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Abstract. Predicting the footfall in a new brick-and-mortar shop (and thus, its prosperity), is a problem of strategic importance in
business. Few previous attempts have been made to address this problem in the context of big data analytics in smart cities. These
works propose the use of social network check-ins as a proxy for business popularity, concentrating however only on singular
business types. Adding to the existing literature, we mine a large dataset of high temporal granularity check-in data for two
medium-sized cities in Southern and Northern Europe, with the aim to predict the evolution of check-ins of new businesses of
any type, from the moment that they appear in a social network. We propose and analyze the performance of three algorithms for
the dynamic identification of suitable neighbouring businesses, whose data can be used to predict the evolution of a new business.
Our SmartGrid algorithm reaches a performance of being able to accurately predict the evolution of 86% of new businesses. In
this paper, extended from our original contribution at IEEE InteEnv’19, we further investigate the influence of neighbourhood
venues in prediction accuracy, depending on their exhibited weekly data patterns.
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1. Introduction

Smart cities deploy technological solutions as a
means to improve the economic and social life in the
urban environment. To do so, they rely on three funda-
mental components: Technology factors, Institutional
factors and Human factors [14]. Since one of the key
objectives of a smart city is to enhance economic life,
a critical aspect is the ability to plan and organize eco-
nomic activities in the urban environment. One perti-
nent question in the subject of planning, is the monitor-
ing of economic activity, which can then lead to fore-
casting and planning suggestions for businesses. While
a significant proportion of economic activity nowadays
includes the digital and remote provision of retail and
services (e.g. e-shops), urban environments are still de-
pendent heavily on the operation of traditional brick-
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and-mortar shops and businesses. Such businesses are
heavily dependent on spatial and social aspects, since
the location of their premises and social characteristics
of that location, are important factors in their success
[6]. In a smart city context thus, support for the op-
eration of such businesses is a valuable objective. Be-
ing able to monitor the economic activity around brick-
and-mortar businesses can support the purpose of fore-
casting, and also planning for new business opportu-
nities. Therefore, a smart city can exploit the analysis
of big data about the brick-and-mortar retail environ-
ment, to provide answers to questions such as “where
should a new business locate itself?” or “what is the
likelihood of success of a new business, if it opens at a
given location?”.

To support this objective, a smart city solution must
consider the spatial and social characteristics of differ-
ent segments of the urban environment, but also must
take into consideration temporal aspects of these con-
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textual characteristics. Ideally, if a smart city system
was able to collect business operational data from ev-
ery such business (e.g. daily revenues, number of em-
ployees, size of premises, number of customer vis-
its etc.), deriving answers to such questions would be
likely possible. However, such data are not easy to ac-
quire. The major obstacle is that such data are sensi-
tive and therefore unlikely to be shared with an author-
ity implementing smart city solutions. There is (and
can likely be) no legal requirement to provide this in-
formation to any authority other than tax and employ-
ment administration agencies. It is also improbable
that businesses could be asked to volunteer such data,
because there is no direct benefit to the business in or-
der to adopt the overhead and cost of providing the
data. Additionally, some of this data (e.g. number of
customers) requires the installation of significant sens-
ing infrastructure, which has a further cost to busi-
nesses (or city authorities) to install and maintain.

In order to obtain some metric of the economic and
social activity in a urban environment, we must there-
fore look to different data, which can act as a proxy
to these direct measurements. One such abundant re-
source of data are social network data. As most busi-
nesses nowadays have a presence in social networking
sites (e.g. Foursquare, Facebook), or even have explicit
policies for engaging customers through this presence,
data such as venue check-ins, ratings, likes, comments
etc. are generated. This data are accessible through the
APIs provided by the social networks, meaning that it
is possible to generate big datasets from this informa-
tion, and to therefore subsequently process and analyse
them. The level of engagement with a business on so-
cial networks can be considered as a reasonable proxy
for its popularity (and therefore economic prosperity)
[17]. Hence, in this paper, we aim to investigate how
data from such social networking sites can be used,
in order to generate business intelligence for location
planning purposes. More specifically, we aim to ad-
dress the question of forecasting the popularity on so-
cial networks of a new business, depending on the lo-
cation that it opens, and the associated social and spa-
tial characteristics of that location, as mined through
social network data.

In this paper, extended from our original submission
at Intenv’19 [18], we add to our investigation of how
to best determine the neighbouring venues at a given
location through their spatial relationships, by inves-
tigating aspects relating to the information content of
these neighbouring points (i.e. which of these spatially

related venues present the best candidates to consider
as input in a predictive algorithm).

2. Related work

Although e-commerce is an increasingly growing
sector, retail through physical stores continues to ac-
count for the largest proportions of sales worldwide,
even in countries where the digital economy has
greater penetration. For example, in the US, a recent
report shows that 86% of retail sales take place in phys-
ical stores (even though 53% of these purchases is dig-
itally influenced) [2]. Solving the problem of choos-
ing a retail site location remains therefore a critical
factor of success in traditional physical stores. There
have been numerous attempts to model, understand
and obtain forecasts on solving this problem for sev-
eral decades, and perhaps the most influential work
in this area is Reilly’s law of retail gravitation dating
back to 1953 [3]. This law states that retail zones (trade
centers) draw consumers from neighbouring commu-
nities in proportion to the retail zone area population
and inverse proportion to the distances between these
communities and trade areas. Although population size
and distance are primary factors in determining a trade
area’s “gravitational force” towards consumers, other
factors such as the quality of services or goods and
prices, can affect the gravitational force of an area. The
corollary that emerges from this law is that physical
stores can benefit from being located in trade areas that
effect a strong gravitational force on consumers, and
since it is possible to measure the gravitational force
of a trade area, we can predict the success of the stores
located in it.

Although the population residing in a trade area is
one factor in Reilly’s law, it is often the case that suc-
cessful trade areas are not heavily populated. Such ex-
amples are organised retail parks, or gentrified areas,
where the number of stores is heavily disproportionate
to the number of actual residents. It is therefore reason-
able to define a trade areas’ population not by the num-
ber of actual residents, but by the number of visitors
that this area receives. Measuring this number is possi-
ble through high-tech and low-tech methods. The latter
mostly consist of manual sampling efforts, which are
costly and cannot provide a constant stream of data [1].
High-tech methods can provide a continuous stream of
data, through the use of sensor equipment. In past lit-
erature, various methods have been reported for this
purpose, including real-time analysis of video camera
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feeds [25], wi-fi signals [4,8], Bluetooth signals [24]
or a fusion of smartphone sensors [9]. The main draw-
back of these approaches is the required heavy invest-
ment in setting up and operating a sensing infrastruc-
ture, and therefore limited scalability for large urban
areas.

Another source of determining crowd presence and
mobility patterns is the use of data from social net-
works. In most social networks, users are allowed the
ability to “check-in” to a place, i.e. to volunteer their
current position. This is typically done by indicating
presence at a specific venue, and there are social net-
work applications such as Foursquare which have been
built with the main focus being on the sharing of lo-
cation details (and subsequently, opinions and ratings
on the venues that users check in to). Users check into
places under a specific context, which is characterised
by factors such as location, time, user profile and nat-
ural environment conditions [11]. This data are easily
accessible to researchers through the application pro-
gramming interfaces (APIs) that social networks pro-
vide, therefore enabling the large-scale collection and
analysis of this data for various purposes related to the
objectives of the smart city vision [21]. In previous lit-
erature, check-in data has been used to analyse mobil-
ity patterns [15], to measure urban deprivation [23] or
even accessibility [16].

Closer to this paper’s theme, we find the literature on
the use of social networking data for planning business
locations is rather limited. Recent work has demon-
strated the potential of user-generated content (text)
from social networks in order to classify urban zone
land use [22], thus potentially informing the decision-
making process of where to open an new business. In
[13], data from Facebook venue pages are combined
with official urban planning data (sets of urban zones
characterised officially as “residential”, “commercial”,
“business” or “recreational”). The authors describe the
use of machine learning techniques to augment the
official classifications with data derived from Face-
book, re-classify the different urban zones based on the
type of businesses located therein, and then attempt to
match individual business profiles with relevant zones,
restricting the process to food businesses. In [5], food
businesses are again used as an example to predict
their evolution on social network presence during the
Olympic games in London. During this process, the
authors find that the proximity to Olympic venues,
neighbourhood popularity and presence of a variety of
business types are good predictors for the evolution of
check-ins to these businesses over time. In [12], the

authors predict the check-in count of any food busi-
ness based on the social network data of its surround-
ing food businesses, using the business’ category, the
categories of its neighbours (within a predefined dis-
tance range), check-in data of the business and also of
its neighbours, using a gradient-boosted machine al-
gorithm. Estimating the performance of this approach
over a distance-based clustering of neighbours (clus-
tering on the average check-ins of all businesses within
a predefined radius), they find that their proposed al-
gorithm performs better for all subcategories of the
food type business. One limitation of this approach is
that the cluster of businesses selected for the analysis
and forecasting is strictly limited by the user-specified
radius. Therefore, forecasting models might miss out
on potentially useful information from businesses just
outside this radius. Additionally, these approaches do
not take into consideration the likely complementarity
of businesses but limit the data set to single categories
only. In [7], the authors use a range of features char-
acterising an area (e.g. presence of competitive busi-
nesses, area popularity, mobility into the area), to pre-
dict the “optimal” location in which to place a busi-
ness, focusing on three particular food business retail
chains (Starbucks, McDonalds and Dunkin Donuts).
Their work shows that it can identify these areas with
an accuracy approaching 93%, but this concerns only
the placement of a store, and not its evolution over
time. Finally, in the most recent related work that we
could find [19], the authors complement mapping data
from Google (business locations) with other spatial
characteristics of a location, e.g. presence of ample
parking, proximity to housing, visibility from adjacent
roads, proximity to public transport etc. They train a
decision tree model which is able to determine the type
of business that should be opened at a certain location,
given that location’s spatial features.

To conclude, the use of social network data for the
purposes of retail store has not been extensively stud-
ied in the past. Some promising results have emerged
from the limited previous literature. However, further
work in this area remains to be done, especially in two
directions. First, with concern to how a trading zone
can be dynamically defined, as opposed to static zone
definitions via urban planning characterisations. Such
dynamic zones would reflect the true “heartbeat” of
the city, as their boundaries continuously adapt to ac-
tual human use. The second direction is to take into ac-
count the spatial properties of the area and the spatial
relationships between the businesses located therein
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(as opposed to the arbitrary choice of venues, e.g. by
defining a fixed radius).

3. Data capture and analysis approach

3.1. Data collection

Our data are collected from the FourSquare API
(http://www.foursquare.com) via the process previ-
ously published in [10]. We chose this platform as it
has an openly accessible API (e.g. compared to Insta-
gram), global coverage (e.g. compared to Yelp) and be-
cause it focuses on real-time check-ins (whereas Face-
book for example allows users to check into places
while they are not really there). To briefly repeat the
process, we define an urban area of interest and then
define a grid of equidistant location coordinates within
that area. For each coordinate, we define a circular ra-
dius (search radius). The locations are chosen so that
the radii of neighbouring locations overlap slightly,
thereby the resulting circles effectively fully cover the
urban area of choice. For each of these locations, we
query the FourSquare API every 30 minutes and re-
trieve the venues with the search radius of each loca-
tion, along with their basic data (name, category, sub-
category, total check-in count, current check-in count,
rating). Since the radii overlap, it is possible that the
same venue is returned multiple times from this pro-
cess, therefore duplicate entries are discarded and the
entire set of results is stored in a relational database.
The resulting dataset allows us to build a timeline of
check-in evolution over time for any venue in the city.
Importantly, the process protects users’ privacy, as it
doesn’t access user profiles, just the aggregate anony-
mous check-in counts that are publicly visible for any
venue.

3.2. Measuring social network evolution of venues

Given the ability to measure the evolution of total
check-in counts over time with a high granularity (30
minutes), in this paper we introduce the avgCM metric
for venues in social networks, which is defined as the
average number of check-ins performed at this venue
over a time period t.

avgCM(v, T ) = C(tj ) − C(ti)

tj − ti
(1)

where v is the venue in question, timestamps ti (start)
and tj (end) define a temporal period T measured

in days, and C(ti), C(tj ) are the total check-ins ob-
served at this venue at timestamps ti and tj respec-
tively. As an example, if venue X had 30 check-ins on
01/03/2018 and 100 check-ins on 30/4/2018 (61 days),
then avgCM(X, 61) = (100 − 30)/61 = 1.15. We use
this metric throughout the rest of the paper, as our in-
tended prediction target.

We should note that this approach is possible since
at every 30-minute interval, we collect the current
check-in count (e.g. 5 people are checked into a venue
at that time) and the total venue check-in count (e.g.
363 people have checked into a venue in total). Hence
C(tn) refers to the total check-in count collected at
timestamp tn. We chose this simpler calculation over
other alternatives (e.g. adding the check-ins and di-
viding by the number of intermittent 30 minute peri-
ods) as a more reliable approach. The main reason for
this choice was because FourSquare doesn’t always in-
clude all venues in the results of a query (e.g. we have
noticed this to be the case when a venue doesn’t have
new checkins). Another concern was to overcome data
loss because of events that occur when collecting over
long periods (e.g. network outage, API rate limit reach,
API unavailability, server downtime during reboots or
upgrades etc.). Therefore, due to these technical issues,
we cannot reliably collect a data point every 30 min-
utes for all venues. However, the approach in equation
(1) overcomes all of these limitations.

3.3. Dynamic neighbourhood estimation algorithms

One question in the analysis of results is the consid-
eration of spatial relationships between the data which
is going to be used as input, for the forecasting of a
venue’s social evolution. For this we devised three ap-
proaches, which are described next. The main assump-
tion behind these approaches is the concept of “grav-
itation” towards retail zones, i.e. that consumers tend
to be attracted to retail zones where they can obtain
better goods or services. The more attractive a zone is,
the more consumers it gathers, effectively establishing
a hard-to-break advantage over other areas. Therefore,
if it were possible to a) identify these retail zones and
b) examine their popularity, then we might be able to
obtain a reasonable approximation for the evolution of
a new business, opening in any given zone.

3.4. Entire urban area – EUA algorithm

Our baseline approach is to consider the entire ur-
ban area (EUA) and all venues, as input for analysis.

http://www.foursquare.com
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The starting point is to select a particular location for
which we want to predict the avgCM metric, which we
term the “reference point”. We also define a tempo-
ral period T which determines how far back we want
to fetch data for avgCM calculations of other venues.
Subsequently, we construct a dataset from our origi-
nal data which defines all venues in the database using
5-dimensional vectors with the following attributes: id
(the venue id), latitude, longitude, distance (from the
reference point) and avgCM (of the venue). Then, we
use the DBSCAN clustering algorithm on the spatial
attributes of the vectors, to separate the venues into lo-
cation clusters, and identify the cluster in which the
reference point belongs (this is termed the “reference
cluster”). DBSCAN depends on two parameters, ε and
minPts, which correspond here to the maximum dis-
tance between a point and its neighbours (so that they
can be considered “neighbours”) and the minimum
number of points that are required to form a cluster.
Next, we extract all the venues belonging to the ref-
erence cluster, and further split this cluster based on
the avgCM metric of the contained venues, using a
K-means approach, setting k = 3 when the number
of venues in the reference cluster is less than 60, else
setting k = number of venues/20. In this way, when
there are relatively few venues in the reference cluster,
we effectively distinguish proximal venues in a sim-
ple [low, medium, high] avgCM categorisation. When
there are many proximal venues, we effectively split
these venues in clusters of approx. 20 venues each, ac-
cording to their avgCM values. We then average the
resulting avgCM of each cluster, and the derived value
becomes the estimated avgCM of the reference point.
For EUA, we could have included the avgCM met-
ric in the DBSCAN algorithm directly, instead of the
two-step procedure involving DBSCAN and k-means.
We implemented this two-step procedure because we
first wanted to create clusters combining venues that
are located within a specific distance specified by the
eps metric and then, as the second step, we utilise the
K-Means algorithm for the reference point and it spe-
cific cluster that was produced by the first step. If we
skipped the first step, we could potentially end up with
clusters that consist of venues physically located far
from each other (e.g. 2 km).

3.5. Rectangular grid – RG algorithm

The EUA approach has the disadvantage that it
is possible that the resulting clusters include venues,
which are, in reality, quite far apart (e.g. in urban

Fig. 1. Visualisation of an urban area division by the RG (left) and
SG (right) algorithms. The blue markers (left) show the location of
venues retrieved from Foursquare. Markers on the right show the
location of “reference” points for SG with green/red colouring to
show venues that were successfully/unsuccessfully predicted.

areas where the density of venues is low). This can
be realistically problematic, since it is unlikely that a
venue that’s, for example, 700 m away from the ref-
erence point, can actually play some role in the refer-
ence point’s avgCM evolution. To limit this problem,
the Rectangular Grid (RG) approach separates the ur-
ban area into smaller subsections (“tiles”), which are
of a rectangular configuration and whose dimensions
(height and width) are customisable (Fig. 1 left), at-
tempting to split the area into tiles of the same size. For
this approach, we first establish a “bounding box” us-
ing the maximum and minimum latitude and longitude
values of all venues in an urban area. Then, a step-wise
process separates the area into rectangular tiles with
the dimensions set by the user. A side-effect of this al-
gorithm is that tiles in the eastern and southern edges
of an area can result in smaller than prescribed sizes,
since the area is not always exactly divisible by the
specified tile size. This process results in a set of tiles,
which contain a varying density of venues. To assess
a reference point’s avgCM evolution, we can therefore
use the same steps in EUA approach, but only for the
tile which contains the reference point. However, in
the EUA approach, the k-means clustering step used a
simple formula to determine an appropriate value for
k, but this is not appropriate for the smaller tiles, given
their variable venue density, which can mean too few,
or too many venues in a given tile. Therefore, as a first
step, we attempt to obtain a better estimate for k, with
the following approach. For every tile, we iteratively
run the DBSCAN algorithm on each tile’s venues, to
identify clusters, starting with an ε value of 0.015 and
setting the minPts to 3. We examine the resulting num-
ber of unclustered venues in the tile, and if there are
more than 25% of the total, we incrementally increase
the ε value by 0.005, and repeat the process until no
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more than 25% of all venues in the tile remain unclus-
tered. Running this process for all tiles, we obtain a set
consisting of paired number of cluster and tile venues
values. From this set, given any specific value, we can
estimate the appropriate value of k to use, by carrying
out a linear regression on the resulting paired value set.
Therefore, for the tile containing a reference point, we
repeat the steps in the EUA approach, using only the
venues within a given tile, and setting k to the value dy-
namically obtained from the linear regression model.
We then average the resulting avgCM of each cluster,
and the derived value becomes the estimated avgCM
of the reference point.

3.6. Smart grid – SG algorithm

The Rectangular Grid approach has one major dis-
advantage: the way venues are separated is somewhat
blind to the geography and spatial characteristics of
the urban area. For example, tiles may contain a large
amount of empty space (e.g. water), therefore result-
ing in separations which do not make spatial sense. To
overcome this difficulty, we devised a third approach
(Smart Grid – SG), which attempts to dynamically
identify a subsection of the entire area to use, in order
to predict the evolution of the avgCM of a specific ref-
erence point. To do this, we first run a k-means algo-
rithm over the entire area. The k-value can be set by
the user, and this results in what we term “smart tiles”.
In each of the resulting clusters, we run an iterative
version of the DBSCAN algorithm, starting with an ε

value of 0.015 and progressively increasing it by 0.005
until there are no more than 25% unclustered venues
in each of the k-means derived clusters. From the re-
sulting paired number of cluster and tile venues values,
we then derive a linear regression model which can be
used to further run k-means to sub-cluster each origi-
nal “smart-tile”, in order to extract a reference cluster
to assess the estimated avgCM of the reference point
(Fig. 1 right), which again is the average the resulting
avgCM of each cluster.

4. Experimental evaluation

To determine the performance of our algorithms, we
examined data collected for two similarly-sized cities,
of approximately 200k inhabitants, one in Southeast
Europe (Patras, Greece) and one in Northern Europe
(Oulu, Finland), over two years (2014 and 2015). The
dataset consists of >35.5 million rows of check-in data

for 3,436 places in Patras and >26 million rows of
check-in data in 3,451 places (Oulu), with total size
≈6.5 GB.

During these two years, several new businesses
opened up in various locations, and since we were able
to identify their first appearance on Foursquare and
were able to track their evolution over the year, we are
able to simulate the prediction of their social network
evolution. A “new venue” in any given year is defined
as a venue for which we first have a check-in record
in that year, and that first record shows a total count of
check-ins of 1. In total, we discovered 79 new venues
(reference points) for Patras and 51 in Oulu for 2014,
and 55 for Patras and 36 for Oulu in 2015. For each of
these reference points thus, we picked a time window
of 60 days after their first appearance in our dataset,
and used this data to calculate the final true avgCM of
the reference point, and as a dataset window to calcu-
late the avgCM of the venues in the clusters which this
reference point belonged to. As a metric of success,
we considered that the avgCM of the reference point
was “correctly predicted” if it fell within the 95% con-
fidence interval for the avgCM of all the sub-clusters.

4.1. Empirical evaluation of algorithm parameters

The EUA algorithm relies on the DBSCAN ε pa-
rameter and minPts (minimum points) parameter,
which we set to 0.035 and 3 respectively. The ε pa-
rameter is the distance from a core point, and the value
of 0.035 reflects a distance of ≈35 meters, which is
just under half a city block’s length (70–100 m in typ-
ical European cities, according to [20]). We chose this
value to capture neighbouring points that are tightly
packed together in a typical retail zone (i.e. multiple
shops in a city block), and define the minimum points
in a “cluster” to 3. We use these values both in the
EUA algorithm and in the places where RG and SG
rely on DBSCAN. Running the EUA algorithm, we
find that it was unable to execute for some reference
points in both cities, i.e. DBSCAN was unable to as-
sign the reference point to a cluster using the parame-
ters ε and minPts. For Patras, EUA was unable to exe-
cute for 26.6% of reference points in 2014 and 29.1%
in 2015. For Oulu, the values were 54.9% (2014) and
55.6% (2015) (Fig. 2). The reference points that the
algorithm was unable to execute for were places that
opened in locations for which the venue density was
quite sparse, therefore it is logical from a theoretical
standpoint that we would not be able to predict their
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Fig. 2. EUA execution success across all reference points.

evolution in social media with much accuracy, based
on their neighbours.

The RG and SG algorithms rely on two other user-
defined parameters which are important for their oper-
ation. RG requires the specification of a tile size, and
SG requires the initial k-value for its first clustering
step. Depending on the values set for these parameters,
the algorithms may not be able to execute for a partic-
ular reference point. For example, if the point is at a
very sparsely populated area, it might not be possible
for DBSCAN to derive any suitable clusters (remem-
ber that we specified that a cluster must have a mini-
mum number of 3 venues). Therefore, as a first step,
we aimed to determine parameter values which min-
imised the number of reference points for which the
algorithms were “not executed” (NE). For RG’s tile
size, we used a square configuration, setting the height
of the tile equal to its width, and experimented with
values starting at 100 m and incrementally going up
to 1000 m, using a step of 100 m. From Fig. 3, we
note that for the city of Patras, the number of NE ref-
erence points reaches minimal values for both years,
with a tile size set to 1 km2 For the city of Oulu, this
minimum is reached for both years again with a tile
size set to 1 km2. While in both cases we see that very
small tile sizes result in an almost complete failure
of the algorithm, the situation shows an improvement
trend for Patras reaching a low of approximately 34%
of NE venues in both years (2014: 30%, 2015: 38%).
The size of the tile area is positively correlated to the
number of executed points with statistical significance
in both years (Spearman’s 2-tailed correlation 2014
ρ = 0.888, p < 0.01; 2015 ρ = 0.796, p < 0.01).
In Oulu, the resulting performance is worse (2014:
61%, 2015: 47%), and this linear improvement trend
is not observable after a tile size of 0.16 km2. Again
for Oulu, the size of the tile area is positively corre-

Fig. 3. RG execution success across all reference points.

lated to the number of executed points with statistical
significance in both years (Spearman’s 2-tailed corre-
lation 2014 ρ = 0.772, p < 0.01; 2015 ρ = 0.759,
p < 0.05). We can conclude therefore that the increase
in tile area with the RG algorithm yields it the ability
to execute for a wider range of reference points. How-
ever, even in the best case situation (Patras, 2014), the
algorithm was able to run for no more than 70% of the
reference points.

For SG, we experimented with values of k be-
tween 1 and 256, increasing by powers of two (i.e.
[2, 4, 8, . . . , 256]). In this process, we found that the
number of NE reference points remained constant de-
spite the increase of the k-value, with 2014 showing
maximum of 14 (16.5%) NE points for Patras and a
maximum of 22 (43.3%) points for Oulu, while 2015
showed 12 (21.8%) and 11 (30.5%) points respectively
(Fig. 4). As can be expected, there is no statistically
significant correlation between the value of k (num-
ber of clusters) and the number of points the algo-
rithm was able to execute for. We note that these values
are markedly better than the corresponding RG values,
across cities and years.
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Fig. 4. SG execution success across all reference points.

4.2. Algorithm performance

We examined the performance of the algorithms
using the different value parameters to determine
whether they also have an impact on the ability of the
algorithms to correctly predict the social network evo-
lution of the reference points in these two years. As
explained previously, we define a prediction to be cor-
rect, if the observed avgCM metric of the reference
point falls within range of the mean avgCM ± 95%
c.i. of the other venues in its cluster. This is illustrated
in Fig. 5, where examples of reference points falling
inside and outside the cluster mean range are shown.
This effectively transforms our problem into a classi-
fication problem, where classes are defined by a range
of values that are the mean avgCM ± 95% c.i. in a
cluster. Thus, for performance measuring purposes, we
can use the recall metric defined as true positives over
the sum of true positives and false negatives. In this
case, true positives are those reference points whose
avgCM metric falls within their cluster’s range, and
false negatives are those points whose avgCM met-
ric falls outside their cluster’s range (i.e. the algorithm
was not able to properly assign a class to these ref-

erence points). We present results as a percentage of
correctly predicted reference points over all reference
points, and as an adjusted percentage over the number
of reference points for which the algorithm was able to
execute.

We estimated the performance of EUA for both
cities in both years. As per Fig. 6, the algorithm is
able to correctly predict the social evolution in a rela-
tively small fraction of the reference points (2014 Pa-
tras: 29.1%, Oulu 21.6%; 2015 Patras: 29.1%, Oulu:
16.7%). Considering the adjusted performance values
(i.e. discounting the number of points for which the al-
gorithm did not execute), the situation improves some-
what, but the performance is still quite low (2014 Pa-
tras: 39.7%, Oulu 47.8%; 2015 Patras: 41.0%, Oulu:
37.5%).

Next, we estimate the performance of RG for the
various tile sizes (Fig. 7). For Patras, we observe an in-
crease trend in the percentage number of correctly pre-
dicted reference points, reaching a maximum of 31.6%
in 2014 and 30.9% 2015, with a tile size of 1 km2.
Viewed as an adjusted percentage, this reaches 53.1%
with a tile size of 0.64 km2 in 2014 and 46.6% in 2015
with a tile size of 0.81 km2. There is a statistically sig-
nificant correlation between the area of the tiles and
the recall performance of the algorithm in both 2014
(Spearman’s two-tailed ρ = 0.851, p < 0.01) and
2015 (ρ = 0.754, p < 0.05), however the correlation
in the adjusted percentages is not statistically signifi-
cant in either year. This observation might be due to
the fluctuating performance for small tile areas, where
we also found that the algorithm was able to execute
for only a small fraction of the reference points.

Finally, we estimate the performance of SG for the
various cluster sizes (Fig. 8). For Patras, we observe
a logarithmic increase in the correct predictions with
the number of clusters, for both recall metrics (over
all points, and adjusted). The correlation between the
number of clusters and correctly predicted reference
points is statistically significant in both years (Spear-
man’s two tailed 2014 ρ = 0.976, p < 0.01; 2015
ρ = 0.707, p = 0.05) and also statistically signif-
icant for the adjusted performance (Spearman’s two
tailed 2014 ρ = 0.976, p < 0.01; 2015 ρ = 0.707,
p = 0.05). Similar observations are seen for the city
of Oulu. The correlation between the cluster number
and correctly predicted reference points is statistically
significant in both years (Spearman’s two tailed 2014
ρ = 0.922, p < 0.01; 2015 ρ = 0.934, p < 0.01)
and also statistically significant for the adjusted per-
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Fig. 5. Examples of reference point actual evolution against cluster mean range. In the top example, the reference point’s avgCM falls within the
cluster’s range (mean ± 95% c.i.), while in the bottom example it does not. Cluster point avgCM values are plotted against distance from the
reference point. The cluster mean is plotted at a distance proximal to the reference point (i.e. not the cluster spatial centroid) to assist visualisation.

Fig. 6. EUA performance across all reference points and across exe-
cuted reference points only (adj.).

formance (Spearman’s two tailed 2014 ρ = 0.929,
p < 0.01; 2015 r = 0.934, p = 0.01).

We present in Fig. 9 each algorithm’s best perfor-
mance, with the criterion that the algorithm will have
executed for at least 10 reference points. The SG algo-
rithm outperforms the baseline EUA and the RG algo-
rithm consistently, achieving better prediction perfor-
mance in both cities and for both years. This perfor-

mance advantage holds when all reference points are
considered, and is substantially increased when calcu-
lated over only those reference points for which the al-
gorithm was able to execute. One significant advantage
of SG also seems to be the fact that its ability to execute
is invariant to the running parameters, therefore leav-
ing out a constantly small number of reference points
for which it is unable to provide a prediction.

5. Influence of venues in SG clusters for prediction
accuracy

With the previous results in mind and given that SG
seems to perform better than other approaches in clus-
tering venues, we further investigated alternative ap-
proaches to predicting the evolution of the check-ins
for reference points. We concentrate this further inves-
tigation on the city of Patras and the year 2015, based
on the previous results.

A detailed look into our dataset revealed that clus-
ter (non-reference) points can exhibit a range of be-
haviours in the timeframe used for prediction (e.g.
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Fig. 7. RG execution success across all reference points.

Fig. 8. SG execution success across all reference points.

Fig. 9. Algorithm performance under optimal parameters.

see the individual avgCM metric of cluster points in
Fig. 5). This became even more apparent when we di-
vided each reference points’ two-month period into 9
week bins (the last week bin has fewer days) and ob-
served that check-in patterns in the respective clusters
followed three distinct patterns. Some cluster points’
evolution remains static (i.e. they receive no check-
ins), others exhibit a somewhat linear increase in their
check-ins, and finally a third category of venues re-
ceive a varying number of check-ins, throughout the
two month periods used in our dataset for prediction.
In this sense, the weekly check-in patterns of some
cluster points carry more information than others. Zero
and linear increase venues make predictions ostensibly
easy. On the other hand, venues with highly variable
patterns (i.e. large deviations in the intra-week check-
in volume) might make these predictions more unsta-
ble.

To illustrate this point, consider an example as fol-
lows. Supposing a fictional reference point RPi and its
SG cluster consistent of n venues (V1, . . . , Vn), and
that the sampling period is k weeks (W1, . . . ,Wk). As-
suming in this example that n = 4 and k = 4, then the
evolution of these venues’ check-ins might display pat-
terns as depicted in Table 1. Since we are now inves-
tigating weekly patterns, we adjust the avgCM metric
slightly to define it as the average number of check-ins
per week (avgCMw). For each venue, we calculate the
avgCMw metric, information entropy, the avgCMw’s
standard deviation σ and this deviation as a percent-
age of the avgCMw, in order to show the magnitude
of the deviation compared to the check-in increase rate
(SDpct).

As can be seen in Fig. 10 (top), venue V2 exhibits a
steady (linear) increase in its check-ins. Its information
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Table 1

Weekly check-in patterns and metrics for venues in a hypothetical cluster

Venue Total check-ins W1 W2 W3 W4 avgCMw Entropy σ SDpct

V1 50 10 20 10 10 12.5 0.811 5.000 0.400

V2 40 10 10 10 10 10 0.000 0.000 0.000

V3 50 10 15 5 20 12.5 2.000 6.455 0.516

V4 45 5 5 30 5 11.25 0.811 12.500 1.111

Fig. 10. Weekly check-in evolution for the hypothetical cluster (top)
and resulting metric comparison (bottom).

entropy is 0, since this linear increase carries no new
information in the weekly pattern, and of course the
same applies for the SDpct metric. Venue V3 shows a
pattern of varying increase in every single week, hence
its entropy is higher than all others (2.000). On the
other hand, venues V1 and V4 show the same infor-
mation entropy (0.811) but note that the SDPct met-
ric is rather different, since the pattern variation in V4

is much more drastic than in V1. The resulting com-
parison of the metrics (Fig. 10 bottom) demonstrates
that while both metrics are able to capture variation in
the weekly check-in pattern, the way this variation is
presented can be qualitatively different.

In the previous experiments, we considered data
from all venues in a reference point’s cluster, but it
could be possible that a selective approach might have
positive effects on the prediction accuracy. Since our
time window T was 60 days, which spreads over 9

weeks, for each cluster point, we constructed a fea-
ture vector consisting of the total new check-ins for
W1–W9 (9 features), the average weekly number of
check-ins of the venue (avgCMw), the standard devia-
tion (σ ) and its proportion to the mean (SDpct, setting
SDpct = 0 where avgCMw = 0) and the information
entropy in the weekly check-in pattern. Our goal was
to investigate whether the inclusion of cluster venues
that demonstrate a high standard deviation or a high
entropy in the weekly check-in pattern have an effect
on the prediction quality.

As a metric for performance, we adopt a slightly dif-
ferent approach to the previous analysis and use the
root mean square error (RMSE) across all reference
points and compare the known average weekly check-
ins of each reference point to the average weekly
check-ins from the selected cluster venues.

5.1. Using all venues as candidates for prediction

First, we start by reporting the results by consider-
ing the effect of cluster venue entropy and SDpct on
avgCMw. As the maximum entropy of cluster venues
in our dataset is 3.17 (μ = 0.173, σ = 0.581), we per-
form multiple analysis iterations, including all venues
with an entropy value under threshold Te ∈ [0.5, 3.5],
in steps of 0.5. In Fig. 11, a lower threshold value re-
sults in fewer points per cluster on average, as shown
by the orange line. The RMSE increases (performance
worsens) as we exclude venues with a high entropy
from the clusters. Best performance is achieved includ-
ing all venues regardless of entropy (RMSE = 7.931)
and resulting in an average number of venues per clus-
ter of μ = 201.438 (σ = 58.592).

Regarding SDpct, we follow the same approach as
with the entropy threshold. The maximum value is
2.828 (μ = 0.129, σ = 0.465) hence the analy-
sis is performed by including venues under threshold
TSDpct ∈ [0, 5, 3.0] in steps of 0.5. The results are
depicted in Fig. 12. Contrary to our previous finding,
in this case we note that including more venues re-
sults in worse performance (after threshold value of
1.0, where the performance is more or less consis-
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Fig. 11. Filtering cluster venues by entropy threshold.

Fig. 12. Filtering cluster venues by SDpct threshold.

tent). Best performance is obtained with a threshold
of 2.0 (RMSE = 7.929) and an average cluster size
μ = 198.068, σ = 56.945.

5.2. Using venues with at least one check-in as
candidates for prediction

Next, we limit the clusters to include only venues
which display at least one check-in during the 2-month
period. We repeat the previous analysis using an en-
tropy and an SDpct-based filter. Starting off with the
entropy filter, the first observation is that the limita-
tion to venues that exhibit at least one check-in, results
in a dramatic reduction in the number of venues con-
sidered in the clusters (minμ = 1.000, σ = 0.000,
maxμ = 20.397, σ = 9.296), as seen in Fig. 13.
For comparison, the relevant numbers in the previ-
ous analysis were minμ = 181.110, σ = 51.529,
maxμ = 201.438, σ = 58.593. Notably, an entropy fil-
ter of <0.5 results in the discarding of all cluster venues
apart from those belonging to the clusters of 5 refer-
ence points (as is expected, since we already excluded
all venues without any check-ins). Hence, results for
this threshold should be discarded. For higher thresh-

Fig. 13. Filtering cluster venues with >1 check-ins by entropy
threshold.

Fig. 14. Filtering cluster venues with >1 check-ins by SDpct thresh-
old.

old levels though, much like in the previous analysis,
again performance deteriorates as we exclude high-
entropy venues from clusters, with best performance
including all venues (RMSE = 7.304). We note that
this performance is better than the best previous analy-
sis performance (RMSE = 7.931), and that the degra-
dation of performance is not as dramatic as in the pre-
vious analysis.

Continuing the analysis using the SDpct threshold,
we note that the issue of using a low threshold value
(0.5) that results in too few clusters with available
venues (as in the entropy filter), does not arise. This is
expected, since SDpct is more likely to take arbitrary
values, compared to entropy where, as demonstrated
in our hypothetical example, it is far more likely that
multiple venues may end up having the same entropy
value. Again, in this analysis, we note the large reduc-
tion in average cluster size (minμ = 4.660, σ = 3.995,
maxμ = 20.397, σ = 9.296), as seen in Fig. 14.
For comparison, the relevant numbers in the previ-
ous analysis were minμ = 184.507, σ = 53.020,
maxμ = 201.521, σ = 58.599. The effect of the
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filter threshold on RMSE is more pronounced in this
case. As can be seen in Fig. 14, including more venues
per cluster reduces the RMSE with a best performance
when including all venues (RMSE = 7.931). This is
marginally worse than the respective previous analysis
(RMSE = 7.929). We note, however, that the stricter
filters of 0.5 and 1.0 lead to considerable increases in
RMSE.

5.3. Summary of findings

Paired together, all the preceding analyses results
demonstrate that the consideration of venues that ex-
hibit little variability in their check-in patterns, is un-
necessary for the prediction of the evolution of new
venues, and that the inclusion of venues with highly
variable check-in patterns is beneficial for the reduc-
tion of prediction error, regardless of the type of metric
used to capture this variation.

To illustrate this, we perform an analysis as per Sec-
tion 4.2, to assess the classification of reference points
according to the avgCMw metric of reference points
and their cluster. We repeat the analysis first without
excluding any cluster venues, and then excluding all
cluster venues without any check-ins, using in each
case the entropy and the SDpct filter at the optimal
level as reported in the previous analysis. As seen in
Table 2, the classification performance is not as good
as with the daily avgCM metric, which is expected
since the weekly binning results in a large loss of in-
formation (especially since we use the 95% c.i. thresh-
old, which depends largely on the number of sam-
ples). However, still, the beneficial effect of exclud-
ing venues in clusters that do not exhibit any check-
ins is apparent. Additionally, the results demonstrate
that either entropy or the SDpct filter can be used to
the same effect, as the results are precisely the same in
both cases.

In our initial analysis, we didn’t exclude points with
little variation, adopting an agnostic approach to the
selection of data. By this approach, it could be as-
sumed that cases where little variation is exhibited
(e.g. linear increase) should bias predictions for a new
venue accordingly (i.e. also increasing linearly). How-

Table 2

SG algorithm performance using the avgCMw metric (adj.)

Venue filter All cluster venues Cluster venues with >1
check-ins

SDpct 14.63% 41.46%

Entropy 14.63% 41.46%

ever, in hindsight, perhaps an explanation for the im-
proved performance is that it’s not “natural” for a
place to exhibit a steady stream of check-ins (e.g. these
could originate from staff, or regular customers). On
the other hand, a more variable pattern might be closer
to the check-in patterns a new venue can expect, there-
fore explaining the benefit in predictions.

6. Discussion and conclusions

We presented three algorithms to solve the problem
of predicting the evolution of check-ins for a venue
in a social network, based on the check-in behaviour
of users in the venues in its neighbourhood. Since the
number of check-ins can be associated with the visita-
tion patterns in physical stores, and by extension, their
commercial success, we have demonstrated an ability
to predict the commercial success of a new physical
business, in the context of a smart city. Our approach
has the benefit that it is based on readily available data
and can be deployed for any urban environment with a
considerable venue density. We have demonstrated that
the SG algorithm is able to dynamically adapt to the lo-
cal spatial characteristics of urban environments, bet-
ter than the EUA and RG approaches. It successfully
identifies appropriate neighbours for a target venue,
thus being able to predict its evolution on social net-
works based on these neighbours. Even more, we have
demonstrated that not all neighbours matter for pre-
diction. Those neighbours that do not exhibit any new
check-ins in the reference period actually detriment the
algorithm’s performance and add unnecessary compu-
tational demands on the system. The results of the SG
algorithm on two similar-sized cities in countries with
societal differences (north and southern Europe) show
that the approach is possibly generalisable globally.

Contrary to other approaches in current literature
[5,12,13,19], we did not limit ourselves to a specific
type of business (e.g. food), but allowed the algo-
rithm to execute for all types of businesses in the input
dataset. Further improvements could include limiting
the input dataset to just those neighbouring businesses
which are of the same type as the target. We could also
have chosen to consider only business types which can
be considered as complementary, e.g., if the target is
a restaurant, we could include restaurants, cafes and
bars, since they also typically serve food, or only those
businesses which are open at the same time as the tar-
get business. However, such approaches would require
a more intimate knowledge of how the retail market
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operates in a given urban environment (e.g., mobil-
ity and temporal aspects of visitation in venue types),
which is difficult to acquire. In further work, we would
like to explore the performance of our algorithm in dif-
ferent scale urban environments (e.g. large dense ur-
ban areas like Manhattan, NY). Further work is also re-
quired in defining more appropriate classification tar-
gets, since in this case we employed a rather simple
metric, and to examine different types of engagement
in social network presence, such as number of likes,
ratings, customer comments and feedback.
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