Supplementary Material

Sensorimotor Impairment in Aging and Neurocognitive Disorders: Beat Synchronization and Adaptation to Tempo Changes

Supplementary Table 1. Musician's performance. When recording the videos of the musician tapping synchronously with the auditory sequences, inter-tap interval and coefficient of variation were verified to ensure that the musician tapped with minimal error.

were verified to ensure that the musician tapped with minimal error.					
	Inter-tap	Coefficient of			
	interval (ms)	variation			
741- (8) (9) (74) (674) (674) (74)	8.90	0.40			
741 <u>E</u> <u>O</u> 674 0 15 30 45 60 75 Seconds	1.01	0.05			
741- <u>E</u> <u>O</u> 674- 0 15 30 45 60 75 Seconds	-0.11	0.00			
741 674 0 15 30 45 60 75 Seconds	-0.85	0.02			

Supplementary Table 2. Demographic and clinical information of patients who withdrew from

the study during the experiment.

	N	Median [first quartile, third quartile] or frequencies (%)	Range
Age	7	88 [84, 94]	81-95
Gender (women)	7	5 (71%)	
Years of education	7	12 [7, 14]	5-14
Musical expertise (out of 28)	7	3 [2, 4]	0-4
Major NCD		6 (100%)	
Minor NCD		0 (0%)	
No NCD		0 (0%)	
MMSE (out of 30)	7	21 [20, 25]	17-29
ADL (out of 6)	7	5.5 [4, 6]	2-6
IADL (out of 4)	7	1 [0, 2]	0-4
GDS (out of 15)	6	4 [3, 7]	2-7
GAI (out of 5)	6	1 [1, 1]	0-4

NCD, neurocognitive disorder; MMSE, Mini-Mental State Examination; ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; GDS, Geriatric Depression Scale; GAI, Geriatric Anxiety Inventory

Supplementary Table 3. Model summary and significance tests: consistency

	Wald χ^2	df	p	f^2
Audio	76.437	1	< 0.001	0.036
Tempo stability	756.336	1	< 0.001	0.209
Age	1.750	1	0.186	0.011
MMSE	3.863	1	0.049	0.032
Audio:Age	4.283	1	0.038	0.002
Tempo stability:Age	8.579	1	0.003	0.010
Audio:MMSE	0.460	1	0.497	< 0.001
Tempo stability:MMSE	1.034	1	0.309	0.004
Sex	0.103	1	0.748	0.002
Years of education	0.531	1	0.466	0.015
Musical expertise	1.095	1	0.295	0.027

Significant results are highlighted in **bold**. MMSE, Mini-Mental State Examination

Supplementary Table 4. Model summary and significance tests: asynchrony

	Wald χ ²	df	p	f^2
Audio	248.075	1	<0.001	1.381
Sex	0.328	1	0.567	1.032
Years of education	1.198	1	0.274	1.035
Musical expertise	2.455	1	0.117	1.045
Significant results are highlighted in bold .				

Supplementary Table 5. Model summary and significance tests: consistency (complete model)

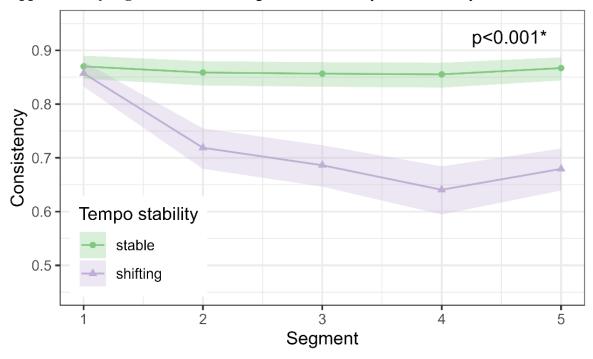
	Wald χ ²	df	р	f²
Sex	0.121	1	0.728	0.002
Years of education	0.524	1	0.469	0.014
Musical expertise	1.127	1	0.289	0.026
Audio	80.249	1	0.000	0.024
Tempo	0.011	1	0.916	< 0.001
Tempo stability	810.620	1	0.000	0.213
Segment	11.364	1	0.010	0.004
Age	1.717	1	0.190	0.011
MMSE	3.843	1	0.050	0.033
Audio:Tempo	1.024	1	0.311	< 0.001
Audio:Tempo stability	5.473	1	0.019	< 0.001
Audio:Segment	18.214	1	0.000	0.007
Tempo:Tempo stability	0.066	1	0.798	< 0.001
Tempo:Segment	5.803	1	0.122	0.002
Tempo stability:Segment	11.012	1	0.012	0.004
Audio:Age	4.500	1	0.034	0.002
Tempo:Age	0.330	1	0.565	< 0.001
Tempo stability:Age	9.880	1	0.002	< 0.001
Audio:MMSE	0.579	1	0.447	< 0.001
Tempo:MMSE	0.035	1	0.851	< 0.001
Tempo stability:MMSE	0.815	1	0.367	< 0.001
Audio:Tempo:Tempo stability	3.376	1	0.066	0.001
Audio:Tempo:Segment	1.966	1	0.579	< 0.001
Audio:Tempo stability:Segment	5.127	1	0.163	0.002
Tempo:Tempo stability:Segment	3.463	1	0.326	< 0.001
Audio:Tempo:Age	1.957	1	0.162	< 0.001
Audio:Tempo stability:Age	5.577	1	0.018	0.001
Tempo:Tempo stability:Age	0.076	1	0.783	< 0.001
Audio:Tempo:MMSE	7.301	1	0.007	0.003
Audio:Tempo stability:MMSE	0.070	1	0.791	< 0.001
Tempo:Tempo stability:MMSE	0.622	1	0.430	< 0.001
Audio:Tempo:Tempo stability:Segment	1.948	1	0.583	0.001
Audio:Tempo:Tempo stability:Age	1.524	1	0.217	0.002
Audio:Tempo:Tempo stability:MMSE	2.274	1	0.132	< 0.001

The complete model was run to control for any possible confounding effects. The fact that the effects of interest were significant in both models suggests that they are not explained by factors such as tempo or segment that are not included in the final model.

Significant results are highlighted in **bold**.

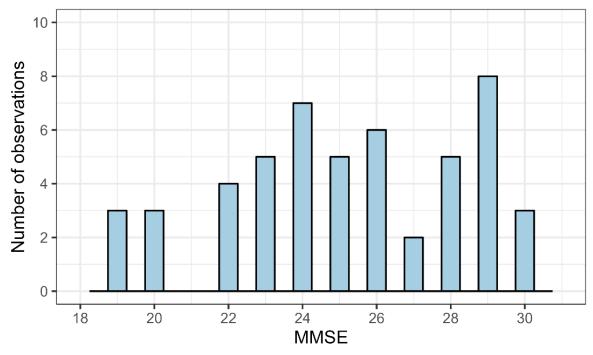
MMSE, Mini-Mental State Examination

Supplementary Table 6. Model summary and significance tests: asynchrony (complete model)

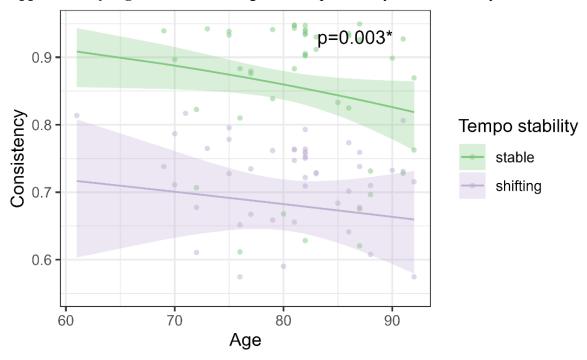

•	Wald χ ²	df	р	f ²
Sex	1.209	1	0.271	0.003
Years of education	0.000	1	0.998	< 0.001
Musical expertise	1.206	1	0.272	0.006
Audio	942.673	1	0.000	0.228
Tempo	405.880	1	0.000	0.150
Tempo stability	14.052	1	0.000	0.023
Segment	257.757	1	0.000	0.063
Age	0.519	1	0.471	0.001
MMSE	3.414	1	0.065	0.010
Audio:Tempo	164.965	1	0.000	0.080
Audio:Tempo stability	0.001	1	0.981	0.024
Audio:Segment	53.955	1	0.000	0.041
Tempo:Tempo stability	627.589	1	0.000	0.355
Tempo:Segment	502.312	1	0.000	0.343
Tempo stability:Segment	138.652	1	0.000	0.115
Audio:Age	3.280	1	0.070	< 0.001
Tempo:Age	5.261	1	0.022	< 0.001
Tempo stability:Age	4.838	1	0.028	0.001
Audio:MMSE	6.248	1	0.012	0.002
Tempo:MMSE	0.532	1	0.466	< 0.001
Tempo stability:MMSE	3.512	1	0.061	< 0.001
Audio:Tempo:Tempo stability	47.736	1	0.000	0.052
Audio:Tempo:Segment	84.868	1	0.000	0.093
Audio:Tempo stability:Segment	124.403	1	0.000	0.112
Tempo:Tempo stability:Segment	502.271	1	0.000	0.624
Audio:Tempo:Age	4.400	1	0.036	0.001
Audio:Tempo stability:Age	2.264	1	0.132	0.001
Tempo:Tempo stability:Age	2.816	1	0.093	< 0.001
Audio:Tempo:MMSE	1.138	1	0.286	< 0.001
Audio:Tempo stability:MMSE	1.363	1	0.243	< 0.001
Tempo:Tempo stability:MMSE	0.183	1	0.668	< 0.001
Audio:Tempo:Tempo stability:Segment	154.493	1	0.000	0.015
Audio:Tempo:Tempo stability:Age	2.864	1	0.091	0.001
Audio:Tempo:Tempo stability:MMSE	2.276	1	0.131	< 0.001

As for consistency, the complete model was run to control for any possible confounding effects. The fact that the effects of interest were significant in both models suggests that they are not explained by confounding factors that are not included in the final model.

Significant results are highlighted in **bold**.


MMSE, Mini-Mental State Examination

Supplementary Figure 1. Effects of segment and stability on consistency


Consistency was calculated for the different segments in the presence and absence of tempo changes, highlighting the drop in performance as a result of changes in tempo.

Supplementary Figure 2. Distribution of MMSE

MMSE, Mini-Mental State Examination

Supplementary Figure 3. Effects of age and tempo stability and consistency

