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Abstract.

Background: Currently, no evidence exists on the expression of apoptosis (CASP3), autophagy (BECNI), and mitophagy
(BNIP3) genes in the CA3 area after ischemia with long-term survival.

Objective: The goal of the paper was to study changes in above genes expression in CA3 area after ischemia in the period
of 6-24 months.

Methods: In this study, using quantitative RT-PCR, we present the expression of genes associated with neuronal death in a
rat ischemic model of Alzheimer’s disease.

Results: First time, we demonstrated overexpression of the CASP3 gene in CA3 area after ischemia with survival ranging
from 0.5 to 2 years. Overexpression of the CASP3 gene was accompanied by a decrease in the activity level of the BECNI and
BNIP3 genes over a period of 0.5 year. Then, during 1-2 years, BNIP3 gene expression increased significantly and coincided
with an increase in CASP3 gene expression. However, BECNI gene expression was variable, increased significantly at 1 and
2 years and was below control values 1.5 years post-ischemia.

Conclusions: Our observations suggest that ischemia with long-term survival induces neuronal death in CA3 through activa-
tion of caspase 3 in cooperation with the pro-apoptotic gene BNIP3. This study also suggests that the BNIP3 gene regulates
caspase-independent pyramidal neuronal death post-ischemia. Thus, caspase-dependent and -independent death of neuronal
cells occur post-ischemia in the CA3 area. Our data suggest new role of the BNIP3 gene in the regulation of post-ischemic
neuronal death in CA3. This suggests the involvement of the BNIP3 together with the CASP3 in the CA3 in neuronal death
post-ischemia.
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INTRODUCTION

For several years, intensive experimental research
on the responsibility of ischemic brain episodes in
the development of Alzheimer’s disease (AD) has
shown changes characteristic of AD, i.e., progressive
hippocampal atrophy, increased amyloid production,
and alterations of the tau protein [1-10]. Clinical
studies after ischemia have revealed the deposition
of diffuse and senile amyloid plaques and the forma-
tion of neurofibrillary tangles characteristic of AD
[11-15]. These observations clearly indicate that after
ischemia, changes in folding proteins occur with the
development of dementia with an AD phenotype [16].
Based on these data, some research groups have been
proposing an ischemic etiology of AD for several
years [2, 6, 17-23].

Interestingly, neuronal mechanisms called
autophagy, which maintain order and control protein
quality in the cell, have been shown to be insufficient
and/or defective in the brain of AD patients [24-27].
Autophagy is a key system for clearing the cell
cytoplasm, especially of abnormal conformation
or aggregated proteins and worn-out organelles
through degradation [28]. The phenomenon of
autophagy is inextricably linked to the development
of pathologically folded proteins and cell death in
the brain. Studies of apoptosis (CASP3), autophagy
(BACEI), and mitophagy (BNIP3) genes in CA3 area
in an ischemic model of AD with survival up to 30
days showed dysregulation of their activity similar
to alterations in the brain in AD (Table 1) [29].
Survival of up to 30 days in this model appears to be
consistent with the preclinical stage of AD, which
takes 10-20 years to progress in humans [30]. In this
study, we set out to evaluate the behavior of the above
genes during 2 years survival post-ischemia, which
likely corresponds to the symptomatic stage of AD
in humans. The work is a continuation of research
on an ischemic model of AD with survival of 0.5,
1, 1.5, and 2 years and focuses on the quantitative
evaluation by RT-PCR of genes associated with
neuronal death, such as CASP3, BECNI, and BNIP3
in the CA3 area.

MATERIALS AND METHODS

Wistar rats (n=30) body weighing 120-150g, 2
months old, were exposed to 10-min brain ischemic
episode [1, 2] with survival post-ischemia 0.5, 1, 1.5,
and 2 years [31]. Wistar rats (n =30), about the same

Table 1
Changes in BACEI, BNIP3, and CASP3 genes expression post-
ischemia of the hippocampal CA3 area with survival up to 30

days
Survival/Genes 2 days 7 days 30 days
BECNI ) \ t
BNIP3 ) A {
CASP3 1 1 1

Expression: |-lowered; 1-increased. Genes: autophagy (BECN1);
mitophagy (BNIP3); apoptosis (CASP3).

conditions after sham surgery, served as control group
with survival 0.5, 1, 1.5, and 2 years. Ischemia and
control rats were housed in the animal house under
a 12-h light-dark cycle. All studies were done within
the day. The rats were maintained in pairs per cage
in a room temperature of 24 +2°C, with 55 +5%
humidity. All animals had free access to commercial
laboratory chow and tap water ad libitum. Isoflurane
(2%) with oxygen was used as anesthesia [31]. Anes-
thesia was discontinued before the induction of brain
ischemia. Brain ischemia was induced by cardiac
arrest [1, 2]. A hook made of an L-shaped steel needle
was introduced into the chest by the right parasternal
line and the third intercostal space. Next the hook
was gently moved towards the spine. Subsequently,
the hook was gently tilted 20° towards the tail and
this meant that the hook in this position was under
the heart vessels. The hook was next pulled to the
sternum, which led to closure of the heart vessel bun-
dle through the sternum. In order to prevent chest
movements and ensure closure of the heart vessels,
external pressure was applied to the sternum with the
index and middle fingers, which resulted in complete
hemostasis and cardiac arrest. After 3.5 min, the hook
was removed from the chest and the rats remained in
this state for next 6.5 min until resuscitation starts [1,
2]. After ischemia resuscitation started of artificial
ventilation and external heart massage until cardiac
function returned and breathing occurred [1, 2, 31].
During this time, air was administered using a res-
pirator through a polyethylene tube inserted into the
trachea. The heart massage frequency range was from
150 to 240/min [1, 2, 31].

All studies were handled in accordance with the
NIH recommendations for the Care and Use of
experimental animals and the Directive of the Coun-
cil of the European Community. In addition, the
Local Ethics Committee for Animal Experiments (Nr
64/2010) approved all used experimental procedures.

Before collecting samples from the CA3 region,
rat’s brains were perfused with cold 0.9% NaCl. Next



R. Pluta et al. / Brain Ischemia Versus Alzheimer’s Disease 1377

the brains were removed from the skulls and trans-
ferred on ice-cooled Petri dishes. Samples with a
volume of about 1 mm?> have been taken from the
CA3 ischemic and control brains from both sides
and placed in RNAlater solution (Life Technolo-
gies, USA) [31, 32]. Next cellular RNA was isolated.
RNA quantity and quality was performed using a
Nano Drop 2000 spectrophotometer (Thermo Sci-
entific, USA) [31, 32]. RNA was stored in 80%
ethanol at —20°C [31, 32]. Finally, 1 png of RNA
was reverse transcribed into cDNA [31, 32]. Ver-
iti Dx (Applied Biosystems, USA) was used for
cDNA synthesis using the manufacturer’s SDS soft-
ware [31, 32]. The cDNA obtained was amplified
by real-time gene expression analysis (qQPCR) using
the manufacturer’s SDS software [31, 32]. The tested
genes were assessed in relation to the control Rpl13a
gene, and the relative amount (RQ) of the examined
genes were presented as ACT, and the final values
were showed as RQ=2"2ACT [3] 32]. The results
were showed after logarithmic adaptation of the RQ
(LogRQ) [31, 32]. LogRQ =0 means that the expres-
sion of the examined genes post-ischemia did not
change. LogRQ <0 meant reduced genes expression
post-ischemia, and LogRQ > 0 indicated raised genes
expression post-ischemia compared to the control.
Statistica v. 12 was used to statistically evaluate
the data using the non-parametric Kruskal-Wallis test
with the “z” test for multiple analyses of differences
between groups. Results in figures are presented as
means = SD. p <0.05 was considered statistically
significant changes in expression of presented genes.

RESULTS

BECNI gene changes up to 2 years after
ischemia

Six and 18 months after ischemia, BECNI gene
in CA3 was below control values. Six months after
ischemia, the lowest value was —0.502-fold change
and the maximum —0.237-fold change and the
median was —0.296-fold change. Eighteen months
after ischemia, the lowest value was —0.340-fold
change and the maximum —0.220-fold change and
the median was —0,272-fold change. Whereas, 12-
and 24-months following ischemia BECNI gene was
above control values. The lowest value was 0.972-
fold change and the maximum 2.296-fold change and
the median was 2.122-fold change after 12 months
of survival. However, 24 months after ischemia,
BECNI gene was above control values with the

LogRQ BECN1

6 12 18 24
Months after ischemia

Fig. 1. The mean BECNI gene expression levels in the CA3 area
of the hippocampus in rats with 6 (n=10), 12 (n=7), 18 (n=06),
and 24 (n=6) months after 10-min brain ischemia. Marked SD,
standard deviation. Kruskal-Wallis test, followed by the “z” test.
*p <0.05, **p <0.01, ***p <0.001.

lowest value 0.626-fold change and the maximum
1.224-fold change and the median was 0.905-fold
change (Fig. 1). Figure 1 shows statistically signif-
icant changes in BECNI gene changes. Significant
changes in BECNI gene were seen between 0.5
and 1 year (z=4.319, p=0.000094); and 0.5 and 2
years (z=2.854, p=0.025884); and 1 and 1.5 year
(z=3.234, p=0.007316) after ischemia (Fig. 1). No
significant alterations were noted between 6 and 18
months and 12 and 24 months and 18 and 24 months

(Fig. 1).
BNIP3 gene changes up to 2 years after ischemia

Six months post-ischemia, BNIP3 in CA3 was
under control. Six months after ischemia, the low-
est value was —0.245-fold change and the maximum
—0.124-fold change and the median was —0.167-fold
change. But 12-24 months, gene manifestation was
above control. Twelve months post-ischemia, gene
expression was maximal with the lowest value 0.625-
fold change and the maximum 2.309-fold change,
the median being 2.192-fold change. During eighteen
months of survival, the lowest value was 0.133-
fold change and the maximum 0.338-fold change
and the median was 0.243-fold change. Whereas,
24 months after ischemia BNIP3 gene expression
was still above control values, the lowest value
was 0.873-fold change and the maximum 1.288-
fold change and the median was 1.139-fold (Fig. 2).
Figure 2 shows the mean values and significant
changes in BNIP3 gene changes. Significant levels
in BNIP3 gene changes were seen between 0.5 and
1 year (z=4.498, p=0.000041) and 0.5 and 2 years
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LogRQ BNIP3

6 12 18 24
Months after ischemia

Fig. 2. The mean BNIP3 gene expression levels in the CA3 area
of the hippocampus in rats with 6 (n=38), 12 (n=8), 18 (n=6),
and 24 (n=6) months after 10-min brain ischemia. Marked SD,
standard deviation. Kruskal-Wallis test, followed by the “z” test.
*#p <0.01, **¥*p <0.001.

(z=3.377, p=0.004406 after injury (Fig. 2). No sig-
nificant changes were noted between 6 and 18 months
and 12 and 18 months and 18 and 24 months (Fig. 2).

CASP3 gene expression up to 2 years after
ischemia

In all post-ischemic observation periods, CASP3
gene in the CA3 was above control (Fig. 3). Six
months after ischemia, the lowest value was 0.408-
fold change and the maximum 1.207-fold change
and the median was 0.915-fold change. Twelve
months after ischemia, maximal expression was
noted with the lowest value of 1.721-fold change
and the maximum 2.162-fold change and the median
was 1.946-fold change. However, 18 and 24 months
after ischemia, CASP3 gene was reduced but still
remained above control. Eighteen months after
ischemia, the lowest value was 0.188-fold change
and the maximum 0.365-fold change and the median
was 0.294-fold change. However, 24 months after
ischemia, CASP3 gene expression increased again,
with a lowest value of 0.797-fold change and a maxi-
mum value of 1.093-fold change and a median value
of 0.918-fold change (Fig. 3). Figure 3 shows the
mean values and significant changes in CASP3 gene
changes. Significant levels in CASP3 gene were seen
between 0.5 and 1 year (z=2.797, p=0.030927); and
1 and 1.5 years (z=4.838, p=0.000008); and 1 and
2 years (z=2.655, p =0.047554) after injury (Fig. 3).
No significant changes were noted between 6 and
18, 6 and 24 and 18- and 24-months post-ischemia
(Fig. 3).

LogRQ CASP3
a

6 12 18 24
Months after ischemia

Fig. 3. The mean CASP3 gene expression levels in the CA3 area
of the hippocampus in rats with 6 (n=8), 12 (n=8), 18 (n=06),
and 24 (n=38) months after 10-min brain ischemia. Marked SD,
standard deviation. Kreskas-Wallis test, followed by the “z” test.
*p <0.05, **#p < 0.001.

DISCUSSION

In this study, we deliver for the first-time data
of a significant increase in CASP3 gene expression
in the CA3 subfield from 0.5 to 2 years following
ischemic brain injury. Overexpression of the CASP3
gene go together with 6-month reduction in the activ-
ity levels of both BECNI and BNIP3 genes. Then,
over a 12-24-month period, BNIP3 gene expression
was significantly increased and coincided with an
increase in the expression of the apoptotic CASP3
gene. However, BECNI gene expression was vari-
able, i.e., it was elevated significantly after 1 and 2
years and was under control 18 months after ischemia.
It has been proposed that ischemic injury induces
classic apoptotic neuronal cells death throughout the
hippocampus [6, 33], but our data indicate that the
process is more complex and that this mechanism of
pyramidal neuronal cells death in CA3 is less severe
and extended in time as a result of protective overex-
pression of the BECNI gene.

At 12 and 24 months after ischemia, overex-
pression of the BECNI was observed in the CA3,
in parallel with a maximum increase in BNIP3
and CASP3 genes expression. This naturally occur-
ring phenomenon suggests a possible role of the
BECNI gene in balancing the activity of the BNIP3
and CASP3 genes by partially protecting or slow-
ing damage and delaying neuronal death caused
by an ischemic event [34]. Some studies indicate
that enhanced autophagy, mediated by the BECNI
gene, plays significant role in the metabolism of
the amyloid protein precursor, and in the autophagic
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elimination of its product, i.e. amyloid susceptible
to aggregation in neurodegenerative processes [25,
35, 36]. Transient overexpression of the BECNI gene
in our study probably induced a protective effect on
neurons via enhanced autophagy [34, 35]. Data indi-
cate that an enhanced transient autophagic response
in CA3 may transiently protect pyramidal neurons
from sudden death during and after ischemia, allow-
ing time for therapeutic interventions [33, 37, 38].
We found that the reduced level of BNIP3 gene
expression 6 months after ischemia was a continu-
ation of identical changes occurring on days 2-30
[32]. However, in the period of 12-24 months after
the ischemic episode, a significant rise in the expres-
sion of this gene was noted, and its changes were
accompanied by alterations in the expression of the
CASP3 gene. In connection with the above, attention
should be paid to the existing relationship between
the enhanced expression of the BNIP3 gene and
mitochondrial neurotoxic proteins, i.e., endonuclease
G and poly (ADP-ribose) polymerase-1, apoptosis-
inducing factor, which participate in the processes of
neuronal cell death [39—42]. Brain ischemia appears
to redistribute BNIP3, endonuclease G, poly (ADP-
ribose) polymerase-1 and apoptosis-inducing factor
from the mitochondria to the neuronal nucleus which
ultimately leads to the death of neurons [39, 40,
42-46]. Apoptosis-inducing factor and endonuclease
G have been shown to migrate from mitochon-
dria to the neuronal nucleus at the same time after
ischemia [45]. Furthermore, BNIP3 has been shown
to interact with LC3 to direct injured mitochondria
to autophagosomes, thereby initiating the mitophagy
phenomenon in post-ischemic neuronal death [47].
Unlike other proteins, neuronal BNIP3 levels are
usually low, but significantly increase after brain
ischemia [48]. Furthermore, double staining for cas-
pase 3 and BNIP3 showed that the majority of
ischemic neuronal cells marked for both proteins
[48, 49]. However, some neurons positive for BNIP3
staining did not stain for caspase 3 [48, 49]. Above
data indicate that the ischemic injury regulated pro-
apoptotic protein BNIP3 enters the nucleus and
may cooperate with proteins implicated in DNA
structure, transcription, or mRNA splicing after cere-
bral ischemia. The mechanism by which BNIP3,
endonuclease G, apoptosis-inducing factor, and poly
(ADP-ribose) polymerase-1 trigger pyramidal neu-
ronal loss is not completely known, but probable
involves both nuclear-dependent and -independent
mechanisms. These observations indicate that the
above proteins may be implicated in the death of

pyramidal neurons post-ischemia, but the specific
relationship between the above proteins and BNIP3
has not been definitively established. The above
findings indicate the importance of these proteins
in caspase-independent death of neurons following
ischemia. Thus, our data indicate a new important
role of the BNIP3 gene in the control of neurons
survival and death in the ischemic CA3 area of the
hippocampus.

We found that the increased level of CASP3 gene
expression 6-24 months after ischemia was a con-
tinuation of identical changes occurring in CA3 on
days 7-30. In the hippocampal CA3 subfield, cas-
pase 3 seems to be a central cause of pyramidal
neuronal apoptosis. In contrast, it may explain the
mechanisms of the slow spread of neuronal dam-
age in the hippocampus itself between the CA1 and
CA3 areas following ischemia with the AD phe-
notype. In this study, we confirmed observations
of caspase 3 gene dysregulation associated with
post-ischemic neuronal death in a region- or brain-
structure-specific manner, as demonstrated in AD
[29, 32, 50]. Caspase can utilize substrates such as
poly (ADP-ribose) polymerase-1, caspase-activated
DNAse inhibitor, amyloid protein precursor, and
presenilin and tau protein [49, 51-54]. Caspase 3
also cleaves a nuclear DNA repair enzyme such as
poly (ADP-ribose) polymerase-1, leading to nuclear
DNA injury and ultimately apoptosis [33, 37, 38].
Moreover, caspase 3 can cleave the GGA3 protein,
resulting in increased B-secretase activity [55, 56].
Importantly, the level of amyloid protein precursors is
increased long-term after brain ischemia [2, 6, 57-61]
and has been presented to be a substrate for caspase
3, and caspase 3 increases the activity of S-secretase,
which leads to a vicious circle [49, 55, 56]. The above
phenomenon can also have a significant impact on
the expansion of neuronal alterations in the CA3 area.
Some investigations have revealed that increased cas-
pase activity significantly correlates with the level
of tau protein and the development of neurofibril-
lary tangles [62, 63]. Furthermore, it was shown that
cognitive decline was negatively correlated with rose
caspase action and the level of caspase 3-truncated
tau protein [54]. Thus, it is well-defined that a single
ischemia can cause different type of neuronal deaths
in the same neurons, and in numerous cases a sin-
gle neuron can demonstrate signs of different type of
neuronal cell death [48, 49].

The presented data suggest possible transient
protection via the autophagy gene BECNI, which
presumably slows down the damage or death of
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pyramidal neurons after ischemia, providing an
opportunity for pharmacological intervention [34,
64]. Moreover, data suggest that brain ischemia dur-
ing long-term survival induces neuronal death in CA3
through increase protein level and gene expression
of CASP3 [65, 66] in cooperation with transcrip-
tion of the pro-apoptotic gene BNIP3 [67], and the
process, once triggered, persists or continues to smol-
der, which would partially explain the long-term
progression of AD from asymptomatic to fully symp-
tomatic [30]. This study also suggests that the BNIP3
gene regulates caspase-independent death of pyrami-
dal neurons after ischemia, possibly through effects
on endonuclease G, apoptosis-inducing factor and
poly (ADP-ribose) polymerase-1 in the neuronal
nucleus [39, 68]. The mitochondrial BNIP3 gene is
likely a signal prior to association with these pro-
teins. Knockdown of the BNIP3 gene reduces cell
death, confirming a role for this gene in activating
a caspase-independent neuronal death mechanism
in CA3 [46]. Thus, caspase-dependent [65, 66]
and caspase-independent neuronal death may occur
simultaneously in ischemic neuronal cells of the CA3
area of the hippocampus, leading to neuronal death
with mixed pathophysiological features [46, 49].
We recognize that our research has strengths and
weaknesses. First, the strength of our study is that
rats survived 2 years after complete brain ischemia,
allowing for the first time to assess the expression of
selected genes associated with neuronal death. Sec-
ond, this study allowed us to demonstrate that the
BNIP3 and CASP3 genes are important in inducing
neuronal cells death in the CA3 in long-term sur-
viving animals despite natural transient protection
from the BECNI gene. Third, the data indicate the
existence of a therapeutic window in brain ischemic
pathology with long-term survival. Fourth, our inves-
tigation demonstrated four long survival periods, i.e.,
0.5, 1, 1.5, and 2 years, which increased the accu-
racy of the assessment of alterations in the expression
of selected genes and supported their participation
in brain neurodegeneration after ischemia. The main
limitation of our investigation for various reasons
was the small number of experimental groups, which
limited the availability of material for research from
such structure as the CA3. Another not entirely weak
point was the use of young rats for brain ischemia,
when it is recognized that cerebral ischemia is prefer-
ably age-related. However, the use of old animals
was unacceptable due to the experimental assump-
tion that animals after ischemia would be observed
long-term, up to 2 years. Our observations need ver-

ification in wider investigates, lasting 0.5-2 years, at
proteins levels to association them to gene changes.
This would allow for a precise assessment of dysreg-
ulation at the genomic and proteomic level and the
impact of dysregulation on the progression of neu-
rodegeneration from the acute phase to the chronic
phase with the AD phenotype after ischemic brain
injury.
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