
Journal of Ambient Intelligence and Smart Environments 11 (2019) 165–182 165
DOI 10.3233/AIS-190519
IOS Press

Generating time-based label refinements to
discover more precise process models

Niek Tax a,*, Emin Alasgarov b, Natalia Sidorova a, Reinder Haakma c and Wil M.P. van der Aalst a,d

a Eindhoven University of Technology, Eindhoven, The Netherlands
E-mails: n.tax@tue.nl, n.sidorova@tue.nl, wvdaalst@pads.rwth-aachen.de
b Bol.com, Utrecht, The Netherlands
E-mail: ealasgarov@bol.com
c Philips Research, Eindhoven, The Netherlands
E-mail: r.haakma@philips.com
d RWTH Aachen, Aachen, Germany
E-mail: wvdaalst@pads.rwth-aachen.de

Abstract. Process mining is a research field focused on the analysis of event data with the aim of extracting insights related
to dynamic behavior. Applying process mining techniques on data from smart home environments has the potential to provide
valuable insights into (un)healthy habits and to contribute to ambient assisted living solutions. Finding the right event labels to
enable the application of process mining techniques is however far from trivial, as simply using the triggering sensor as the event
label for sensor events results in uninformative models that allow for too much behavior (i.e., the models are overgeneralizing).
Refinements of sensor level event labels suggested by domain experts have been shown to enable discovery of more precise and
insightful process models. However, there exists no automated approach to generate refinements of event labels in the context
of process mining. In this paper we propose a framework for the automated generation of label refinements based on the time
attribute of events, allowing us to distinguish behaviorally different instances of the same event type based on their time attribute.
We show on a case study with real-life smart home event data that using automatically generated refined event labels in process
discovery, we can find more specific, and therefore more insightful, process models. We observe that one label refinement could
affect the usefulness of other label refinements when used together. Therefore, the order in when label refinements are selected
could be of relevance when selecting multiple label refinements. To investigate the size of this effect in practice, we evaluate four
strategies that take interplay between label refinements into account in different degrees on three real-life smart home event logs.
These label refinement selection strategies range from linear time complexity for the strategy that does not at all account for the
interplay between label refinements to a factorial time complexity for the strategy that fully accounts for this interplay effect. We
found that in practice there is no difference between the quality of the process models that were discovered with the four label
refinement strategies. Therefore, the effect of interplay between label refinements seems limited in practice and simple and fast
strategies can be used to select multiple label refinements.

Keywords: Knowledge discovery for smart home environments, circular statistics, process mining

1. Introduction

Process mining is a fast growing discipline that
combines knowledge and techniques from data min-
ing, process modeling, and process model analy-

*Corresponding author. E-mail: n.tax@tue.nl.

sis [46]. Process mining techniques analyze events that
are logged during process execution. Today, such event
logs are readily available and contain information on
what was done, by whom, for whom, where, when, etc.
Events can be grouped into cases (process instances),
e.g., per patient for a hospital log, or per insurance
claim for an insurance company. Process discovery
plays an important role in process mining, focusing

1876-1364/19/$35.00 © 2019 – IOS Press and the authors. All rights reserved

mailto:n.tax@tue.nl
mailto:n.sidorova@tue.nl
mailto:wvdaalst@pads.rwth-aachen.de
mailto:ealasgarov@bol.com
mailto:r.haakma@philips.com
mailto:wvdaalst@pads.rwth-aachen.de
mailto:n.tax@tue.nl

166 N. Tax et al. / Generating time-based label refinements to discover more precise process models

on extracting interpretable models of processes from
event logs. One of the attributes of the events is usually
used as its event label, and its values become transi-
tion/activity labels in the process models generated by
process discovery algorithms.

The scope of process mining has broadened in re-
cent years from business process management to other
application domains, one of them is the analysis of
events of human behavior with data originating from
sensors in smart home environments [9,22,38,39,42,
43]. Table 1 shows an example of such an event log.
Events in the event log are generated by, e.g., motion
sensors placed in the house, power sensors placed on
appliances, open/close sensors placed on closets and
cabinets, etc. Particularly challenging in applying pro-
cess mining in this application domain is the extraction
of meaningful event labels that allow for the discovery
of insightful process models. Simply using the sensor
that generates an event (the sensor column in Table 1)
as event label is shown to produce non-informative
process models that overgeneralize the event log and
allow for too much behavior [42]. Abstracting sensor-
level events into events at the level of human activity
(e.g., eating, sleeping, etc.) using activity recognition
techniques helps to discover more behaviorally con-
strained and more insightful process models [43,45].
However, the applicability of this approach relies on
the availability of a reliable diary of human behavior
at the activity level, which is often expensive or some-
times even impossible to obtain.

Existing approaches that aim at mining temporal re-
lations from smart home environment data [11,18,19,
30–32] do not support the rich set of temporal order-
ing relations that are found in the process models [47],
which amongst others include sequential ordering, (ex-
clusive) choice, parallel execution, and loops.

In our earlier work [42], we showed that better pro-
cess models can be discovered by taking the name of
the sensor that generated the event as a starting point
for the event label and then refining these event labels
using information on the time within the day at which
the event occurred. The refinements used in [42] were
based on domain knowledge, and not identified auto-
matically from the data. In this paper, we aim at the
automatic generation of semantically interpretable la-
bel refinements that can be explained to the user, by
basing label refinements on data attributes of events.
We explore methods to bring parts of the timestamp in-
formation to the event label in an intelligent and fully
automated way, with the end goal of discovering be-
haviorally more precise and therefore more insightful

process models. Initial work on generating label re-
finements based on timestamp information was started
in [41]. Here, we extend the work started in [41] in
two ways. First, we propose strategies to select a set
of time-based label refinements from candidate time-
based label refinements. Furthermore, add an evalua-
tion of the technique in the form of a case study on a
real-life smart home dataset.

We start by introducing basic concepts and notations
used in this paper in Section 2. In Section 3, we intro-
duce a framework for the generation of event labels re-
finements based on the time attribute. In Section 4, we
apply this framework on a real-life smart home dataset
and show the effect of the refined event labels on pro-
cess discovery. In Section 5, we address the case of
applying multiple label refinements together. We con-
tinue by describing related work in Section 6 and con-
clude in Section 7.

2. Background

In this section, we introduce basic notions related to
event logs and relabeling functions for traces and then
define the notions of refinements and abstractions. We
also introduce some Petri net basics.

We use the usual sequence definition, and de-
note a sequence by listing its elements, e.g., we
write 〈a1, a2, . . . , an〉 for a (finite) sequence s :
{1, . . . , n} → A of elements from some alphabet A,
where s(i) = ai for any i ∈ {1, . . . , n}; |s| denotes the
length of sequence s; s1s2 denotes the concatenation
of sequences s1 and s2. A language L over an alphabet
A is a set of sequences over A.

2.1. Event logs and their components

An event is the most elementary element of an event
log. Let I be a set of event identifiers, T be the time
domain, and A1 × · · · × An be an attribute domain
consisting of n attributes (e.g., resource, activity name,
cost, etc.). An event is a tuple e = (i, at , a1, . . . , an),
with i ∈ I, at ∈ T , and (a1, . . . , an) ∈ A1 ×· · ·×An.
The event label of an event is formed by the values
of its event attributes (a1, . . . , an). Functions id(e),
label(e), and time(e) respectively return the id, the
event label and the timestamp of event e. E = I×T ×
A1 ×· · ·×An is a universe of events over A1, . . . ,An.
The rows of Table 1 are events from an event universe
over the event attributes address, type, location and
sensor value.

N. Tax et al. / Generating time-based label refinements to discover more precise process models 167

Table 1

An example of an event log from a smart home environment

Events are often considered in the context of other
events. We call E ⊆ E an event set if E does not con-
tain multiple events with the same event identifier. The
events in Table 1 together form an event set. A trace σ

is a finite sequence formed by the events from an event
set E ⊆ E that respects the time ordering of events,
i.e., for all k,m ∈ N, 1 � k < m � |E|, we have:
time(σ (k)) � time(σ (m)). We define the universe of
traces over event universe E , denoted �(E), as the set
of all possible traces over E . We omit E in �(E) and
use the shorter notation � when the event universe is
clear from the context.

Often it is useful to partition an event set into smaller
sets in which events belong together according to some
criterion. We might for example be interested in dis-
covering the typical behavior within a household over
the course of a day. In order to do so, we can group
together events with the same address and the same
day-part of the timestamp (both indicated in gray), as
indicated by the horizontal lines in Table 1. For each
of these event sets, we can construct a trace; times-
tamps define the ordering of events within the trace.
For events of a trace having the same timestamps, an
arbitrary ordering can be chosen within a trace.

Formally, this process of generating traces from an
event set is performed based on an event partition-
ing function, which is a function ep : E → Tid that
defines the partitioning of an arbitrary set of events
E ⊆ E from a given event universe E into event sets

E1, . . . , Ej , . . . where each Ej is the maximal subset
of E such that for any e1, e2 ∈ Ej , ep(e1) = ep(e2);
the value of ep shared by all the elements of Ej defines
the value of the trace attribute Tid. Note that multidi-
mensional trace attributes are also possible, i.e., a com-
bination of the name of the person performing the ac-
tivity and the date of the event, so that every trace con-
tains activities of one person during one day. The event
sets obtained by applying an event partitioning can be
transformed into traces (respecting the time ordering
of events). Table 1 indicates one example of a trace that
is generated by defining function ep such that events
are grouped on the day-part of the timestamp as well
as one the address (both indicated in gray).

An event log L is a finite set of traces L ⊆ �(E)

such that ∀σ ∈ L : ∀e1, e2 ∈ σ : ep(e1) = ep(e2).
AL ⊆ A1 × · · · × An denotes the alphabet of event
labels, also called the set of event labels, that occur in
log L. The traces of a log are often transformed be-
fore doing further analysis: very detailed but not nec-
essarily informative event descriptions are transformed
into some coarse-grained and interpretable event la-
bels. To form event labels for the events of the log in
Table 1, the sensor values could be abstracted to on
and off, or event labels can be redefined to a subset of
the event attributes, e.g., leaving the sensor values out
completely.

After this relabeling step, some traces of the log can
become identically labeled (the event id’s would still

168 N. Tax et al. / Generating time-based label refinements to discover more precise process models

be different). The information about the number of oc-
currences of a sequence of event labels in an event log
is highly relevant for process mining, since it allows
process discovery algorithms to differentiate between
the mainstream behavior of a process (i.e., frequently
occurring behavioral patterns) and the exceptional be-
havior.

Let E1, E2 be event universes. A function l : E1 →
E2 is an event relabeling function when it satisfies
id(e) = id(l(e)) and time(e) = time(l(e)) for all
events e ∈ E1. A relabeling function can be used
to obtain more useful event labels than the full set
of event attribute values, by lifting those elements of
the attribute space to the event label that result in
strong ordering relations in the resulting log. We lift
l to event logs. Let E, E1, E2 be event universes with
E, E1, E2 being pairwise different. Let l1 : E → E1 and
l2 : E → E2 be event relabeling functions. Relabel-
ing function l1 is a refinement of relabeling function
l2, denoted by l1 � l2, iff ∀e1,e2∈E : label(l1(e1)) =
label(l1(e2)) =⇒ label(l2(e1)) = label(l2(e2)); l2 is
then called an abstraction of l1.

An example of an event relabeling function l would
be one that relabels events from an event universe E1

over the event attributes address, type, location, and
sensor value (the events in Table 1 are from E1) to the
event universe E∈ over the event attributes type and ad-
dress. Applying this relabeling function l to the events
of the event log shown in Table 1 results for example in
event label Motion sensor Bedroom for the event with
id 1, Power sensor Water cooker for the event with id
5, etc.

2.2. Process models and process discovery

The goal of process discovery is to discover a pro-
cess model that represents the behavior seen in an
event log. The activities/transitions in this discovered
process model describe allowed orderings over the
event labels of the events in the event logs. A fre-
quently used process modeling notation in the process
mining field is the Petri net notation [29]. Petri nets are
directed bipartite graphs consisting of transitions and
places, connected by arcs. Transitions represent activ-
ities, while places represent the enabling conditions of
transitions. Labels are assigned to transitions to indi-
cate the type of activity that they model. A special la-
bel τ is used to represent invisible transitions, which
are only used for routing purposes and not recorded in
the log.

Fig. 1. An example Petri net.

A labeled Petri net N = 〈P, T , F,AM, �〉 is a tuple
where P is a finite set of places, T is a finite set of
transitions such that P ∩T = ∅, F ⊆ (P ×T)∪(T ×P)

is a set of directed arcs, called the flow relation, AM is
an alphabet of labels representing activities, with τ /∈
AM being a label representing invisible events, and � :
T → AM ∪ {τ } is a labeling function that assigns a
label to each transition. For a node n ∈ P ∪ T we use
•n and n• to denote the set of input and output nodes
of n, defined as •n = {n′ | (n′, n) ∈ F } and n• = {n′ |
(n, n′) ∈ F }. An example of a Petri net can be seen
in Fig. 1, where circles represent places and rectangles
represent transitions. Gray transitions having a smaller
width represent invisible, or τ , transitions.

A state of a Petri net is defined by its marking
M ∈ N

P being a multiset of places. A marking is
graphically denoted by putting M(p) tokens on each
place p ∈ P . A pair (N,M) is called a marked Petri
net. State changes occur through transition firings.
A transition t is enabled (can fire) in a given mark-
ing M if each input place p ∈ •t contains at least
one token. Once a transition fires, one token is re-
moved from each input place of t and one token is
added to each output place of t , leading to a new mark-
ing. An accepting Petri net is a 3-tuple (N,Mi,Mf)

with N a labeled Petri net, Mi an initial marking,
and Mf a final marking. Visually, places that be-
long to the initial marking contain a token (e.g., p1
in Fig. 1), and places that belong to the final mark-

ing are depicted as . Many process modeling nota-
tions, including accepting Petri nets, have formal exe-
cutional semantics and a model defines a language of
accepting traces L. The language of a Petri net con-
sists of all sequences of activities that have a firing
sequence through the Petri net that starts in the ini-
tial marking and ends in the final marking. For the
Petri net in Fig. 1, the language of accepting traces is
{〈A,B,D,E, F 〉, 〈A,B,D,F,E〉, 〈A,C,D,E, F 〉,
〈A,C,D,F,E〉}. In words: the process starts with ac-
tivity A, followed by a choice between activity B and
C, followed by activity D, finally followed by activ-
ity E and F in parallel (i.e., they can occur in any or-
der). We refer the reader to [29] for a more thorough
introduction of Petri nets.

N. Tax et al. / Generating time-based label refinements to discover more precise process models 169

For an event log L and a process model M we say
that L is fitting on process model M if L ⊆ L(M).
Precision is related to the behavior that is allowed by
a process model M that was not observed in the event
log L, i.e., L(M)\L. The aim of process discovery is
to discover a process model based on and event log
L that has both high fitness (i.e., it allows for the be-
havior seen in the log) and high precision (i.e., it does
not allow for too much behavior that was not seen
in the log). Many process discovery algorithms have
been proposed throughout the years, including tech-
niques based on Integer Linear Programming and the
theory of regions [48], Inductive Logic Programming
[12], maximal pattern mining [24], or based on heuris-
tic techniques [2,53]. We refer the reader to [46] for
a thorough introduction of several process discovery
techniques.

In process discovery tasks on event logs from the
business process management domain, events are of-
ten simply relabeled to the value of an activity name
attribute, which stores a generally understood name
for the event (e.g., receive loan application, or decide
on building permit application). However, event logs
from the smart home environment domain generally
do not contain a single attribute such that relabeling on
that attribute enables the discovery of insightful pro-
cess models [42]. In this paper we explore strategies
to refine the event labels that are based on the name of
the sensor in a smart home based on information about
the time in the day at which the sensor was triggered.

3. A framework for time-based label refinements

In this section, we describe a framework to gen-
erate an event label that contains partial information
about the event timestamp, in order to make the event
labels more specific while preserving interpretability.
Note that by bringing time-in-the-day information to
the event label we aim at uncovering daily routines
of the person under study. We take a clustering-based
approach by identifying dense areas in time-space for
each event label. The time part of the timestamps con-
sists of values between 00:00:00 and 23:59:59, equiv-
alent to the timestamp attribute from Table 1 with the
day-part of the timestamp removed. This timestamp
can be transformed into a real number time represen-
tation in the interval [0, 24). We chose to apply soft
clustering (also referred to as fuzzy clustering), which
has the benefit of assigning to each data point a like-
lihood of belonging to each cluster. A well-known ap-

Fig. 2. The histogram representation and a Gaussian Mixture Model
fitted to timestamps values of the plates cupboard sensor in the Van
Kasteren [50] dataset.

proach to soft clustering is based on the combination
of the Expectation–Maximization (EM) [8] algorithm
with mixture models, which are probability distribu-
tions consisting of multiple components of the same
probability distribution. Each component in the mix-
ture represents one cluster, and the probability of a data
point belonging to that cluster is the probability that
this cluster generated that data point. The EM algo-
rithm is used to obtain a maximum likelihood estimate
of the mixture model parameters, i.e., the parameters
of the probability distributions in the mixture.

A well-known type of mixture model is the Gaus-
sian Mixture Model (GMM), where the components
in the mixture distributions are normal distributions.
The data space of time is, however, non-Euclidean: it
has a circular nature, e.g., 23.99 is closer to 0 than to
23. This circular nature of the data space introduces
problems for GMMs. Figure 2 illustrates the problem
of GMMs in combination with circular data by plot-
ting the timestamps of the bedroom sensor events of
the Van Kasteren [50] real-life smart home event log.
The GMM fitted to the timestamps of the sensor events
consists of two components, one with the mean at 9.05
(in red) and one with a mean at 20 (in blue). The
histogram representation of the same data shows that
some events occurred just after midnight, which on the
clock is closer to 20 than to 9.05. The GMM, however,
is unaware of the circularity of the clock, which results
in a mixture model that seems inappropriate when vi-
sually comparing it with the histogram. The standard
deviation of the mixture component with a mean at
9.05 is much higher than one would expect based on
the histogram as a result of the mixture model trying
to explain the data points that occurred just after mid-

170 N. Tax et al. / Generating time-based label refinements to discover more precise process models

night. The field of circular statistics (also referred to
as directional statistics), concerns the analysis of such
circular data spaces (cf. [27]). In this paper, we use a
mixture of von Mises distributions to capture the daily
patterns.

Here, we introduce a framework for generating re-
finements of event labels based on time attributes us-
ing techniques from the field of circular statistics. This
framework consists of three stages to apply to the set
of timestamps of a sensor:

Data-model pre-fitting stage A known problem with
many clustering techniques is that they return
clusters even when the data should not be clus-
tered. In this stage, we assess if the events of a
certain sensor should be clustered at all, and if so,
how many clusters it contains. For sensor types
that are assessed to not be clusterable (i.e., the
data consists of one cluster), the procedure ends
and the succeeding two stages are not executed.

Data-model fitting stage In this stage, we cluster the
events of a sensor type by timestamp using a mix-
ture consisting of components that take into ac-
count the circularity of the data. The clustering re-
sult obtained in the fitting stage is now a candidate
label refinement. The event label can be refined
based on the clustering result by adding the as-
signed cluster to the event label, e.g., open/close
fridge can be relabeled into three distinct la-
bels open/close fridge 1, open/close fridge 2, and
open/close fridge 3 in case the timestamps of the
fridge where clustered into three clusters.

Data-model post-fitting stage In this stage, the qual-
ity of the candidate label refinements is assessed
from both a cluster quality perspective and a pro-
cess model (event ordering statistics) perspective.
The event label is only refined when the candidate
label refinement is 1) based on a clustering that
has a sufficiently good fit with the data, and 2)
helps to discover a more insightful process model.
If the candidate label refinement does not pass
one of the two tests, the label refinement candi-
date will not be applied (i.e., the event label will
remain to only consist of the sensor name).

In the proceeding sections we describe these three
stages in detail.

3.1. Data-model pre-fitting stage

This stage consists of three procedures: a test for
uniformity, a test for unimodality, and a method to se-

lect the number of clusters in the data. If the times-
tamps of a sensor type are considered to be uniformly
distributed or follow a unimodal distribution, the data
is considered not to be clusterable, and the sensor type
will not be refined. If the timestamps are neither uni-
formly distributed nor unimodal, then the procedure
for the selection of the number of clusters will decide
on the number of clusters used for clustering.

3.1.1. Uniformity check
Rao’s spacing test [34] tests the uniformity of the

timestamps of the events from a sensor around the cir-
cular clock. This test is based on the idea that uni-
form circular data is distributed evenly around the cir-
cle, and n observations are separated from each other
2π
n

radii. The null hypothesis is that the data is uniform
around the circle.

Given n successive observations f1, . . . , fn, either
clockwise or counterclockwise, the test statistics U for
Rao’s Spacing Test is defined as U = 1

2

∑n
i=1 |Ti −λ|,

where λ = 2π
n

, Ti = fi+1 − fi for 1 � i � n − 1 and
Tn = (2π − fn) + f1.

3.1.2. Unimodality check
Hartigan’s dip test [15] tests the null hypothesis that

the data follows a unimodal distribution on a circle.
When the null hypothesis can be rejected, we know
that the distribution of the data is at least bimodal. Har-
tigan’s dip test measures the maximum difference be-
tween the empirical distribution function and the uni-
modal distribution function that minimizes that maxi-
mum difference.

3.1.3. Selecting the number of mixture components
The Bayesian Information Criterion (BIC) [37] in-

troduces a penalty for the number of model parameters
to the evaluation of a mixture model. Adding a com-
ponent to a mixture model increases the number of pa-
rameters of the mixture with the number of parameters
of the distribution of the added component. The likeli-
hood of the data given the model can only increase by
adding extra components, adding the BIC penalty re-
sults in a trade-off between the number of components
and the likelihood of the data given the mixture model.
BIC is formally defined as BIC = −2∗ln(L̂)+k∗ln(n),
where L̂ is a maximized value for the data likelihood,
n is the sample size, and k is the number of parameters
to be estimated. A lower BIC value indicates a better
model. We start with one component and iteratively in-
crease the number of components from k to k + 1 as
long as the decrease in BIC is larger than 10, which is
shown to be an appropriate threshold in [20].

N. Tax et al. / Generating time-based label refinements to discover more precise process models 171

3.2. Data-model fitting stage

A generic approach to estimate a probability distri-
bution from data that lies on a circle or any other type
of manifold (e.g., the torus and sphere) was proposed
by Cohen and Welling in [6]. However, their approach
estimates the probability distribution on a manifold in
a non-parametric manner, and it does not use multiple
probability distribution components, making it unsuit-
able as a basis for clustering.

We cluster events generated by one sensor using a
mixture model consisting of components of the von
Mises distribution, which is the circular equivalent of
the normal distribution. This technique is based on
the approach of Banerjee et al. [3] that introduces a
clustering method based on a mixture of von Mises–
Fisher distribution components, which is a general-
ization of the 2-dimensional von Mises distribution
to n-dimensional spheres. A probability density func-
tion for a von Mises distribution with mean direc-
tion μ and concentration parameter κ is defined as
pdf (θ | μ, κ) = 1

2πI0(κ)
eκ cos(θ−μ), where mean μ and

data point θ are expressed in radians on the circle, such
that 0 � θ � 2π, 0 � μ � 2π, κ � 0. I0 repre-
sents the modified Bessel function of order 0, defined
as I0(k) = 1

2π

∫ 2π

0 eκ cos(θ) dθ . As κ approaches 0, the
distribution becomes uniform around the circle. As κ

increases, the distribution becomes relatively concen-
trated around the mean μ and the von Mises distribu-
tion starts to approximate a normal distribution. We fit
a mixture model of von Mises components using the
package movMF [17] provided in R, using the number
of components found with the BIC procedure of the
pre-fitting stage. A candidate label refinement is cre-
ated based on the clustering result, where the original
event label based on the sensor type is refined into a
new number of distinct labels, each representing one
von Mises component, where each event is relabeled
according to the von Mises component that has the as-
signs the highest likelihood to the timestamp of that
event.

3.3. Data-model post-fitting stage

This stage consists of two procedures: a statistical
test to assess how well the clustering result fits the data,
and a test to assess whether the ordering relations in the
log become stronger by applying the relabeling func-
tion (i.e., whether it becomes more likely to discover
a precise process model with process discovery tech-
niques).

3.3.1. Goodness-of-fit test
After fitting a mixture of von Mises distributions to

the sensor events, we perform a goodness-of-fit test
to check whether the data could have been generated
from this distribution. We describe the Watson U2

statistic [52], a goodness-of-fit assessment based on
hypothesis testing. The Watson U2 statistic measures
the discrepancy between the cumulative distribution
function F(θ) and the empirical distribution function
Fn(θ) of some sample θ drawn from some popula-
tion and is defined as U2 = n

∫ 2π

0 [Fn(θ) − F(θ) −
∫ 2π

0 {Fn(φ) − F(φ)} dF(φ)]2 dF(θ).

3.3.2. Control flow test
The clustering obtained can be used as a label re-

finement where we refine the original event label into a
new event label for each cluster. We assess the quality
of this label refinement from a process perspective us-
ing the label refinement evaluation method described
in [42]. This method tests whether the log statistics
that are used internally in many process discovery al-
gorithms become significantly more deterministic by
applying the label refinement. Hence, we test whether
the models become more precise after time-based la-
bel refinement. An example of such a log statistic is
the direct successor statistic: #+

L,>(b, c) is the number
of occurrences of b in the traces of L that are directly
followed by c, i.e., in some σ ∈ L, i ∈ {1, . . . , |σ |}
we have label([σ(i)]) = b and label([σ(i + 1)]) = c,
likewise, #−

L,>(b, c) is the number of occurrences of b

which are not directly followed by c. This control-flow
test [42] outputs a p-value that indicates whether such
log statistics of refined activities a1, a2, . . . of some
activity a change with statistical significance. When
#+
L,>(b, c) = #−

L,>(b, c) the entropy of b being di-
rectly followed by c is 1 bit, equal to a coin toss. In
addition to the p-value, the test returns an information
gain value, which indicates the ratio of the decrease in
the total bits of entropy in the log statistics as a result of
applying the label refinement. Information gain can be
used as a selection criterion for label refinements when
there are multiple sensor types that can be refined ac-
cording to the three steps of this framework. While the
entropy of a single log statistic cannot increase by ap-
plying a label refinement, the information gain of a re-
finement can still be negative when it is not useful, as it
increases the number activities in the log and therefore
also increases the total number of log statistics.

172 N. Tax et al. / Generating time-based label refinements to discover more precise process models

Fig. 3. Process models discovered on the Van Kasteren data with sensor-level event labels (a) and refined event labels (b) with the Inductive
Miner infrequent (20% filtering).

4. Case study

We apply our time-based label refinements approach
to the real-life smart home dataset described in Van
Kasteren et al. [50]. The Van Kasteren dataset consists
of 1285 events divided over fourteen different sensors.
We segment in days from midnight to midnight to de-
fine cases. Note that we consider the data of the Van
Kasteren on the sensor level, therefore each event label
in the log corresponds to a sensor. Since this dataset
originates from the activity recognition field it also
contains events at the level of human activities, instead
of on the level of sensors. However, we focus on the
sensor behavior since we want our analysis method-
ology to be directly applicable to smart home envi-
ronments, without the need of first applying activity
recognition techniques.

Figure 3(a) shows the process model discovered on
this event log with the Inductive Miner infrequent [21]

process discovery algorithm with 20% filtering, which
is a state-of-the-art process discovery algorithm that
discovers a process model that describes the most fre-
quent 80% of behavior in the log. Note that this pro-
cess model overgeneralizes, i.e., it allows for too much
behavior. At the start, a (possibly repeated) choice is
made between five transitions. At the end of the pro-
cess, the model allows any sequence over the alphabet
of five activities, where each event label occurs at least
once.

We illustrate the framework by applying it to the
bedroom door sensor. Rao’s spacing test results in a
test statistic of 241.0 with 152.5 being the critical value
for significance level 0.01, indicating that we can re-
ject the null hypothesis of a uniformly distributed set
of bedroom door timestamps. Hartigan’s dip test re-
sults in a p-value of 3.95×10−4, indicating that we can
reject the null hypothesis that there is only one cluster
in the bedroom door data. Figure 4 shows the BIC val-

N. Tax et al. / Generating time-based label refinements to discover more precise process models 173

Fig. 4. BIC values for different numbers of components in the mix-
ture model.

Table 2

Estimated parameters for a mixture of von Mises components for
bedroom door sensor events

Cluster α μ (radii) κ

Cluster 1 0.76 2.05 3.85

Cluster 2 0.24 5.94 1.56

ues for different numbers of components in the model.
The figure indicates that there are two clusters in the
data, as this corresponds to the lowest BIC value. Ta-
ble 2 shows the mean and κ parameters of the two clus-
ters found by optimizing the von Mises mixture model
with the EM algorithm. A value of 0 ≡ 2π radii equals
midnight. After applying the von Mises mixture model
to the bedroom door events and assigning each event
to the maximum likelihood cluster, we obtain a time
range of [3.08–10.44] for cluster 1 and a time range
of [17.06–0.88] for cluster 2. The Watson U2 test re-
sults in a test statistic of 0.368 and 0.392 for clus-
ter 1 and 2 respectively with a critical value of 0.141
for a 0.01 significance level, indicating that the data
is likely to be generated by the two von Mises distri-
butions found. The label refinement evaluation method
[42] finds statistically significant differences between
the events from the two bedroom door clusters with
regard to their control-flow relations with other activi-
ties in the log for 10 other activities using the signifi-
cance level of 0.01, indicating that the two clusters are
different from a control-flow perspective.

Figure 3(b) shows the process model discovered
with the Inductive Miner infrequent with 20% filtering
after applying this label refinement to the Van Kasteren
event log. The process model still overgeneralizes the
overall process, but the label refinement does help to
restrict the behavior, as it shows that the evening bed-
room door events are succeeded by one or more events
of type groceries cupboard, freezer, cups cupboard,
fridge, plates cupboard, or pans cupboard, while the

morning bedroom door events are followed by one or
more frontdoor events. It seems that this person gen-
erally goes to the bedroom in-between coming home
from work and starting to cook. The loop of the front-
door events could be caused by the person leaving the
house in the morning for work, resulting in no logged
events until the person comes home again by open-
ing the frontdoor. Note that in Fig. 3(a) bedroom door
and frontdoor events can occur an arbitrary number of
times in any order. Figure 3(a) furthermore does not
allow for the bedroom door to occur before the whole
block of kitchen-located events at the beginning of the
net.

In the process mining field, multiple quality criteria
exist to express the fit between a process model and an
event log. Two of those criteria are fitness [36], which
measures the degree to which the behavior that is ob-
served in the event log can be replayed on the process
model, and precision [28], which measures the degree
to which the behavior that was never observed in the
event log cannot be replayed on the process model.
Low precision typically indicates an overly general
process model, that allows for too much behavior. Typ-
ically we aim for process models with both high fit-
ness and precision. Therefore, one can consider the
harmonic mean of the two, often referred to as F-score.
The bedroom door label refinement described above
improves the precision of the process model found
with the Inductive Miner infrequent (20% filtering)
[21] from 0.3577 when applied on the original event
log to 0.4447 when applied on the refined event log
and improves the F-score from 0.5245 to 0.6156.

The label refinement framework allows for refine-
ment of multiple activities in the same log. For ex-
ample, label refinements can be applied iteratively.
Figure 5 shows the effect of a second label refine-
ment step, where Plates cupboard using the same
methodology is refined into two event labels, repre-
senting time ranges [7.98–14.02] and [16.05–0.92] re-
spectively. This refinement shows the additional in-
sight that the evening version of the Plates cupboard
occurs directly before or after the microwave. Gener-
ating multiple label refinements, however, comes with
the problem that the control-flow test [42] is sensitive
to the order in which label refinements are applied. Be-
cause label refinements change the event log, it is pos-
sible that after applying some label refinement A, some
other label refinement B starts passing the control-flow
test that did not pass this test before, or fails the test
while it passed before. Additionally, applying one la-
bel refinement can change the information gain of ap-

174 N. Tax et al. / Generating time-based label refinements to discover more precise process models

Fig. 5. Inductive Miner infrequent (20% filtering) result after a second label refinement.

plying another label refinement afterward. For exam-
ple, when #+

L,>(b, c) = #−
L,>(b, c), i.e., b is followed

by c 50% of the time, the entropy of this log statistic is
1, equal to a coin toss. Some label refinement A which
refines b into b1, b2 where b1 is always followed by c

and b2 is never followed by c is a good label refine-
ment from an information gain point of view, as it de-
creases the entropy of the log statistic to zero. Some
other label refinement B, which refines c into c1, c2
such that all b’s are directly followed by c1’s and never
by c2’s also leads to information gain. However, apply-
ing refinement B after having already applied refine-
ment A, does not lead to any further information gain,
since refinement A has already made it deterministic
whether or not b is followed by any c. Ineffective la-
bel refinements might even harm process discovery, as
each refinement decreases the frequencies with which
activities are observed, thereby decreasing the amount
of evidence for certain control-flow relations.

5. On the ordering of label refinements

As shown in Section 4, the outcome of the control
flow test of a label refinement can depend on whether
other possible label refinements that have passed the
test of the pre-fitting and post-fitting stages have al-
ready been applied. Therefore, in this section, we ex-
plore on three real-life event logs the effect of the or-
dering in which label refinements are applied.

5.1. Label refinement selection strategies

To explore the effect of the order in which label re-
finements are applied, we investigate four strategies to
select a set of label refinements to apply to the event
log and we evaluate these four strategies on the evalu-
ation logs. Each of the strategies assumes the desired
number k of label refinements to be given.

All-at-once This strategy can be seen as a naive strat-
egy that ignores the influence of interplay be-
tween label refinements on the outcome of the
control flow test. It simply applies the three stages
of the framework to generate label refinements to
each of the sensors in the event logs, and out of
all the sensors that pass the statistical significance
tests it selects the top k sorted on their informa-
tion gain, i.e. all the information values are calcu-
lated using the original event log on which none
of the other possible selected label refinements
have been applied.

Exhaustive Search The exhaustive search strategy
takes the effect on the information gain of the or-
der in which label refinements are applied fully
into account and finds the optimal set of k label
refinements. To achieve this goal, starting from
the set of label refinements that have passed the
statistical significance tests, the strategy investi-
gates all possible orderings in which these label
refinements can be applied to the log and calcu-
lates for each ordering of label refinements the
total information gain that is achieved with it. To
calculate this total information gain, the informa-
tion gain of each label refinement in this order-
ing is calculated on the log to which all label re-
finements earlier in the ordering are already ap-
plied. While the label refinement sequence that is
found with this strategy is optimal in terms of to-
tal information gain, this strategy can quickly be-
come computationally intractable for event logs
that contain many sensors.

Greedy Search This strategy performs a greedy
search. It first applies the best label refinement in
terms of information gain on the original log and
refines the event log using this label refinement.
Then, it iterates to find the next label refinement
by calculating the information gain using the re-

N. Tax et al. / Generating time-based label refinements to discover more precise process models 175

fined event log from the previous step. The pro-
cedure is continued until k refinements have been
found. Note that this strategy leads to a consid-
erably smaller search space compared to the ex-
haustive search strategy, as at each iteration only
the best label refinement is applied and the next
iteration continuous only from this best label re-
finement.

Beam Search The beam search strategy at is similar
to the greedy search strategy, with the difference
that at each iteration it keeps a predetermined
number b (called the beam size) of best partial so-
lutions are kept as candidates, while the greedy
search only keeps the single best candidate. Only
the best b combinations in terms of information
gain that were found consisting of n label refine-
ments are explored to search for a new set of n+1
label refinements. This is an intermediate strategy
in-between greedy and exhaustive search. Beam
search is equivalent to greedy search when b = 1
and it is equivalent to the exhaustive search strat-
egy when b = ∞.

5.2. Experimental setup

Label refinements can lead to a decrease in the fit-
ness of the resulting process model, while at the same
time increasing its precision. The reason for this is that
a very imprecise process model, i.e. one that allows for
all behavior, is by definition perfectly fitting. As a re-
sult, changing to a process model that makes a more
specific, i.e. more precise, description of the behavior
can only bring fitness down. To see why refinements
can increase precision while fitness can decrease, con-
sider a refinement of a sensor type a into a refined a1
and a2 in such a way that 90% of the a1 events are
directly followed by b while a2 is never followed by
b. Before this refinement, the process discovery algo-
rithm could not find any relation between a and b, as
a could be followed by b, but that was not necessarily
the case. After the refinement, it can find a sequential
relation between a1 and b, which is more precise than
the model before the refinement because it is more spe-
cific about the behavior that takes place. However, the
model discovered after refinement has lower fitness,
since those 10% of the a1 events were not followed by
b were are not anymore adhering to the behavior that
is described by the model.

We apply these four strategies on three event logs
from smart home environments and measure the fit-
ness, precision, and F-score of the models that are

discovered with the Inductive Miner infrequent [21]
with 20% filtering after each label refinement. The first
event log is the Van Kasteren [50] event log which
we introduced in Section 4. The other two event logs
are two different households of a smart home experi-
ment conducted by MIT [40]. The log Household A of
the MIT experiment contains 2701 events spread over
16 days, with 26 different sensors. The Household B
log contains 1962 events spread over 17 days and 20
different sensors. Note that, like for the Van Kasteren
dataset, we consider the events from the MIT A and B
datasets on the sensor level instead of on the human ac-
tivity level. Therefore, the event labels in the log each
correspond to a sensor.

The choice between the four strategies can be seen
as a trade-off between the degree in which they can
take the effect of the ordering of label refinements into
account and the computational effort that they require.
Note that when the impact of the label refinements that
are already applied to the log on the information gain
of succeeding label refinements is large, then we ex-
pect the exhaustive search strategy to outperform the
other strategies. In contrast, in the case that label re-
finements are mostly mutually independent and there
is no strong effect of which label refinements have al-
ready been applied to the log on the usefulness in terms
of information gain when applying a certain other label
refinement, then the all-at-once strategy would suffice
to find a set of label refinements and the considerable
computational effort needed to perform an exhaustive
search would be unnecessary, thereby enabling us to
find sets of label refinements for logs with high num-
bers of sensors. The experiments in which we apply the
four search strategies to generate label refinements are
intended to investigate the degree to which the order of
label refinements matter, i.e., the degree to which one
label refinement impacts the usefulness of other label
refinements.

5.3. Results

Figure 6 shows the fitness, precision, and F-score
values of the process models that were discovered after
selecting label refinements with each of the four strate-
gies on the three event logs. The precision can be im-
proved considerably through label refinements on all
three event logs.

While the fitness decreased on the MIT A log as
an effect of the refinements, fitness is not so much af-
fected by refining the labels on the MIT B and the Van
Kasteren event logs. The reason for this is that is when

176 N. Tax et al. / Generating time-based label refinements to discover more precise process models

Fig. 6. Fitness, precision, and F-score of the Inductive Miner infrequent (20% filtering) models obtained from the original and refined versions
of three event logs.

the relation between sensors that is exposed by the la-
bel refinement holds in almost all cases, there is almost
no loss in fitness, i.e., if 100% of the a1 in the previ-
ous label refinement example would have been directly
followed by a b instead of only 90%, then the more
precision sequential relation between a1 and b can be
modeled without loss of fitness.

Note that all strategies find the exact same label re-
finement as first label refinement, since with only one
label refinement there is no notion of interplay between
label refinements. When refining a second event label
the four strategies all select the same label refinement
on all three logs, hinting that in practice the effect of
interplay between label refinements is not very strong.
Since all four strategies selected the same second la-
bel refinement, the F-score, fitness, and precision are
also identical for the four strategies. Figure 6 shows
that for the MIT household A data set there are 7 sen-
sor types that can be refined, i.e., they passed the sta-
tistical tests of the pre-fitting stage and their obtained
clustering passed the goodness-of-fit test. For the MIT
household B data set there are 10 sensor types that can
be refined and there are 8 sensor types that can be re-
fined for the Van Kasteren data set. However, since the
F-score for all strategies drops again after a few la-
bel refinements, not all of those label refinements lead
to better process models. The four strategies perform
very similar in terms of F-score.

Exhaustive search outperforms the other strategies
for a few refinements on some logs, however, such
improvements come with considerable computation
times. On the MIT household B log, which has 10 pos-
sible label refinements, it takes about 25 minutes on
an Intel i7 processor to evaluate all possible combina-
tions of refinements. On logs with even more possi-
ble refinements the exhaustive strategy can quickly be-
come computationally infeasible. The computational
complexity of the exhaustive strategy stems from the
fact that the ordering in which label refinements are ap-
plied can influence their information gain, and there-
fore the set of candidate label refinement sequences to
consider is equal to the number of permutations on the
number of activities (i.e. O(n!), with n the number of
activities) when we restrict to only one label refine-
ment per event label, and even more when we do not
put this restriction and allow label refinements on ac-
tivities that themselves originate from refinements of
other activities.

The all-at-once strategy is computationally very fast
and only takes milliseconds to compute on all event
logs. Note that with this strategy the information gain
only needs to be calculated once for every event la-
bel in the log, therefore the computational complex-
ity is O(n), with n the number of activities. Yet, this
strategy results in fitness, precision, and F-score val-
ues that are almost identical to what is obtained with

N. Tax et al. / Generating time-based label refinements to discover more precise process models 177

the exhaustive strategy for MIT household A and Van
Kasteren. When making six or more refinements on the
MIT household B log, the quality of the obtained pro-
cess model with the all-at-once strategy lags behind the
other strategies, indicating that the label refinements
that were applied earlier cause the later label refine-
ments to be less effective. However, the optimum in F-
score for this log lies at three refinements, therefore the
sixth refinement, where a performance difference be-
tween non-exhaustive strategies emerges should not be
performed with any of the strategies in the first place.

Since the F-score decreases again when applying
too many label refinements it is important to have a
stopping criterion that prevents refining the event log
too much. The dashed line in Fig. 6 shows the re-
sults when we only refine a label when the information
gain of the refinement is larger than zero. On the MIT
households A and B logs this stopping criterion causes
all strategies to stop at the best combination of label re-
finements in F-score, consists respectively of one and
three refinements. This indicates that the control flow
test [42] provides a useful stopping criterion for label
refinements.

As the greedy search strategy iteratively selects the
best label refinement, its computational complexity is
O(n2), with n the number of activities, when we re-
strict to only one label refinement per event label. This
is easy to see: picking the best a label refinement from
all possible activities in the log that can be refined is
O(n), and this procedure has to be repeated at most
n times until there are no more activities left that can
be refined. The computational complexity of the beam
search strategy is depended on the beam size b, as
b = 1 is equivalent to a greedy search and b = ∞
is equivalent to an exhaustive search. Note that on
all logs the beam search approach with a beam size
of only two resulted in the optimal process model in
terms of F-score as found with the exhaustive search,
while it reduces the computation time from around half
an hour to milliseconds on all logs. Furthermore, the
all-at-once and the greedy search strategies resulted
in the optimal process model in terms of F-score as
found with the exhaustive search on two of the three
logs, while offering a better computational complexity
than the beam search strategy, therefore these strate-
gies might be more suitable for large-scale event logs.

All strategies except the exhaustive search strategy
suggest as the fourth refinement for MIT B a refine-
ment that decreases the F-score sharply, to increase it
again with a fifth refinement. This is caused by an un-
helpful refinement being found as the fourth refine-

ment by those strategies, which causes the frequen-
cies to drop below the filtering threshold of the In-
ductive Miner, leading to a model that is less pre-
cise. At the fifth refinement, the follows statistics of
other activities drop as well, causing the follows statis-
tics that dropped in the fourth refinement to be rel-
atively higher and above the threshold again. On the
Van Kasteren log the optimum in F-score is to make
only one refinement, although the F-score after apply-
ing the second and third refinement as found by the
exhaustive and beam search is almost identical. The
all-at-once strategy stops after applying only two re-
finements while the other strategies apply a third re-
finement. The best refinement combination found with
the all-at-once strategy using the stopping criterion is
identical to the refinement combination found with the
other strategies, suggesting that in practice the differ-
ences between the four approaches are small. On real-
life smart home environment event logs the effect that
one label refinement influences the control flow test
outcome of others is limited.

Figures 7 and 8 shows the process model that
are discovered with the Inductive Miner infrequent
with 20% filtering respectively from the original MIT
household A event log and the event log obtained af-
ter applying the optimal combination of label refine-
ments found in the results of Fig. 6. Because of the
silent transitions, the process model discovered from
the original event log allows for almost all orderings
over the sensor types. Even though the transition labels
in the process model discovered from the refined event
log are not readable because of the size, it is clear from
the structure of the process model that it is much more
behaviorally specific, containing a mix of sequential
orderings, parallel blocks, and choices over the sensor
types. Especially interesting is the part indicated by
the blue dashed ellipse, which contains a parallel block
consisting of a cabinet, the oven and burner, and the
dishwasher, showing a clearly recognizable cooking
routine. Furthermore, the part indicated by the red dot-
ted ellipse indicates a sequentially ordered part, con-
sisting of some door sensor registering the opening of
a door, followed by starting the washing machine and
then the laundry dryer.

The time-based label refinement generation frame-
work as well as the four strategies to generate mul-
tiple label refinements on the same event log are im-
plemented and publicly available in the process min-

178 N. Tax et al. / Generating time-based label refinements to discover more precise process models

Fig. 7. The Inductive Miner infrequent (20% filtering) process model discovered from the original MIT a event log.

Fig. 8. The Inductive Miner infrequent (20% filtering) process model discovered from the refined MIT A event log.

ing toolkit ProM [49] as part of the LabelRefinements1

package.

6. Related work

We classify related work into three categories. The
first category of related work concerns techniques from
the process mining field, specifically focusing on tech-
niques that, like our approach, focus on refining event
labels. The second category of related work, also orig-
inating from the process mining area, focuses on the
interplay between ordering between process activities
and external information, such as time. The third cat-
egory of related work originates from the ambient in-
telligence and smart home environments field, focus-
ing on work on mining temporal relations between hu-
man activities. We use these three categories to struc-
ture this section.

1https://svn.win.tue.nl/repos/prom/Packages/LabelRefinements/

6.1. Label splits and refinements in process mining

The task of finding refinements of event labels in
the event log is closely related to the task of min-
ing process models with duplicate activities, in which
the resulting process model can contain multiple tran-
sitions/nodes with the same label. From the point of
view of the behavior that is allowed by a process
model, it makes no difference whether a process model
is discovered on an event log with refined event labels,
or whether a process model is discovered with dupli-
cate activities such that each transition/node of the du-
plicate activity precisely covers one version of the re-
fined event label. However, a refined event label may
also provide additional insights as the new event la-
bels are explainable in terms of time. The first process
discovery algorithm capable of discovering duplicate
tasks was proposed by Herbst and Karagiannis in 2004
[16], after which many others have been proposed,
including the Evolutionary Tree Miner [5], the α∗-
algorithm [23], the α#-algorithm [13], the Enhanced-

https://svn.win.tue.nl/repos/prom/Packages/LabelRefinements/

N. Tax et al. / Generating time-based label refinements to discover more precise process models 179

WFMiner [10]. An alternative approach has been pro-
posed by Vázques-Barreiros [51] et al., who describe a
local search based approach to repair a process model
to include duplicate activities, starting from an event
log and a process model without duplicate activities.
Existing work on mining models with duplicate activ-
ities all base their duplicate activities on how well the
event log fits the process model, and do not try to find
semantic differences between the different versions of
the activities in the form of attribute differences.

The work that is closest to our work is the work by
Lu et al. [26], who describe an approach to pre-process
an event log by refining event labels with the goal of
discovering a process model with duplicate activities.
The method proposed by Lu et al., however, does not
base the relabelings on data attributes of those events
and only uses the control flow context, leaving uncer-
tainty whether two events relabeled differently are ac-
tually semantically different.

6.2. Data-aware process mining

Another area of related work is data-aware process
mining, where the aim is to discover rules with regard
to data attributes of events that decide decision points
in the process. De Leoni and van der Aalst [7] pro-
posed a method that discovers data guards for deci-
sion points in the process based on alignments and de-
cision tree learning. This approach relies on the dis-
covery of a behaviorally well-fitting process model
from the original event log. When only overgeneral-
izing process models (i.e., allowing for too much be-
havior) can be discovered from an event log, the cor-
rect decision points might not be present in the dis-
covered process model at all, resulting in this approach
not being able to discover the data dependencies that
are in the event log. Our label refinements use data at-
tributes prior to process discovery to enable the dis-
covery of more behaviorally constrained process mod-
els by bringing parts of the event attribute space to the
event label.

6.3. Temporal relation mining for smart home
environments

Galushka et al. [11] provide an overview of tempo-
ral data mining techniques and discuss their applica-
bility to data from smart home environments. Many of
the techniques described in the overview focus on real-
valued time series data, instead of discrete sequences
which we assume as input in this work. For discrete

sequence data, Galushka et al. [11] propose the use of
sequential rule mining techniques, which can discover
rules of the form “if event a occurs then event b occurs
with time T”.

Huynh et al. [18] proposed to use topic modeling
to mine activity patterns from sequences of human
events. Topic modeling originates from the field of nat-
ural language processing and addresses the challenge
to find topics in textual documents and assign a dis-
tribution over these topics to each document. How-
ever, the discovered topics do not represent the hu-
man activities in terms of control-flow ordering con-
structs like sequential ordering, concurrent execution,
choices, and loops.

Ogale et al. [31] proposed an approach to describe
the temporal relation between human behavior activi-
ties from video data using context-free grammars, us-
ing the human poses extracted from the video as the
alphabet. Like Petri nets, context-free grammars define
a formal language over its alphabet. However, Petri
nets have a graphical representation, which is lack-
ing for grammars. Furthermore, as shown by Peter-
son [32], Petri net languages are a subclass of context-
sensitive languages, and some Petri net languages are
not context-free. This indicates that some relations
over activities that can be expressed in Petri nets can-
not be expressed in a context-free grammar.

One particularly related technique, called TEmporal
RElation Discovery of Daily Activities (TEREDA), was
proposed by Nazerfard et al. [30]. TEREDA leverages
temporal association rule mining techniques to mine
ordering relations between activities as well as patterns
in their timestamp and duration. The ordering relations
between activities that are discovered by TEREDA are
restricted to the form “activity a follows activity b”,
where our proposed approach of modeling the rela-
tions with Petri nets allow for modeling of more com-
plex relations between larger number of activities, such
as: “the occurrences of activity b that are preceded by
activity a are followed by both activity d and e, but in
arbitrary order”. The patterns in the timestamps are
obtained by fitting a Gaussian Mixture Model (GMM)
with the Expectation–Maximization (EM) algorithm,
thereby ignoring problems caused by the circularity of
the 24-hour clock introduced in this paper.

Jukkala and Cook [19] propose a method to mine
temporal relations between activities from smart home
environments logs where the temporal relation patterns
are expressed in Allen’s interval algebra [1]. Allen’s
interval algebra allows the expression of thirteen dis-
tinct types of temporal relations between two activities

180 N. Tax et al. / Generating time-based label refinements to discover more precise process models

based on both the start and end timestamps of these
activities. The approach of Jukkala and Cook [19] is
limited to describing the relations between pairs of ac-
tivities, and more complex relations between three or
higher numbers of activities cannot be discovered. The
aim of mining the patterns in Allen’s interval algebra
representation is to increase the accuracy of activity
recognition systems, while our goal is knowledge dis-
covery. Several papers from the process mining area
have focused on mining temporal relations between ac-
tivities from smart home event logs. Leotta et al. [22]
postulate three main research challenges for the appli-
cability of process mining technique for smart home
data. One of those three challenges is to improve pro-
cess mining techniques to address the less structured
nature of human behavior as compared to business pro-
cesses. Our technique addresses this challenge, as the
time-based label refinements help in uncovering re-
lations between activities with process mining tech-
niques that could not be found without applying time-
based label refinements.

DiMaggio et al. [9] and Sztyler et al. [38,39] pro-
pose to mine Fuzzy Models [14] to describe the tem-
poral relations between human activities. The Fuzzy
Miner [14], a process discovery algorithm that mines
a Fuzzy Model from an event log, is a process discov-
ery algorithm that is designed specifically for weakly
structured processes. However, Fuzzy Models, in con-
trast to Petri nets, do not define a formal language over
the activities, and are therefore not precise on what ac-
tivity orderings are allowed and which are not. While
mining a Fuzzy Model description of human activi-
ties is less challenging compared to mining a process
model with formal semantics, it is also limited in the
insights that can be obtained from it.

Finally, insights in the human routines can be ob-
tained through the discovery of Local Process Models
[44], which bridges process mining and sequential pat-
tern mining by finding patterns that include high-level
process model constructs such as (exclusive) choices,
loops, and concurrency. However, Local Process Mod-
els, as opposed to process discovery, only give insight
into frequent subroutines of behavior and do not pro-
vide the global picture of the behavior throughout the
day from start to end.

7. Conclusion and future work

We have proposed a framework based on techniques
from the field of circular statistics to refine event la-

bels automatically based on their timestamp attribute.
We have shown on a real-life event log that this frame-
work can be used to discover label refinements that al-
low for the discovery of more insightful and behav-
iorally more specific process models. Additionally, we
explored four strategies to search combinations of la-
bel refinements. We found that the difference between
an all-at-once strategy, which ignores that one label
refinement can have an effect on the usefulness of
other label refinements, and other more computation-
ally expensive strategies is often limited. As a result
of this finding, the fast but approximate label refine-
ment strategies can in practice be applied instead of
performing a full exhaustive search, thereby enabling
label refinement search on smart home logs with high
numbers of sensors.

An interesting area of future work is to explore
the use of other types of event data attributes to re-
fine event labels, e.g., power values of sensors. A next
research step would be to explore label refinements
based on a combination of data attributes combined.
This introduces new challenges, such as the cluster-
ing on partially circular and partially Euclidean data
spaces. Additionally, other time-based types of circles
than the daily circle described in this paper, such as the
week, month, or year circle, are worth investigating.

References

[1] J.F. Allen, Maintaining knowledge about temporal intervals,
Communications of the ACM 26(11) (1983), 832–843. doi:10.
1145/182.358434.

[2] A. Augusto, R. Conforti, M. Dumas, M. La Rosa and G. Bruno,
Automated discovery of structured process models: Discover
structured vs. discover and structure, in: Proceedings of the
International Conference on Conceptual Modeling, Springer,
2016, pp. 313–329. doi:10.1007/978-3-319-46397-1_25.

[3] A. Banerjee, I.S. Dhillon, J. Ghosh and S. Sra, Clustering
on the unit hypersphere using von Mises–Fisher distributions,
Journal of Machine Learning Research 6 (2005), 1345–1382.

[4] T. Benaglia, D. Chauveau, D. Hunter and D. Young, Mixtools:
An R package for analyzing finite mixture models, Journal of
Statistical Software 32(6) (2009), 1–29. doi:10.18637/jss.v032.
i06.

[5] J.C.A.M. Buijs, B.F. van Dongen and W.M.P. van der Aalst,
On the role of fitness, precision, generalization and simplic-
ity in process discovery, in: OTM Confederated International
Conferences “On the Move to Meaningful Internet Systems”,
Springer, 2012, pp. 305–322.

[6] T. Cohen and M. Welling, Harmonic exponential families on
manifolds, in: Proceedings of the 32nd International Confer-
ence on Machine Learning, JMLR W&CP, 2015, pp. 1757–
1765.

http://dx.doi.org/10.1145/182.358434
http://dx.doi.org/10.1145/182.358434
http://dx.doi.org/10.1007/978-3-319-46397-1_25
http://dx.doi.org/10.18637/jss.v032.i06
http://dx.doi.org/10.18637/jss.v032.i06

N. Tax et al. / Generating time-based label refinements to discover more precise process models 181

[7] M. de Leoni and W.M.P. van der Aalst, Data-aware process
mining: Discovering decisions in processes using alignments,
in: Proceedings of the 28th Annual ACM Symposium on Ap-
plied Computing, ACM, 2013, pp. 1454–1461.

[8] A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likeli-
hood from incomplete data via the EM algorithm, Journal of
the Royal Statistical Society. Series B. (1977), 1–38.

[9] M. Dimaggio, F. Leotta, M. Mecella and D. Sora, Process-
based habit mining: Experiments and techniques, in: Proceed-
ings of the IEEE International Conference on Ubiquitous In-
telligence & Computing, IEEE, 2016, pp. 145–152.

[10] F. Folino, G. Greco, A. Guzzo and L. Pontieri, Discovering
expressive process models from noised log data, in: Proceed-
ings of the International Database Engineering & Applications
Symposium, ACM, 2009, pp. 162–172.

[11] M. Galushka, D. Patterson and N. Rooney, Temporal data min-
ing for smart homes, in: Designing Smart Homes, Springer,
2006, pp. 85–108. doi:10.1007/11788485_6.

[12] S. Goedertier, D. Martens, J. Vanthienen and B. Baesens, Ro-
bust process discovery with artificial negative events, Journal
of Machine Learning Research 10(Jun) (2009), 1305–1340.

[13] C.-Q. Gu, H.-Y. Chang and Y. Yi, Workflow mining: Extending
the α-algorithm to mine duplicate tasks, in: Proceedings of the
International Conference on Machine Learning and Cybernet-
ics, Vol. 1, IEEE, 2008, pp. 361–368.

[14] C. Günther and W.M.P. van der Aalst, Fuzzy mining–adaptive
process simplification based on multi-perspective metrics, in:
Proceedings of the International Conference on Business Pro-
cess Management, Springer, 2007, pp. 328–343. doi:10.1007/
978-3-540-75183-0_24.

[15] J.A. Hartigan and P.M. Hartigan, The dip test of unimodality,
The Annals of Statistics (1985), 70–84.

[16] J. Herbst and D. Karagiannis, Workflow mining with In-
WoLvE, Computers in Industry 53(3) (2004), 245–264. doi:10.
1016/j.compind.2003.10.002.

[17] K. Hornik and B. Grün, movMF: An R package for fitting mix-
tures of von Mises–Fisher distributions, Journal of Statistical
Software 58(10) (2014), 1–31. doi:10.18637/jss.v058.i10.

[18] T. Huynh, M. Fritz and B. Schiele, Discovery of activity pat-
terns using topic models, in: Proceedings of the 10th Inter-
national Conference on Ubiquitous Computing, ACM, 2008,
pp. 10–19.

[19] V.R. Jakkula and D.J. Cook, Using temporal relations in smart
environment data for activity prediction, in: Proceedings of the
ICML Workshop on the Induction of Process Models, 2007.

[20] R.E. Kass and A.E. Raftery, Bayes factors, Journal of the
American Statistical Association 90(430) (1995), 773–795.
doi:10.1080/01621459.1995.10476572.

[21] S.J.J. Leemans, D. Fahland and W.M.P. van der Aalst, Discov-
ering block-structured process models from event logs contain-
ing infrequent behaviour, in: Proceedings of the International
Conference on Business Process Management, Springer, 2013,
pp. 66–78.

[22] F. Leotta, M. Mecella and J. Mendling, Applying process min-
ing to smart spaces: Perspectives and research challenges, in:
Enterprise, Business-Process and Information Systems Model-
ing, Springer, 2015, pp. 298–304.

[23] J. Li, D. Liu and B. Yang, Process mining: Extending α-
algorithm to mine duplicate tasks in process logs, in: Advances
in Web and Network Technologies, and Information Manage-

ment, Springer, 2007, pp. 396–407. doi:10.1007/978-3-540-
72909-9_43.

[24] V. Liesaputra, S. Yongchareon and S. Chaisiri, Efficient pro-
cess model discovery using maximal pattern mining, in: Pro-
ceedings of the International Conference on Business Process
Management, Springer, 2015, pp. 441–456. doi:10.1007/978-
3-319-23063-4_29.

[25] K. Liu, W.K. Cheung and J. Liu, Extracting behavioral mo-
tifs for characterizing human daily activities in smart envi-
ronments, in: Proceedings of the ACM SIGKDD Workshop on
Health Informatics, 2012, pp. 1–8.

[26] X. Lu, D. Fahland, F.J.H.M. van den Biggelaar and
W.M.P. van der Aalst, Handling duplicated tasks in process dis-
covery by refining event labels, in: Proceedings of the Interna-
tional Conference on Business Process Management, Springer,
2016, pp. 90–107. doi:10.1007/978-3-319-45348-4_6.

[27] K.V. Mardia and P.E. Jupp, Directional Statistics, Vol. 494,
John Wiley & Sons, 2009.

[28] J. Munoz-Gama and J. Carmona, A fresh look at precision
in process conformance, in: Proceedings of the International
Conference on Business Process Management, Springer, 2010,
pp. 211–226. doi:10.1007/978-3-642-15618-2_16.

[29] T. Murata, Petri nets: Properties, analysis and applications,
Proceedings of the IEEE 77(4) (1989), 541–580. doi:10.1109/
5.24143.

[30] E. Nazerfard, P. Rashidi and D. Cook, Using association rule
mining to discover temporal relations of daily activities, To-
ward Useful Services for Elderly and People with Disabilities
(2011), 49–56.

[31] A. Ogale, A. Karapurkar and Y. Aloimonos, View-invariant
modeling and recognition of human actions using grammars,
Springer, 2007, pp. 115–126.

[32] J.L. Peterson, Petri Net Theory and the Modeling of Systems,
Prentice Hall, 1981.

[33] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2013, ISBN 3-900051-07-0. http://www.R-project.
org/.

[34] J. Rao, Some tests based on arc-lengths for the circle, Sankhyā:
The Indian Journal of Statistics, Series B (1976), 329–338.

[35] W. Reisig and G. Rozenberg, Lectures on Petri Nets I: Basic
Models: Advances in Petri Nets, Vol. 1491, Springer Science
& Business Media, 1998. doi:10.1007/3-540-65306-6.

[36] A. Rozinat and W.M.P. van der Aalst, Conformance checking
of processes based on monitoring real behavior, Information
Systems 33(1) (2008), 64–95. doi:10.1016/j.is.2007.07.001.

[37] G. Schwarz, Estimating the dimension of a model, The
Annals of Statistics 6(2) (1978), 461–464. doi:10.1214/aos/
1176344136.

[38] T. Sztyler, J. Carmona, J. Völker and H. Stuckenschmidt, Self-
tracking reloaded: Applying process mining to personalized
health care from labeled sensor data, in: Transactions on Petri
Nets and Other Models of Concurrency XI, Springer, 2016,
pp. 160–180. doi:10.1007/978-3-662-53401-4_8.

[39] T. Sztyler, J. Völker, J. Carmona, O. Meier and H. Stucken-
schmidt, Discovery of personal processes from labeled sen-
sor data – an application of process mining to personalized
health care, in: Proceedings of the International Workshop on
Algorithms & Theories for the Analysis of Event Data, CEUR-
ws.org, 2015, pp. 22–23.

http://dx.doi.org/10.1007/11788485_6
http://dx.doi.org/10.1007/978-3-540-75183-0_24
http://dx.doi.org/10.1007/978-3-540-75183-0_24
http://dx.doi.org/10.1016/j.compind.2003.10.002
http://dx.doi.org/10.1016/j.compind.2003.10.002
http://dx.doi.org/10.18637/jss.v058.i10
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1007/978-3-540-72909-9_43
http://dx.doi.org/10.1007/978-3-540-72909-9_43
http://dx.doi.org/10.1007/978-3-319-23063-4_29
http://dx.doi.org/10.1007/978-3-319-23063-4_29
http://dx.doi.org/10.1007/978-3-319-45348-4_6
http://dx.doi.org/10.1007/978-3-642-15618-2_16
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1109/5.24143
http://www.R-project.org/
http://www.R-project.org/
http://dx.doi.org/10.1007/3-540-65306-6
http://dx.doi.org/10.1016/j.is.2007.07.001
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1007/978-3-662-53401-4_8

182 N. Tax et al. / Generating time-based label refinements to discover more precise process models

[40] E.M. Tapia, S.S. Intille and K. Larson, Activity recognition in
the home using simple and ubiquitous sensors, in: Proceed-
ings of the International Conference on Pervasive Computing,
Springer, 2004, pp. 158–175.

[41] N. Tax, E. Alasgarov, N. Sidorova and R. Haakma, On gen-
eration of time-based label refinements, in: Proceedings of
the 25th International Workshop on Concurrency, Specification
and Programming, 2016.

[42] N. Tax, N. Sidorova, R. Haakma and W.M.P. van der Aalst,
Log-based evaluation of label splits for process models, Proce-
dia Computer Science 96 (2016), 63–72. doi:10.1016/j.procs.
2016.08.096.

[43] N. Tax, N. Sidorova, R. Haakma and W.M.P. van der Aalst,
Event abstraction for process mining using supervised learning
techniques, in: Proceedings of the SAI Conference on Intelli-
gent Systems, Springer, 2016, pp. 161–170.

[44] N. Tax, N. Sidorova, R. Haakma and W.M.P. van der Aalst,
Mining local process models, Journal of Innovation in Digital
Ecosystems 3(2) (2016), 183–196. doi:10.1016/j.jides.2016.11.
001.

[45] N. Tax, N. Sidorova, R. Haakma and W.M.P. van der Aalst,
Mining process model descriptions of daily life through event
abstraction, in: Intelligent Systems and Applications, Springer,
2018, Chap. To Appear.

[46] W.M.P. van der Aalst, Process Mining: Data Science in Action,
Springer Science & Business Media, 2016.

[47] W.M.P. van Der Aalst, A.H.M. Ter Hofstede, B. Kiepuszewski
and A.P. Barros, Workflow patterns, Distributed and parallel
databases 14(1) (2003), 5–51. doi:10.1023/A:1022883727209.

[48] J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens and
A. Serebrenik, Process discovery using integer linear program-
ming, Fundamenta Informaticae 94(3–4) (2009), 387–412.

[49] B.F. van Dongen, A.J.M.M. Weijters and W.M.P. van der Aalst,
The ProM framework: A new era in process mining tool sup-
port, Applications and Theory of Petri Nets (2005), 444.

[50] T. van Kasteren, A. Noulas, G. Englebienne and B. Kröse, Ac-
curate activity recognition in a home setting, in: Proceedings of
the 10th International Conference on Ubiquitous Computing,
ACM, 2008, pp. 1–9.

[51] B. Vázquez-Barreiros, M. Mucientes and M. Lama, Mining
duplicate tasks from discovered processes, in: Proceedings of
the International Workshop on Algorithms & Theories for the
Analysis of Event Data, CEUR-ws.org, 2015, pp. 78–82.

[52] G.S. Watson, Goodness-of-fit tests on a circle. II, Biometrika
49(1/2) (1962), 57–63. doi:10.1093/biomet/49.1-2.57.

[53] A. Weijters and J. Ribeiro, Flexible heuristics miner (FHM), in:
Proceedings of the IEEE Symposium on Computational Intel-
ligence and Data Mining (CIDM), IEEE, 2011, pp. 310–317.

http://dx.doi.org/10.1016/j.procs.2016.08.096
http://dx.doi.org/10.1016/j.procs.2016.08.096
http://dx.doi.org/10.1016/j.jides.2016.11.001
http://dx.doi.org/10.1016/j.jides.2016.11.001
http://dx.doi.org/10.1023/A:1022883727209
http://dx.doi.org/10.1093/biomet/49.1-2.57

	Introduction
	Background
	Event logs and their components
	Process models and process discovery

	A framework for time-based label refinements
	Data-model pre-fitting stage
	Uniformity check
	Unimodality check
	Selecting the number of mixture components

	Data-model fitting stage
	Data-model post-fitting stage
	Goodness-of-fit test
	Control flow test

	Case study
	On the ordering of label refinements
	Label refinement selection strategies
	Experimental setup
	Results

	Related work
	Label splits and refinements in process mining
	Data-aware process mining
	Temporal relation mining for smart home environments

	Conclusion and future work
	References

