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Short Communication
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Abstract. Tau accumulation in and neurodegeneration of locus coeruleus (LC) neurons is observed in Alzheimer’s disease
(AD). We investigated whether tangle and neuronal density in the rostral and caudal LC is characterized by an asymmetric
pattern in 77 autopsy cases of the Rush Memory and Aging Project. We found left-right equivalence for tangle density
across individuals with and without AD pathology. However, neuronal density, particularly in the caudal-rostral axis of the
LC, is asymmetric among individuals with AD pathology. Asymmetry in LC neuronal density may signal advanced disease
progression and should be considered in AD neuroimaging studies of LC neurodegeneration.
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INTRODUCTION

Findings from autopsy and imaging studies estab-
lished that the locus coeruleus (LC) accumulates
hyperphosphorylated tau and undergoes morpho-
logical changes early in Alzheimer’s disease (AD)
progression, supporting a critical role for the LC
in early detection of AD [1–4]. Even though, the
LC modulates many cognitive functions and behav-
iors, including those affected in AD [5], the evidence
regarding potential asymmetry in LC pathology
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remains ambiguous as autopsy studies often examine
only one side of the brain. Immunohistochemistry
studies report no morphological asymmetry in LC
shape or length in clinically normal cases [6], but
reported length differences up to 15.2% in AD cases
[7]. Similarly, the count of LC neurons is overall
symmetric [8, 9], but neuronal loss becomes more
asymmetric in AD (left-right differences in neuronal
count up to 8% in clinically normal and 17% in
AD; Fig. 1) [7]. Neuronal degeneration occurs as the
disease progresses, but importantly, is preceded by
accumulation of hyperphosphorylated tau. Beyond
the anecdotal report of Braak and Del Tredici (2015)
that an asymmetrical pattern of abnormal tau inclu-
sions is seldom observed [10], no quantitative data
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on (a)symmetry of tau in the LC in AD is avail-
able. Recently developed MRI-based measures of
LC integrity presumably reflect neuronal density and
tangle-related processes [3, 11]. In asymptomatic
individuals the left LC exhibited higher integrity val-
ues than the right [12–14], but inconsistencies exist in
the AD neuroimaging literature, ranging from higher
right dorsal LC integrity [12], to no left-right differ-
ences [15]. Thus, understanding patterns of pathology
in the LC will facilitate the interpretation of MRI-
based LC findings during AD progression [3], and
contribute to understanding disease heterogeneity,
contralateral functional compensation [16], and neu-
roanatomical correlates underlying resilience [17]
or correlations with specific behavioral outcomes.
Leveraging the neuropathologic data from the Rush
Memory and Aging Project (MAP), we set out to
determine whether asymmetry in LC tangle or neu-
ronal density was present in older individuals with
and without evidence of AD pathology.

METHODS

Participants

The dataset included 77 older participants from
the Rush Memory and Aging Project (MAP), a
clinical-pathologic observational cohort that started
in 1997 [18]. Eligibility criteria included older age,
absence of a previous dementia diagnosis and con-
sent to annual clinical evaluation and brain autopsy
at death. This sample included individuals for whom
detailed LC neuropathology data was available and
consisted of individuals with no cognitive impair-
ment (n = 29), mild cognitive impairment (n = 27)
or AD dementia (n = 21). At time of death, select
clinical data (cognitive history, neuropsychological
evaluation and clinical judgment) was reviewed by a
neurologist, blinded to postmortem data, who pro-
vided a clinical diagnosis based on the National
Institute of Neurological and Communicative Disor-
ders and Stroke and the AD and Related Disorders
Association (NINCDS/ADRDA) criteria [19–21].
The average time between the last visit and death was
0.77 years (SD = 0.60). All data were de-identified
and shared with a Data User Agreement. The study
was approved by an Institutional Review Board of
Rush University Medical Center. All participants
signed an informed consent, an Anatomical Gift Act,
and a repository consent which allowed their data to
be shared.

Neuropathological measures

Neuronal density (per mm2) and paired helical
filaments (PHF) tau tangle density of the LC were
examined using immunohistochemistry with a mon-
oclonal anti-tyrosine hydroxylase antibody and an
anti-PHF tau antibody AT8, respectively, each at the
left or right side of the pons and two levels of the LC,
rostral and caudal [22–24]. In addition, tangle den-
sity was divided by neuronal density and expressed
as percentage. We selected participants who had
neuropathologic data on both sides of the LC and
both sections (n = 77). Using available information on
cortical neurofibrillary tangles (Braak) and neuritic
plaques (CERAD), the likelihood of AD pathology
was identified according to the modified National
Institute of Aging (NIA)-Reagan diagnosis of AD
and grouped into not present (no or low likelihood)
and present (intermediate or high likelihood). This
evaluation was performed independent of clinical
information [21].

Statistical analyses

Statistical analyses were performed in R (version
4.1.2, http://www.r-project.org/). Group characteris-
tics are represented in mean and standard deviation
or proportion. Asymmetry in tangle density, neuronal
density or relative tangle density were related to age,
postmortem interval and sex with Repeated Measures
ANOVA interacting the relevant variable with the
within-factor (hemisphere), including Greenhouse-
Geiser correction. Asymmetry in LC pathology
measures was tested with paired t-tests per LC sec-
tion (False-Discovery Rate adjustment at � = 0.05 per
section) and if non-significant, followed up with the
bootstrapped two one-sided test (TOST) procedure
for pairwise comparisons (5,000 bootstrap replicates)
at � = 0.05. Given that absence of asymmetry evi-
dence (non-significance) does not equate evidence
of symmetry, the TOST evaluates whether left and
right differences in LC pathology can be considered
statistically equivalent to zero or below the small-
est effect meaningful for asymmetry (Supplementary
Figure 1) [25]. Because of the lack of literature on
left-right meaningful differences in LC pathology, we
tested left-right differences iteratively across a range
of values to detect the highest bound at which equiv-
alence was no longer met: 1 to 10 tangles, 1 to 77
neurons per mm2, and 1 to 30% relative difference.
Upper limit of the asymmetry equivalence bound was
determined by the maximum observed difference for
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Fig. 1. Overview of asymmetry in locus coeruleus neuronal count in autopsy studies. Visualization of the reported left-right differences
in neuronal count in the LC in autopsy studies [7–9]. The square indicates the mean percentage left-right difference in neuronal count with
the bars representing the minimum and maximum reported percentage asymmetry in neuronal count of the LC. The diamond provides the
average of all studies (4.74%, range: 0.86%–9.30%). Unknown asymmetry means that percentage difference in asymmetry was reported
without providing the directionality. The reference of Chan-Palay 1989a refers to reference [8], while Chan-Palay 1989b refers to reference
[7].

that measure. Tests for asymmetry were performed
for the entire LC and for rostral and caudal sections.
We then assessed whether left-right asymmetry was
equivalent between rostral and caudal LC sections
using Repeated Measures ANOVA with two levels
(hemisphere and section) with Greenhouse-Geiser
and Tukey-adjustment. If non-significant, these anal-
yses were followed up by the TOST. Sensitivity
analyses tested asymmetry differences within indi-
viduals with and without evidence of AD pathology
(NIA-Reagan diagnosis of AD).

RESULTS

The average age at death was 88.6 years (range
74.8–99.7), and participants were highly educated,
with the majority being female (72%) and 13%
carrying one or more APOE �4 alleles (Table 1).
Left-right differences in LC pathology measures were
not associated with age, postmortem interval, or sex
(Supplementary Table 1). There was no difference
between left and right LC in terms of tangle den-
sity, neuronal density, or relative tangle density for
the entire LC, the rostral or caudal sections (Sup-
plementary Table 2 for statistical details). Sensitivity
analyses revealed no differences in LC measures
for individuals with or without evidence of under-
lying AD pathology, except for an at trend-level
asymmetry in caudal LC neuronal density in indi-
viduals with AD pathology (on average 7.32 fewer
neurons per mm2 in the right caudal LC (mean
difference: 7.32, t(46) = 2.24, p = 0.03, pFDR = 0.09);
Fig. 2, Supplementary Table 2). Based on the liter-
ature (Fig. 1), > 9.30% difference between left and
right would represent an above average asymmetry in
older individuals and AD patients, which translates
to an asymmetry difference of about 7 neurons per

mm2; 74.47% of the individuals with AD pathology
exhibited a left-right difference of at least 7.32 neu-
rons per mm2. TOST-evaluation indicated that rostral
tangle density asymmetry was no longer be equiva-
lent at [–1,1] tangle density. For the neuronal density,
left and right was not equivalent at [–5,5] for the
entire LC, [–6,6] for the rostral LC and [–9,9] for
the caudal LC. For relative tangle density, the null
hypothesis of equivalence was rejected at [–1%, 1%]
for the entire LC and [–2%, 2%] for the rostral LC
(Supplementary Figure 2). Equivalence bounds for
the entire LC and its sections were similar for both the
group with and without evidence of underlying AD
pathology. These results provide evidence for equiv-
alence (no asymmetry) in LC pathology, except for
the caudal neuronal density where the effect exceeded
the smallest meaningful difference of 7 neurons per
mm2.

While the neuroimaging literature reported incon-
sistencies in rostro-caudal asymmetry, we found no
evidence for asymmetry in LC pathology between
rostral and caudal sections for the entire sample and
among individuals with and without AD pathology
(Supplementary Table 3), except for a lower neuronal
density in the right caudal than left caudal LC sec-
tion among individuals with AD pathology, relative
to the rostral LC (pTukey = 0.03, Supplementary Fig-
ure 3). The TOST (Supplementary Figure 4) showed
left-right equivalence across rostro-dorsal sections
for LC tangle density up to [–1,1] and relative tan-
gle density, up to [–3%, 3%]. Equivalence bounds
of left-right differences in neuronal density across
rostro-caudal sections exceeded the smallest mean-
ingful difference and varied between [–11,11] (entire
sample) and [–19,19] (with AD pathology), indica-
tive of asymmetry as also supported by the repeated
measures ANOVA.



108 E. Beckers et al. / Asymmetry in Locus Coeruleus Pathology

Fig. 2. Distribution and effect sizes of left-right differences in the LC measures. A) Boxplots (with median and interquartile range indicated
with the horizontal line and bars) and distributions (half violin) depicting the left and right distribution of the LC pathology measures (tangle
density, relative tangle density, neuronal density) across the entire LC and its rostral and caudal sections. Triangle shapes indicate individuals
with underlying AD pathology according to the NIA-Reagan criteria, whereas circles are those individuals without evidence. B) Mean
difference in asymmetry (left-right) for every pathology measure, LC section and group (Yes: evidence of underlying AD pathology; No:
no evidence of underlying AD pathology). Error bars represent the 95% confidence intervals (Bootstrapped at 5,000 replicates; � = 0.05).

DISCUSSION

Neuropathology studies reported LC neurodegen-
eration during the course of AD, with modestly
increasing asymmetry relative to neurologically
healthy individuals [7–9]. Because accumulation of
hyperphosphorylated tau in the LC emerges early in

adulthood and starts two to three decades prior to
neuronal changes [1], the LC has become an impor-
tant target for early detection of AD, motivating
the development of in vivo neuroimaging methods
of LC integrity [3]. These neuroimaging-based LC
metrics covary with tau pathology measured with
PET-imaging or blood-based markers [3, 24]. Despite
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Table 1
Demographics

MAP (N = 77)

Age at death (y)
Range

88.59 (5.84)
74.83–99.67

Sex (F; n, %) 56 (72.27%)
Education (y) 14.44 (2.66)
Postmortem interval (h) 7.09 (3.88)
APOE ε4 (n, %) 10 (12.99%)
Diagnosis (n, %)
CN
MCI
AD

29 (37.66%)
27 (35.07%)
21 (27.27%)

AD-Reagan diagnosis of
AD (n, %)
No to low
Intermediate to high

30 (38.96%)
47 (61.04%)

LC tangle density
Left
Right

3.48 (3.39)
3.82 (3.73)

LC neuronal density
Left
Right

77.11 (25.02)
75.53 (23.99)

Demographics are provided in mean and standard deviation for
continuous variables, or as proportion for categorical variables.
AD, Alzheimer’s disease; APOE, Apolipoprotein E; LC, locus
coeruleus; CN, control; MCI, mild cognitive impairment.

the LC’s early involvement in AD and its critical
role in modulating cognition and behavior [3, 5], the
clinical relevance of potential asymmetry in LC mea-
sures remains unknown. We addressed this gap of
knowledge by determining if asymmetry of pathol-
ogy occurs in the LC across different disease stages,
as this will inform the granularity of planned analyt-
ical approaches, the interpretation of MRI-based LC
findings during AD progression and in the context of
clinical heterogeneity. We found that the amount of
tangle density as well as relative tangle density were
equivalent in the left and right LC, both when con-
sidering the rostral or caudal sections separately or
when analyzing individuals with or without evidence
of underlying AD pathology. However, considering
the range of reported percent differences in neuronal
count in AD [7], our results indicate that the left ver-
sus right neuronal density in the caudal LC is different
from the pattern of neuronal density in the rostral LC
among individuals with underlying AD pathology.

Interestingly, the caudal LC contains very tightly
clustered cells, but relatively fewer large multipolar
cells compared to the rostral LC, which consists of a
scattered pattern of both large and small cells. During
disease progression, the small, fusiform cells in the
dorsal-middle LC are most vulnerable to accumulate
tau and show neurodegeneration from Braak stage
III–IV [1, 7]. Our data indicates that in older indi-

viduals in whom the downstream effects of tau may
have been unfolding over several decades, particu-
larly in rostral-middle sections, a more symmetrical
pattern of rostral neurodegeneration can be observed.
We speculate that as the disease progresses, cells in
the caudal section degenerate and become more dis-
persed. Caudal asymmetry in neuronal degeneration
(relative to rostral) may thus signal progression to
a more advanced disease stage (above Braak stage
IV and Thal stage 3) and possibly correspond to
late-stage symptoms including motor-related or auto-
nomic dysfunctions – reflective of its projections to
the cerebellum and spinal cord affected earlier in
Parkinson’s disease [7, 26]. This does not preclude
potential asymmetry in neuronal degeneration of the
rostral part earlier in life. We were not able to exam-
ine this hypothesis, as the age range in this cohort is
older than what is typical for observational studies.
An older age range is inherent to autopsy studies but
can introduce survival biases and limit the general-
izability of our findings to younger populations who
likely harbor tau pathology in the LC. In addition to
examining a broader age span, it would be valuable
for future studies to use more comprehensive meth-
ods such as unbiased stereological evaluations, relate
asymmetries in neuronal density to symptoms and
loss of projection density to cortical target regions
[27], and to examine if asymmetry in other read-outs
of LC function relate to pathologic asymmetry of the
LC [28].

Imaging the LC in vivo is feasible with dedicated
procedures [3, 29, 30], but often the LC seems shorter
in length than what is observed in neuropathology
studies. This is most likely because the LC’s cylindri-
cal shape widens along the caudal direction resulting
in worse caudal signal-to-noise ratio [6]. The find-
ings of this study hold important implications for in
vivo imaging studies, as they suggest that in indi-
viduals with advanced underlying AD pathologic
change neurodegenerative measures of the LC should
be investigated in detail, preferably considering both
sides separately and examining different sections of
the LC. In contrast, our null-findings indicate that tau-
related measures may not require this level of detail,
facilitating clinical translation of these markers.
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