 8.84 +0.25 0.96 +0.01 0.39 +£0.03

user if one can be reasonably sure that the correct ser-
vice will be included in the first dynamic cutoff rec-
ommendations. Table 5 compares for cutoff = 5 and
cutoff = 10 the success of this strategy in terms of av-
erage number of recommendations shown, recall and
precision.

For cutoff =5, without any dynamic cutoff, on aver-
age five recommendations are shown to the user. This
average decreases to 4.86 if the list is cut at four items
if uncertainty is low, while still upholding the same
high recall. The average decreases further to 4.57 for
an dynamic cutoff = 2. In this case, the recall decreases
as well, i.e. the user will less often find the correct
service within the shown recommendations. However,
one can argue that the overall effect is still positive,
since recall decreases only by 2%, while the number
of recommendations decreases by 8.6%. The useful-
ness of dynamic cutoff is even more pronounced for
cutoff = 10. With an dynamic cutoff = 4 the user is
shown only 9.13 instead of 10 items, while recall is
equal and precision increases slightly. These initial re-
sults are very promising and warrant further expansion
into this direction.

6.7. Runtimes

Table 6 compares the training and prediction times
for the methods. All algorithms process the datasets
in less than one second. Our method extracts not only
overall counts, but also has to sort occurrences into
time intervals and perform smoothing; the training
times are thus the highest.

More interesting is the time needed for recommen-
dation. In order to be usable in pervasive environ-
ments, the algorithms must be able to process new
context information and calculate service recommen-
dations quickly. In particular, there should be no no-
ticeable delay in the user interface, e.g. as soon as a
lamp has been switched off, the corresponding button

to switch of the lamp should disappear from the UI or
should be grayed out. According to the literature, de-
lays of up to 200 milliseconds are not noticeable by
users [7]. The results in Table 6 show that while our
algorithm has the longest recommendation times, one
set of recommendations is calculated in less than one
milliseconds.

To test scalability of the algorithm, a synthetic
dataset was generated that imitates the data seen in the
houseA and houseB datasets. Evaluations performed
with the synthetically generated data show that the al-
gorithm scales well also for very large smart homes,
e.g. for 500 context dimensions and 2500 services,
one set of recommendations is calculated in 43 mil-
liseconds. This means that even for large-scale envi-
ronments, recommendations are generated sufficiently
fast for an on-line recommender system.

7. Related work
7.1. Behavior prediction

Das et al. propose the Smart Home Inhabitant Pre-
diction (SHIP) algorithm for predicting the next ac-
tion of a user [8]. Given a user’s most recent com-
mands, the algorithm identifies matching sequences
from the collected history and uses them to predict the
next command. Temporal relations between user ac-
tions are not considered. To deal with small variations
in user routines, the user can set a parameter called in-
exact threshold that represents the maximum percent-
age of allowed mismatches; however, no evaluation of
the effectiveness of this parameter was performed. In
contrast, our algorithm does not require users to per-
form their actions in regular sequences. Additionally,
the SHIP algorithm learns only from the commands
that are issued to the home devices, i.e. it learns a his-
tory of service invocations. Our method works at the
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Training and prediction times for both datasets, in milliseconds

Method Training time [ms] Prediction time 7pegicr [ms]
total per instance
houseA dataset
Our method 460.21 +11.82 152.48 +4.78 0.66 = 0.02
Naive Bayes 52.29 + 2.63 37.35+1.44 0.16 £0.01
Random 0.01 £ 0.00 12.46 £ 0.15 0.05 +0.00
houseB dataset
Our method 810.91 £ 35.86 250.22 £ 59.69 0.81 £0.19
Naive Bayes 91.33 +6.08 67.91 +8.75 0.22 £0.03
Random 0.03 £+ 0.00 17.04 £0.51 0.06 £+ 0.00

context level and can therefor learn user behavior from
manually performed actions as well as from service in-
vocations.

Gopalratnam and Cook propose ActiveLeZi for
predicting which device the user will interact with
next [12]. The algorithm builds a tree of observed
sequences of these interactions. To predict the next
action, the algorithm tries to match the most re-
cent inhabitant-home interactions with previously ob-
served sequences. The algorithm was tested in a
dataset collected in a test smart home (different dataset
than used in this paper) and achieved a prediction ac-
curacy of 47%.

Aipperspach et al. propose an approach for predict-
ing arbitrary sensor events [1]. Their approach is also
related to sequence matching; sensor events are mod-
eled as words and tools from Natural Language Pro-
cessing are used to build a language model of the sen-
sor data. This model can calculate how probable some
word is, given the most recent words. Longer pauses in
the sequence of sensor events are modeled as a special
PAUSE event, other temporal relations are not consid-
ered. The authors report 51% prediction accuracy on
a smart home dataset (again using a different dataset).
They briefly discuss how the predictions can be used,
e.g. to predict where the user is heading and turn on
the lights in preparation. However, no generalized ap-
proach for making use of the predictions is proposed.

Mozer [18] built a neural network that predicts,
which zone in the smart home will become occupied
in the next two seconds. The predictions are used to
switch on the lights in the to-be-occupied zones before
the user enters them. The author reports promising ini-
tial results. However, the approach is tailored to one
specific home installation and supports only location
prediction. It remains uncertain, how well the approach
is transferable to other smart homes and whether the

neural network can scale for predicting further at-
tributes of user context.

The proposed recommender system has several ad-
vantages compared to these approaches. It does not
rely on the user executing their activities in orderly
sequences, instead it predicts the next event based
on the current user context. The proposed approach
also takes temporal relations between events into ac-
count. Instead of learning from user commands, the
method works at the context level and can learn user
behavior from manually performed actions as well as
from service invocations. Finally, the recommender
system also includes the important step of transform-
ing the predictions into personalized service recom-
mendations.

7.2. Use of temporal information in activity
recognition

Some recent works in activity recognition also make
use of temporal information to improve recognition ac-
curacy. Ye et al. propose the usage of absolute tempo-
ral information as well as relative temporal informa-
tion for activity recognition [30] and show that tem-
poral awareness can significantly increase the activity
recognition accuracy. Mckeever et al. propose the us-
age of activity durations in activity recognition [16]
and implement a learning algorithm using Dempster-
Shafer theory. Evaluation results show a 70% improve-
ment of the recognition f-measure, compared to a non-
temporal Naive Bayes classifier. Both works perform
supervised learning.

8. Conclusions and future work

This paper presented an unsupervised recommender
system for the smart home. Based on the user’s current
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situation, the proposed system tries to recommend ser-
vices that match the user’s intended next actions. Sev-
eral options of making use of the recommendation re-
sults and their implications on convenience, ease-of-
use and potential control loss were discussed. Evalu-
ations were performed on two publicly available test
datasets and it was shown that the method (i) can pro-
duce correct recommendations with 61% and 73% ac-
curacy, (ii) significantly outperforms a Naive Bayes
classifier and (iii) is stable with regard to choice of pa-
rameters, as long as extreme values are avoided.

One avenue to pursue in the future is the utiliza-
tion of conflict and uncertainty. The evaluations indi-
cated that conflict and uncertainty can be useful tools
for identifying how many recommendations should be
presented to the user. However, at the moment, impor-
tant parameters such as conflict and uncertainty thresh-
olds have to be set manually. Further research should
investigate how this process can be improved.

A second avenue for future work is to enable the
use of the recommender system in multi-person house-
holds. One challenge is that the recommender system
must be able to build a different behavior model for
each inhabitant. This means it must be able to dis-
tinguish which user is performing which action, e.g.
through the use of indoor positioning systems. A sec-
ond challenge is that the recommender system should
not send recommendations to inhabitant] that only in-
terest inhabitant2 (e.g. inhabitantl is in the bedroom,
inhabitant2 is in the kitchen, both receive kitchen rec-
ommendations, since the smart home detected recent
activity in the kitchen).

A final idea for future work is to move towards ac-
tive context-awareness. The method presented in this
paper makes a step towards answering the question of
which service would be most useful in the current situ-
ation. However, additional work must be done to make
the smart home able to decide if a service should be
executed and when exactly to execute it. Any solutions
for these problems must be tested with actual smart
home inhabitants, with a special focus on evaluating
whether the increased usability can compensate for po-
tential feelings of control loss.
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