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Abstract. One of the major goals of Ambient Intelligence and Smart Environments is to interpret human activity sensed by a 

variety of sensors. In order to develop useful technologies and a subsequent industry around smart environments, we need to 

proceed in a principled manner. This paper suggests that human activity can be expressed in a language. This is a special lan-

guage with its own phonemes, its own morphemes (words) and its own syntax and it can be learned using machine learning 

techniques applied to gargantuan amounts of data collected by sensor networks. Developing such languages will create bridges 

between Ambient Intelligence and other disciplines. It will also provide a hierarchical structure that can lead to a successful 

industry.  
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1. Introduction: Sensor networks 

The field of ambient intelligence and smart envi-

ronments has been flourishing over the past several 

years. For different reasons, governments and indus-

try showed a major interest in further developing this 

technology. At the same time, the problems sur-

rounding this field represent interesting problems for 

modern computer science that is concerned with gar-

gantuan amounts of data. From a basic viewpoint, 

this discipline amounts to developing sensor net-

works that “sense” their environment and take appro-

priate actions [2–4]. 

Successes in sensor networks and the infrastruc-

ture they have produced are leading people to con-

sider the deployment of sensor networks in everyday 

life situations such as assisted living, workplace 

safety and entertainment [8,20]. These new applica-

tions however induce a different operation paradigm. 

Instead of focusing on the collection of raw data to 

be analyzed by domain experts, this new breed of 

sensor networks is expected to summarize and inter-

pret raw sensor data into a set of higher level seman-

tics that will serve as the building blocks for provid-

ing a variety of services. Consider everyday life envi-

ronments with an abundance of sensors. Some of 

them are part of the infrastructure such as cameras on 

the ceiling and walls, RFIDs on objects and Zigbee 

sensors on appliances. Others are carried by people 

(e.g. GPS and cameras on cell-phones), and some of 

them are deployed for a specific application. All 

these sensors can provide a lot of information, but 

there is still a major challenge. How does one yield 

the power of such networks? How can the network 

discern and interpret the useful information from a 

heterogeneous set of sensor measurements? 

Considering the commonalities between the types  

of data interpretation needed in everyday life applica-

tions of sensor networks, one can easily realize that 

the network needs to interpret data according to a set 

of rules and patterns. In an elder care situation for 

instance, the doctors or the primary care givers would 

use an in-home sensor network to monitor activity 

levels, detect “falls” or getting “stuck” situations, and 

to prevent people from engaging in risky behaviors. 

In a workplace safety application, the supervisor 

would most likely want to task a sensor network to 

check for a set of safety conditions in order to miti-

gate risks and liabilities. In more abstract applica-

tions, one could check the state of a system against a 

specification of how the system should operate to 
identify when faults take place. This could be applied 

on the sensor network itself to detect faults or to 

check for security violations.  

How are we going to achieve this? Every time we 

have a new application, we must come up with the 
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rules and patterns? This is what is actually happening 

today in the state of the art. In the recent literature, 

one will note a number of very interesting ap-

proaches for interpreting the sensory data stream. 

Many of them are based on very simple features 

that can be extracted from the data, yet such features 

could be sufficient for solving a specific problem. An 

interesting example consists of finding the amount of 

time a person spends at a particular location. Due to 

the vast amount of training data, the appropriate dis-

tributions of timing could be built and used for infer-

ence [17,18,31]. 

Looking into the future, however, it is clear that 

we must adopt a more basic approach. After all, sen-

sor networks “sense” interacting and behaving hu-

mans. In other words, the sensor networks of the fu-

ture will need to interpret human activity. In the se-

quel, a research program along this line of thought is 

outlined, assuming that the sensors are ordinary 

video cameras. 

2. Human action: It resides in many spaces 

One of the important lessons from the field of the 

Neurosciences [7,10,16,24] is the model of action 

shown in Fig. 1. Before the command is sent, a copy 

is kept (the efference copy). The efference copy can 

be used with forward models and predicted feedback 

in order to “think” about an action, without actually 

doing it. In other words, we have inside our minds 

abstract representations of actions, our own and of 

others. It is those representations that sensor net-

works of the future should be extracting. 

Knowledge of actions is crucial to our survival. 

Hence, human infants begin to acquire actions by 

watching and imitating the actions performed by oth-

ers. With time, they learn to combine and chain sim-

ple actions to form more complex actions. This proc-

ess can be likened to speech, where we combine sim-

ple constituents called phonemes into words, and 

words into clauses and sentences. The analogy does 

not end here: humans can recognize as well as gener-

ate both actions and speech. In fact, the binding be-

tween the recognitive and generative aspects of ac-

tions is revealed at the neural level in the monkey 

brain by the presence of mirror neuron networks, i.e., 

neuron assemblies which fire when a monkey ob-

serves an action (like grasping), and also when the 

monkey performs the same action [10]. All these 

observations lead us to a simple hypothesis: 

Actions are effectively characterized by a language. 

This is a language with its own building blocks (pho-

nemes), its own words (lexicon) and its own syntax. 

The realm of human actions (e.g., running, walk-

ing, lifting, pushing) may be represented in at least 

three domains: visual, motor, and linguistic. The vis-

ual domain covers the form of human actions when 

visually observed. The motor domain covers the un-

derlying control sequences that lead to observed 

movements. The linguistic domain covers symbolic 

descriptions of actions (natural language – English, 

French, etc.). Thus, it makes sense to take the hierar-

chical structure of natural language (e.g., phonology, 

morphology, syntax) as a template for structuring not 

only the linguistic system that describes actions, but 

also the visual and motor systems. One can define 

and computationally model visual and motor control 

structures that are analogous to basic linguistic coun-
terparts: phonemes (the alphabet), morphemes (the 

dictionary), and syntax (the rules of combination of 
entries in the dictionary) using data-driven tech-

niques grounded in actual human movement data. 

Cross-domain relations can also be modeled, yielding 

a computational model that grounds natural language 

descriptions of human action in visual and motor 

control models. Since actions have a visual, motor 

and a natural language, converting from one space to 

another becomes a language translation problem 

(Fig. 2). 

Thus we should be after a methodology for 

grounding the meaning of actions, ranging from sim-

ple movement to intentional action (e.g., go from A 

to B), by combining the (hypothesized) grammatical 

structure of action (motoric and visual), with the 

grammatical structure of planning or intentional ac-

tion. This way, having an understanding of the gram-

mar of this language, we should be able to parse the 

measurements from the sensors. 

Action representation

Intention

Inverse model

Movement

Forward modelMotor commands

Efference

copy
Predicted

feedback

Actual sensory feedback

 
Fig. 1. Contemporary model of human action. 
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3. Languages of human action: They can be 

learned  

By language we refer to what is conventional in 

modern computer science and computational linguis-

tics, namely a system consisting of three interwined 

sub-systems: phonology, morphology and syntax 

[14]. Phonology is concerned with identifying the 

primitives (phonemes/letters) that make up all actions 

[phonemic differences are often defined as the small-
est change in the surface form (of speech) that sig-
nals a difference in meaning; a distinction that is 
phonemic in one language may not be phonemic in 
another], morphology is concerned with the rules and 
mechanisms that put together the primitives into 

morphemes (words/basic actions) [morphemes are 
the basic units of language that have stand alone 
meanings. For example “unwanted” has three mor-
phemes: un-, want, and –ed; “cat” and “dog” have 
one morpheme each; “cats” has two morphemes (the 
–s means plural)] and syntax is concerned with the 
mechanisms that put together the words (actions) into 

sentences (complex, composite actions/behavior). 

There may be a theoretically deeper reason for cross-

modal similarities, with the analogy being real in 

humans, in the sense that there is a “grammar of 

thought” that is reflected in natural language but also 

structures other cognitive domains. 

With regard to motoric actions, we do not need to 

go down at the level of neurons and muscles (motors 

and actuators) in order to create measurements. After 

all we are not interested in a neural theory of action, 

but in a framework that advances sensor network 

interpretation. Instead we can consider a higher level 

description, like the one provided by motion capture 

systems (see Fig. 3). Currently, such systems are 

moving into the real world in the form of suits one 

can wear beneath the clothing, allowing us to collect 

motoric data for thousands of actions in natural set-

tings. This data can be imported into commercial 

animation/graphics packages such as POSER or 

MOTION BUILDER, to produce videos from any 

viewpoint of the motoric actions. In addition, we can 

acquire video data of the person wearing the motion 

capture suit and performing actions. As a result, we 

have for the first time access to a very large amount 

of data containing actions in a motoric space (joint 

angles vs time) and visual space (images). In the 

spirit of today’s zeitgheist (these are the years of hy-
per-empiricism) we can apply techniques from statis-
tics and learning in order to compress the information 

in our dataset. If we are able to represent all these 

actions efficiently then we will indeed have a lan-

guage.  

There are two main ways to go about it. One (a 

learning approach) would be to let the data decide, 

i.e. to obtain through grammatical induction tech-

niques [21] a probabilistic grammar generating all the 

actions in an observation set. The other way (syn-

thetic modeling approach) would be to impose an 

apriori model for the primitives (phonemes) and then 

through the appropriate learning or compression dis-

cover the morphological grammars as well as syntax.  

It is by now clear that we should be studying not 

only the visual space of action – even though that is 

the input from our sensor networks – but the motoric 

space as well. The lesson from the Neurosciences 

suggests that when humans see and understand an 

 

Fig. 2. Three action spaces (visual, motoric, natural language); 

many interesting problems in today’s HCC,HCI&HRI become 

translation problems from one space to another, e.g. video annota-

tion, natural language driven character animation, imitation, and 

so on. 

 
Fig. 3. Right: A motion capture suit providing data from human 

movement in a wireless manner. Motion capture data amounts to 

3D trajectories of the joints. An equivalent representation actually 

captured by the suit showing a time evolution of joint angles is 

depicted on the left. For each joint (vertical axis) there are at most 

3 varying rotation angles over time (horizontal axis). Each “row” 

is a 1D function (coded in shades of grey). 
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action they do so through an internal act that captures 

the essence of the action, i.e. they map the observed 

action to their own “potential” movements. From the 

viewpoint of the sensor network engineer, the addi-

tional motor space is an unexpected benefit. 

4. Grammars of visual and motoric human 

movement 

4.1. Visual grammars 

We believe that the right place to begin a discus-

sion about actions and their recognition is to first ask 

the question: what do we really mean by actions? 

When humans speak of recognizing an action, they 

may be referring to a set of visually observable tran-

sitions of the human body such as ‘raise right arm’, 

or an abstract event such as ‘a person entered the 

room’. While recognizing the former requires only 

visual knowledge about allowed transitions or 

movements of the human body, the latter requires 

much more than purely visual knowledge: it requires 

that we know about rooms and the fact that they can 

be ‘entered into’ and ‘exited from’, along with the 

relationships of these abstract linguistic verbs to 

lower level verbs having direct visual counterparts. 

Current work [23] deals with the automatic view-

invariant recognition of low level visual verbs which 

only involve the human body. The visual verbs en-

force the visual syntactic structure of human actions 

(allowed transitions of the body and viewpoint) with-

out worrying about semantic descriptions. In [23] 

each training verb or action a is described by a short 

sequence of key pose pairs a = ((p1, p2), (p2, p3), ..., 

pk), where each pose pi belongs to P, where P is the 

complete set of observed (allowed) poses. Note that 

for every consecutive pair, the second pose in the 

earlier pair is the same as the first pose in the latter 

pair, since they correspond to the same time instant. 

This is because what we really observe in a video is a 
sequence of poses, not pose pairs. Hence, if we ob-

serve poses (p1, p2, p3, p4) in the video, then we 

build the corresponding pose pairs as ((p1, p2), (p2, 

p3), (p3, p4)). Each pose pi is represented implicitly 

by a family of silhouettes (images) observed in m 
different viewspoints, i.e. pi = (p1i, p2i, ..., pmi). The 

set of key poses and actions is directly obtained from 

multi-camera multi-person training data without 

manual intervention. A probabilistic context-free 

grammar (PCFG) is automatically constructed to 

encapsulate the knowledge about actions, their con-

stituent poses, and view transitions. During recogni-

tion, the PCFG is used to find the most likely se-

quence of actions seen in a single viewpoint video. 

Thus, in this language the phonemes are multi-view 

poses of the human body and actions amount to tran-

sitions among them. It is desirable to obtain lan-

guages where the phonemes amount to poses of the 

body parts. This will bring the visual language on 

some form of equivalence with the motoric language. 

4.2. Motoric grammars  

Motoric languages still remain hidden, although 

considerable progress has been made with the lan-

guage HAL [11–13] and the Behaviourscope Project 

[19]. The fundamental question is related to the pho-

nemes or primitives of the language, called here ki-

netemes. As one can see in Fig. 3, motoric action 

data amounts to a set of 1D functions and for most 

actions there is a high degree of coordination among 

the different joints. This is evident in Fig. 3, where 

we can immediately see two sets of rows (of 1D 

functions) that “go together”. These are the synergies 

[22,30]. The brain cannot generate a large number of 

independent control movements (that’s why juggling 

is hard!). It generates a few, but those few are suffi-

cient for generating any movement. The trick is that 

basically the same signal is sent to a group of joints, 

and for each joint it is modified using a number of 

parameters.  

The basic problem for the years to come is the dis-

covery (or invention) of the primitives in human 

movement [15,28,32]. Let us assume that these con-

trol symbols will be some form of a basic function, 

let’s say a wavelet. Then, Fig. 4 explains how a 

grammar of wavelets could produce human action. A 

grammar generates control symbols (wavelets) that a 

control mechanism turns into a function which in 

turn can generate all the functions in the synergy, by 

changing a few parameters for each joint. 

Ultimately, one would be interested in visuo motor 

representations. In terms of Fig. 2, we would be in-

terested in developing a map from the visual space to 

the motoric space. Given that we can acquire visual 

data of someone wearing a motion capture suit, it 

becomes feasible to learn this map from a very large 

number of examples.  

5. Ambient intelligence in the service of health 

Ambient intelligence, equipped with a grammar of 

human action, becomes a very important tool in a 

variety of arenas, including Health. Movement, be-

Y. Aloimonos / Sensory grammars for sensor networks18



cause it is universal, easily detectable and possible to 

measure, has been a large window into the nervous 

system. Using, for the most part, measurements of 

human movement, Behavioral Neuroscience has had 

major accomplishments, such as documenting mile 

stones in human development and establishing a rela-

tionship between brain and behavior in typical and 

atypical populations. The measurements are per 

formed today with a cornucopia of sophisticated 

techniques, ranging from infrared and video to mag-

netic-based approaches, RFID and wireless sensor 

networks (with their advantages and disadvantages 

regarding accuracy, portability, intrusion, cost, etc.). 

In the future these measurements will be performed 

in “smart environments”. However, despite the tre-

mendous progress on measuring human movement, 

we still don’t know, for example, how to track motor 

decline in elderly people during daily life activities at 

home and the workplace. With regard to Parkinson’s 

disease, we still do not know how to assess, in quan-

titative terms, the effectiveness (tracking over time) 

of a new medicine. With regard to autism, we still do 

not know how social interaction deficits are mani-

fested in body gestures, so that an early diagnosis can 

become possible. Why can’t we yet deal with prob-

lems of such nature? 

It is clear that the problems mentioned above have 

characteristics that are beyond the state of the art. To 

be able to track the evolution of Parkinson’s disease 
it is not enough to just perform measurements of the 

human movement; we have to look at these meas-

urements in a new, holistic sense. We must group the 

measurements into subsets that have “meaning” and 

then find global patterns and relationships in these 

groups. With regard to tracking motor decline, we 

need to interpret long sequences of measurements as 

interaction between two or more people. In the case 

of autism, we need to be able to pinpoint idiosyn-

cratic characteristics of the whole body gesture or of 

a series of actions and interactions. In other words, 

we need to move to the next step, which is to study 

the structure of human action in a way that encom-

passes group dynamics. For this, we need a new tool. 

This tool, should be able to sift through the gargan-

tuan amount of data that is collected about human 

movement, and structure it in a way that we can refer 

to individual movements, but also to actions, and 

sub-actions, and sequences of actions, and interac-

tions and plans. This tool will create representations 

of action at different levels of abstraction. This tool is 

a Human Activity Language, of the kind envisioned 

in this paper. 

6. Ambient intelligence in the service of artificial 

intelligence and cognitive systems 

Human-machine communication requires partial 

conceptual alignment for effective sharing of mean-

ing. Concepts are the elementary units of reason and 

linguistic meaning and represent the cognitive struc-

tures underlying phonemes/words. A commonly held 

philosophical position is that all concepts are sym-

bolic and abstract and therefore should be imple-

mented outside the sensorimotor system. This way, 

meaning for a concept amounts to the content of a 

symbolic expression, a definition of the concept in a 

logical calculus. This is the viewpoint that elevated 

AI to the mature scientific and engineering discipline 

it is today. Despite the progress, there is still inability 

of text-based (NLP) technologies to offer viable 

models of semantics for human computer interaction. 

For example, imagine a situation where a human user 

is interacting with a robot around a table of different 

colored/shaped objects. If the human were to issue 

the command “give me the red one,” or “give me the 
long one” both the manually-coded and statistical 
models of meaning employed in text-based NLP are 

inadequate; for, in both models, the meaning of a 

word is based only on its relations to other words.  

There is however another viewpoint regarding the 

structure of concepts which states that concepts are 

grounded in sensorimotor representations. This sen-

sorimotor intelligence considers sensors and motors 
in the shaping of the cognitive hidden mechanisms 

Grammar of motion synergies

LeftHip

LeftKnee

LeftAnkle

RightHip

RightKnee

RightAnkle

LeftShoulder

LeftElbow

LeftWrist

RightShoulder

RightElbow

RightWrist

Hip

Chest

Neck

LeftHand

RightHand

CoordinationControlGrammar

i’th Control 

symbol

Fi(t)

For each joint j in 

the group, we need 

translation tj
scale sj

amplitude Aj

DC shift Bj,

Aj Fi((t-tj)/sj) + Bj

Generates

control 

symbol

sequence

Fi Fi Fi…

 
Fig. 4. Motion synergies are realized through wavelets and vectors 

of four parameters (translation, scale, amplitude and DC shift) for 

each joint. A coordination mechanism sends the wavelet to a group 

of joints where the vector of parameters modifies it before sending 

it for executing movement. 
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and knowledge incorporation. There exists a variety 

of studies in many disciplines (neurophysiology, psy-

chophysics, cognitive linguistics) suggesting that 

indeed the human sensory-motor system is deeply 

involved in concept representations. The functional-

ity of Broca’s region in the brain and the mirror neu-

rons theory suggests that perception and action share 

the same symbolic structure that provides common 

ground for sensory-motor tasks (e.g. recognition and 

motor planning) and higher-level activities. 

Perhaps the strongest support for the sensorimotor 

theory comes from the work of Rosch and colleagues 

[9,25]. The classic view assumed that categories 

formed a hierarchy and that there was nothing special 

about the categories in the middle. Take hierarchies 

like vehicle/car/sports car or furniture/chair/rocking 

chair [25]. The categories in the middle, according to 

Rosch, are special – they are the basic level catego-

ries. One can get a mental image of a car or a chair 

but not of a piece of furniture or a vehicle in general. 

We have motor programs for interacting with chairs, 

but not with pieces of furniture. In addition, words 

for basic level categories tend to be learned earlier, to 

be shorter, more frequent, be remembered more eas-

ily, and so on. Thus, the basic level category is the 

level at which we interact optimally in the world with 

our bodies. The consequence is that categorization is 

embodied, given by our interactions. 

6.1. Language grounding 

In the example given before, in order for the robot 

to successfully “give me the red one,” it must be able 

to link the meaning of the words in the utterance to 

its perception of the environment. Thus, recent work 

on grounding meaning has focused on how words 

and utterances map onto physical descriptions of the 

environment: either in the form of perceptual repre-

sentations or control schemas [1,5,6,26]. Here is the 
critical point: if we can make a language out of the 

sensorimotor representations that arise from our ac-

tions (in general interactions with our environment), 

then we can obtain abstract descriptions of human 

activity that have been obtained from non text (lan-

guage) data (sensory and motor). These representa-

tions are immediately useful since they can ground 

basic verbs (walk, turn, sit, kick, and so on). It is in-

tuitively clear that we, humans, understand a sen-

tence like “Joe ran to the store” not by checking 

“ran” with the lexicon (dictionary) but because we 
have a sensorimotor experience of running. We know 

what it means to “run”, we can “run” if we wish, we 

can think of “running”. We have functional represen-

tations of running that our language of action pro-

vides.  

While such physical descriptions are useful repre-

sentations for some classes of words (e.g., colors, 

shapes, physical movements), they may not be suffi-

cient for more abstract language, such as that which 

denotes intentional action. This insufficiency stems 

from the fact that intentional actions (i.e. actions per-

formed with the purpose of achieving a goal) are 

highly ambiguous when described only in terms of 

their physically observable characteristics. For ex-

ample, imagine a situation in which one person 

moves a cup towards another person and says the 

unknown word “trackot.” Now, based only on the 

physical description of this action, one might come to 

think of “trackot” as meaning anything from “give 

cup”, to “offer drink”, to “ask for change.” This am-

biguity stems from the lack of contextual information 

that strictly perceptual descriptions of action provide. 

A language of action provides a methodology for 

grounding the meaning of actions, ranging from sim-

ple movement to intentional action (e.g., “walk to the 

store” versus “go to the store”, “slide the cup to him” 

vs. “give him the cup”), by combining the grammati-

cal structure of action (motoric and visual), with the 

well known grammatical structure of planning or 

intentional action. Specifically, one can combine the 

bottom up structure discovered from movement data 

with the top down structure of annotated intentions. 

The bottom up process can give us actual hierarchical 

composition of behavior, the top down process gives 

us intentionally-laden interpretations of those struc-

tures. It is likely that top down annotations will not 

reach all the way down to visual-motor phonology, 

but will perhaps be aligned at the level of visuo-

motor morphology or even visuo-motor clauses.  

7. Summary 

Multi-camera laboratories will become the places 

where Artificial Intelligence could be redefined by 

studying meaning through the utilization of both sen-

sorimotor representations and symbolic representa-

tions, using machine learning techniques on the gar-

gantuan amounts of data collected. This will lead 

eventually to the creation of the PRAXICON, an ex-

tension of the LEXICON that contains sensorimotor 

abstractions of the items of the LEXICON [27]. The 

entire enterprise may be seen in the light of the new 

emerging Network Science, the study of human be-

Y. Aloimonos / Sensory grammars for sensor networks20



havior, not in isolation, but in relation to other hu-

mans and the environment. 
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