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Abstract. In this paper, we introduce a novel method for view-independent hand pose recognition from depth data. The proposed
approach, which does not rely on color information, provides an estimation of the shape and orientation of the user’s hand without
constraining him/her to maintain a fixed position in the 3D space. We use principal component analysis to estimate the hand
orientation in space, Flusser moment invariants as image features and two SVM-RBF classifiers for visual recognition. Moreover,
we describe a novel weighting method that takes advantage of the orientation and velocity of the user’s hand to assign a score
to each hand shape hypothesis. The complete processing chain is described and evaluated in terms of real-time performance
and classification accuracy. As a case study, it has also been integrated into a touchless interface for 3D medical visualization,
which allows users to manipulate 3D anatomical parts with up to six degrees of freedom. Furthermore, the paper discusses the
results of a user study aimed at assessing if using hand velocity as an indicator of the user’s intentionality in changing hand
posture results in an overall gain in the classification accuracy. The experimental results show that, especially in the presence of
out-of-plane rotations of the hand, the introduction of the velocity-based weighting method produces a significant increase in the

pose recognition accuracy.
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1. Introduction

The design of effective touchless interfaces for in-
teracting in smart spaces by using depth sensing tech-
nologies is now rapidly becoming a major challenge
in human-computer interaction [1]. Recently, several
natural user interfaces (NUIs) that allow users to per-
form omnifarious interaction tasks by means of body
movements have been proposed, and their efficiency in
solving complex problems has been evaluated in many
real-world applications.

Nonetheless, 3D user interfaces able to fully exploit
depth sensing technologies are still in their infancy. In-
teracting with 3D worlds is more complex than with
2D WIMP (window, icon, menu, pointing device) in-
terfaces, since it requires the user to manipulate the
position and orientation of 3D objects involving six
degrees of freedom (DOF) [2]. Moreover, a truly 3D
interaction requires the user not to be constrained to

maintain a fixed position in the 3D space. On the con-
trary, most of the Kinect NUIs proposed so far are able
to control only 2 DOF simultaneously, and correctly
recognize hand and arm gestures only if the user stands
fronto-parallel to the sensor and at a fixed distance
from it. In fact, most systems are able to recognize ges-
tures only if users are standing in a fixed place with
hands extended [3]. At the heart of these difficulties
there is the problem of recognizing static and dynamic
hand gestures from low resolution depth images of a
hand at different distances and differently oriented.
As an example, Fig. 1 depicts the sequence of ac-
tions required to perform a 3D rotation when static
and dynamic hand postures are used to control the ex-
ecution. First, the user chooses the grasping position
while assuming the open hand posture (see Fig. 1a) and
then grabs the 3D object by assuming the grasp posi-
tion (closed fist, see Fig. 1b); then, while keeping this
hand posture, he/she moves his/her arm to rotate it (see
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Fig. 1. Depth images of a 3D rotation sequence: (a) positioning; (b) grabbing; (c) rotating; (d) releasing.

Fig. 1¢); finally, he/she releases the object by assuming
the open hand posture (see Fig. 1d). Therefore, to per-
form this interaction task in a touchless way, the sys-
tem should be able to track the user’s hands, but also to
correctly classify static hand postures (open hand and
closed fist) independently from the hand position and
orientation. In fact, even in the case of the user stand-
ing fronto-parallel to the sensor, a movement of the
arm in the 3D space changes the shape of the hand as
acquired by the sensor, making its classification prob-
lematic. Although voice input could be used as an al-
ternative method to engage/disengage with the system,
it would not work in noisy environments or when si-
multaneous interactions by more than one user are re-
quired, and could decrease the precision of the interac-
tion since the user has to remain motionless until the
speech recognition result is available.

These observations motivated us to investigate view-
independent hand pose recognition approaches from
a single, low resolution depth image. The majority of
studies on this subject in recent literature approach
view-independent static hand gesture recognition by
using multiple sensors. However, most of these ap-
proaches require complex calibration steps, so reduc-
ing the portability of the system, and force the user to
keep his/her hand in a small area of the 3D space. In
contrast, our work has been focused on the design of a
hand shape classification approach that allows users to
move freely in the coverage area of the sensor.

This paper significantly extends the approach pro-
posed in [4], in which a method for extracting and pro-
cessing region-based statistical image features and a
database containing pose compensated depth images

of hands were presented. In more detail, the main
contributions of this work are: i) a novel weighting
method, which takes advantage of the velocity and ori-
entation of the user’s hand with respect to the sen-
sor to improve the hand shape classification accuracy;
and, ii) a user study, the results of which show that
the velocity-based weighting approach increases the
accuracy of the hand shape classification while per-
forming 3D interaction tasks. As a case study, we have
also implemented the proposed algorithms in an open-
source software for 3D medical visualization, design-
ing a touchless interface suitable for use in operating
rooms or in medical education.

The remaining part of the paper is organized as
follows: Section 2 describes the previously proposed
methods for hand shape classification, and discusses
the limitations of these methods when used for 3D in-
teraction; Section 3 presents an overview of the hand
shape classification chain, particularly focusing on the
weighting method; Section 4 describes the main fea-
tures and some implementation details of the touchless
user interface for 3D medical visualization; Section 5
presents our experimental results both on the accuracy
of the classifiers and on the impact of the velocity-
based weighting method on hand pose recognition; fi-
nally, Section 6 concludes the paper.

2. Related work

In recent years, many largely different approaches
have been proposed to recognize static hand postures.
A review of the techniques and methods most com-
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monly used can be found in [5]. In this section, we
briefly introduce the different approaches, specifically
focusing on view independent hand shape classifica-
tion from a single image.

A common approach to static hand pose recogni-
tion relies on the use of a 3D hand model. Since the
hand is an articulated deformable object, the complex-
ity of such a model is high. The self-occlusion of the
hand and the high computational cost are the main dif-
ficulties model-based approaches have to face. More-
over, to allow the recognition of a wide range of hand
shapes, large image databases are required. It is worth
noting that, if only a single frame is available, then the
problem does not have a unique solution.

In contrast, appearance based approaches aim the
recognition of hand postures by comparing the 2D im-
age features extracted from the hand pose database
with the one extracted in real-time from the video
stream. The choice of the image features to use fur-
ther contributes to classify the approach. Local invari-
ant features, eigen values, or the whole image can be
profitably used as image features. Among low level
features, Fourier descriptors [6] and statistical mo-
ments (e.g. Hu moments [7], Flusser moments [8]) are
the most commonly used. Approaches based on high
level features such as fingers and fingertips have also
been proposed [9]. Additionally, in many of such ap-
proaches, markers or instrumented data gloves [10] are
used to provide a reliable recognition even in the pres-
ence of cluttered backgrounds. Recently, some mark-
erless methods have also been proposed [11].

Although they are more efficient in computation
time, appearance-based methods are view dependent,
that is, the hand pose can be correctly recognized only
if the camera is close to and in a fronto-parallel view
with respect to the user. In contrast, in our work the
goal has been to classify hand shapes to provide users
with touchless interaction mechanisms in an uncon-
strained 3D space. In this context, the main challenges
to cope with are the absence of constraints on the
placement and orientation of the hand with respect to
the body as well as limitations on the camera back-
ground.

Some vision-based view independent hand pose
recognition systems have been proposed in the recent
literature. In [12], a multi-angle hand gesture recog-
nition system that makes use of three Support Vector
Machine (SVM) classifiers is described. However, the
proposed system requires three webcams, set respec-
tively at the front of and to the left and right of the
hand to properly work, so forcing the user to stay in a

fixed position in the space. In [13], a neural network-
based method for recognizing the position and posture
of a user’s hand in real time is described. This solu-
tion also requires multiple cameras to determine the
position and orientation of the user’s hand, and there-
fore the user must keep his/her hand in a restricted
area of the 3D space. However, vision-based interfaces
need to contend with problems related to lighting, clut-
tered background, distance of operation, etc. More-
over, problems arise when controls with a high degree
of freedom are required. When camera input is used,
3D hand pose estimation is an ill-posed problem, since
the 3D information of a hand is lost in a 2D image.

Considering the aforementioned limitations, the use
of a single 3D sensor for hand pose recognition is
an attractive alternative. Since it does not rely on
color information, it has the capability of recognizing
complex hand postures within unconstrained environ-
ments. Therefore, more recently the research commu-
nity has been investigating depth cameras as an option
to approach hand pose and motion recognition.

In [14], a Principal Component Analysis (PCA)
based hand posture recognition system that makes use
of single depth images is described. Similarly to this
approach, in our work we use region-based statisti-
cal moments as image features and classification algo-
rithms to improve the recognition accuracy when the
user is far from the camera and the hand is not in front
of and parallel to it. A static and dynamic hand shape
classification that uses depth and translation invariant
features extracted from a depth image and randomized
classification forests is proposed in [15,16]. In [17],
a clutter-tolerant shape and 3D pose estimation that
works on depth data is proposed. Such a method is
user-independent, and provides an estimation for the
3D pose orientation and for the full hand articulation
parameters.

Differently from the aforementioned approaches, in
this paper we focus on the view-independence of the
hand shape classification from depth data. We present
a complete view-independent static hand pose recog-
nition chain, and introduce a novel weighting method
that takes advantage of the user’s hand orientation and
velocity to increase the hand classification scheme.

3. The hand shape classification method
The proposed classification method provides an es-

timation of the hand shape by using a single depth
image. In Section 3.1, we describe the Kinect depth
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data, the pose compensation algorithm, the image fea-
tures used and the classification strategy. Then, in Sec-
tion 3.2, we describe how we use two classifiers, and
orientation and velocity of the user’s hand to improve
the recognition accuracy.

3.1. Hand shape hypothesis

3.1.1. The depth sensor

The depth sensor we have used is the Microsoft
Xbox Kinect™. The Kinect is equipped with a mono-
chrome CMOS sensor and a laser-based IR projector.
The latter is used to send a fixed speckle pattern to-
wards the focused area. This pattern is then detected by
the CMOS sensor and further used to calculate depth
data by means of a triangulation against a hard-wired
pattern. The aforementioned sensor also embeds a tilt
motor for sensor adjustment, an RGB camera and a mi-
crophone array. The device features a 43° vertical field
of view, a horizontal field of view of 57° and an oper-
ating distance range between 0.8 m and 3.5 m, with a
spatial resolution of 3 mm for the plane on which the
Kinect camera resides, and 10 mm for the axis orthog-
onal to this plane directed towards the user, within 2 m
from the sensor. The resolution for the produced datas-
treams is 640 x 480 at 30 Hz, whereas the depth data
have an 11 bit resolution.

A statistical analysis of the sensor precision depen-
dence on distance is given in [18]. The reported results
show that the relation between the distance of the tar-
get from the depth camera and the range/standard de-
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viation of the measured depth values fits to a quadratic
function. Therefore, as described in [19], since each
depth image has a fixed resolution, the depth point
density is inversely proportional to the square distance
from the sensor, along the perpendicular camera axis.
Moreover, the disparity image allows for 1024 levels
of disparity. To capture the essence of this strict depen-
dence of depth errors to the distance from the sensor,
we divided the area focused by the sensor into three re-
gions: the first region, with the highest depth accuracy,
spans from 0.8 m to 1.2 m (depth resolution < 3 mm),
the second spans from 1.2 m to 2.0 m (depth resolu-
tion < 10 mm) while the third extends from the end of
the second region to the limit of the operating distance
range.

3.1.2. Hand segmentation and pose compensation

On each depth image provided by the Kinect, user
data are segmented from the background by exploiting
depth cues. A nearest neighbor filter is then applied to
the hand position reported by the Kinect SDK skele-
ton tracking module in order to extract the point data
concerning the relevant hand, thus producing a smaller
3D point cloud containing hand data only. Then, a
weighting scheme is applied to account for the finger
positions: the greater the distances of the hand points
from the center of mass, the fewer are the correspond-
ing applied weights. Finally, as performed in [14] by
Malassiotis et al., principal component analysis is em-
ployed to estimate the hand orientation, by computing
the eigenvectors of the hand scatter matrix.
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Principal 2
Component
Analysis

depth image of the hand

Fig. 2. Hand data capture and classification pipeline.
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After the computation of the eigenvectors and the
eigenvalues has been completed, the hand normaliza-
tion is performed by transforming the hand point cloud
data in such a way that the extracted principal direc-
tions are aligned to the frame of the depth sensor.
This is achieved by means of the rigid transforma-
tion:

T T
Pnormalized = R Pinitial +C — R'm

where R7 is the transpose of the matrix holding the or-
dered eigenvectors as columns, R = [eq, e, €3], with
e1 being the eigenvector corresponding to the biggest
eigenvalue; c is the distance from the camera frame,
and m is the center of mass of the initial hand point
cloud.

Our hypothesis was that performing the hand shape
classification on “pose-compensated” depth images
would provide a means to recognize the hand shape
even in the presence of the severe self-occlusions that
are present especially during out-of-plane hand rota-
tions.

Since no hand pose dataset was publicly available,
to train and test the hand shape classifiers we recorded
a database of greyscale pose-compensated depth im-
ages of four different hand postures: open hand, closed
fist, L shape and finger pointing. Six subjects were
required to perform two out-of-plane rotations (yaw
and pitch, in the range of around +200° and £120°,
respectively) and one in-plane rotation (roll, in the
range of around +240°). Due to the depth data preci-
sion dependence on distance, each subject had to re-
peat the acquisition process two times, with the first
batch of acquisitions in the most accurate region near
the sensor and the second batch of acquisitions in the
second region, farther from the sensor (~1.0 m and
~~1.6 m, respectively). The sample acquisition rate was
30 fps.

Along with pose compensated depth images, the
database also holds a registry containing, for each sam-
pled frame, the distance of the tracked hand and the
angle between the normal of the hand plane and the
direction running from that hand and the depth sensor.
Further information on the hand posture database is re-
ported in [4].

3.1.3. Feature extraction and processing

In order to characterize the pose-compensated hand
posture images, we have chosen to use moment in-
variants, a particular type of region-based statistical
feature derived by Hu [7], as image features. How-

ever, the hand posture recognition performance of the
Fourier descriptors (FD) and moment invariants was
compared in [20] and, in all the experiments, FD re-
sulted in a higher classification accuracy. The rea-
son for our choice is that we found that countour-
based features such as FD or orientation histograms,
differently from region-based features such as Hu
invariants and Zernike moments, require clear im-
ages to provide us with a significant discriminative
power. On the contrary, depth images coming from
a Kinect, particularly if taken farther than 1 m from
the camera, contain artifacts and missing points within
those areas that are not reached by the projected
light.

Hu’s seven moment invariants are defined as 2D ob-
ject f(x,y) descriptors invariant to translation, rota-
tion and scale transformations. However, as reported
by Flusser in [21], Hu’s system of moment invariants
is dependent and incomplete. Therefore, a new set of
independent and complete invariants, namely Flusser
moment invariants, was proposed:

1/)2 = C21C12
Wy = Im(caoct,)
Y6 = Im(csocsy)

Y1 = c11
Py = Re(czocfg)
15 = Re(cz0ciy)

With ¢,,, being the complex moment of order p + ¢
of an integrable image function f(x,y), defined as:

+oo +oo
= [y ey

In our work we used only the five frue invariants de-
fined by Flusser: 11, 12, ¥3, ¥4 and ¥5. We did not
consider g since it is a skew invariant, that is, it dis-
tinguishes between the mirrored images of the same
object. This is undesirable in our case since the pose
normalization step can produce images reflected across
the z- or y-axis.

To mitigate the problem of outliers among the com-
puted moments, a percentile filter was applied to the
values with a double pass algorithm. During the first
pass of the algorithm, each sample in the posture
database was analyzed and the values of two per-
centiles were computed for each feature. During the
second pass, if any of the values for the moment invari-
ants of the current sample were lower than the lowest
percentile or greater than the highest percentile, then
the whole sample was discarded from the set used to
train the classifier. The percentile values were chosen
based on observation. They were different for each fea-
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Fig. 3. Calculus of the classifier score.

ture and range from Oth to 12th for the lowest per-
centile and from 85th to 92th for the highest percentile.
The computed percentiles were saved and used for on-
line hand posture recognition tasks.

To classify hand shapes on single frames by using
Flusser moments, we trained two SVM classifiers on
depth images obtained at different distances, with a
Radial Basis Function (RBF) kernel due to the non-
linearity of the Flusser moment values. All the required
parameters were set to default values, except for the
cost (C') and gamma () parameters. To find such val-
ues a grid-search approach was adopted: as described
in [22], many (C, ) value pairs, generated through
an exponentially growing sequence, were tested and
the pair which produced the best cross-validation ac-
curacy was picked. To handle multi-class classifica-
tion, we used the One-Against-One (1Al) strategy.
The hand shape classification rates are reported in Sec-
tion 5.1.

3.2. Hand posture filtering

To improve the hand shape classification rate con-
sidering a single depth frame and to reduce its de-
pendance on the hand-sensor distance, we devised a
weighting method that takes advantage of the veloc-
ity and orientation of the user’s hand with respect to
the sensor. The hand posture filtering approach con-
sists in assigning a score to each hand shape hypoth-
esis, by computing and then multiplying three factors,
each varying in the range [0, 1]:

shapeScore = classScore x accScore X velScore

The classScore takes into account that two classi-
fiers are used at the same time to recognize the hand
shape, each trained on depth images obtained at differ-
ent distances and with a degree of certainty that varies
according to the hand-sensor distance.

classScore = |a - scorey £+ (1 — ) - scores|

where factors are summed or subtracted if the
shape hypothesis provided by the two classifiers

hand
normal

projection on the
hand-kinect vector

Fig. 4. Calculus of the accuracy score.

is the same or not, respectively, while « is defined
as:

1 ifd <1
a=¢ =4 if1<d<1.6
0 ifd>1.6

In more detail, as depicted in Fig. 3, if the hand-
sensor distance is inside the interval ]1.0 m, 1.6 m][,
the scores provided by the classifiers are merged into
a single score. Specifically, a different weight is as-
signed to each score (o and 1—«, respectively) accord-
ing to the actual hand-sensor distance; then, if both the
classifiers give the same hand shape hypothesis, the
two scores are added; if not, they are subtracted. If the
hand-sensor distance is lower than 1.0 m, then only the
first score is used; whereas, if such a distance is higher
than 2.0 m, only the second score is used.

The accScore is higher when the hand palm is or-
thogonal to the hand-kinect direction. In fact, the less
the hand palm is orthogonal to that direction, the more
the sensor view of the hand is occluded, and so the
hand shape hypothesis is uncertain. Therefore, the
hand orientation with respect to the sensor is here con-
sidered as an indicator of the degree of certainty of the
hand shape hypothesis. To assign the score, we nor-
malize the projection of the hand normal on the hand-
kinect vector as depicted in Fig. 4.

The velScore is a score aimed at integrating the vol-
untariness of the user in changing the hand shape into
the recognition chain. The use of the hand velocity as
a voluntariness indicator [23] derives from Fitts’ law,
which formalized an intuitive trade-off in aimed hu-
man movements: the faster we move, the less precise
our movements are. In this context, we consider un-
likely an intentional change in the user’s hand pose
while he/she is performing a fast movement. Since the
faster we move the less precise our movements are,
we speculate that the probability of a hand pose tran-
sition in a frame is inversely proportional to the hand
velocity in that frame. Therefore, we compute a score
which is highest when the user’s hand movements are
slower than 0.1 m/s, and null when they are faster than
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Fig. 5. Calculus of the velocity score.

0.5 m/s, as depicted in Fig. 5. The slope and the param-
eters of the weighting function were chosen through
observation.

Since we obtain a classification label and a hand
shape score for each frame, we compute the hand
shape hypothesis for the actual frame by adding the
scores for each hand shape hypothesis in the last 30
frames (about 1 s at 30 fps) multiplied by a time-
weighting factor, and then choosing the one with the
highest score.

4. Case study

A significant example of the successful application
of touchless technologies to tackle real life problems
can be seen in the medical field. Here, in fact, spe-
cific solutions are required in the design of both us-
able and practical user interfaces [24]. Particularly in
operating rooms, surgeons need to access medical im-
ages without having to physically touch any control
since they cannot leave the sterile field around the pa-
tient [25]. For this reason, touchless interfaces are ad-
vantageous in that they can preserve sterility around
the patient without forcing surgeons to rely on a proxy,
who may not share the same level of professional vi-
sion [26].

Therefore, as a case study, we implemented the hand
shape classification pipeline by extending the open-
source MITO project [27], a software tailored for 3D
medical image visualization. In more detail, we de-
signed an interface that allows the user to point to, crop
and rotate 3D reconstructions of anatomical data with
up to 6 DOF. In addition to the hand shape classifica-
tion chain described in this paper, we used the tech-
nique described in [28] to make the mouse pointer al-
ways bind to the visible surfaces of 3D objects, and
the filtering technique described in [29] to enhance the
precision of distal pointing and to smooth the 3D rota-
tions.

The interface is built upon five independent mod-
ules, connected as a pipeline by means of a signal/slot
paradigm (see Fig. 6). Each module behaves as a data

producer and/or data consumer and can be easily re-
placed in the pipeline. Module connectivity is imple-
mented by means of a signal/slot paradigm provided
by Boost C++ Libraries [30]: the signals represent
callbacks with multiple targets (publishers), whereas
the slots represent callback receivers (subscribers) and
are called when signals are emitted. The processing
pipeline also makes use of the Point Cloud Library
(PCL) [31], a comprehensive C++ framework contain-
ing a wide range of state-of-the-art algorithms for 3D
point cloud processing.

The KinectSDKJointsProvider is the first compo-
nent in the pipeline and relies on the Microsoft Kinect
SDK to segment users from depth data and produce a
3D point cloud for each user. It also fills a data packet,
JointsDataUnit, which contains a 3D point cloud for
the tracked user and the estimated positions of joints,
and propagates it along the pipeline.

Next, the HandExtractor component, which con-
sumes the JointsDataUnit packets, uses a nearest
neighbor algorithm to extract a smaller 3D point cloud
only containing the data for each of the users’ hands. It
also creates and propagates two HandDataUnit pack-
ets, one for each hand, containing the 3D point cloud
for one hand and a flag defining which hand is being
described (left/right).

As the third step along the pipeline, there is the
HandPostureProcessor, which consumes the Hand-
DataUnit packets. It employs principal component
analysis on the 3D point cloud of the user’s hand to
estimate the hand palm orientation, by using a weight-
ing scheme to account for the finger positions. The
hand data is transformed (pose-compensated) so that
the estimated principal directions are aligned to the
frame of the camera. Then, Flusser moments are ex-
tracted from the new depth map, which was built from
the pose-compensated point cloud. Two hand shape
hypotheses are formulated using the extracted fea-
tures in the two multi-class SVM-RBF classifiers. Fi-
nally, the component creates and propagates a Hand-
PostureDataUnit packet, which contains the iden-
tifiers of the recognized postures, the actual hand-
sensor distance and the estimated principal direc-
tions.

Then, the HandPostureFilter analyzes HandPos-
tureDataUnit packets and produces the final hand pos-
ture hypothesis. It collects and analyzes 30 posture
packets before deciding on a posture hypothesis, com-
puting an aggregated score for each posture as de-
scribed in Section 3.2. Then, the component creates
and propagates a new HandPostureDataUnit packet.
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Fig. 6. The recognition modules of the touchless interface for 3D medical visualization.

Table 1

10-fold cross-validation results

Table 2

Confusion matrix

Classification rate
0.8 m-1.2m 81.18%
1.2m-2.0m 73.53%

Hand-sensor distance

The last module is the HandGestureProcessor,
which consumes the HandDataUnit and HandPosture-
DataUnit packets. The component is in charge of col-
lecting the posture packets and joint positions to pro-
duce high level event signals to which an application
can subscribe (see Fig. 6). It manages a finite state
machine for each user and, depending on the state of
the FSM, emits the relevant signals (e.g. beginRota-
tionSignal, endRotationSignal, etc.) to the registered
slots.

To cope with the limitations of floating point data
representation (see [32] for further details), we scaled
each moment invariant in the [—1, 4-1] range, by con-
sidering the statistical distribution of values for each
one of the five Flusser moments.

To assess the near-real-time interactivity of the in-
terface, which is a strict constraint for a touchless inter-
face because of the lack of perceptible tactile stimuli,
we logged the performances of the hand shape classi-
fication pipeline on a standard PC running the 64 bit
version of Microsoft Windows 7 and equipped with a
3.20 GHz Intel® Core™ i7-930K CPU and 8 GB of
RAM. The time spent in each step of the pipeline was
averaged over fifty frames. The results showed that the

Closed Open L Finger
fist hand shape pointing

Closed fist 79.22% 10.89% 2.92% 6.97%
Open hand 7.27% 82.25% 6.67% 3.80%
L shape 2.47% 6.32% 85.20% 6.01%

Finger pointing ~ 9.56% 5.67% 7.89% 76.89 %

whole recognition pipeline, comprising the segmenta-
tion, normalization, features extraction and shape clas-
sification steps for both hands, once the 3D point cloud
is available, does not take more than 5 ms to com-
plete.

5. Evaluation

The evaluation is divided into two parts. The first
part deals with the analysis of the hand shape classifi-
cation rates on single depth images, whereas the sec-
ond deals with the evaluation of the score weighting
method we designed to improve the classification ac-
curacy.

5.1. Evaluation of the classifier

For each classifier a ten fold cross-validation was
performed. The resulting classification rates are pre-
sented in Table 1, and the confusion matrix in the
0.8 m—1.2 m interval is shown in Table 2.
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The overall classification accuracy for hand pos-
tures in the 0.8 m—1.2 m interval was found to be
81.18%, while in the 1.2 m—2.0 m interval it decreased
to 73.53%. The classification rate in the whole 0.8 m—
2.0 m interval, achieved by using only one of the two
classifiers depending on the hand-sensor distance, is
75.94%.

5.2. Evaluation of the filtering approach

We were interested to assess whether or not the ap-
plication of the velocity-based filtering to the classi-
fication pipeline improves the hand shape estimation
and so eases the execution of complex 3D interaction
tasks. In more detail, we were interested to assess if
using the user’s hand velocity to understand the inten-
tionality of a change in the hand posture results in an
overall gain in the classification and so to a reduction
of the completion time of touchless interaction tasks.
In order to investigate this hypothesis, we conducted a
user study.

5.2.1. Evaluation set-up

Twelve subjects participated in the study as vol-
unteers. All (9 male, 3 female) were recruited from
students in Computer Engineering. Their ages ranged
from 22 to 27, averaging at 24. All were right handed.
None of them had a good competence in using a touch-
less interface. The subjects were randomly assigned to
two groups. The first group used the complete score
weighting method described in Section 3.2, whereas
the second did not use the velocity score. To counter-
act the effect of fatigue or other outside factors on the
experiment, we used a complete counterbalanced mea-
sures design.

The subjects were required to perform three tasks,
while standing in front of the Kinect sensor at a dis-
tance of 1.5 m. The three tasks consisted in rotating
a 3D-reconstruction of a human head from MRI-scans
(see Fig. 7), which is visualized in a close-up view
(centered at 0.3 m from the user) in a semi-immersive
virtual environment, using a projection screen with a
3 m width. The update rate was controlled at 60 Hz.
All the participants had a training time of five minutes
to familiarize themselves with the interface. In this pe-
riod of time, a tutor explained the goal of the test and
how to perform a 3D rotation using static hand pos-
tures to grab and release the object and hand and arm
movements to rotate it.

The subjects were required to perform roll, pitch and
yaw rotations of the 3D object, with a fixed center of

Fig. 7. Rotation of the 3D object with the NUI.

rotation, by using only one hand. The roll rotation is
an in-plane rotation, since it requires a rotation along
the longitudinal axis (from the 3D object to the user),
whereas yaw and pitch are out-of-plane rotations, since
the object is rotated along the vertical and lateral axis,
respectively.

In more detail, the execution of a rotation task re-
quired the participant to seize the object by assuming
the grasping posture (closed fist), then to rotate it by
moving her/his hand around the center of the object,
and finally to release it by assuming the ungrasping
posture (open hand). For each task, the subjects were
required to rotate the object by 30°, 90° and 150°. As
suggested in [33], in each task the initial orientation of
the object was chosen so that there would be no coin-
cidence between a principal axis of the viewer’s visual
frame, the rotation axis and the object’s major limb.

Since all the rotation tasks require only one degree
of freedom to be completed, during the tasks we let
participants control only one degree of freedom at a
time. The task completion time, computed as the av-
erage of the three trials per rotation, and the number
of grasps of the object were used as quantitative mea-
sures. A rotation was considered completed only if it
was performed with an accuracy of 95%. The exper-
iment consisted of 108 trials in total (12 subjects X
1 posture filtering approach per subject x 3 tasks x
3 rotations per tasks). Every user was able to complete
the trials.

5.2.2. Experimental results and analysis

We performed a mixed-design ANOVA with filter-
ing type as a between-subjects factor. The performance
was measured by three repeated measures correspond-
ing to the three levels of the within-subject factor rota-
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Fig. 8. Box and whisker diagrams of time to completion and number of grasps.

tion axis. We were interested in testing both a main ef-
fect of the posture filtering method as well as the inter-
actions between the posture filtering and rotation tasks.

Figures 8a and 8b show the box-plots of completion
time and number of grasps for the three rotation tasks.
The results indicated that the between group variable
filtering type was statistically significant on the time
to completion (F 10 = 29.85, p < .001) and on the
number of grasps Fi 19 = 31.44, p < .001). That is,
the time to completion and the number of grasps of the
three rotation tasks differed significantly as a function
of the filtering condition. In more detail, the results
indicated that the group which had used the weight-
ing method with the velocity score achieved the low-
est time to completion (M = 4.744 vs M = 6.953)
and the lowest number of grasps (M = 1.147 vs M =
1.574). Therefore, averaged over the three task com-
pletion time measures, the posture filtering method
leads to a reduction of approximately 32% in the com-
pletion time when compared with the recognition with-
out using the posture filtering step, and to a reduction
of approximately 27% in the number of grasps. How-
ever, the results were highly different according to the
particular rotation task.

In fact, the analysis also revealed a significant main
effect of the within-subjects variable rotation axis
(F2,20 = 51.025, p < .001) on the time to comple-
tion. The results indicated that, averaged across the

two filtering conditions, the shortest time to comple-
tion was achieved for the roll rotation (M = 3.802).
The time spent for the roll rotation was statistically
different from the time spent for the yaw rotation
(F1,10 = 87.788,p < .001), whereas the difference
between the yaw and pitch rotations was not statisti-
cally significant.

By considering the number of grasps, this result
is further confirmed. The analysis revealed a signifi-
cant main effect of the within-subjects variable rota-
tion axis (Fo 29 = 12.495, p < .001) on the num-
ber of grasps. Again, averaging across the two filtering
conditions, the number of grasps used during the roll
rotation (M = 1.165) was statistically different from
that for the yaw rotation (F; 10 = 14.863,p < .01),
whereas there was no significant difference in the num-
ber of grasps between the yaw and pitch rotations
(M = 1.472 and M = 1.444, respectively).

These results were expected. In fact, yaw and pitch
are both out-of-plane rotations, whereas roll is an in-
plane rotation. This means that, for the roll rotation,
the hand is always unoccluded, facilitating the hand
shape recognition and so reducing the the number of
grasps necessary to complete the rotation and the time
to complete the whole rotation task. Therefore, both
the filtering approaches performed differently when
applied to in-plane rotations and to out-of-plane rota-
tions due to the complexity required to recognize the
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hand shape when it is rotated arbitrarily with respect
to the camera. However, the variability of the com-
pletion time and of the number of grasps was signif-
icantly different between the two filtering approaches
used.

In fact, the analysis also revealed a statistically
significant interaction between the factors filtering
type and rotation axis both on time to completion
(F2,20 = 13.551,p < 0.01) and on the number of
grasps (F5 20 = 10.2,p < 0.01). These results, sum-
marized in Figs 9 and 10, suggest that the time to com-
pletion and the number of grasps across the three ro-
tation tasks are dependent on the type of filtering used
(weighting method with or without the velocity score).

Although there was a general increase in the num-
ber of grasps and in the time to completion between
the roll rotation and the yaw and pitch rotations, the
rate of increase is significantly different for the group
that did not use the velocity-based shape filtering. In
greater detail, the analysis revealed that, when the ve-
locity score was not used, users grasped the object
more times to complete the rotation during the yaw
and pitch rotations compared to the roll rotation. On
the contrary, when it was used, the average number of
grasps was almost the same between the three rotation
tasks. This may explain why the velocity-based filter-
ing method showed a significantly lower time to com-
pletion, which was almost constant over the three rota-
tion tasks.

On one hand, this finding confirms that, whatever
rotation task is executed, the efficiency of the rotation
increases when a velocity-based weighting method is
used. On the other, it also suggests that the presence
of the velocity-based method considerably reduces the
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Fig. 10. Estimated marginal means of number of grasps for the three
rotations tasks.

time to completion of out-of-plane rotations. The anal-
ysis suggests that this improvement is due to the fact
that the subjects were able to grab the object and then
rotate it precisely without releasing the grasp, since
the velocity-based filtering reduces the number of er-
roneous classifications.

6. Conclusions

In this article we have presented a novel method for
view-independent static hand pose recognition from
depth data. Since the system relies only on depth data,
it is invariant to the content and illumination of the
scene, so making it suitable for use in unconstrained
environments. Considering the challenging nature of
the task, achieving real-time hand shape classification
from low resolution depth images, with the user being
free to perform out-of-plane rotations of the hands and
to move in the viewing area of the Kinect, the results
are promising. We have detailed the 3D image analy-
sis algorithms and their implementation, and demon-
strated the real-time applicability of the whole shape
classification chain.

Furthermore, we have discussed the results of a user
study in which the hand velocity was evaluated as
an indicator of the user’s intentionality in changing
the hand posture. This study is the first to investigate
the relationship between the velocity and shape of the
hand in aimed movements. These results have implica-
tions for the design of applications where users are ex-
pected to interact through the use of camera-based ges-
ture recognition technology without being constrained
to maintain a fixed position in the 3D space. In partic-
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ular, the analysis of the weighting method for filtering
the shape hypotheses could be very beneficial to the
research community and spur further research in this
area.
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