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Abstract. In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active human
assistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented as
relations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities for
contextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. While
drawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been ad-
dressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-based
reasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints and
reasoned upon continuously.
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1. Introduction

Malin lives alone in her small apartment. With the
help of her grandchildren, she has equipped the
apartment with a series of service robots, sensors
and actuators which help her manage some of the
physical and cognitive difficulties she has due to
her age. Her home alerts her if she appears to be
over-cooking her meals, and autonomously orga-
nizes when and where to dispatch her robotic vac-
uum cleaner so as to minimize its intrusiveness in
her daily activities. The home recognizes when Ma-
lin is sleeping, eating and performing other usual
activities at home, and can be easily set up to mon-
itor and respond to the occurrence of specific pat-
terns of behavior, like getting her a drink from the
fridge when she watches TV.

State of the art robotic and sensor systems can be
leveraged to achieve intelligent functionalities that are
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useful in a number of domains, such as assistive work-
places, or domestic care of the elderly. As suggested by
Malin’s futuristic home, two important issues underly-
ing the realization of this vision are context awareness
and proactiveness. The former can be achieved today
through the use of sensor systems coupled with scene
understanding and activity recognition techniques (for
instance Hidden Markov Models for activity recogni-
tion [42]). Examples of the latter capability have been
demonstrated by integrating robotic systems with in-
telligent control, planning and/or multi-agent coordi-
nation techniques (such as Hierarchical Task Network
planning for service synthesis [24]).

However, it is increasingly evident that providing
services that are effective in supporting human users
in real-world situations require both cognitive capabil-
ities concurrently. In order to be effective, these two
cognitive processes must operate in unison, informing
each other in order to synthesize appropriate, timely
and relevant support services. An approach that seam-
lessly integrates these key capabilities is missing from
the current spectrum of techniques.

We propose to use constraint reasoning as the ba-
sis for achieving an integration of activity recognition,
task planning and execution. Our solution employs a
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uniform formalism based on Allen’s interval algebra
to represent both the criteria for context recognition
and a planning domain for proactive service enact-
ment. Constraint-based temporal reasoning techniques
are used in a closed loop with deployed sensors and ac-
tuators to seamlessly interleave context deduction and
plan generation/execution.

The architecture, called SAM1, is conceived to sat-
isfy a number of important requirements stemming
from realistic application settings:

– Modularity: it should be possible to add new sen-
sors and actuators with minimal reconfiguration
effort, and the specific technique employed for
context recognition and planning should not be
specific to the type of devices employed;

– Long temporal horizons: the system must be ca-
pable of recognizing patterns of human behavior
that depend on events that are separated by long
temporal intervals, e.g., recognizing activities that
occur every Monday;

– On-line recognition and execution: we require
the system to be capable of recognizing activities
as soon as they occur, a necessity which arises
in contexts where the inferred activities should
lead to the timely enactment of appropriate pro-
cedures;

– Multiple hypothesis tracking: finally, the system
must be capable of modeling and tracking mul-
tiple hypotheses of human behavior, in order to
support alternative and/or multiple valid explana-
tions of sensor readings.

The paper is organized as follows. After giving
a brief overview of related work, we describe the
constraint-based domain representation language that
is employed to represent context recognition and ac-
tuation requirements in SAM. We then describe how
SAM achieves integrated context recognition and
proactive support service planning through temporal
reasoning. We conclude by presenting several experi-
mental runs of SAM aimed at assessing its adherence
to the requirements above, and which include several
test runs carried out in a prototypical intelligent envi-
ronment with human users.

2. Related work

The development of a service-providing reasoning
framework relates to a wide range of state of the art-

1SAM stands for “SAM the Activity Manager”.

techniques in AIand robotics, which include planning
and scheduling, automated reasoning and execution
monitoring. Our work explicitly focuses on building
a service providing loop around a human user. In this
context, specific automated reasoning techniques for
human activity recognition on one hand, and “human-
aware” planning methods on the other are particularly
relevant to our work.

Current approaches to the problem of recognizing
human activities can be roughly categorized as data-
driven or model-driven. In data-driven approaches,
models of human behavior are acquired from large
volumes of data over time. Notable examples of this
approach employ Hidden Markov Models (HMMs)
in conjunction with learning techniques for inferring
transition probabilities [31,42]. Extensions of these ap-
proaches have been proposed for dealing with realis-
tic features of the domain, such as interleaved activi-
ties [12,28] and multiple persons [35].

Although highly effective in specific domains, such
systems are typically brittle to changes in the na-
ture and quantity of sensors, requiring significant re-
training when the application context changes. Liao et
al. [23] have described a data-driven approach which
partially overcomes these limitations using conditional
random fields, showing that learned behavior models
can be generalized to different users. However, this has
been empirically proved only for the specific context
of activity recognition using GPS traces and location
information, and does not address the problem of con-
textual recognition and planning/execution. A comple-
mentary approach is followed by Helaoui et al. [18] to
overcome some of the limitations of purely data-driven
techniques. Specifically, the authors incorporate mod-
eling capabilities to capture features such as qualitative
temporal relations which describe how events relate to
each other. One of the key features of the approach is
its capability to recognize interleaved activities. How-
ever, it is limited to detecting sensor context, and does
not address the issue of actuation.

The lack of integration with actuation is a common
problem for data-driven approaches. A notable excep-
tion is reported by Boger et al. [3], in which a real-time
system recognizes sequences of handwashing-related
tasks through vision-based sensors, and assists cog-
nitively impaired users through visual prompts. How-
ever, the system relies heavily on a single, ad-hoc (al-
beit highly optimized) vision-based sensor. Also actu-
ation involves one device (the prompt-generating sys-
tem), the behavior of which is inferred through a hand-
coded Partially Observable Markov Decision Process
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(POMDP) model. Building support for multiple, het-
erogeneous sensors and actuators into such a system
would severely affect the computational complexity of
policy generation.

Model-driven approaches to activity recognition fol-
low a complementary strategy in which patterns of ob-
servations are modeled from first principles rather than
learned or inferred from large quantities of data. Such
approaches typically employ an abductive process,
whereby sensor data is explained by hypothesizing
the occurrence of specific human activities2. Exam-
ples include work by Goultiaeva and Lespérance [16],
where the Situation Calculus is used to specify very
rich plans, as well as the work of Pinhanez and Bo-
bick [32], Augusto and Nugent [2], and Jakkula et
al. [19], all of which employ rich temporal representa-
tions to model the conditions under which patterns of
human activities occur. Other techniques used to per-
form context recognition include ontological reason-
ing. For instance, Springer and Turhan [39] employ
OWL-DL to specify models of complex situations, the
argument being that the more complex the situation
to recognize, the more sophisticated the behavior of
the smart environment. However, the loop with actua-
tion is not closed, and time is considered only implic-
itly. Riboni and Bettini [34] combine ontological and
statistical reasoning to reduce errors in context infer-
ence, albeit without addressing temporal relationships
between activities.

Data- and model-driven approaches have comple-
mentary strengths and weaknesses: the former pro-
vide an effective way to recognize elementary ac-
tivities from large amounts of continuous data –
relying, however, on the availability of accurately
annotated datasets for training; conversely, model-
driven approaches provide a means to easily cus-
tomize the system to different operational conditions
and users through expressive modeling languages –
which, though, is based on the ability of a domain
modeler to identify criteria for recognition appropri-
ately from first principles. More importantly, the same
inference mechanism that is used for model-based ac-
tivity recognition can be leveraged for plan synthesis.
This is particularly so in cases where the expressive-
ness of the modeling language affords plan-generation
and execution monitoring capabilities. Examples of
such knowledge representation formalisms are con-

2An approach similar to Shanahan’s work [37] on deducing con-
text in a robot’s environment.

straint languages such as the restricted Allen’s Inter-
val Algebra [1,40], which is extensively used in plan-
ning and plan execution monitoring. Examples in-
clude several continuous planning systems such as Ix-
TeT [15], OMPS [14], the NASA planning infrastruc-
tures [20,22,30] and the T-REX model-based execu-
tive [26]. SAM employs similar constraint-based rea-
soning techniques3, but towards the aim of combining
context inference, plan synthesis and execution moni-
toring capabilities.

Constraint-based modeling and inference have also
been employed to perform schedule execution moni-
toring for domestic activities. Two notable represen-
tatives of this direction are described by Pollack et
al. [33] and Cesta et al. [4]. These systems differ from
our work in that they employ pre-compiled (albeit
highly flexible) schedules as models for human behav-
ior. In the present work, we employ a planning pro-
cess to actually instantiate such candidate schedules
on-line.

SAM is related to the chronicle recognition ap-
proach described by Dousson and Le Maigat [11],
which also employs temporal reasoning techniques to
perform on-line recognition of temporal patterns of
sensory events. An approach based on evidence theory
augmented with temporal features presented by Mck-
eever et al. [27] underscores the advantage of explic-
itly accounting for activity durations. In SAM, how-
ever, both recognition and actuation are integrated at
the reasoning level as well as being modeled in the
same formalism. While both former approaches pro-
vide in principle a means to “trigger” events as a re-
sult of recognized situations, SAM generates contin-
gent plans whose elements are flexibly constrained to
sensory events or recognized activities as they evolve
in time.

Several techniques have been proposed for real-
izing planning systems which exhibit some level of
adaptability to human behavior, such as learning tech-
niques for adjusting plan execution parameters in the
light of learned models of human behavior and reac-
tions [21]. Other approaches focus on a specific as-
pect of human-aware planning, e.g., robot motion plan-
ning [38] and/or safety [17]. The focus in SAM lies
at a higher level of abstraction and involves the con-
textual and proactive generation of assistive plans. The
level of abstraction in SAM is comparable to that of

3SAM builds on the OMPS framework, leveraging its constraint
representation language and temporal propagation algorithms.
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systems such as SHARY [8], in which, however, the
emphasis is not on human activity/plan recognition
rather on the cooperative achievement of joint goals.
Finally, the type of human behavior employed in the
work of Cirillo et al. [6,7] to generate human-aware
robot plans is structurally very similar to that consid-
ered in the present work. However, the above work
does not address the issue of inferring human plans.

3. Domain representation

At the center of SAM lies a knowledge represen-
tation formalism which is employed to model how
human behavior should be inferred as well as how
the evolution of human behavior should entail ser-
vices executed by assistive technology components.
Both aspects are modeled through temporal con-
straints in a domain description language similar to
DDL.1 [14,5] and Europa’s NDDL [13]. SAM lever-
ages this constraint-based formalism to model the de-
pendencies that exist between sensor readings, the
state of the human user, and tasks to be performed in
the environment. Domains expressed in this formalism
are used to represent both requirements on sensor read-
ings and on devices for actuation, thus allowing the
system to infer the state of the user and to contextually
synthesize action plans for actuators in the intelligent
environment.

The domain description language is grounded on
the notion of state variable, which models elements
of the domain whose state in time is represented by a
symbol. State variables are used to represent the parts
of the real world that are relevant for SAM’s deci-
sion process. These include the actuation and sens-
ing capabilities of the physical system as well as the
various aspects of human behavior that are meaning-
ful in a specific domain. For instance, a state variable
can be used to represent actuators, such as a robot
which can navigate the environment and grasp ob-
jects, or an automated refrigerator which can open and
close its door; similarly, a state variable can represent
the interesting states of the human being, e.g., being
asleep, cooking, eating, and so on; sensors are repre-
sented as state variables whose possible values corre-
spond to the possible sensor readings, e.g., a stove that
can be on or off, or room temperature with values in
{cold, cool,warm,hot}.

The activity recognition and plan synthesis capabil-
ities developed in SAM essentially consist in a proce-
dure for taking decisions on state variables.

Definition 1. A decision dxv is a triple 〈x,v, [Is, Ie]〉,
where x is a state variable, v is a possible value of the
state variable x, and Is, Ie represent, respectively, an
interval of admissibility of the start and end times of
the decision.

A decision therefore describes an assertion on the
possible evolutions in time of a state variable. For
instance, a decision on the actuated fridge described
above could be to open its door no earlier than time in-
stant 30 and no later than time instant 40. In this case,
assuming the door takes five seconds to open, the flex-
ible interval is [Is = [30, 40], Ie = [34, 44]].

SAM supports disjunctive values for state variables,
e.g., a decision on a state variable that models a mobile
robot could be 〈Robot,navigate ∨ grasp, [Is, Ie]〉,
representing that the robot should be in the process of
either navigating or grasping an object during the flex-
ible interval [Is, Ie].

For the purpose of building SAM, state variables
are partitioned into three sets: those that represent ob-
servations from sensors, those that model the capabil-
ities of actuators, and those that represent the various
aspects of human behavior. This distinction is due to
the way in which decisions are imposed on these state
variables: decisions on sensors are imposed by contin-
uous sensing processes to maintain an updated repre-
sentation of the evolution of sensor readings as they
are acquired through physically instantiated sensors;
decisions on state variables modeling human behavior
are imposed by SAM’s continuous inference process,
and model the recognized human activities; finally, de-
cisions on actuators are also imposed by the inference
process, and represent the tasks to be executed by the
physical actuators in response to the inferred behavior
of the human. In Section 4 we illustrate how these pro-
cesses interact towards the aim of achieving a seamless
integration of activity recognition and actuation.

3.1. Modeling knowledge for plan synthesis

The core intuition behind SAM’s domain theory is
the fact that decisions on certain state variables may
entail the need to assert decisions on other state vari-
ables. For instance, the decision to dock the robot to
the fridge may require that the fridge door has already
been opened. Such dependencies among decisions are
captured in a domain theory through what are called
synchronizations.

Definition 2. A synchronization is a tuple 〈〈vref , x〉,
R〉, where
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Fig. 1. Top row: three synchronizations in a possible domestic robot planning domain (a), the corresponding real actuators available in our
intelligent environment (b), and a possible timeline for the corresponding two state variables (c). Bottom row: two synchronizations in a possible
domestic activity recognition domain (d), the corresponding situations as enacted by a test subject in a test environment (e), and a possible
timeline for the three state variables (f).

– vref is a reference value of a reference state vari-
able x;

– R is a set of requirements, each in the form
〈〈vi, j〉, Ri〉 where

∗ vi is a value of a state variable j (called a target
value);

∗ Ri is a bounded temporal constraint between
the reference value vref of state variable x and
the target value vi of state variable j.

A synchronization describes a set of requirements
expressed in the form of temporal constraints. Such
constraints are bounded variants of the relations in
the restricted Allen’s Interval Algebra [1,40]. Specif-
ically, temporal constraints enrich Allen’s relations
with bounds through which it is possible to fine-
tune the relative temporal placement of constrained
decisions. For instance, the constraint A DURING
[3, 5][0,∞) B states that A should be temporally con-
tained in B, that the start time of A must occur between
3 and 5 units of time after the beginning of B, and that
the end time of A should occur some time before the
end of B.

Figure 1(a) shows an example of how temporal con-
straints can be used to model requirements among ac-
tuators in Malin’s home (for syntactic convenience, we
write each requirement 〈〈vi, j〉, Ri〉 using the format
Ri j : vi). The three synchronizations involve two ac-
tuators: a robotic table and an intelligent fridge (rep-
resented, respectively, by state variables MovingTable

and Fridge). The moving table can dock and undock
the fridge, and navigate to the human user to deliver
a drink. The fridge can open and close its door, as
well as grasp a drink inside it and place it on a docked
table. The above three synchronizations model three
simple requirements of this domain, namely: (1) since
the fridge’s door cannot open if it is obstructed by the
moving table (see Fig. 1(b)), and we would like the
door to be kept open only when necessary, docking
the fridge must occur directly after the fridge door is
opened (MET-BY constraint); (2) for the same rea-
sons, the fridge door should close only after the mov-
ing table has completed the undocking procedure (BE-
FORE constraint); and (3) delivering a drink to the hu-
man is possible only after the drink has been placed on
the table (AFTER constraint).

Decisions and temporal constraints asserted on state
variables are maintained in a decision network, that is
at all times kept consistent through temporal propa-
gation. This ensures that the temporal intervals under-
lying the decisions are kept consistent with respect to
the temporal constraints, while decisions are anchored
flexibly in time. In other words, adding a temporal con-
straint to the decision network will either result in the
calculation of updated bounds for the intervals Is, Ie
for all decisions, or in a propagation failure, indicating
that the added constraint or decision is not admissible.
Temporal constraint propagation is based on a Simple
Temporal Network [9], and is therefore a polynomial
time operation.
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SAM provides built-in methods to extract the time-
line of each state variable in the domain. A timeline
represents the behavior of the state variable in time as it
is determined by the imposed decisions and constraints
in the decision network. Figure 1(c) shows a possible
timeline for the two actuators Fridge and MovingTable
of the previous example.

3.2. Modeling knowledge for activity recognition

In the previous example, temporal constraints are
used to model the requirements that exist between
two actuators in carrying out the task of retrieving a
drink from the fridge. Conversely, the values of state
variables modeling sensors represent sensor readings
rather than commands to be executed. Consequently,
whereas temporal constraints among the values of ac-
tuator state variables represent temporal dependen-
cies among commands to be executed that should
be upheld in proactive service enactment, temporal
constraints among sensors represent temporal depen-
dencies among sensor readings that are the result of
specific human activities. For instance, the synchro-
nizations in Fig. 1(d) describe possible conditions un-
der which the human activities of Cooking and Eat-
ing can be inferred (where omitted, temporal bounds
are assumed to be [0,∞)). The synchronizations in-
volve three state variables, namely one representing
the human inhabitant of the intelligent environment,
a state variable representing a stove state sensor (val-
ues ON, OFF), and another state variable represent-
ing the location of the human as it is determined by
a person localization sensor in the environment [29].
The synchronizations model how the relative occur-
rence of specific values of these state variables in
time can be used as evidence of the human cook-
ing or eating: the former is deduced as a result of
the user being located in the KITCHEN (DURING
constraint) and is temporally equal to the sensed ac-
tivity of the Stove sensor; similarly, the requirement
for asserting the Eating activity consists in the hu-
man being having already performed the Cooking ac-
tivity (AFTER constraint) and his being seated at the
KITCHENTABLE.

3.3. Combining recognition and plan synthesis
knowledge

A unique feature of SAM is that the same formal-
ism can be employed to express requirements both
for enactment and for activity recognition. Adding

a contextual plan to a synchronization that models
an activity to be recognized equates to adding one
or more requirements to this synchronization whose
target state variable represents an actuator. For in-
stance, suppose we want to trigger the fan above the
stove when cooking has started and make it switch
off some amount of time Δ after cooking has fin-
ished. This can be accounted for by adding to the
Cooking synchronization shown above the require-
ment 〈〈ON,Fan〉,CONTAINS [0, 0] [Δ,Δ]〉.

One of the benefits of this integrated representation
is that a single inference algorithm based on temporal
constraint reasoning provides a means to concurrently
deduce context from sensors and to plan for actua-
tors. As we show in the next section, inference, sens-
ing and actuation operate continuously, each contribut-
ing to a common decision network which acts as a dy-
namically evolving repository of knowledge regarding
current sensor readings, inferred activities and actuator
status.

4. Recognizing activities and executing proactive
services in SAM

SAM employs state variables to model the aspects
of the user’s context that are of interest. For instance,
in the examples that follow we will use a state vari-
able whose values are {Cooking,Eating, InBed,
WatchingTV,Out} to model the human user’s do-
mestic activities. For each sensor and actuator state
variable, an interface between the real-world sensing
and actuation modules and the decision network is pro-
vided. For sensors, the interface interprets data ob-
tained from the physical sensors deployed in the intel-
ligent environment and represents this information as
decisions and constraints in the decision network. For
actuators, the interface triggers the execution on a real
actuator of a planned decision.

The decision network acts as a “blackboard” where
decisions and constraints re-construct the reality ob-
served by sensor interfaces as well as the current hy-
potheses on what the human being is doing. These hy-
potheses are deduced by a continuous re-planning pro-
cess which attempts to infer new possible states of the
human being and any necessary actuator plans.

SAM is implemented as a collection of concurrent
processes (described in detail in the following sec-
tions), each operating continuously on the decision
network:
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Sensing processes: each sensor interface is a process
that adds decisions and constraints to represent the
real-world observations provided by the intelligent en-
vironment. There is one such process for each sensor.

Inference process: the current decision network is
manipulated by the continuous inference process,
which adds decisions and constraints that model the
hypotheses on the context of the human and any proac-
tive support operations to be executed by the actuators.

Actuator processes: actuator interfaces ensure that
decisions in the decision network that represent oper-
ations to be executed are dispatched as commands to
the real actuators and that termination of actuation op-
erations are reflected in the decision network as they
are observed in reality. There is one such process for
each actuator.

Sensing, inference and actuation processes imple-
ment a sense-plan-act loop which adds decisions and
constraints to the decision network in real-time. Ac-
cess to the decision network is scheduled by an overall
process scheduler, and constraint propagation is trig-
gered each time a constraint or decision is added to the
decision network.

For simplicity, we assume in the following that the
sensor readings never entail the possibility to infer
more than one hypothesis on the user’s current activity.
We will relax this assumption in Section 6, where we
tackle the problem of multiple hypothesis tracking.

4.1. Sensing processes

Every sensor in the environment is represented by
a state variable whose values model its possible sen-
sor readings. Each sensor interface implements a sens-
ing process for its state variable. If DNt represents the
decision network at time t, running the sensing pro-
cess at time t′ > t for the state variable x will yield
a new decision network DNt′ = Sensex(DNt, t

′).
This function, which is run iteratively at a given rate
f , reads the interface of the sensor and models the cur-
rent sensor reading in the decision network, yielding
a network in which the state variable is constrained to
take on the sensed values in the appropriate time inter-
vals. Specifically, if a new reading v is sensed at time
t0 by sensor x, a decision 〈x,v, [Is, Ie]〉 is added to the
decision network with a fixed interval of admissibility
Is = [t0, t0] for its start time, and a flexible interval

Ie = [t0,∞) for its end time which reflects the un-
certainty about the reading’s temporal evolution. The
lower bound on the end time interval is then periodi-
cally updated to reflect the incoming sensor readings:
if at time ti > t0 the sensor provides the same reading,
then the Sensex procedure will constrain Ie to [ti,∞),
reflecting the fact that the sensor value persists at least
until the current time ti; conversely, if the sensor read-
ing changes at time ti, the interval of admissibility for
the end time is fixed to [ti, ti], reflecting the knowl-
edge that the sensed value v persisted in the interval
[[t0, t0], [ti, ti]].

4.2. Continuous inference process

Along with a sensing procedure for each sensor,
SAM also runs an iterative inference process, that op-
erates at the same frequency f as the sensing proce-
dures, realizing an on-line sensing-inference loop. The
inference procedure employs a domain theory which
describes the conditions under which patterns of sen-
sor readings indicate particular values of one or more
state variables representing the user. These prerequi-
sites are specified as synchronizations as explained
earlier.

The inference procedure continuously attempts to
assess the applicability of a set of synchronizations
in the decision network. This is done in three steps:
(1) adding a decision that represents a hypothesis on
the current state of the state variable representing the
user; (2) selecting a synchronization whose reference
value vref matches the current hypothesis; and (3) ex-
panding the synchronization’s requirements. The first
step is performed once for every distinct value of the
state variable representing the human. For instance,
if the domain contains only the two synchronizations
shown in Fig. 1(d), inference would be performed once
with the hypothesis dHuman

Eating and once with the hypoth-
esis dHuman

Cooking.
The second step identifies one or more synchroniza-

tions whose reference value matches the current hy-
pothesis. In the example, assuming the current hypoth-
esis is dHuman

Eating, this process would select the second
synchronization in Fig. 1(d) as it is the only one whose
reference value is Eating.

The third step consists in expanding the set of re-
quirements R = {〈〈vi, j〉, Ri〉} of the selected syn-
chronization. This equates to finding a suitable set of
target decisions α in the decision network whose val-
ues are equal to the values vi and imposing the con-
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Fig. 2. Support for a hypothesis asserting that the human being is
sleeping must be evaluated by applying the required constraints to
all possible support sets α, i.e., all possible combinations of deci-
sions on sensory state variables Bed and Light that unify with the
requirements.

straints Ri between the reference decision dHuman
vref

and
these decisions. In the example, expansion of the Eat-
ing synchronization will identify all the pairs of de-
cisions

{
dHuman
Cooking, d

Location
KITCHENTABLE

}
and attempt

to constrain them with the current hypothesis dHuman
Eating

with the constraints prescribed in the synchronization
(i.e., AFTER and DURING, respectively).

If the imposition of the constraints modeled in a
selected synchronization does not lead to a propaga-
tion failure, then we say that the hypothesis has been
supported. The procedure can be seen as an operator
Support(DNt, d

x
vref

, α) that returns true if the deci-
sion dxvref

on state variable x (in our examples, the Hu-
man state variable) can be supported in a decision net-
work DNt using a set of target decisions α, and false
otherwise.

In the remainder of this paper, we indicate that there
is a one-to-one matching between the values of deci-
sions in a set α and the values of a set of requirements
R with the notation Unifies(α,R).

For each synchronization, the inference procedure
must attempt to impose the required constraints be-
tween the hypothesis and a number of possible deci-
sions whose values unify with the target values. An
example of this is shown in Fig. 2, where support is
sought for a candidate decision asserting that the hu-
man being is sleeping through one of the sixteen pos-
sible combinations of decisions modeling the state of
the bed and light sensors in the environment.

4.3. Actuation processes

As explained earlier, synchronizations can model
how actions carried out by actuators should be tem-
porally related to recognized activities. For instance,
in addition to requiring that Cooking should be sup-
ported by requirements such as “being in the kitchen”
and “using the stove”, a requirement involving an ac-
tuator can be added, such as “turn on the ventilation
over the stove”. More in general, for each actuation-
capable device in the intelligent environment, an ac-
tuator state variable is modeled in the domain. This
state variable’s values represent the possible actions
that can be performed by the device. As sensor inter-
faces represent real world sensor readings as decisions
and constraints in the decision network, actuator inter-
faces trigger commands to real actuators when deci-
sions involving them appear in the decision network.
By stating requirements on actuator state variables in
the synchronizations of the domain, entire plans can be
generated as a direct result of context inference.

It should be noted that we cannot assume to have
strict guarantees on when and for how long given com-
mands will be executed. For this reason, actuator in-
terfaces also possess a sensory capability that is em-
ployed to feed information on the status of command
execution back into the decision network. As in the
case of sensors, actuator interfaces write this informa-
tion directly into the decision network, thus allowing
the re-planning process to take into account the current
state of execution of the actions. This executive layer
built into the actuator interfaces operates similarly to
other well known continuous planning and execution
infrastructures (e.g., T-REX [26]). Specifically, the ac-
tuator interfaces determine whether or not to issue a
command to execute based on the current earliest start
times of the decisions in the plan. Similarly to sensor
interfaces, actuator interfaces reflect command execu-
tion, termination and delays in execution as constraints
in the decision network.

In summary, sensing, inference and actuation pro-
cesses work together to maintain a dynamic constraint
network (the decision network) which at all times
maintains a consistent representation of (a) observa-
tions from the environment, (b) current hypotheses
of human behavior deduced from the domain the-
ory, (c) contextually appropriate plans for the service-
providing components in the environment, and (d) the
current state of execution of these plans. The uni-
form representation of requirements for recognition
and plan synthesis, along with the inference process
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as described so far, specifically address one of the
four key requirements of realistic application settings,
namely modularity. A series of test cases exemplify-
ing modular domain development and concrete usage
examples of SAM is provided in Section 8.2. We now
turn our attention to addressing the remaining three
requirements, namely long temporal horizons and on-
line recognition/execution (Section 5), and multiple
hypothesis tracking (Sections 6 and 7).

5. Pruning the search space

As described above, the inference process attempts
to support all synchronizations in the domain theory
to the current decision network. In the worst case, all
possible selections of target decisions need to be ex-
plored by the inference process: given a synchroniza-
tion with requirements R =

{
R1 . . . R|R|

}
and as-

suming there are ni decisions in the decision network
which unify with each requirement Ri, then it is neces-
sary to perform

∏|R|
i=1 ni tests. Under the simplified as-

sumption that there are an equal number m of applica-
ble decisions for each requirement, the number of tests
to be performed is O(m|R|). Notice also that every at-
tempt to employ a combination of sensed decisions to
provide support for a hypothesis will require tempo-
ral constraint propagation, which is polynomial in the
number of decisions in the decision network. Overall,
it is clear that this will not scale well during long-term
monitoring since the number of decisions in the deci-
sion network grows as time progresses.

In order to reduce the cost of supporting decisions,
we introduce the concepts of flexible and fixed deci-
sion.

Definition 3. A decision dxv = 〈x,v, [[ls, us], [le, ue]]〉
is flexible when ls �= us or le �= ue. Conversely, if
ls = us and le = ue we say that d is fixed.

A decision on a state variable modeling a sensor
becomes fixed when the state variable’s sensing pro-
cedure has bounded its end time (i.e., when the sen-
sor reading is no longer being sensed). An impor-
tant property of such decisions in our approach is that
they can no longer provide new information to the
inference process. In fact, since constraints on sen-
sor decisions are only tightened, is easy to see that if
Support(DNt, d

x
vref

, α) is false at time t, where α is
a set of fixed decisions, then Support(DNt′ , dxvref

, α)
will be false for all t′ > t. The opposite also holds, i.e.,
if Support(DNt, d

x
vref

, α) is true, then Support holds

true for the same set of target decisions for all t′ > t.
It should also be noted that if a new decision appears
in the decision network (such as a new percept) and it
is taken into account for inference, i.e., one of the de-
cisions in α is flexible, then the decision network may
indeed be found to support the hypothesis dxvref

. Over-
all, sets of fixed decisions represent support that will
never affect the inference process in a new way. All
decisions on sensory state variables are bound to be-
come fixed, as the Sensey(DNt, t

′) operator for sen-
sor y will eventually set the upper bound of any sensed
decision to a fixed time.

As shown in procedure ActivityRecogni-
tion, fixed decisions can be leveraged for pruning.
Specifically, the procedure is applied to a monitored
state variable x given a decision network DNt, and
attempts to find support for one of its possible val-
ues. Support for a possible value is attempted through
all applicable synchronizations in the domain the-
ory (line 3), and only sets of supporting decisions in
the decision network that contain at least one flexi-
ble decision are considered (lines 5–7). The proce-
dure terminates either when support is found or all
synchronizations have been attempted. Note that the
ActivityRecognition procedure is greedy, in
that the first acceptable hypothesis is selected in sup-
port of current sensor readings. Also note that in line
10 the decision network is incrementally updated when
a hypothesis is confirmed.

As shown in Theorem 1 (see Appendix), the pro-
cedure is complete in the sense that if support for a
hypothesis exists, the procedure will return success.
The added requirement that states that at least one of
the target decisions in α should be flexible increases
the performance during long term monitoring since
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the bulk of the decisions will be fixed (i.e., the num-
ber of flexible decisions is bounded by the number
of sensors). For example, consider a synchronization
that requires two decisions A and B, and assume that
there are seven fixed and three flexible decisions with
the value A, and five fixed and two flexible deci-
sions with the value B. The number of support sets α
that contain at least one flexible decision are therefore
(3×2)+(3×5)+(7×2) = 35, while a naïve approach
would in this case have to attempt (7+3)∗(5+2) = 70
combinations.

Without loss of generality, assume that there are
an equal number m of decisions that unify with each
target value in R. Under this assumption, the deci-
sion network contains |R| · m decisions. As stated
in Theorem 2 (see Appendix), requiring that at least
one decision in α is flexible reduces the complexity
of the activity recognition procedure from O(m|R|) to
O(m|R|−1). This entails a significant gain in practi-
cal terms, as hypotheses are typically expressed as re-
quirements among few “sensed” values (i.e., |R| is in
the order of two to five), therefore making the gain in
computational cost rather noticeable.

5.1. Temporal propagation

While pruning reduces the cost of the Activity-
Recognition procedure by one order of magni-
tude, the existence of fixed decisions in the deci-
sion network brings with it another advantage which
can be leveraged to further increase performance.
Specifically, temporal propagation occurs every time
Support(DNt, d

x
vref

, α) is evaluated. This incurs a
cost which is polynomial in the number n of decisions
in DNt. Our specific implementation of the underlying
temporal propagation is based on the Floyd-Warshall
algorithm, whose computational cost is O(n3) [9]. No-
tice, however, that since fixed decisions are not flexible
in time, they do not need to partake in temporal con-
straint propagation. This is achieved in our implemen-
tation by periodically removing pairs of timepoints
corresponding to fixed decisions from the underlying
temporal network. Any effect these fixed timepoints
have on other (flexible) timepoints is modeled as con-
straints on these timepoints, thus effectively reduc-
ing the number of timepoints over which the Floyd-
Warshall propagation procedure iterates (two for every
flexible decision).

The exclusion of fixed decisions is the primary
method for affecting the complexity of temporal con-
straint propagation (as Floyd-Warshall is also Θ(n3)),

and when this is done in conjunction with pruning,
a significant increase in overall performance can be
achieved. In fact, notice that in the worst case, one syn-
chronization requires m|R|−1 propagations, each with
a cost of n3 (due to Floyd-Warshall’s temporal propa-
gation). Again under the assumption that there are an
equal number m of decisions that unify with each tar-
get value in R, the decision network contains |R| ·m
decisions. As a consequence, the cost per synchroniza-
tion would be O(m|R|+2) if inflexible timepoints were
never excluded from propagation. Conversely, by ex-
cluding fixed decisions from temporal propagation our
system periodically curtails this computational load,
therefore guaranteeing a cost of O(m|R|−1).

6. Tracking multiple hypotheses

As stated previously, we wish to endow SAM with
the ability to track multiple hypotheses of the user’s
behavior. For instance, it may be possible to discern
between having a snack and having a full meal only
if certain temporal requirements are met (e.g., the du-
ration should be longer than a certain threshold). This
would entail the need to model synchronizations with
the same reference value and different requirements. It
may also be the case that sensors simply do not pro-
vide sufficient information. This would require us to
model synchronizations which represent complemen-
tary explanations of the sensor readings. Both these
cases contrast with the assumption put forth in Sec-
tion 4.1, i.e., that sensor readings never entail the pos-
sibility to infer more than one hypothesis. Overall, we
want to avoid having to impose any sort of structural
requirement on the domain theory: it should be pos-
sible to include multiple synchronizations modeling
the same hypothesis with different requirements, as
well as synchronizations modeling different hypothe-
ses grounded on the same sensor patterns. Such do-
mains afford greater flexibility and realism, as it is not
always possible or desirable to provide a domain the-
ory which maps sensor readings to hypotheses unam-
biguously.

In the following, we relax both assumptions to allow
concurrent or alternative hypotheses on human behav-
ior4. Specifically, given a domain theory

D = {S1 = 〈〈v1
ref , x1〉,R1〉, . . . ,

Sm = 〈〈v1
ref , xm〉,Rm〉}

4Note that we do not support interleaved activities.
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we are interested in modeling

– Multiple explanations: the same behavior can be
supported by different patterns of sensor readings,
i.e., ∃ Si, Sj ∈ D | xi = xj∧vi

ref = vj
ref∧Ri �=

Rj ;
– Multiple hypotheses: different behaviors can be

supported by non-independent patterns of sensor
readings, i.e., ∃ Si, Sj ∈ D | xi = xj ∧ vi

ref �=
vj
ref ∧Ri ∩Rj �= ∅,

where Ri ∩Rj �= ∅ iff there exists at least one pattern
of sensor readings that supports both Ri and Rj .

Introducing these possibilities entails two prob-
lems. The first problem arises due to the fact that
multiple explanations of the same hypothesis may
not necessarily co-exist in the decision network. As
a simple example, suppose that two synchroniza-
tions S1 and S2 have the same reference value vref

on state variable x and different requirements R1

and R2 such that dxvref
AFTER dsensorv ∈ R1 and

dxvref
BEFORE dsensorv ∈ R2. Clearly no matter what

the other constraints in R1 and R2 state, these two re-
quirements cannot be imposed at the same time in the
decision network. Similarly, it may be impossible to
consistently maintain alternative hypotheses in the de-
cision network. This is the case when Ri∩Rj �= ∅ but
the sensor readings support Rj in a way that is incon-
sistent with Ri (i.e., the sensor readings are such that
there exists no solution for either Ri or Rj that falls
within Ri ∩Rj).

Accordingly, we modify SAM’s abductive proce-
dure to maintain multiple decision networks. Specif-
ically (see Fig. 4), we maintain a decision network
DN sensors

t containing only the decisions and con-
straints that model the history of sensor readings and
we update it with current sensor readings as described
above. Let dom(DN) be the set of decision networks
obtainable as a result of separately applying each syn-
chronization in the domain to the decision network
DN . Starting from a decision network representing the
current sensor readings at time t0 (DN sensors

t0 ), apply-
ing the domain theory yields a (possibly empty) set of
decision networks. In the figure, three hypotheses are
supported by DN sensors

t0 , namely v1
ref ,v

2
ref and v3

ref .
These hypotheses are maintained in decision networks
containing all the decisions and constraints that are
unique to the application of the hypothesis dx

vi
ref

.

These networks are obtained as follows:

DN
vi
ref

t ←
(
DN sensors

t ⊕
{
dxvi

ref
∪Ri

})
\DN sensors

t ,

Fig. 3. Timelines relevant to the hypothesis that the human user is
sleeping (deduced at time 40 and no longer consistent at time 50).

where the operator ⊕ represents the act of adding a
set of decisions and propagating a set of constraints.
Overall, our model of how human behavior correlates
to patterns of sensor readings (expressed in the form
of synchronizations) will lead at each time t to a col-
lection of decision networks that contain only the de-
cisions and constraints necessary to describe a hypoth-
esis. Each of these networks is indexed with the time
t at which it was calculated, and is used as the basis
for computing further hypotheses when sensor read-
ings are updated.

As the computed hypotheses are constrained in time
with their support sets, subsequent evolutions of sensor
decisions may have invalidated one or more hypothe-
ses. For instance, suppose that the domain contains the
synchronization 〈〈Sleeping,Human〉,R〉 where

R = {〈〈Occupied,Bed〉,DURING〉,
〈〈Off ,Light〉,CONTAINS〉}

modeling that a human being is sleeping during an in-
terval of time when the bed sensor is activated and tem-
porally contains a sensor reading indicating that the
light is off. Let this hypothesis be inferred at time t =
40. Suppose now that at time t′ = 50 the night light is
still off, while the pressure sensor under the bed is de-
activated (see Fig. 3). The requirements of the synchro-
nization that supported this hypothesis at time t are
no longer consistent at time t′ as they induce the con-
straint 〈Occupied,Bed〉 CONTAINS 〈Off ,Light〉,
a situation which will not be true henceforth.

Testing whether a hypothesis DN
vi
ref

t computed at
time t is still consistent at time t′ > t occurs by ascer-
taining whether the decision network

DN sensors
t′ ⊕DN

vi
ref

t

is consistent. As mentioned, this can be done in cubic
time as the underlying temporal constraint network is
a STP. Figure 4 shows an example where one of the
hypotheses calculated at time t1 ceases to be consistent
when sensors are updated at time t2.
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Fig. 4. Evolution in time of multiple hypotheses. dom() represents domain theory application (i.e., inference) as described in procedure
ActivityRecognition. At every time instant, sensing occurs through sensing processes yielding DNsensors

ti
. These decision networks are

used to ascertain the continued consistency of previously computed hypotheses through temporal propagation (denoted by ⊕).

6.1. Formal properties and the Markov assumption

In SAM, we are interested in tracking all possible
evolutions in time of monitored state variables. This
entails that dropping a hypothesis when it is found to
be invalid cannot be done unless complete information
on the cause of the failure is computed. This is be-
cause the inconsistency of a constraint network repre-
senting, say, hypotheses v3

ref and v7
ref , does not alone

tell us whether the sensors have invalidated the sup-
port for v3

ref , for v7
ref , or for both. Reconstructing the

cause of the inconsistency can be done by maintain-
ing all decision networks computed at previous time
steps, thus ensuring that all inferred hypotheses, in-
cluding the partial hypotheses, are checked for consis-
tency. In other words, at every node DNV

ti , where V
is a set of hypotheses

{
v1
ref , . . . ,v

k
ref

}
, it is neces-

sary to check the consistency of all partial hypotheses
over which DNV

ti is built, i.e., all decision networks
DNV′

ti ,V′ ∈ 2V.
Maintaining the power set of hypotheses at each ti

ensures completeness in the sense that if a particular
combination of hypotheses is supported at any given
time, then the ActivityRecognition algorithm
will find it. In SAM, this is achieved by considering a

“null synchronization” when applying dom(DN
vi
ref

t )

which yields DN
vi
ref

t itself. In the example shown in

Fig. 4, this would result in the presence of DN
v3
ref

t1

(i.e., DN
v3
ref

t0 at time t1), which would thus maintain
the possibility of inferring further hypotheses based on

DN
v3
ref

t1 in the event that DN
v3
refv

7
ref

t1 fails at time t2.
Applying the null synchronization ensures that the set
of hypotheses sti will also contain the power set of all
hypotheses inferred thus far. Notice that it is also nec-
essary to discard duplicate hypotheses in order to en-
sure that sti is exactly the power set of all hypothe-
ses computable at time ti. The number of duplicate hy-
potheses to discard is linear in the size |R| of the do-
main, since in the worst case all synchronizations will
be applicable at any point in time.

For the sake of mathematical and computational
tractability, many approaches to observation decoding
(e.g., the Viterbi Algorithm [41]) make the assump-
tion that future states only depend on the current states.
SAM’s activity recognition capability differs from
most other approaches to activity recognition: these
approaches are typically data-driven, and are therefore
by nature approximate; conversely, SAM leverages
temporal inference in a given model of how sensors re-
late to activities, and is therefore geared towards com-
plete inference. In addition, most algorithms for ac-
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tivity recognition retain the Markov property, namely
that state(s) at time ti result from inference computed
only on state(s) computed at ti−1. Also SAM’s activity
recognition capability can be understood as a Marko-
vian process: the states are the sets of decision net-
works at time ti, and computation of the set of consis-
tent hypotheses at the following sensing/inference time
point ti+1 occurs only based on the state at time ti.
Completeness, however, comes at the cost of an expo-
nentially large state (while in other Markovian activity
recognition algorithms the state increases linearly in
the number of recognized activities). In the following
section, we illustrate how a heuristic based on temporal
flexibility can be leveraged to prune the set of hypothe-
ses to maintain while guaranteeing completeness.

6.2. Heuristics and practical applicability

Due to the exponential number of hypotheses to
maintain, the practical tractability of multiple hypoth-
esis tracking depends largely on the amount of ambi-
guity in the domain. The exponential worst case cost
rests on the assumption that a significant number of
synchronizations becomes applicable at every sens-
ing/inference interval, and that none of these synchro-
nizations yield a hypothesis that has already been in-
ferred previously. Clearly, this is seldom the case in
real scenarios, as it would entail that the observed hu-
man is constantly engaging in a new activity every time
inference occurs. Thus the computational overhead
of maintaining completeness is significantly lower in
real-world cases, where humans engage in new activ-
ities at a frequency that is much lower than the fre-
quency of sensing/inference.

More importantly though, another observation of
practical nature suggests a heuristic for pruning a
large number of the partial hypotheses that are main-
tained over time. Specifically, a recognized partial
hypothesis ceases to be a hypothetical conjecture
on the state of the monitored human when it is no
longer subject to temporal flexibility. In fact, notice

that it is necessary to maintain a hypothesis DN
v′
ref

ti
which has been proved consistent only until another

hypothesis DN
v′
refv

′′
ref

tj>i
that builds on DN

v′
ref

ti be-
comes fixed. When this occurs, we can safely dis-

card DN
v′
ref

ti from the set of hypotheses to maintain
at future iterations. This will not hinder complete-
ness, as fixed hypotheses are still maintained so long
as no other hypothesis that builds on them becomes
fixed. This heuristic makes the system usable in real-

istic scenarios, as illustrated by the evaluation in Sec-
tion 8.

Finally, regarding practical applicability, we should
note that any sensor noise (e.g., frequent but sparse
false-positive readings of a pressure sensor) can poten-
tially affect the performance of the abductive reason-
ing. It is easy to heed against noise-generated hypothe-
ses by imposing a minimum duration to recognized ac-
tivities – e.g., imposing a minimum duration of a few
minutes for the Sleeping activity avoids recognizing
it when the light is Off and the pressure sensor under
the bed erroneously signals Occupied. Note, however,
that each and every reading would still result in a new
pair of timepoints, thus uselessly over-burdening the
underlying temporal propagation. For this reason, we
avoid hooking noisy sensors directly into the system,
rather we use simple techniques to filter sensor read-
ings before they are fed into the constraint network for
processing.

7. Multiple hypotheses and actuation

Since context recognition and planning occur con-
currently, hypotheses will also contain decisions rep-
resenting actuator commands. While it is always pos-
sible to drop a hypothesis if it ceases to be consistent
(as described above), we must ensure that this hypoth-
esis has not lead to irreversible enactment in the real
world. One way to do this is to assume that the domain
specification also specifies which elements of an actu-
ator’s plan can be retracted once started. For instance,
it may be admissible to abort the operation of dispatch-
ing the moving table to the fridge. However, once the
can is on the table it would be necessary to enact a con-
tingent plan to place the can back into the fridge once
it has been recognized that delivering it to the user is
no longer needed. This option requires adding an ex-
tra layer of semantics to the domain definition, and ex-
tending the domain with knowledge about how to react
to failed plans.

Another way of avoiding irreversible change in the
real world is to adopt a conservative approach, i.e., to
start execution of actuator plans only in response to
confirmed hypotheses. In this case, SAM’s inference
process must be provided the means to prove when
there exists no further possibility of failure of a hy-
pothesis. In other words, we must devise a strategy to
ensure the future consistency of hypotheses.

In SAM, we adopt the latter approach. Specifi-
cally, we employ a sufficient condition to guarantee
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that hypotheses cannot be disproved in the future. As
seen earlier, such a sufficient condition should indicate
when Support(DNt, d

x
vref

, α) will hold for all possi-
ble DN sensors

t′>t . For each hypothesis containing actua-
tion plans, we procrastinate the plan’s decisions until
the sufficient condition holds.

An obvious sufficient condition for guaranteeing hy-
pothesis consistency is the total absence of tempo-
ral flexibility in the sensor readings supporting the
hypothesis. In fact, if all sensor decisions underly-
ing a hypothesis are fixed (recall Definition 3), then
it is clearly not possible to invalidate the hypothe-
sis, as the temporal dependencies underlying it will
never change. However, this entails that actuation will
occur only once hypotheses cease to evolve in time,
e.g., delivering a drink to the user only once he/she
has stopped watching TV. In order to circumvent this
shortcoming, we state a less restrictive sufficient con-
dition which provides criteria for ruling out the pos-
sibility of hazardous induced constraints in the net-
work (see Theorem 3 in the Appendix). Operationally,
assessing whether the condition holds equates to per-
forming a simple analysis of the worst case con-
straining power of future sensor readings on the sup-
port set of a hypothesis. The condition can be veri-
fied before the sensor readings underlying a hypoth-
esis cease to evolve, therefore making it possible to
determine whether support for a hypothesis will per-
sist in the future. As it is a sufficient condition, it
guarantees the correctness of our approach to multi-
ple hypothesis tracking with actuation, in the sense
that any deduced contextual plan is valid with re-
spect to the domain theory. In SAM, each success-
ful application of the Support procedure (line 10
in ActivityRecognition) is followed by a test
ascertaining whether the above sufficient condition
holds. If the added hypothesis together with its sup-
porting set fails the sufficient condition, any actuation
decisions in the hypothesis are delayed, thus guaran-
teeing that states that may not be supported in the fu-
ture are never committed to.

The sufficient condition stated in Theorem 3 can be
checked in polynomial time with respect to the number
of decisions in a hypothesis’ support set α. Enforcing
this test will effectively delay actuation until no doubt
exists as to the future consistency of the hypothesis.

Finally, although the sufficient condition allows to
prove future consistency earlier than a naïve approach,
it is not always the case that such temporal inconsisten-
cies can be proved early enough for execution. This is
the case in the sleeping example shown earlier, where

the hypothesis Sleeping can be proved to be consistent
only when the light is turned back on (signaling that
the decision 〈Light,Off , [Is, Ie]〉 has ceased to evolve
in time). In such cases, there is no way to avoid model-
ing appropriate reaction strategies into the domain the-
ory.

8. Evaluation

As mentioned, the realization of SAM is motivated
by the need for modularity, long temporal horizons,
on-line recognition, and multiple hypothesis tracking.
This section seeks to evaluate how well these require-
ments are met by the current implementation of SAM.
We start by addressing the issue of performance, which
directly affects the second and third requirement. We
then present a series of tests in a physical smart home
testbed environment aimed at assessing the ability to
deploy SAM in incrementally rich environments and
its capability to deal with a realistic scenario in which
multiple hypotheses are tracked.

8.1. Performance

The ActivityRecognition procedure pro-
vides a means to achieve the required performance as
it reduces the cost of supporting a hypothesis with a
synchronization from O(m|R|) to O(m|R|−1). This
effectively means that finding support for a decision
through a synchronization with two requirements can
be done in linear time with respect to the number of
applicable target decisions in the decision network.

In order to assess whether the performance increase
obtained as a result of the admissible pruning can sup-
port long-term monitoring scenarios, we compare the
performance of two implementations of our system,
one employing no optimization, and one which prunes
the search space as shown earlier. All tests described
in this section were carried out on an Intel Core2 Duo
processor @ 2.33 GHz.

First, we experimentally verify the bounds on com-
plexity shown earlier by performing two tests with
a domain theory containing only one synchroniza-
tion. In the first test, the domain contains one syn-
chronization stating that a value vref should be rec-
ognized if it occurs DURING value A (on one sen-
sory state variable) and should CONTAIN value B
(on another sensory state variable). The sensory in-
put shown in Fig. 5 (top) was continuously fed to
the systems (the first 10 seconds of sensory input
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Fig. 5. Recurring patterns used in the performance tests in Fig. 6 (top
and bottom, respectively; first 10 time instants shown).

are shown in the figure). Notice that the number
of combinations of support decisions that need to
be explored – i.e., the number of sets α used to
attempt Support(DNt, 〈x,vref , [0,∞)[0,∞)〉, α) –
constantly increases over time. Also, notice that the
sensor readings occur in a repeating pattern such that
no combination of targets can act as support for vref .
This situation represents the worst case, as all combi-
nations of supporting decisions must be attempted in
order to conclude that vref cannot be supported. Fig-
ure 6 (top) compares the CPU time required by the
ActivityRecognition procedure in the two sys-
tems. As shown, when pruning is employed, the per-
formance of the system grows linearly with the num-
ber of sensory events, while in the absence of pruning
we obtain a quadratic increase in CPU time.

Figure 6 (bottom) shows the second test, where a
similar synchronization that has three requirements
was used. As for the first test, the input for the sec-
ond test (Fig. 5, bottom) feeds sensor readings that
never support the reference value vref , thus yielding
a quadratic increase in CPU time with pruning, as op-
posed to cubic complexity without pruning.

Our last experiment aims to assess how the sys-
tem performs in a more realistic scenario, where a do-
main theory containing ten synchronizations models
meaningful activities of daily living. The human activ-
ities, each depending on at most |R| = 3 sensor read-
ings, include the previously described Sleeping activ-
ity, as well as several other activities such as Cook-
ing, WatchingTV and HavingLunch. Six sensor state
variables were employed, and the sensory input was
simulated in such a way that it would constitute feasi-
ble input from a real world scenario (e.g., the location
state variable providing the position of the human be-
ing was fed realistic movements of a human being in a
topologically correct model of a small apartment).

Figure 7 shows the performance of the system ob-
tained over a monitoring horizon of one week. The test
serves as an experimental proof of the fact that it is

Fig. 6. CPU time required to prove lack of support for a hypothesis
using a synchronization with two (top), and three (bottom) require-
ments.

Fig. 7. CPU time required to recognize human activities once each
minute during a one-week long scenario.

possible to use the current system to recognize activ-
ities over realistically-scaled periods of time. Activity
recognition and sensing occurs once per minute. The
criteria for choosing this rate is related to the resolu-
tion that is necessary in the specific monitoring sce-
nario. Clearly, this rate has to be low enough to al-
low the ActivityRecognition process to termi-
nate, but also high enough to guarantee that mean-
ingful variations of sensor readings are detected. In
the present test, variations of sensor readings occur-
ring over intervals of one minute or longer are suf-
ficient for detecting all meaningful activities. Notice
that it is possible to continuously recognize activities
at a frequency of approximately 1.4 Hz throughout
the entire scenario, as the maximum CPU time of the
ActivityRecognition procedure is about 0.7
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seconds. This would enable the system to recognize
activities whose temporal granularity is finer than one
minute. Notice also that the computational load of in-
ference increases once per day, as shown by the cor-
responding fourteen peaks in Fig. 7. This is due to the
increased number of possible support sets during peri-
ods of high activity (e.g., activities carried out during
the day as opposed to the relative inactivity during the
night).

At the end of the week, the decision network con-
tained close to 350 decisions (a combination of sensor
readings and the recognized activities), with an aver-
age production of approximately 50 decisions per day.
As can be seen, the system scales well with the grow-
ing number of decisions, which indicates that recog-
nizing activities at a greater level of detail (e.g., activ-
ities with a shorter time-span that occur more often,
such as relocating etc.) is not believed to cause any per-
formance problems as long as the number of decisions
are reasonable. For instance, we can assume that the
current system can detect activities with a similar level
of detail during ten weeks while maintaining an ade-
quate performance for most domestic applications, but
not necessarily for an entire year.

8.2. Incremental case studies in the PEIS-HOME

We illustrate the use of real-world sensors in SAM
with four runs performed in the PEIS-HOME, a pro-
totypical intelligent environment deployed at Öre-
bro University5. The environment provides ubiquitous
sensing and actuation devices, including the robotic ta-
ble [10] and intelligent fridge described in earlier ex-
amples.

In the first run our aim is to assess the sleep qual-
ity of a person by employing three physical sensors:
a pressure sensor, placed beneath the bed, a luminos-
ity sensor placed close to the night light, and a per-
son tracker based on stereo vision. We then define a
domain with three sensors and the two synchroniza-
tions shown in Fig. 8. Note that the human user is mod-
eled by means of two distinct state variables, Human
and HumanAbstract. This allows us to reason at dif-
ferent levels of abstraction on the user: while the de-
cisions taken on state variable Human are always a di-
rect consequence of sensor readings, synchronizations
on values of HumanAbstract describe knowledge that
can be inferred from sensor data as well as previously

5See http://aass.oru.se/~peis and [36].

Fig. 8. Synchronizations defined in our domain for the Human and
HumanAbstract state variables to assess quality of sleep.

recognized Human and HumanAbstract activities. The
first synchronization models two requirements for rec-
ognizing that the user has gone to bed: first, the user
should not be observable by the tracking system, since
the bedroom is a private area of the apartment and,
therefore, outside the field of view of the cameras; sec-
ond, the pressure sensor beneath the bed should be ac-
tivated. The resulting InBed decision has a duration
EQUAL to the one of the positive reading of the bed
sensor. The second synchronization grasps the situa-
tion in which, although lying in bed, the user is not
sleeping. The decision Awake on the state variable Hu-
manAbstract depends therefore on the decision InBed
of the Human and on the sensor readings of Night-
Light.

This simple domain was employed to test SAM
in our intelligent home environment with a human
subject. The overall duration of the experiment was
500 seconds, with the concurrent inference and sens-
ing processes operating at a rate of about 1 Hz. Fig-
ure 11(a) is a snapshot of the five state variables’ time-
lines at the end of the run (from top to bottom, the
three sensors and the two state variables modeling the
human).

The outcome of a more complex example is shown
in Fig. 11(b). In this case the scenario contains four in-
stantiated sensors. Our goal is to determine the after-
noon activities of the user living in the apartment, de-
tecting activities like Cooking, Eating and the more
abstract Lunch. To realize this example, we define five
new synchronizations (Fig. 9), three for the Human
state variable and two for the HumanAbstract state
variable. Synchronization (3) identifies the human ac-
tivity Cooking: the user should be in the kitchen and
its duration is EQUAL to the activation of the Stove.
Synchronization (5) models the Eating activity, using
both the Location sensor and an RFID reader placed
beneath the kitchen table (state variable KTRfid). A
number of objects have been tagged to be recognized
by the reader, among which dishes whose presence on
the table is required to assert the decision Eating. Syn-
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Fig. 9. Synchronizations modeling afternoon activities of the human
user.

chronization (4) correlates the presence of the user on
the couch with the activity of WatchingTV.

Synchronizations (1) and (2) work at a higher level
of abstraction. The decisions asserted on HumanAb-
stract are inferred from sensor readings (Time), from
the Human state variable and from the HumanAb-
stract state variable itself. This way we can identify
complex activities such as Lunch, which encompasses
both Cooking and the subsequent Eating, and we can
capture the fact that after lunch the user, sitting in front
of the TV, will most probably fall asleep.

Also this example was executed in the PEIS-HOME.
It is worth mentioning that the decision corresponding
to the Lunch activity on the HumanAbstract state vari-
able was identified only when both Cooking and Eat-
ing were asserted on the Human state variable. Also it
can be noted that Nap is identified as the current Hu-
manAbstract activity only after the lunch is over and
that on the first occurrence of WatchingTV, Nap was
not asserted because it lacked support from the Lunch
activity.

As an example of how the domain can include ac-
tuation as synchronization requirements on monitored
state variables, let us consider the following run of
SAM in a setup which includes the robotic table and
autonomous fridge devices described earlier.

As shown in Fig. 10, we use abductive reasoning to
infer when the user is watching TV. In this case, how-
ever, we modify the synchronization (4) presented in
Fig. 9 to include the actuators in the loop. The new
synchronization (Fig. 10, (1)), not only recognizes the
WatchingTV activity, but also asserts the decision De-
liverDrink on the MovingTable state variable. This
decision can be supported only if it comes AFTER
another decision, namely PlaceDrink on state vari-
able Fridge (synchronization (3)). When SAM’s re-

Fig. 10. Synchronizations defining temporal relations between hu-
man activities and proactive services.

planning procedure attempts to support WatchingTV,
synchronization (5) is called into play, stating that
PlaceDrink should occur right after (MET-BY) the
MovingTable has docked the Fridge and right be-
fore the undocking maneuver (MEETS). The remain-
ing three synchronizations – (2), (4) and (6) – are at-
tempted to complete the chain of support, that is, the
Fridge should first grasp the drink with its robotic
arm, then open the door before the MovingTable is al-
lowed to dock to it, and finally it should close the door
right after the MovingTable has left the docking posi-
tion.

This chain of synchronizations leads to the pres-
ence in the decision network of a plan to retrieve a
drink from the fridge and deliver it to the human who
is watching TV. Notice that when the planned deci-
sions on the actuator state variables are first added
to the decision network, their duration is minimal.
The actuator processes update these durations at ev-
ery re-planning period until the devices that are exe-
cuting the tasks signal that execution has completed.
Also, thanks to the continuous propagation of the con-
straints underlying the plan, decisions are appropri-
ately delayed until their earliest start time coincides
with the current time (see Section 4.3). A complete run
of this scenario was performed in our intelligent envi-
ronment and a snapshot of the final timelines is shown
in Fig. 11(c).

8.3. A test run for multiple hypothesis tracking

In order to gauge the performance of SAM under re-
alistic conditions involving multiple hypothesis track-
ing, we performed a prolonged experimental run in the
PEIS-HOME with a human user and an ambiguous do-
main description. The run involved eight of the sensors
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Fig. 11. Timelines resulting from the runs performed in our intelligent home using the sleep monitoring (a), afternoon activities (b) and proactive
service (c) domains.

Fig. 12. The system supports two non-mutually exclusive hypothe-
ses: watching TV and having a snack.

available in the home, and monitoring occurred over a
time-span of four hours. The domain theory used by
the inference procedure, which describes the require-
ments for recognizing twelve activities in total, con-
tains ambiguous synchronizations: the same activity
can be explained in alternative ways and the same sen-
sor readings can support multiple hypotheses. The hu-
man subject performed a series of actions that can be
associated with a normal working day.

The system kept track of each hypothesis that could
be inferred from the domain theory and the sensor
readings – the inferred states in one particular moment
of the run are shown in the inset of Fig. 12. All the
activities were recognized correctly, and the number of
possible hypotheses during the experiment varied be-
tween 0 and 4. The four hour run operated at an aver-
age of 0.45 Hz (performing more than 6400 inference
iterations), with an average computation time of about
2 seconds.

The good performance of the system obtained in the
experimental run (in the light of the exponential com-
plexity of maintaining multiple hypotheses) is due to
two factors: (1) the fact that the worst case scenario im-
plied by the assumptions made in the complexity anal-
ysis are extremely unrealistic, and (2) the high number
of temporally inflexible hypotheses that are pruned by
the heuristic. In order to assess the effect of the heuris-
tic on the performance of the system, a further run
subject to realistic human behavior was performed in
which fixed hypotheses were maintained. The cost of
inference became unmanageable after approximately
100 iterations (less than four minutes), thus indicating
that temporal flexibility analysis provides a good cri-
teria for proving the relevance of previously computed
hypotheses.
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9. Conclusions

In this article we have presented SAM, an archi-
tecture for concurrent activity recognition, planning
and execution. The architecture leverages a constraint-
based approach and a modular domain description lan-
guage to realize a proactive activity monitor which op-
erates in a closed loop with physical sensing and actu-
ation components in an intelligent environment.

SAM employs concepts drawn from constraint-
based planning and execution frameworks in con-
junction with efficient temporal reasoning techniques
for activity recognition. By blending these techniques
SAM introduces a key novelty, namely a single archi-
tecture that integrates recognition and planning/execu-
tion abilities. These two aspects of activity manage-
ment are uniformly represented in a single constraint-
based formalism, reasoned upon by the same inference
mechanism, and anchored to the real world through
specialized interfaces with physical sensors and actua-
tors.

SAM is built to satisfy four key requirements stem-
ming from realistic application settings, namely mod-
ularity, the ability to operate over long temporal hori-
zons, on-line recognition and execution and multiple
hypothesis tracking. In this article, we have demon-
strated the feasibility of the approach with a number of
artificial worst case scenarios and experimental runs in
a real environment with a human user.

As the performance of the system ultimately de-
pends on STP propagation cost as well as the number
of support sets to be attempted, future work will con-
sider different algorithms to solve the STP in order to
fully evaluate the performance gain of the current ap-
proach (e.g., [43]).

Another important direction we will investigate is
the integration of our approach with data-driven meth-
ods in order deal with sensor noise and possibly pro-
vide on-line model training and adaptation. Our sys-
tem currently relies on hand-coded domain knowledge
– we will investigate how to relax this assumption
through data-driven model learning, as done in exist-
ing approaches [18,34].

Dealing with uncertainty is also an important avenue
of investigation. We have begun to explore the issue
through fuzzy temporal constraint propagation [25].

Appendix: Formal Properties

Theorem 1 (Completeness). If recognition is carried
out every time new sensory information is obtained,

i.e., ActivityRecognition(x, DNt′ ) always fol-
lows SenseY (DNt, t

′), where Y is a set of sensors
that are updated at time t′, then the ActivityRe-
cognition procedure is complete.

Proof. We are guaranteed that if a set α of deci-
sions cannot support a hypothesis dxvref

at time t,
this set need only be attempted in subsequent calls
to ActivityRecognition as a subset of a sup-
port set α ∪ α′ where α′ contains at least one flexi-
ble decision. A decision dy on a sensor state variable
y ∈ Y can become fixed only as a consequence of
the sensing procedure Sensey(DNt, t

′). Also, when
a sensor signals a new sensed value, this is mod-
eled as a decision with unbounded end-time. If the
ActivityRecognition procedure is always ap-
plied after a sensor update, we are thus guaranteed that
no sensory decision will become fixed without having
previously been employed in an attempt to support a
hypothesis. In other words, every set of decisions con-
taining at least one flexible decision will be considered
for support, thus proving completeness.

Theorem 2. Given a synchronization 〈〈vref , x〉,R〉,
let DNt be a decision network containing m deci-
sions that unify with each target value vi in R. The
cost of searching for a set α such that Unifies(α,R)
and Support(DNt, d

x
hyp, α) holds (lines 4–11 in the

ActivityRecognition procedure) is O(m|R|−1).

Proof. If we do not prune sets of decisions that are all
fixed, a synchronization will require

|R|∏
i=1

(Fxi + Fli)

combinations to be tried, where |R| is the number of
requirements for the synchronization, and Fxi and Fli
are, respectively, the number of fixed and flexible de-
cisions that the ith target value in R can unify against.
Conversely, if sets of all fixed decisions are discarded,
it is only necessary to attempt

|R|∏
i=1

(Fxi + Fli)−
|R|∏
i=1

(Fxi)

different sets of decisions. Due to the binomial theo-
rem, and assuming without loss of generality that each
sensory state variable has an equal number of flexible
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and fixed decisions that unify with each target value,
i.e., Fxi = Fx and Fli = Fl, we obtain:

(Fx+ Fl)
|R| − Fx|R|

=

|R|∑
i=0

(
|R|
i

)
FxiFl|R|−i − Fx|R|

=

|R|−1∑
i=0

(
|R|
i

)
FxiFl|R|−i,

where the maximum power of Fx is |R| − 1, thus de-
creasing the cost per synchronization by one order of
magnitude.

Theorem 3 (Correctness). Let dxvref
be a hypothe-

sis such that Support(DNt, d
x
vref

, α) holds. The fol-
lowing conditions are sufficient for guaranteeing that
Support(DNt′ , dxhyp, α) will hold for every t′ > t:

– for every pair di, dj ∈ α, imposing the constraint
di DEADLINE [li, li] does not change the bounds
of the end time of dj , where li is the lower bound
of the end time of di;

– for every pair di, dj ∈ α, imposing the con-
straint di DEADLINE [ui, ui] does not change the
bounds of the end time of dj , where ui is the up-
per bound of the end time of di.

Proof. Given that the underlying temporal problem is
a Simple Temporal Problem (as all constraints repre-
sent simple intervals defining the distance between de-
cisions’ start and end times), the temporal relations in-
duced by the network on any two time points can be
modeled as a simple distance constraint between the
two time points [9]. Assume that at time t we con-
sider two decisions di and dj of the support set α,
and that the constraint induced by the temporal net-
work on the end times tie, t

j
e of these decisions imposes

tje − tie � l and tje − tie � u. We at this point at-
tempt two tests. First, we constrain the interval of ad-
missibility of tie to its upper bound. The imposition of
this further constraint may or may not affect the lower
bound of tje. Whether it does so depends on the pos-
itive slack l allowed by the induced constraint. Sec-
ond, we constrain the interval of admissibility of tie to
its lower bound, in which case the slack allowance u
will determine whether this further constraint affects
the upper bound of tje. It is easy to see that the forward
and backward slack allowed by network, i.e., l and u,
is maximally exhausted by imposing one of the two

constraints above on the interval of admissibility of tie,
and that no other constraint on tie has more power to
reduce the interval of admissibility of tje.

The above observation, together with the fact that
the Sense function will only constrain the end times of
the decisions in α more as time goes by, proves that the
above tests are sufficient for guaranteeing that sensor
decisions in a support set α can end at any time in the
future without introducing inconsistencies. In essence,
testing the impact of constraining end times of deci-
sions in α on the end times of each other decision in α
as described above will expose any indirect dependen-
cies introduced by activity recognition.
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