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With the advent of new omics technologies, in
the past few years, there has been a deluge of com-
plex, high-dimensional data on Alzheimer’s disease
(AD). In particular, single-nucleus technologies have
begun to unveil the molecular underpinnings of var-
ious brain cell-types and states, their response to
AD pathology, and the interactions among them
[1]. To date, several bulk and single-nucleus tran-
scriptomics studies on AD have been published that
identify cell-specific molecular disruptions observed
in AD and the intricate interactions among the vari-
ous brain cell types [2–5]. In addition, several more
studies on proteomics, metabolomics, epigenomics,
and genetics have shed light on the complex patho-
physiological landscape of AD [6–10]. Moreover,
data that shed light on the spatial relationships of
brain cells with AD pathology is also being gener-
ated [11, 12]. The current supplemental issue is a
topical collection to provide new insights into altered
pathways and disease-related processes, increasing
our understanding of AD pathogenesis to identify
specific biomarkers of disease status, progression, or
therapeutic response.

The research articles featured in this issue encom-
pass several themes. The first theme is the molecular
and cellular mechanisms underlying AD. Chum et
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al. profile cerebrovascular miRNAs to demonstrate
that the gene expression of angiogenesis, vascu-
lar permeability, and blood flow regulation families
are altered in AD [13]. Another study explored
non-coding RNA composition of extracellular vesi-
cles in AD, and report significant differences in
miRNAs and tRNAs between AD and controls [14].
A gene co-expression analysis identified multiple
AD-related genes that are associated with FAM222A,
which encodes an amyloid plaque core protein and
is an AD brain atrophy susceptibility gene that medi-
ates amyloid-aggregation [15]. Analyzing single-cell
omics datasets, Wang et al. found that communica-
tion between T cells is weakened in AD patients
[16]. Finally, Nelson et al. examined pericytes, which
protect against insulin resistance, iron accumulation,
oxidative stress, and amyloid deposition, and suggest
that pericyte degeneration could contribute to disease
progression [17].

The second theme is on biomarkers for diagnosis,
prognosis, and drug action. Yan et al. applied machine
learning and identified three mitochondria-related
genes, NDUFA1, NDUFS5, and NDUFB3, as early
diagnostic biomarkers [18]. Sultana et al. investi-
gated the plasma metabolomics profile of older adults
with dual-decline in cognition and walking speed,
and identified four compounds at higher concen-
tration in dual-decliners compared to non-decliners
[19]. Another metabolomics study found accumula-
tion of scyllo-inositol and reduction of hypotaurine
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as potential biomarkers for AD development [20].
Yet another metabolomics study identified strong
inverse associations between medium-chain fatty
acids and dicarboxylic acids and global cognition in
a Puerto Rican cohort [21]. Weinberg et al. investi-
gated the effect of metformin, an anti-diabetes drug,
on plasma and cerebrospinal fluid proteins in non-
diabetic patients with mild cognitive impairment and
positive AD biomarkers; they successfully identified
several putative plasma biomarkers for future clinical
trials [22].

The final theme was omics tools and methods
that enhance our ability to study AD. Lardelli et
al. used zebrafish as a model organism combined
with genome editing to study altered gene expression
in early onset forms of familial AD (EOfAD) and
non-EOfAD-like mutations, and interestingly identi-
fied changes to oxidative phosphorylation in EOfAD
mutations [23]. Leveraging bioinformatics and elec-
tronic structure analyses, Puentes-Diaz et al. assessed
the viability of 44 salen-type copper-chelating lig-
ands along with 12 additional proposed compounds
for their multifunctional potential in AD treatment
[24]. Lastly, Noori et al. developed a freely-available
online portal of public omics data for AD researchers
to quickly and systematically explore omics datasets
to advance AD research [25].

In summary, the major themes across these papers
on omics in AD focus on the integration of various
omics approaches to understand the molecular basis
of the disease, the identification of novel biomarkers
for early detection and therapeutic targets, the explo-
ration of the genetic factors contributing to AD risk
and progression, and the examination of the role of
metabolic alterations in the disease’s development.
These studies highlight the complexity of AD and the
potential of omics technologies to provide insights
into its pathogenesis, emphasizing the importance of
a multidisciplinary approach to tackle the challenges
in diagnosing and treating this condition.
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