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Abstract. Senile plaques, mainly diffuse, and cerebral amyloid-� (A�) angiopathy are prevalent in the aging brain of non-
human primates, from lemurs to non-human Hominidae. A� but not hyper-phosphorylated tau (HPtau) pathology is the
common nominator proteinopathy of non-human primate brain aging. The abundance of A� in the aging primate brain is
well tolerated, and the impact on cognitive functions is usually limited to particular tasks. In contrast, human brain aging
is characterized by the early appearance of HPtau pathology, mainly forming neurofibrillary tangles, dystrophic neurites
of neuritic plaques, and neuropil threads, preceding A� deposits by several decades and by its severity progressing from
selected nuclei of the brain stem, entorhinal cortex, and hippocampus to the limbic system, neocortex, and other brain
regions. Neurofibrillary tangles correlate with cognitive impairment and dementia in advanced cases. A� pathology is linked
in humans to altered membrane protein and lipid composition, particularly involving lipid rafts. Although similar membrane
alterations are unknown in non-human primates, membrane senescence is postulated to cause the activated �-amyloidogenic
pathway, and A� pathology is the prevailing signature of non-human and human primate brain aging.
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INTRODUCTION

Senile plaques (SPs) were first described by P.
Blocq and G. Marinesco as ‘amas ronds’,1 and E.
Redlich as ‘miliare Sklerose’ in the neuropil, inter-
preted at that time as nodules of glial sclerosis.2

Later, using Bielchowsky’s silver method allowed
O. Fischer the identification of ‘Drusen’ or ‘drusige
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Nekrosen’ in sixteen cases of senile dementia.3 Sub-
sequent studies by Fischer detailed the morphology
of abnormal fibrils and abnormal neurites surround-
ing central cores and their stages of formation in
an extensive series of older individuals.4,5 The term
‘senile plaque’ for these structures was proposed by T.
Simchowitz.6 Fischer also described ‘drusige Entar-
tung der Gefässe,’ which corresponds to cerebral
amyloid angiopathy. He also reported and illustrated
the presence of abnormal fibrils in neurons, con-
sistent with neurofibrillary tangles (NFTs), in the
same cases with dementia.7 At the same time, A.
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Alzheimer communicated the presence of NFTs and
dystrophic neurites in the brain of a 51-year-old
woman who had suffered from progressive dementia
and hallucinations.8 The term Alzheimer’s pre-senile
dementia was introduced by E. Kraepelin.9 Hundreds
of papers appeared in the following years, reveal-
ing the presence of large numbers of NFTs and SPs
in patients with cognitive impairment and dementia
and less numbers of NFTs and SPs (if present) in
individuals with no cognitive impairment. In the ear-
lier 1990 s, the term Alzheimer’s disease (AD) was
used to cover cases who had suffered pre-senile or
senile dementia in which the neuropathological study
revealed large numbers of SPs and NFTs.10,11 Cases
without neurological deficits and fewer NFTs and SPs
were defined as ‘normal for age’.12

In the middle 1980 s and early 1990 s, amyloid-�
(A�) was identified as the primary component of SPs
and cerebral amyloid angiopathy (A�-CAA).13–16

A� may be modified by N-terminal truncation
of soluble and insoluble peptide species, trunca-
tion at the C-terminal, pyroglutamate modifications,
isomerization/racemization, glycosylation, phospho-
rylation, fibrilization. SPs can be categorized as
diffuse plaques without dystrophic neurites, and
neuritic plaques characterized by a core of A�
surrounded by dystrophic neurites. At the same
time, abnormal tau protein was identified as the
main component of NFTs.17–23 NFTs are com-
posed of paired helical filaments. Tau deposits in
human brain aging and AD manifest as granular
cytoplasmic inclusions, pre-tangles, NFTs, neuropil
threads, neurite clusters, and dystrophic neurites
around A� cores in SPs. Tau deposits comprise
3Rtau and 4Rtau isoforms generated by alterna-
tive splicing of the microtubule-associated protein
tau gene (MAPT). Tau in brain aging and AD is
progressively altered by post-translational modifi-
cations, principally hyperphosphorylation at many
phosphorylation sites (HPtau), acetylation, abnormal
conformation, truncation at the C-terminal and N-
terminal regions, oligomerization, fibrillization, and
aggregation.24

Mutations in amyloid-� protein precursor (A�PP),
increased A�PP dosage, PSEN1 (presenilin1), and
PSEN2 (presenilin2) are causative of early-onset
familial AD and A� angiopathy. All of them are
involved in producing A� through the cleavage of
A�PP by the combined action of �- and γ-secretases
(amyloidogenic pathway of A�PP cleavage).25–30

These discoveries led to the amyloid cascade hypoth-
esis, which agrees with the idea that the production

of A� fibrils and A� oligomers is the primary factor
triggering NFT formation and AD progression.31–33

TIMING AND DISTRIBUTION OF A� AND
TAU PATHOLOGY IN HUMAN BRAIN
AGING

The systematic study of hundreds of human brains
of different ages has permitted the evaluation of
HPtau and A� pathology categorization and HPtau
and A� progression.

Tau pathology increases following a typical gra-
dient categorized as NFT Braak a-c subcortical and
Braak I-VI stages. Braak a-c subcortical stages delin-
eate NFTs in selected brain stem nuclei, including the
raphe nuclei and locus coeruleus. Braak stages I-VI
define the progression of NFTs from the entorhinal
and transentorhinal cortices (stages I-II) to the hip-
pocampus, amygdala, inferior part of the temporal
lobe, and limbic system (stages III-IV), and finally to
the diencephalon and most parts of the telencephalon
(stages V-VI). The transit from one stage to the next
is continuous and is accompanied by increased NFT
density.34–39 NFT Braak stages were formerly identi-
fied with silver stains; HPtau immunohistochemistry
is currently used instead.40

In contrast, the regional distribution of SPs is
categorized into stages A, B, and C, indicating
the progressive involvement of cortical regions.34

More recently, SP progression is classified according
to consecutive phases encompassing the neocortex
(phase 1), allocortex and limbic system (phase 2),
diencephalon and basal ganglia (phase 3), brain stem
(phase 4), and cerebellum (phase 5).41

Therefore, NFTs and SPs have different distri-
butions in human brain aging. Moreover, HPtau
pathology in human brain aging precedes by sev-
eral decades or years the appearance of A� deposits.
NFTs increase with age and affect about 85% of
humans at age 65, involving the entorhinal and
transentorhinal cortex, hippocampus, and the inner
region of the temporal cortex. About 98% of indi-
viduals have NFTs in the telencephalon at 80 at least
involving the same areas or more.24,34–39,42,43 How-
ever, only 30% of people have SPs at age 65, and
around 60% over 80. NFTs without SPs are detected
in about 35% of individuals older than 90.24,39,42,43

Tau-PET studies confirm that HPtau pathology
precedes by several decades the appearance of A�
in brain aging without cognitive impairment; HPtau
pathology may be found in some individuals suffering
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from cognitive impairment without concomitant A�
deposition, and HPtau pathology, rather than A� cor-
relates with progressive cognitive decline in AD.44–48

Therefore, the A� cascade hypothesis does not
apply to changes in human brain aging, as NFTs
precede the appearance of A� for decades, and the
distribution of NFTs does not match the distribution
of A� deposits.24,39,49–51

DEFINITIONS OF ALZHEIMER’S
DISEASE

The definition of AD by the National Institute on
Aging-Alzheimer’s Association (NIA-AA) is based
on the creed of the A� cascade hypothesis. It assumes
that the abundance of SPs, diffuse and neuritic, is
the sine-qua-non condition for the neuropathological
diagnosis of sporadic AD. The sole presence of NFTs
is not considered a prime manifestation of sporadic
AD.52,53 Clinically, AD is categorized as preclinical
AD, mild cognitive impairment due to AD, and mild,
moderate, and severe AD dementia.54–60 Preclini-
cal AD is considered in individuals without apparent
cognitive impairment but with positive neuroimag-
ing and biological markers showing A� and HPtau
pathology.55,61,62 Cognitive changes correlate better
with HPtau pathology than A� pathology.63

Due to the constraints of the NIA-AA definition of
AD, the term Primary age-related tauopathy (PART)
was conceived to include the majority of aged individ-
uals in their sixties and seventies at NFT Braak stages
I-IV and a percentage of older individuals without
SPs.64,65 The rate of PART decreases at the time
that A� pathology develops, and AD is diagnosed
following the NIA-AA guidelines. Notwithstanding,
alternative scenarios have been proposed; one of them
suggests that PART is a part of AD;66 another, that
PART is ordinary in human brain aging, and A� is
later added in a time-, rate-, and region-dependent
manner to produce AD.67

AD overture proposes that human brain aging with
NFTs and SPs is a continuum with AD.24,39,51 AD
is a progressive neurodegenerative biological pro-
cess prevalent in human brain aging, characterized
by the early appearance of 3R+4Rtau NFTs that
progresses following established Braak stages and
followed decades later by A� pathology forming SPs
and CAA. The process manifests as preclinical AD
(covering early NFT stages). It progresses not uni-
versally to mild cognitive impairment due to AD and
mild, moderate, and severe AD dementia.24,51

PHYLOGENY OF PRIMATES

Earliest-known primates called plesiadapiforms
were living 65.9 million years ago, about 105,000 to
139,000 years after the Cretaceous-Paleogene extinc-
tion. Ancestors of lemurs appeared about 50 million
years ago, and New World monkeys about 45 million
years ago; extant New World monkeys are squir-
rel monkeys, marmosets, and cotton-top tamarins.
Ancestors of the Old World monkeys (family Cer-
copithecidae) appeared about 25 million years ago.
Cercopithecidae includes two subfamilies, Cercop-
ithecinae (including the genera Papio, Macaca, and
Chlorocebus) and Colobinae. Old World monkeys
came from the same branch that later spliced into gib-
bons (superfamily Hominoidea, family Hylobatidae)
and the family Hominidae, which expanded between
12 and 6 million years ago. The extant Hominidae
include four genera Pongo, Gorilla, Pan, and Homo.
Several species of Homo populated different territo-
ries (one or two million years ago), and they became
extinct. One of the most recent species, Homo nean-
derthaliensis appeared about 430,000 years ago and
lived in Eurasia until about 40,000 years. Homo sapi-
ens appeared in Europe about 47,000 years ago,
was contemporary with the Neanderthals for sev-
eral thousand years, and is the only living species
of Homo.68–71

The following species have been recorded in the
present review: lemurs (Microcebus murinus), squir-
rel monkeys (Saimiri sciureus), marmoset (Callithrix
jacchus), cotton-top tamarins (Saguinus oedipus),
cynomolgus monkeys (Macaca fascicularis), rhesus
monkeys (Macaca mulatta), stump-tailed macaques
(Macaca arctoides), lion-tailed macaques (Macaca
silenius), african green monkeys, vervets (Chloro-
cebus aethiops sabaeus), baboons (Papio), chim-
panzees (Pan troglodytes), orangutan (Pongo), and
gorillas (Gorilla gorilla gorilla and Gorilla beringei
beringei).

The lifespan of these species in the wild and in
captivity is shown in Table 1.

More than 6 million years elapsed from pre-
hominids to Homo sapiens; various species of
pre-hominids and Homo, some of them lasting on
Earth for hundreds of thousands of years, were
extinct. Homo sapiens have only 300,000 years, mod-
ern sapiens about 130,000, and Neolithic humans less
than 12,000.

The lifespan of Homo sapiens has changed dramat-
ically over time. In the Paleolithic era, about 200,000
BCE and 8,000 generations ago, the estimated lifes-
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Table 1
Lifespan of primates assessed in this review

Species Life span (y) Life span in captivity (y)

Grey mouse lemurs 18
Squirrel monkeys 30
Marmosets 5–7 16.5
Cotton-top tamarins 13.4 24
Cynomolgus monkeys 25–30
Rhesus monkeys 25–30 36–40
Stump-tailed macaque 30
African green monkeys 30
Baboons 20–30 40
Chimpanzees 15 (maximum age 53) 30–35 (oldest 78)
Orangutans 30 30–40 (oldest 60)
Gorillas 35–40 50 (up to 67)
Ancient Homo sapiens 35–40
Modern Homo sapiens 65–85 (oldest 120)

pan was about 38–40 years. The estimated lifespan
in the Industrial era, about 150 years and seven gen-
erations ago, was 43–65 years. By the end of the 20th
Century and the beginning of the 21st, the human
lifespan in developed countries reaches more than 80
years in only three generations.72

A� DEPOSITS AND HPTAU IN
NON-HUMAN PRIMATES

The terminology used to designate SPs and tau
pathology is heterogeneous in the different studies.
Early descriptions of SPs were based on silver stains;
however, SPs are now best recognized with isoform-
specific anti-A� antibodies. Silver methods, such as
Bielchowsky’s method, are helpful in staining NFTs
and dystrophic neurites of neuritic plaques. These
structures are stained with anti-HPtau antibodies. Yet,
HPtau deposits are not restricted to NFTs and dys-
trophic neurites, as HPtau-immunoreactive granular
and diffuse cytoplasmic deposits are observed in the
brains of aged primates. To normalize the vocabu-
lary, we have used diffuse plaques to designate loose
extracellular A� deposits without dystrophic neurites
and neuritic plaques to designate structures com-
posed of a core of A� surrounded by dystrophic
neurites. The terms compact and mature plaques
used in some papers have been here named neuritic
plaques. HPtau deposits include granular cytoplas-
mic deposits, pre-tangles, threads, neurite clusters,
and NFTs. It is worth pointing out that the term NFT
is used in some papers to designate diffuse HPtau
deposits and pre-tangles. The revision of the images
used to illustrate representative HPtau inclusions in
every paper has actualized the name of the different
types of HPtau inclusions in the brains of aged pri-

mates, following the terminology currently used in
human neuropathology.

SPs and CAA

SPs are not found in most middle-aged monkeys
and apes, but their number and density increase
with age. A� plaques and CAA are frequent
in all species examined, including lemurs,73–78

squirrel monkeys,79–82 marmosets,83,84 cotton
tamarins,85 cynomolgus monkeys,86–93 rhe-
sus monkeys,94–106 stump-tailed macaques,107

lion-tailed macaques,108 Japanese macaques,109

African green monkeys,110–113 baboons,114–116

chimpanzees,99,100,117 orangutans,118,119 and
gorillas.120–123 Diffuse plaques are predominant,
whereas neuritic plaques are less abundant or absent.
Moreover, neuritic plaques have altered neurites with
neurofilaments, but dystrophic neurites containing
HPtau are rare. A�42 is predominant in plaques in
lemurs.77 The two primary isoforms A�40 and A�42
are expressed in SPs, but A�40 predominates in
arterioles in squirrel monkeys.81,124 Yet, a predom-
inance of A�42 was reported in another study.125

A predominance of A�40 over A�42 in plaques is
identified in rhesus macaques,97,100,102 stump-tailed
macaques,107 chimpanzees,99,100 and orangutans.118

However, another study reported that amyloid
deposits in rhesus monkeys were composed of A�40,
A�42, A�43, A�N1, and 4 A�pN3.126 Regarding
SPs in gorillas, one study showed A�42 positivity
but the absence of A�40 immunostaining;120 another
identified A�42, A�40, and A� oligomers.121,122

Yet, diffuse plaques in baboons are primarily com-
posed of A�42 over A�40.116 In contrast with SPs,
A�42 and A�40 are found in CAA.87,88,116,117,126
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Differences in the antibodies used may account
for the observed discrepancies. Phosphorylated A�
(P-Ser8A�) in SPs and CAA has been identified in
African green monkeys.112

SPs, mostly diffuse, predominate in the frontal
cortex, parietal and temporal cortices, and amyg-
dala; the hippocampal complex has lesser numbers
of plaques. The distribution of SPs in aged rhesus
monkeys is similar to that seen in human brain aging
at early phases of neocortical plaque distribution.34,41

However, the categorization of SPs localization
and distribution following Thal phases applied to
humans41 is not feasible in monkeys and apes because
lesions in the diencephalon are usually unavailable,
and the cerebellum and brainstem are not assessed.
A� deposits have exceptionally been reported in the
brain of young common marmosets.127

CAA may affect meningeal and parenchymal
blood vessels in monkeys; CAA is more abun-
dant than plaques in some species, such as squirrel
monkeys.81,124 However, it is difficult in most cases
to classify the CAA pathology into one of the two
proposed types of sporadic amyloid angiopathy in
humans128 due to a lack of specific information
regarding cortical capillaries in most species except
in some small series of squirrel monkeys and gorillas.

The neocortex is the most vulnerable region to A�
deposition in aged non-human primates and humans.
This region is phylogenetically new regarding the
evolution of species to mammals.129,130

HPtau pathology

In contrast with SPs and CAA, HPtau pathology
is remarkably scarce in the brains of aged primates,
including non-human Hominidae.

HPtau deposits are found in aged lemurs,75,131,132

some of them composed of bundles of argy-
rophilic filaments,73 but NFTs are absent. HPtau has
been detected in marmosets.133,134 However, HPtau
deposits do not resemble common pre-tangles and
tangles in aged human brains but granular cytoplas-
mic deposits.

NFTs with a distribution following Braak stages
I-IV have been recognized in rhesus monkeys aged
24–26 years,135 NFTs in the entorhinal cortex,
hippocampus, and frontal cortex were found in a
43-year-old female rhesus monkey born and dead in
captivity.126 NFTs in the entorhinal cortex and hip-
pocampus in two African green monkeys older than
20,110 and scarce NFTs and pre-tangles in the cerebral
cortex of various primates.136

A complex neuronal and glial tauopathy with
HPtau-positive straight filaments consistent with pre-
tangles, was identified in aged baboons: neuronal
tauopathy involved the hippocampus and the den-
tate gyrus; thorn-shaped astrocytes were distributed
in periventricular, subpial, and perivascular regions of
limbic brain areas; and coiled bodies were abundant
in the limbic tracts.114,115

In chimpanzees, HPtau-immunoreactive pre-
tangles and neuritic clusters were more abundant
with age and predominated in the neocortex over
the hippocampal region; only five chimpanzees had
NFTs, four in the CA1 region of the hippocampus.117

A unique tauopathy was reported in a 41-year-
old female chimpanzee; HPtau-positive pre-tangles,
NFTs (with paired helical filaments), neuropil
threads, and neuritic clusters were seen in the
prefrontal cortex, temporal cortex, and occipital cor-
tex over the hippocampus; HPtau-immunoractive
thread-like processes in the basal ganglia and lower
brainstem.137

Finally, a few astrocytes, coiled bodies, and plaque-
like clusters of neurites containing HPtau, but not
pre-tangles and NFTs, were reported in the neocortex
and hippocampus of very old gorillas.122

In summary, no HPtau pathology has been
identified in aged squirrel monkeys, lion-tailed
macaques, Japanese macaques, and orangutans; mild
to severe combined neuronal and glial tauopathies
may occur in aged cynomolgus monkeys, baboons,
and gorillas. HPtau pathology in these species has
a difficult categorization.138 Only a few old rhesus
monkey126,135 and chimpanzees117,137 have HPtau
pathology similar to that seen in human brain aging
and AD at early Braak stages.

A rare neuronal and glial tauopathy with pre-
tangles, HPtau inclusions in astrocytes, and coiled
bodies involving the basal ganglia and neocortex was
reported in cynomolgus monkeys; this 4R-tauopathy
is reminiscent of progressive supranuclear palsy in
humans.139,140

Table 2 summarizes the principal types of A� and
HPtau deposits in different primates.

COGNITION IN AGED NON-HUMAN
PRIMATES

Cognitive changes in aged primates are mild
or moderate, and usually not global but lim-
ited to specific tasks in the species assessed,
including lemurs,141,142 squirrel monkeys,143
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Table 2
Summary of principal amyloid-� and HPtau deposits in the brain of aged primates

Species DP NP CAA HPtau NFT Comments

Grey mouse lemurs ++ – + + –
Squirrel monkeys ++ ++ – –
Marmosets ++ – + + –
Cotton-top tamarins + – + – –
Cynomolgus monkeys ++ + +++ + – (+) Other series: PSP
Rhesus monkeys ++ + ++ ++ +
Lion-tailed macaque + – NA NA NA
African green monkeys ++ + + + – (+)
Baboons + + ++ – TSA, coiled bodies
Chimpanzees ++ – + ++ + Rare tauopathy in one case
Orangutans + – + – –
Gorillas + + + –
Humans

+++ +++ ++ +++ +++ A�: Thal phases 1–5
NFT: Braak stages a-c; I-VI

DP, diffuse plaques; NP, neuritic plaques; CAA, cerebral amyloid angiopathy; HPtau, hyper-
phosphorylated tau; NFT, neurofibrillary tangles; PSP, progressive supranuclear palsy; TSA,
thorn-shaped astrocytes. Signs are approximate as no quantitative data are available and the cri-
teria to consider mild, moderate, and large numbers of determinate deposit depend on the choice of
the investigator.

capuchin monkeys,144 marmosets,145 cynomol-
gus monkeys,146–148 rhesus monkeys,149–157

baboons,158 chimpanzees,159–162 and gorillas.163

Severe cognitive impairment and dementia have
never been observed in non-human primates, with
exceptions.126

No correlation was found between A� burden and
altered cognition in most species including lemurs,131

marmosets,145 cynomolgus monkeys,93 and rhesus
monkeys.101 Exceptionally, a direct relation between
the cortical A� burden and cognition was reported in
one series of aged lemurs.78

A� PATHOLOGY IS THE PREVALENT
PROTEINOPATHY IN THE PRIMATE
BRAIN AGING

In non-human primates, A� deposition is the first
or only proteinopathy in brain aging. HPtau inclu-
sions, if present, correspond in most cases to unclas-
sified HPtau pathology,138 unrelated to A�. Only
HPtau pathology, reminiscent of early NFT Braak
stages, is found in rhesus monkeys and chimpanzees,
but again with a distribution separate from A� pathol-
ogy. The A� cascade hypothesis does not match the
neuropathological changes observed in non-human
primate brain aging. Conversely, considering that
HPtau pathology is the initiating factor of A� pathol-
ogy is not supported in non-human primates.

The presence of A� pathology in the aged primate
brain suggests altered A�PP metabolism at the cell
membranes. Cleavage of A�PP through α- and γ-
secretase leads to the non-amyloidogenic pathway
of A�PP degradation; cleavage of A�PP through
�- and γ-secretase generates A�42, A�40, and other
small peptides.164–167 �-secretase (BACE) is a GPI-
anchored aspartyl protease.168 γ-secretase complex
is composed of presenilin 1, presenilin 2, aph-1
homolog A, γ-secretase subunit APH1A, APH1B,
nicastrin, presenilin enhancer γ-secretase subunit
PEN2/PSENEN, neprilysin, and insulin-degrading
enzyme. The γ-secretase complex acts as a prote-
olytic enzyme on more than 90 substrates and is
considered the proteasome of the membrane.169–171

The membrane’s lipid content and, mainly, choles-
terol modulate secretase activity.172,173

There is growing evidence that cell membranes
are altered and dysfunctional in the old.174–178

Proteomics studies have shown altered proteosta-
sis and deregulated phosphorylation in human brain
aging involving cell membrane components and
cytoskeleton, among other proteins.179,180 Altered
membrane protein composition increases at middle
and advanced stages of AD.179 The lipid composi-
tion of brain lipid rafts is also altered in human brain
aging and neurodegenerative diseases.181–183 Human
cortical lipid rafts are modified by aging in a gender-
dependently way, being more pronounced in women
than in men. Main changes involve plasmalogens,
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polyunsaturated fatty acids (especially docosahex-
aenoic acid and arachidonic acid), total polar lipids
(mainly phosphatidylinositol, sphingomyelin, sul-
fatides, and cerebrosides), and total neutral lipids
(particularly cholesterol and sterol esters).184 Lipid
alterations increase at early stages of AD and increase
with disease progression.185,186 Biophysical alter-
ations in lipid rafts augment �-secretase in lipid
rafts and increase BACE/A�PP interactions,186,187

thus modulating the convergence of the amyloido-
genic pathway toward lipid rafts and pointing to a
critical role of polyunsaturated fatty acids in the amy-
loidogenic processing of A�PP.187 Unfortunately,
similar studies are not available in non-human pri-
mates. Thus, A� deposition is probably linked to
age-related altered protein and lipid composition
of membranes.

Conclusion

Previous studies have suggested that AD is a
disease unique to humans,24,51,117,122,188,189 and it
is. However, the point is that brain aging differs
between non-human primates and humans.51,188,190

HPtau pathology is the initial proteinopathy in human
brain aging; NFTs, pre-tangles, dystrophic neurites
of neuritic plaques, and neuropil threads are the pri-
mary type of intraneuronal HPtau deposits; and its
progression is overwhelming in the aging of the
human brain.39 However, HPtau pathology is late and
reduced if present in non-human primates compared
to humans; HPtau deposits are mainly granular or
diffuse conforming pre-tangles, whereas NFTs are
extremely rare. NFTs first appear in selected nuclei
of the brain stem and paleocortical regions, and later
progress to the entire brain. This vulnerability is
unique to the aged human brain.191

In contrast, A� deposits complying with SPs and
CAA are common in the brain of aged primates,
including Homo sapiens. The predominant types of
SP in non-human primates are diffuse plaques, and
their distribution is mainly in the convexity of the
cerebral hemispheres. SPs in humans are catego-
rized as diffuse at early stages and mainly neuritic
at advanced stages. The density of SPs is higher,
and their distribution is much more extensive in
humans involving from the cerebral neocortex (as
in all primates) to the diencephalon, brain stem, and
cerebellum at later phases.

Albeit with species differences in severity, A�
deposition in primates is brain aging.
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115. Schultz C, Hubbard GB, Rüb U, et al. Age-related pro-
gression of tau pathology in brains of baboons. Neurobiol
Aging 2000; 21: 905–912.
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