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Abstract.

Background: The growing number of older adults in recent decades has led to more prevalent geriatric diseases, such as
strokes and dementia. Therefore, Alzheimer’s disease (AD), as the most common type of dementia, has become more frequent
too.

Objective: The goals of this work are to present state-of-the-art studies focused on the automatic diagnosis and prognosis of
AD and its early stages, mainly mild cognitive impairment, and predicting how the research on this topic may change in the
future.

Methods: Articles found in the existing literature needed to fulfill several selection criteria. Among others, their classification
methods were based on artificial neural networks (ANNSs), including deep learning, and data not from brain signals or
neuroimaging techniques were used. Considering our selection criteria, 42 articles published in the last decade were finally
selected.
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Results: The most medically significant results are shown. Similar quantities of articles based on shallow and deep ANNs
were found. Recurrent neural networks and transformers were common with speech or in longitudinal studies. Convolutional
neural networks (CNNs) were popular with gait or combined with others in modular approaches. Above one third of the
cross-sectional studies utilized multimodal data. Non-public datasets were frequently used in cross-sectional studies, whereas
the opposite in longitudinal ones. The most popular databases were indicated, which will be helpful for future researchers in

this field.

Conclusions: The introduction of CNNs in the last decade and their superb results with neuroimaging data did not negatively

affect the usage of other modalities. In fact, new ones emerged.

Keywords: Alzheimer’s disease, blood, computer-assisted diagnosis, deep learning, gait, genes, mild cognitive impairment,

neural networks (computer), neuropsychological tests, speech

INTRODUCTION

As the world population ages and its number
increases, so does the prevalence of chronic diseases.
Dementia is an example, deemed one of the socio-
sanitary challenges that societies need to tackle.

Dementia is diagnosed when more than one cog-
nitive or behavioral symptoms linked with gradual
impairment of intellectual function happen and, at
the same time, this impairment must interfere with
daily activities [1, 2]. Although other health prob-
lems and diseases must be excluded before [3, 4]. The
most common irreversible dementia is Alzheimer’s
disease (AD), accounting for 70% of the cases [1].
Prevalence of AD is higher in population above 65
years old, nearly doubling every five years after that
age [1, 2]. Onset and deterioration in AD are grad-
ual: memory loss worsens over time and since the
beginning whereas coordination, motor and sensory
impairments appear years later [1, 4]. These clini-
cal features are used for the Diagnosis of Dementia,
which is especially challenging in the early stages.

On the other hand, mild cognitive impairment
(MCI) is a construct that has been considered,
in terms of cognitive impairment, an intermediate
stage between cognitively normal (CN) and AD
and that, unlike AD, it does not negatively affect
routine daily activities [2, 5]. Researchers have fur-
ther grouped MCI subjects: early mild cognitive
impairment (EMCI), late mild cognitive impairment
(LMCI), “reverters” (cognitive impairment and diag-
nostic label improved between several consecutive
visits) and “converters” (the opposite case, such as
progressive mild cognitive impairment (pMCI) sub-
jects that went from MCI to AD).

AD has no cure as of the second semester of 2023.
Current treatments may help with the symptoms but
cannot slow down or reverse AD progression [1].

High is not only the prevalence of AD, approxi-
mately 5.7 million people in the US had AD in 2018

[6], but also its socioeconomic costs for health sys-
tems, ranging from $6,757 to $43,680 depending on
the country [7]. Also, caregivers of these patients suf-
fer from several mental and physical health problems,
and even psychotropic medicines abuse [8].

In [3] it is indicated that diagnosing dementia is
challenging because of the difficulty in distinguish-
ing it from other illnesses with similar symptoms.
Early application of treatments is beneficial in order
to keep most of the patient’s quality of life, albeit, for
this to occur, diagnosis should be early too. Unfortu-
nately, current treatments cannot make dementia stop
or recede, only help with the symptoms. The annual
cost per patient with dementia, which is country-
dependent, is around $44,000 [7]. It is common
that the physical and mental health of caregivers of
patients with dementia get affected [8].

Dementia is currently not so well understood in
several aspects such as risk factors, preventive strate-
gies, and ante-mortem diagnosis. Due to this, further
research in these aspects needs to be carried out to
fight dementia and, particularly, AD [9]. Consider-
ing the high complexity of AD diagnosis (detection
of the disease, patient may have it now) and progno-
sis (predicting the disease, patient may have it in the
future), a vast quantity of research based on artificial
intelligence (AI) methodologies has been published.
The majority of them utilized non-neural approaches
such as support vector machine (SVM) [10-13] and
ensembles of Al models [14-16].

To our knowledge, the current work is the first
review focused on cross-sectional and longitudinal
studies based on shallow or deep artificial neu-
ral networks (ANNs) for the early diagnosis or
prognosis of AD, and whose input data did not
originate from neuroimaging techniques nor brain
signals. That is, studies included in this review
did not make use of data obtained with struc-
tural magnetic resonance imaging (sMRI), functional
magnetic resonance imaging (fMRI), positron emis-



Y. Cabrera-Leon et al. / Neural Computing Methods & Non-NI for AD Diagnosis and Prognosis 795

sion tomography (PET), single-photon emission
computed tomography (SPECT), computed tomogra-
phy (CT), diffusion tensor imaging (DTI), functional
near-infrared spectroscopy (fNIRS), optical coher-
ence tomography angiography (OCTA), electroen-
cephalography (EEG), or magnetoencephalography
(MEG).

Related works

Many similar reviews and surveys have been pub-
lished, principally focused on cross-sectional studies.
Those that also included prognosis-related works
were scarce [17—19]. Reviews differed in the illnesses
that were studied, the families of computational
methodologies that were included, and the modality
of the data that was utilized.

Regarding illnesses, almost all of these reviews
were confined to AD-related works [20-31]. Some
included both AD and non-AD dementia works
[32-34]. A small number of them were not limited
to dementia alone but studied a wide variety of dis-
eases [35-40]. Cognitive impairment detection was
analyzed in [41, 42].

Regarding the computational methodologies,
reviews focused on deep learning (DL) studies were
popular [19, 23,27, 30, 35-38]. A significant number
of reviews included works with methods belonging to
wider families, whether Al [18, 25, 26, 33, 34, 39] or
machine learning (ML) [17, 20, 28, 32, 40, 42]. Shas-
try etal. [31] compared deep neural networks (DNNs)
with other ML approaches and modular systems with
at least one DL based module. Qu et al. [29] only
included studies whose DL methods were based on
generative adversarial network (GAN). The impor-
tance of transfer learning for DNNs was confirmed
in [40].

Finally, according to the modality, most reviews
only discussed neuroimaging-related works [19, 21,
23,24, 28, 38,40, 42]. Papers that utilized the broader
medical imaging group were reviewed in [27, 32, 35,
36]. A few reviews also included works where neu-
roimaging was combined with other modalities [28]
or mixed different imaging modalities [18]. On the
contrary, works that used multimodality of any type
were analyzed in [20]. Several reviews examined nar-
row sets of papers as they only included those that
made use of magnetic resonance imaging (MRI) [26,
37,39] or sMRI [25]. In [17] only studies that utilized
EEG were reviewed. Research works in the review of
Pulido et al. [22] were those that performed automatic
speech analysis.

METHODS

This work reviews the state of the art on diagnosis
and prognosis of AD and MCI which was based on
ANN methods. Its two objectives are:

1. Reviewing the variety of neural techniques and
clinical criteria that have been utilized for the
diagnosis and prognosis of AD and MCIL.

2. Assessing the differences in performance
yielded by different combinations of clinical
criteria and ANN families, so the most appro-
priate ones for a particular problem are found.

In Fig. 1, a PRISMA diagram showing the search
methodology of the literature review that was fol-
lowed is exposed. Throughout this section the search
strategy, selection criteria and data analysis are fur-
ther described.

Search strategy: databases and coverage of
search

Articles were retrieved from PubMed, a database
with more than 34 million publications connected
with life sciences and biomedical research. Addition-
ally, some papers were manually extracted from IEEE
Xplore and ScienceDirect databases.

After several iterative modifications of the search
terms, especially by means of adding more exclu-
sion criteria so that the results became increasingly
more interesting for the goals of this review, this final
combination of search terms was found: (alzheimer
OR alzheimer’s OR alzheimers OR “mild cognitive”)
AND (“neural network” OR “neural networks” OR
“deep learning” OR “deep neural”’) AND (detect OR
detection OR diagnostic OR diagnosis OR prognos-
tic OR prognosis OR classify OR classification) NOT
(animal OR animals OR mice OR mouse OR monkey
OR ape OR apes) NOT (“in silico” OR “ex vivo” OR
“in vitro”) NOT (acupuncture OR cancer).

Study selection criteria

The next inclusion and exclusion criteria were
required to be met by the publications extracted from
the indicated databases in order to be selected for this
review:

e Cross-sectional and longitudinal articles related
to AD or MCI diagnosis or prognosis were
accepted for inclusion. Also, they were included
if they studied their degree of severity. Con-
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Fig. 1. PRISMA diagram showing the search methodology used for this literature review.

versely, they were discarded if they were focused
on non-AD dementia or mental diseases.
Neural methods, whether ANNs or DNNs, must
have been used in those articles. Both com-
parisons or modular systems where one of the
methods or modules fulfilled the previous con-
dition were also accepted.

Only peer-reviewed articles and conference
papers written in English and whose content
was accessible with our credentials, including
open-access ones, were admitted. Reviews were
studied only for comparisons with the current
work in section Introduction.

Date of publication must have been between Jan-
uary 2012 and December 2022, inclusive.

In order to allow benchmarking articles in a fair
way, values for one or more of the commonly
used performance metrics indicated in subsub-
section Performance metrics should have been
utilized. Class distribution and number of sub-
jects were also considered in such comparisons.
Simulations of AD in biological neural networks
(BNN:Ss), in vitro experiments, and studies with
animals or ex-vivo tissues were left out.

e Articles whose methods were not presented with
an adequate level of detail as to determine if they
met this selection criteria were discarded.

e Duplicate articles, if any, were deleted.

As indicated in Fig. 1 and the previous selec-
tion criteria, an elimination process occurred while
screening the works identified in the database. A
single-blind selection was performed: neither the
names or affiliations of the authors of any of the arti-
cles were used to decide whether to include or exclude
an article.

Almost 38% of the 266 articles assessed for eligi-
bility that were identified from the PubMed database
were disregarded due to not complying with the first
two selection criteria. More than 47% of those 266
articles were discarded because they made use of data
related to neuroimaging or brain signals.

The final 42 “selected articles” were those that
met the previous selection criteria and where data
not originated from brain signals nor neuroimaging
techniques were utilized, whether alone or combined
with other modalities.
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As an article may deal with several classification
tasks, it will appear in the same table more than once,
in the sections inside the table with the most similar
classification task. Taken this into account, from the
42 “selected articles” that were analyzed, there will
be a total of 49 cross-sectional and longitudinal stud-
ies included in the tables and graphics in subsection
Data analysis and the subsections in the Results sec-
tion where cross-sectional and longitudinal studies
are analyzed.

Data analysis

The 42 selected publications were later compiled
and some considerations, including several statistics
on the articles and the performance metrics, arose
from the derived 49 cross-sectional and longitudinal
studies grouped by classification problem.

Statistics on the articles. In Fig. 2, it is shown that
the quantity of cross-sectional studies on this topic
that fulfill the selection criteria has almost multiplied
by 5 in the last two years. In this period of time
there has been almost the same quantity of studies
based on shallow and deep ANNS. Blood or genes has
become more frequently used by ANN-based meth-
ods in that period too. On the other hand, in the last
decade modalities has changed, with new ones being
introduced while others stabilized.

Figure 3 shows how common the different classifi-
cation tasks have been in the selected cross-sectional
studies. Almost 54% correspond to the CN-AD and
CN-MCI classification tasks. Multimodality, which
accounted almost 32% of the cross-sectional studies,
was more common with shallow ANN s or for tackling
binary classification problems. None of the selected
studies based on DNNs tackled MCI-AD.

Performance metrics. In order to allow or ease the
comparison of their work with others, researchers
frequently make use of well-known performance
measurements, such as accuracy, balanced accu-
racy, specificity, sensitivity, area under the curve
(AUC), receiver operating characteristic (ROC)
curves, precision, and F1 score [43-51]. Moreover,
researchers almost always present results using sev-
eral performance metrics because they have different
advantages and disadvantages, or they measure dis-
tinct aspects.

Time-related and resource-consuming metrics can
be used to further compare systems with similar
results for other performance measurements. Exam-
ples: training time, number of parameters, network
bandwidth, and disk space.

Non-neuroimaging biomarkers and diagnosis
criteria in AD

Despite being more difficult and usually having
lower accuracy [52], the sooner AD is diagnosed, the
better [53, 54]. Also, the earlier some treatments and
therapies are applied to an AD patient, the higher their
effectiveness are [53, 55].

A biological marker, usually known as biomarker,
is any measurable substance or characteristic
obtained from a patient that is common to the illness
but infrequent in healthy subjects, hence allowing
its diagnosis or prognosis. Currently no specific
biomarker for AD exists. A postmortem autopsy is
deemed the only definitive diagnosis [56]. Galasko
et al. [52] experimentally confirmed that CN subjects
had significantly higher Amyloid- (AB) and lower
tau concentrations in cerebrospinal fluid (CSF) than
AD patients.

In the last decades researchers have proposed
many diagnostic tools for the early diagnosis of AD
[57-59]. The majority of current diagnostic tech-
niques for AD are expensive, time-consuming (even
more when several repetitions are needed), pose arisk
to the patient or are invasive, or need to be done man-
ually. Novel criteria and potential biomarkers that
avoid such nuisances are being studied [53, 55, 60],
such as blood [60-62], genome [62] and vascular
disorders [63].

It should be noted that biomarkers are considered
clinically useful when they yield values of sensitivity,
specificity, precision, and Negative Predictive Value
above 0.9 [62].

Neuropsychological tests. Many neuropsycholog-
ical assessments have been utilized in dementia
research [64], especially for initial repetitive test-
ing. Sometimes they are also used to obtain the
“gold standard” category of the patient, which is
most adequately given by autopsies. The main advan-
tages of neuropsychological tests are their low price,
accessibility for non-specialized practitioners, and
non-reliance on advanced and expensive hospital
equipment. Several research works have indicated
that their final scores may be influenced by sev-
eral actions or characteristics of the patient such as
age, level of education, lack of motivation, malin-
gering and rumination [54, 65]. The existence of
some physical impairment may render impossible to
answer some questions in the way expected by the
test creator, which may affect the final score too,
so the clinician should take this into account. Most
neuropsychological tests have good sensitivity and
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Fig. 2. Number of cross-sectional studies that used data not from neuroimaging per year, grouped by modality and neural family.
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Fig. 3. Number of cross-sectional studies that used data different to neuroimaging per classification task, grouped by modality and neural
family.

specificity in patients with moderate dementia but these activities are: eating, showering, shopping,

behave worst in those with earlier stages [54, 64]. dressing, using public transport. Functional

These assessments cover different domains and Activities Questionnaire (FAQ) is an example of

subdomains of neuropsychological functioning and test specialized in this domain [66, 67]. Others

several of those that were used in the selected bibli- are Katz’s index [68], Barthel’s index [69], and
ography will be indicated: Lawton-Brody’s index [70].

e Cognitive domain includes several subdomains

e Functional domain refers to how well the patient [65,71,72] such as memory, language, executive

is able to do daily-living activities and how function, visual motor ability, attention, social

independent the patient is doing them. Some of cognition, recall, orientation, and calculation,
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among others. Speech and language are some of
the areas that are negatively affected by demen-
tia [12]. Difficulties in verbal fluency and word
retrieval are some of the linguistic impairments
found on both MCI and AD subjects [11]. Exam-
ples of cognitive tests are Mini-Mental State
Examination (MMSE) [73], Montreal Cognitive
Assessment (MoCA) [74], and Rey Auditory
Verbal Learning Test (RAVLT) [75]. Neuropsy-
chological tests may specialize in one or more
cognitive subdomains.

e Behavioral domain stands for changes in mood
and conduct. Depression, aggressiveness, or
anxiety are some of the elements that are
assessed by tests in this group. Geriatric Depres-
sion Scale (GDS) is specialized in depression
detection within geriatric environments [76].
Neuropsychiatric Inventory (NPI) is able to
detect 10 different behavioral problems [77, 78].
A shorter variant is the Neuropsychiatric Inven-
tory Questionnaire (NPI-Q) [79].

Some neuropsychological assessments are pre-
pared to test multiple domains: cognitive and
functional, such as Cognitive-Functional Compos-
ite (CFC) [80] or Everyday Cognition (ECog)
[81]; and cognitive and behavioral, for example
Alzheimer’s Disease Assessment Scale (ADAS)
[82]. Special mention is Clinical Dementia Rat-
ing (CDR), another multiple domain—cognitive
and functional—neuropsychological test, utilized for
staging dementia [83]. Values go from 0 for CN
subjects to 3 for those with severe dementia. The
variant called Clinical Dementia Rating Scale Sum
of Boxes (CDR-SB) seems to be useful for early
stages [84].

Some neuropsychological tests may need up to
30min each, albeit simplified and faster versions
of some of them have been developed. MMSE and
MoCA, the most popular ones, require around 10 min
per session. Besides, there are very brief but not so
popular tests, whose scores may be obtained just after
a couple of minutes [64, 85]. Generally, in order
to monitor disease progression in different domains
each patient is examined with several tests and on
a regular basis, so their times add up and become
large in the long run. An approach to diminish the
administration, scoring, interpretation, and documen-
tation times of neuropsychological tests is the usage
of computerized or digital cognitive tests [86]. In that
recent systematic review those authors found out that
almost 60% were mobile-based screening tests; near

3 out of 10, desktop-based; and the rest, web-based.
Additionally, these digital versions ease remote and
self-administration. However, due to the different
way the neuropsychological test is conducted, results
for the paper and digital versions of the same test may
differ [86].

Cerebrospinal fluid. CSF is a colorless biofluid
in the brain and spinal cord. It is obtained from
the subarachnoid space by lumbar puncture, a quite
invasive method where a needle is inserted between
certain lumbar vertebrae. Its main functions are
[87, 88]: physical support and hydromechanical
protection of the nervous system, excretion, nour-
ishment, intracerebral transport of substances (such
as hormone-related and neuroactive ones), and reg-
ulation of the chemical environment within the
central nervous system. Malfunctioning of the excre-
tion function may produce accumulation of brain
metabolism waste products and other unnecessary
substances. This affects the correct functioning of
the brain, and it is commonly seen in several neurode-
generative diseases and aging [88]. Some biomarkers
of interest for dementia diagnosis can be found in
CSF, such as APz, the ratio AR42:AB4o, total tau,
and hyperphosphorylated tau [89]. Apolipoprotein E
(APOE) may be extracted via CSF, and the most
important allele for AD is 4. According to [62],
the combination of some CSF-derived biomarkers
for initial screening is potentially optimal because it
has high sensitivity, but should be followed by using
biomarkers with higher specificity.

Human gait. Several health problems, such as
stroke, Parkinson’s disease and cerebral palsy, affect
patients’ ability to keep certain posture and to control
some of their body parts, even impeding it. In the last
years it has been found that gait problems are gener-
ally common, albeit to varying degrees, in cognitively
impaired and demented patients too. Gait becomes
slower with increasing cognitive impairment [58].
Analyzing gait while performing another motor or
cognitive task at the same time may be better than
analyzing gait alone because it may help detecting
gait problems which will stay unnoticed if only one
task is performed [58].

Many types of sensors and methodologies have
been used to analyze human gait, posture and move-
ment of some body parts [90], such as eye-trackers,
accelerometers, gyroscopes, video analysis, and pho-
togrammetry. Unlike a few decades ago, some of
these sensors are nowadays economical and viable
options for researchers thanks to the wide availability
of webcams, Bluetooth devices and smartphones.
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The main handicap of these systems is that some-
times they might require much more detailed motion
capture sessions in controlled environments. Also,
patients or caregivers might need to learn how to
properly set up the motion capture devices when no
supervision or aid is available (for example, at home).

Speech. Cognition is one of the domains negatively
affected by AD. As a direct and unavoidable result of
cognitive decline, language is deteriorated too [22].
Hence, speech and writing, as complex cognitive and
physiological processes, also become impaired: sub-
jects are not able to understand others or express
themselves.

Speech is mostly affected in a steady increasing
way. During the early stages of AD, having difficul-
ties with word recalling, a lack of verbal fluency and
using word fillers are frequent. In moderate stages,
it is common the repetition and incorrect usage of
words, sometimes being unable to follow a conversa-
tion. In severe stages, subjects are unable to produce
coherent speech, repeating what others say, using
illogical or unrelated words and sentences. Among
others [11], changes in the percentage of voice breaks,
the quantity of periods of voice and the number of
voice breaks can be used to distinguish between AD,
MCI, and CN subjects [91]. Increase in reading and
phonation times have been reported too, apparently
parallel to the cognitive decline [92].

Blood. Blood-based biomarkers for AD are the
most novel diagnostic tool of those that have been
reported in the selected bibliography. Serum A3
load and APOE may be obtained with the less inva-
sive and cheaper blood extraction than with CSF.
Different combinations of plasma-based biomarkers
are recommended depending on the AD stage [60]:
for preclinical AD, plasma P-tau217 combined with
AB42/40 or glial fibrillary acidic protein; for prodro-
mal AD, plasma P-tau217 and cognitive tests; and
for AD dementia, plasma P-tau217 alone is enough.
Leuzy et al. [60] considered that blood-based ones
might be sufficient to improve diagnosis in a primary
care setting. These authors concluded that more stud-
ies about the combination of blood-based biomarkers
with other cost-effective and accessible measures,
such as neuropsychological tests and MRI, are nec-
essary.

Neural computation methods: artificial neural
networks and deep neural networks

A system is considered truly intelligent if it can
observe its environment and learn from it. True intel-

ligence consists in adapting, having the capacity to
integrate new knowledge, solving new problems, and
learning from mistakes. “Learning” can be defined
as the ability of a system to acquire information
from the environment without external program-
ming. “Artificial intelligence” can be defined as the
intelligence-related capabilities found on computers,
robots, and computer programs. “Machine learning”
is a subgroup of the Al methods where a system can
learn from data and generalize to unseen data, with-
out being explicitly instructed on how to work with
the unseen data.

All the studies included in this review are based on
ANNSs, a wide and diverse family of ML method-
ologies. The intelligence found in systems based
on ANNs is related to the expression “computa-
tional intelligence”, and it emerges from the complex
behavior of interconnected processing units working
in parallel. It is driven by learning (whose dynamic
is inspired by biological processes).

Kohonen [93] defined ANNs as parallel net-
works of massively interconnected and hierarchically
organized simple elements that interact with the envi-
ronment similar to how the BNNs do. Hence, ANNs
are inspired by BNNs (mainly the human brain),
the biological neurons that principally constitute any
BNN, and their synapsis (biologically speaking, a
specialization and where the neurons interconnect).
Parallel processing, robustness to incomplete or noisy
data, neurons and network fault tolerance and gener-
alization are some of the advantages of the ANNs.

Rumelhart [94] proposed eight elements to define
a general framework of an ANN: a set of processing
units with local memory; a state of activation of each
of them; an output function for each of these units;
a pattern of connectivity among the units; a propa-
gation rule or network function that defines how the
activity patterns propagate and is based on the con-
nectivity pattern; an activation rule for combining the
state of a neuron with the inputs that arrive to it and
produce a new activation of that unit; a learning rule
that indicates how the connectivity patterns change
based on experience; and representation of the envi-
ronment in which the ANN works (alocal and a global
information setting exist) [95].

Artificial neurons, a.k.a. nodes or processing units,
are the basic component of any ANN. Their shape
and behavior are inspired by their biological ver-
sion: receive weighted inputs (comparable to the
postsynapsis in the dendrites), process them math-
ematically (normally a sum of the weighted inputs
passed through the activation function), and produce
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an output (analogous to the action potential transmit-
ted through the axon).

Artificial neurons are characterized by several
functions that define their behavior: activation (com-
putes the neuron state based on the previous neuron
state, some fixed threshold, and the network input;
examples: linear, logistic, ReLU, radial... ), output
(computes the output from the activation; usually the
identity function), and propagation (computes the
input from the outputs and a bias value).

Connectivity topology indicates the shape in which
the artificial neurons are interconnected, frequently
grouped in layers [95]. Generally, the basic structure
of an ANN consists of three layers: one that receives
the input data (hence called “input layer”), a “hidden
layer” where the processing of the input data is done,
and the “output layer” that provides the output of the
ANN. Each of these layers can connect to the oth-
ers, frequently to the nearest one: to the next layer
(feed-forward), previous layer (feed-back), or even
with themselves (lateral connections). The most com-
mon type is the feedforward connection to the nearest
next layer. DNNs differs from shallow ANNSs in the
number of hidden layers, which is above one, thanks
to which they can tackle more difficult tasks, usually
needing little to no external preprocessing of the input
data and feature ranking. However, this increased
quantity of hidden layers brings along greater training
times and number of hyperparameters of the network.

Not only the direction of the connections (that
is, the information flow direction) but also the con-
nectivity density may be defined: fully or partially
connected [95].

Connections between neurons are typically
weighted, that is, they have a weight associated with
it. This weight is a number that indicates the strength
of the connection or the correlation degree between
the neurons of that connection.

The network neurodynamic describes how the pro-
cessing units process the local information [95]. It can
be expressed by time-continuous or discrete func-
tions, the latter case requiring to know when to
calculate the outputs of the processing units [45].
These changes can be made whether asynchronously
or synchronously. Among the most common forms
of asynchronous methods there is the random one,
in which the processing unit that computes its out-
put is randomly chosen. Another very common way
is following the topological order imposed by the
connections, where the computations are performed
synchronously layer by layer, from the ones next to
the inputs to the output one. On the other hand, these

changes can occur between all or only part of the
network elements [45].

In ANNSs the learning process occurs when they are
trained with data by following a learning algorithm.
This way, the parameters of the network (generally,
the weights of the connections) change iteratively
(often after an input sample is used for learning)
and, finally, get optimized so that the error made
by the network is minimized, principally trying to
reduce the difference between the expected output
and the one obtained by the network. Depending on
the level of tutoring for each input data, three differ-
ent paradigms exist [95]: supervised (desired output
is also provided to the ANN), reinforcement (only the
correctness is indicated), and unsupervised (the ANN
self-organizes based on the structures and redundancy
found in the input data).

To sum up, unlike other ML methods, neural
computation ones are characterized by a distributed,
parallel and adaptive computing performed by 3D
modular architectures [95]. These architectures are
formed by multiple and highly interconnected pro-
cessing elements, which are organized in layers [95].

Usage of ANNSs in the fields of health and psy-
chiatric disorders is not new, especially for their
diagnosis [96]. The most popular ANNs and DNNs
in the articles selected for this review are outlined in
the next subsections.

Multilayer perceptrons. Backpropagation
algorithm

A multilayer perceptron (MLP) is an ANN with
feed-forward connections between successive layers
[95]. This means that there are no recurrent units in
the network, that is, all the information goes from
the input to the output layers and not the opposite
way (the so-called feedback connections). MLPs are
based on the perceptron algorithm [97], a single-layer
network that is deemed the simplest ANN. MLPs
are usually built by combining many perceptrons in
three or more layers: input, hidden (one or more), and
output. Unlike perceptrons, MLPs can separate non-
linear data (i.e., data that cannot be separated with a
straight line) when non-linear activation functions are
used. The rest of its neurodynamic is the same as in
the perceptron [95]. Its most common learning algo-
rithm is called “backpropagation” [95]: weights are
updated first in the output layer and these changes are
passed backward to previous layers. Multilayer per-
ceptrons can tackle both classification and regression
problems [98].
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Recurrent neural networks

The main characteristic of recurrent neural
networks (RNNs) is the presence of feedback connec-
tions. In RNNs the input data flows bidirectionally:
not only from input to output layer as in feed-forward
ANNSs but also backward from output to input. The
output from some neurons is utilized to affect the
subsequent input to those neurons. Jentzen et al. [99]
indicated that RNNs can be seen as applying the same
parametric function to both a new input sample and
a partial output from the previous application of that
parametric function. Conversely, feed-forward ANNs
were referred as successively applying different para-
metric functions [99].

As with transformers, RNNs are quite suitable to
model temporal or ordinal behaviors because the out-
put depends on previous calculations. Examples of
topics where this happens and RNNs are good at
are language translation, speech recognition, natural
language processing (NLP), and image captioning.
RNNs are able to perform these tasks efficiently
because they have a “memory”, their internal state.

Connections in a RNN can be seen as a directed
graph throughout a sequence.

Unlike transformers, RNNs are prone to perfor-
mance degradation over long sentences as words at
the end of a sentence are given more importance
whereas the importance of earlier words are atten-
uated.

Gradient explosion (i.e., tend to infinity) and van-
ishing gradient (i.e., tend to zero) problems are their
main disadvantages. More powerful and complex
RNNs do not have these shortcomings, due to the
usage of “gated states” to control what the network
remembers and forgets: long short-term memory
(LSTM) networks [100] and gated recurrent unit
(GRU) [101]. Unlike GRU, LSTM has more param-
eters as it has an “output gate”, which controls which
information are going to be considered as the output
of the neuron. Both LSTM and GRU have increased
the popularity of RNNs.

Transformers

Initially proposed in [102], transformers are a fam-
ily of DNNs with an encoder-decoder structure. They
are based on attention mechanisms and do not use
any type of convolution or recursion. Thanks to these
attention mechanisms, transformers can determine
the importance of all the words in a sentence for the
encoding of each of these words. Unlike RNNss, trans-

formers process all the input sequence at the same
time instead of one word at a time, hence avoid-
ing performance degradation over long sentences.
Together with not having any recurrent units, both
characteristics allow for faster training times and
more parallelization capabilities than RNNs. There-
fore, popular large language models (LLMs) based on
transformers have been developed, such as Bidirec-
tional Encoder Representations from Transformers
(BERT), Copilot, and the Generative pre-trained
transformers (GPT) series (Ex.: GPT-2, GPT-3 and
ChatGPT). These LLMs are frequently pretrained
with huge online-based language datasets. The size
of the training data (above 450 GB), the quantity of
network’s parameters (hundreds of billions) and the
high training costs are their main disadvantages.

As with RNN:gs, they are specialized in processing
sequential data. Transformers have yielded very good
results in NLP and related tasks such as document
generation, machine translation, video understand-
ing, and document summarization.

Computer  vision, image  segmentation,
autonomous driving, and audio processing are
other fields where transformers have deemed to be
efficient. Vision transformer (ViT) is one architecture
used for these tasks. ViT computes relationship of
pixels in some small portions of an image instead of
every pair of pixels in an image, which will be much
more computationally intensive.

Convolutional neural networks

CNN:gs, also known as “ConvNets”, “Shift Invariant
ANNSs”, or “Space Invariant ANNs”, are regularized
feed-forward DNNs where a convolution operation is
carried out [99].

CNNs were inspired by the animal visual cortex.
Individual neurons in this cortex only respond to
particular stimuli in a small region (receptive field),
and neurons in next layers use broader regions and
respond to more complex stimuli. That is, simple
patterns are detected by the first layers, while the
last layers are specialized in the most complex ones.
There is a relationship between the speed of an object
being seen and the size of the receptive fields: fast
moving objects require greater receptive fields. The
whole visual field is covered by partially overlapped
receptive fields.

The topology of a CNN is like that of a MLP but
usually with much more hidden layers, and these lay-
ers have heterogeneous capabilities. The main layers
that can be found in CNNs are: the convolution lay-



Y. Cabrera-Leon et al. / Neural Computing Methods & Non-NI for AD Diagnosis and Prognosis 803

ers (where a learnable convolution kernel or filter is
applied to all the data, so feature maps invariant to
translation are obtained), the pooling layers (akin to
a non-linear down-sampling: reducing the size of the
data by selecting part of it; for example, the maxi-
mum value when using “max pooling”), and the fully
connected layers (equivalent to a MLP).

Due to the higher complexity of CNNs brought
along by the numerous layers, connections and neu-
rons, the concept of “building block”, which already
existed in monolithic, hybrid, modular or ensembles
of shallow ANNSs, became more popular. A build-
ing block is a combination of layers, connections,
and neurons with a particular functionality. This way,
CNNs could be built by combining different building
blocks with heterogeneous characteristics and capa-
bilities.

Multiple CNN variants have been developed
such as LeNet, Visual Geometry Group (VGG),
GoogLeNet, Residual Network (ResNet) and U-Net
[103]. Among their differences: usage of building
blocks with advanced characteristics, dissimilar net-
work structure, connections, quantity of parameters,
neurons, or layers, etc.

Due to the presence of fully connected layers,
which are prone to overfitting data, regularization
methods are often utilized, such as dropout [104]
(temporarily ignoring neurons), DropConnect [105]
(each connection can be dropped temporarily), and
weight decay parameters.

CNNs are quite robust to translations, rotations and
scaling of the input data, a characteristic very useful
for image and video recognition, and image classifi-
cation. Pooling layers located after the convolutional
ones are the main reason for this robustness. Due
to the huge quantity of hyperparameters that these
DNNs have and the common lack of enough train-
ing samples, augmentation methods, especially for
images, are almost always required.

Conversely and unlike other ML approaches, they
frequently require less data preprocessing as some
preprocessing tasks, such as feature extraction, are
automatically done by themselves (in this case, filter
optimization is learnt) instead of requiring hand-
made filters or prior knowledge. Thanks to this, CNNs
are especially suitable to process data with a spatial
structure [99], and with a high degree of autonomy.

Autoencoders

Autoencoders (AEs) are unsupervised ANNS.

The topology of AEs comprises two parts [106]:
the encoder, which transforms the input data by map-
ping them with a lower-dimensional code, and the
decoder, which reconstructs the input data from its
encoded version. Albeit AEs with more layers—and,
hence, more powerful—exist, these parts are usually
integrated into three layers [106]: input, one or more
hidden layers, and output (with the same dimensions
as the input one). Among the hidden layers there is
the “bottleneck layer”, which has less neurons than
the input or output layers. This way, this hidden layer
prevents one-to-one mapping of the input into the out-
put by forcing the compression of the input data with
minimal loss of information [106].

Variations, such as Convolutional Autoencoder
(CAE), Stacked Autoencoder (SAE), and Variational
Autoencoder (VAE), provides additional capabilities
to the original AE.

AEs are commonly utilized for dimensionality
reduction because the encoder part can learn an opti-
mal and compressed representation of the input data
due to using a code with fewer dimensions than the
input data.

More recently, AEs have also been used for data
augmentation.

Neural ensembles

Several ML methods may be grouped, and their
decisions be combined in order to achieve a better
performance than each of them individually. One way
of combining models is through “ensemble learning”
[107], where each of them is called a “weak classifier”
as it does not require to be the most optimal one..
When one or more of these weak classifiers are based
on ANNs or DNNEs it is called a “neural ensemble”.
The idea behind ensembles is that each weak classifier
will train with a smaller and probably easier subset
of the input data [95].

Two strategies are required to construct an ensem-
ble [95, 107]: combination strategy, and weak
classifiers’ selection strategy.

Regarding the first strategy, the main goal is to
cancel out incorrect decisions while endorsing cor-
rect ones. A simple or weighted voting scheme is
frequently utilized to combine the outputs of all the
weak classifiers when a non-trainable combination
strategy is used. In the weighted case, less impor-
tance is given to the decisions made by bad classifiers,
whereas in the simple case, all have the same.

Regarding the second strategy, the performance of
an ensemble is usually better when its weak classi-
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fiers make dissimilar errors, that is, they are diverse.
Several ensemble strategies have been proposed in
the literature to increase diversity such as bagging
[108], boosting (among others, Adaptive Boosting
(AdaBoost) [109] and Extreme Gradient Boosting
(XGBoost) [110]), and Random Forest (RF) [111]. A
RF is a special case of non-neural ensemble learning
where the weak classifiers are, generally binary, deci-
sion trees (DTs) that are trained with random partition
of the input data. A DT is a ML method, often used in
business and industry due to its simplicity and intelli-
gibility. A DT is made of nodes and branches. A node
can be internal (where a decision is made according to
the values of an attribute of the input data) or leaf (in
the last level; indicates the final output of the DT after
all attributes were considered). A branch is the path
connecting two nodes, and it indicates the outcome
of the decision made in the higher-level node).

RESULTS

Two different families of studies have been located
in current research works related to AD, MCI, ANNSs,
and DNNs: cross-sectional and longitudinal. In the
first one, also known as transverse or prevalence
studies, there are systems for the diagnosis of MCI
or AD in actual patients, frequently distinguishing
them from CN subjects. Several severity degrees of
AD or MCI might be used instead, such as mild
AD, severe dementia, EMCI and LMCI, among oth-
ers. The second family includes studies that use,
unlike the previous one, repeated observations of both
the same clinical criteria and subjects over a period
of time, normally months apart. Prognostic studies
might be included in this family too. Prognostic and
longitudinal studies will be analyzed in the next sec-
tion.

The selected articles have been categorized, firstly,
by the family of studies they belong to, cross-
sectional or longitudinal. Due to the large number
of cross-sectional articles, these works were directly
grouped according to the type of the input data,
multimodality ones having their own subsection.
Longitudinal studies, as there were fewer, did not
require this grouping. In each modality works were
commented according to the deepness of the winner
neural method that was used, shallow or deep ANNSs.

In the summary tables included in this section after
the Databases subsection, the selected articles were
grouped according to the deepness of the winner neu-
ral model and also by the classification task they

tackled. In each of these subgroups they were sorted
first by year and then by the first author’s last name.
Besides, when a comparison between different meth-
ods was conducted, only results for the best method
(highlighted in bold in the “Methods” column) have
been indicated. In that same column, modular meth-
ods will be denoted with “+” symbols between their
modules.

Databases

Knowing the characteristics of the currently
available data repositories is key for researchers,
especially for new ones on the topic. Therefore, the
most used non-private databases found in works men-
tioned throughout the next two sections are described
in Table 1, whose second part contains other non-
private databases not found in our selected literature.

According to the reviewed articles, AD-related
databases can be grouped by its data accessibility:
public and private. The main advantages of using pub-
lic databases are: reproducibility of the experiments,
probably high quality as they are built by clinicians
and other medical experts, big number of patients,
generally multisite, and, as they are already built,
other researchers do not need to build one on their
own. More often than not, public databases require
that researchers comply with some norms and accept
some sort of Data Use Agreement or similar legal doc-
uments before having access to the data, while using
them and before publishing related works. In Table 1,
such databases have been indicated by the word
“Authorization” in the “Access” column. Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and Open
Access Series of Imaging Studies (OASIS), the most
popular public databases in AD diagnosis when neu-
roimaging data are used, are good examples of these
requirements. Privacy of the patients is frequently
safeguarded by anonymizing their identification data.

On the other hand, private databases are built
by certain researchers with data from patients with
whom they have direct contact in real life, often
in hospitals and nursing homes. They are rarely
multi-site because building a database is a time-
consuming, sometimes expensive, process. Unlike
public databases, they are usually inaccessible to
external researchers. Customization is their main
advantage as every property of the database can be
selected by those who build it, such as the clini-
cal assessments that are carried out, the technologies
and equipment that are used, the quantity and char-
acteristics of the subjects, and the type of study,



Table 1
Non-private databases with AD, MCI or CN subjects that were used by more than one of the selected articles, sorted by popularity. In the lower part of the table, other similar non-private databases
but that were not used in the selected literature

Database Access Number of Types of biomarkers Link
subjects NS NI G BS M/S
GEO Public N/A X https://www.ncbi.nlm.nih.gov/geo/
ADDReSS challenge Authorization 156 X X https://dementia.talkbank.org/
ADNI Authorization 1,833 X X X X http://adni.loni.usc.edu/
DementiaBank Authorization 473 X X https://dementia.talkbank.org/
(including Pitt
Corpus)
NHIS-HEALS Authorization + fee 514,866 X X http://nhiss.nhis.or.kr/
ADNI-1-GWAS Authorization 818 X https://adni.loni.usc.edu/data-samples/data-types/genetic-data/
AMYPRED Authorization 141 X X https://classic.clinicaltrials.gov/ct2/show/NCT04828122
EMIF-AD Authorization 1,221 X X X X https://emifad.bmd-software.com/
MCSA Authorization 5,923 X X X X https://www.mayo.edu/research/centers-programs/alzheimers-disease-research-
center/research-activities/mayo-clinic-study-aging/overview
AIBL Authorization 1,000+ X X X https://aibl.csiro.au/
AlzBiomarker Authorization N/A X https://www.alzforum.org/alzbiomarker
CADDementia Authorization 354 X https://caddementia.grand-challenge.org/
MAS Authorization 1,037 X X X X X https://cheba.unsw.edu.au/research-projects/sydney-memory-and-ageing-study
OASIS Authorization 1,098 X X https://www.oasis-brains.org
Rdatasets: apoeapoc Public 353 X https://vincentarelbundock.github.io/Rdatasets/
Rdatasets: nep499 Public 499 X https://vincentarelbundock.github.io/Rdatasets/
TADPOLE Authorization 1,000 X X X X https://tadpole.grand-challenge.org/

NS, Neuropsychological scales; NI, Neuroimaging; G, Genetic; BS, Biospecimens or biological samples; M/S, Human gait, movements, or speech; N/A, Not Available.
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Fig. 4. Number of times that a database was used in the selected literature for each combination of modality and neural family.

among others. Unfortunately, a high customization
may reduce the generalization power of the findings
of the research works based on such private databases.

In the selected literature, Fig. 4, private databases
were utilized the most (over 52% of the times a
database was used), followed by far by Gene Expres-
sion Omnibus (GEO) and ADReSS (almost 15% and
over 12%, respectively). ADNI and Pitt Corpus stay
far behind them with above 7% each. Reasons for
such results might be deduced from the aforemen-
tioned characteristics of public and private databases.

Cross-sectional studies based on
neuropsychological tests, cognitive tasks, and
demographic data

In Table 2, it can be noted that the selected studies
based on DL only made use of a single scale, unlike
ANN-based ones, where several scales or combining
scales and demographic data were common. About
the origin of the input data, private datasets were the
most common with both neural families. ADNI was
also used with shallow ANNs.

Artificial neural network approaches. Based on
the findings (mainly, that using oversampling and
not using the volume of the hippocampus were con-
sidered optimal) of their previous research [112],
another work from these authors compared counter-
propagation networks (CPNs) with other ML systems
[113]. Class balancing techniques were analyzed by
comparing the performance values when the clas-
sifiers were trained with the original unbalanced

data, with one where an undersampling technique
was applied, and with another one balanced with
the oversampling method called Synthetic Minor-
ity Oversampling Technique (SMOTE) [114]. A
CPN achieved 0.8 AUC for CN-MCI, whereas
a RF, an ensemble of decision trees (DTs), was
the best classifier for CN-EMCI-LMCI, 0.78 AUC.
In both classification tasks the oversampling vari-
ant outperformed the others. In CN-EMCI-LMCI,
the ensembles family, such as RFs, committees,
or other mixes of classifiers, finished among the
ten best configurations for any of the dataset
variants.

Almubark et al. [115] found that combining “Spa-
tial Inhibition of Return”, a 5-minute cognitive task,
with some neuropsychological scales was optimal.
This cognitive task comprised three visual stimuli,
two cues and a target, presented serially and the
patient needed press the button corresponding to the
target stimuli. SMOTE [114], an oversampling tech-
nique that augments the minority class, was used. A
fully connected MLP outperformed the rest of ML
algorithms, including several ensembles methods:
RF, AdaBoost and Gradient Boosting (GB). However,
sensitivity dropped to 0.67 when this winning sys-
tem was further tested with an independent dataset,
where subjects were demographically different from
those in the main dataset. A Modular Hybrid Grow-
ing Neural Gas (MyGNG) is a novel neural approach
where a Growing Neural Gas (GNG) [116] is used for
clustering the input data, whereas a perceptron, for
labeling [56]. Fast Correlation-Based Filter (FCBF)



Table 2

Summary of the selected cross-sectional studies whose method was based on shallow or deep ANNs and only used neuropsychological scales or cognitive tasks and demographic data. When
a comparison between different methods is conducted, only results for the best method (in bold) are indicated. Modular methods are indicated with “+” symbols between their modules in the

“Methods” column

Reference Dataset Features Methods Results
Based on Artificial Neural Networks
CN-MCI
[113] ADNI: 166 CN, 159 EMCI, 137 3 scales, 2 demographic CPN; DT; RF; SVM; NB; MLP; CN-EMCI-LMCI 0.58 ac, 0.78 AUC
LMCI ensembles
[118] ADNI: 203 CN, 128 MCI 3 scales, 2 demographic CPN 0.87 ac, 0.9 se, 0.85 sp, 0.95 AUC
CN-MCI-AD
[115] Private: 41 CN, 8 MCI, 8 AD 1 cognitive task, 8 scales MLP; SVM; RF; AB; GB 0.93 ac, 0.94 se, 0.93 sp
[119] Private: 1227 CN, 300 MCI, 227 AD 62 items from 4 scales, 8 ANN; LR; SVM; RF; XGBoost; 0.89 ac, 0.6 se, 0.94 sp, 0.92 AUC
demographic LASSO; Best subset
MCI-AD
[56] ADNI-2:150 AD, 345 MCI 6 items from 3 scales MyGNG (GNG + perceptron) 0.81 ac, 0.89 se, 0.95 AUC
Based on Deep Neural Networks
CN-AD
[122] Private: 59 CN, 59 MCI, 30 AD 1 scale CNN CN-AD 0.89 ac, 0.82 se, 0.95 sp,
0.94 AUC
CN-MCI
[122] Private: 59 CN, 59 MCI, 30 AD 1 scale CNN CN-MCI 0.88 ac, 0.85 se, 0.91 sp,
0.91 AUC
CN-MCI-AD
[120] Private: 535 CN, 1687 MCI, 678 very 1 scale DNN; MLP; GCForest; RF; 0.88 ac, 0.85 F1
mild dementia, 1812 mild dementia, AdaBoost; LogitBoost; NB; SVM
1309 moderate dementia, 680 severe
dementia
[121] Private: 1649 CN, 453 MCI, 107 AD 1 scale CNN 0.88 ac, 0.78 se, 0.78 AUC
nonCN-CN
[121] Private: 1296 CN, 913 non-CN 1 scale CNN 0.86 ac, 0.85 se, 0.85 AUC
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was used for feature ranking and selection [117].
Neuropsychological tests (some subscales of MMSE
and its total score, a subtest of ADAS, and a sub-
scale of FAQ) and a demographic data (patient’s age)
as input yielded high AUC scores. Some of these
authors deepened in their previous works with CPNs
and tested this neural network even more [118]. A
similarly high performance was achieved with differ-
ent scales and demographic data: the total scores of
FAQ, MMSE, and GDS, age and years of education.
By means of a wrapper method and grid search they
found out that the best combination of features was
age, MMSE and FAQ.

Seventy non-imaging features were extracted from
two different private datasets in [119]. The ANN that
was tested, which was the best in validation with 0.94
AUC, was a feedforward neural network with a single
layer of hidden neurons and L1 weight regularization.
However, in testing, the winner model was a SVM
with polynomial kernel.

Deep neural network approaches. Few researchers
made use of DNNSs together with solely demographic
data, cognitive tasks, or neuropsychological scales
(Table 2).

Surprisingly, utilizing just one informant-based
questionnaire, the History-based Artificial Intelligent
Clinical Dementia Diagnosis System (HAICDDS)
scale, Zhu et al. [120] obtained good results in a
multi-class problem. Although these authors did not
describe it deeply, HAICDDS consists of 50 ques-
tions in 7 domains, including memory, language and
some related to daily activities. Information gain was
used for feature selection. They enrolled a very large
number of participants, which is uncommon in the
overall selected literature. Their winner classifier, a
DNN, was a multi-hidden layer feedforward neural
network.

The “Rey Complex Figure” scale comprises draw-
ing a difficult set of figures, whether with a tablet or
pen and paper. This test was used by Simfukwe et al.
[121] as the input for their DL solution. As two differ-
ent types of classification problems were dealt with,
two datasets were built: 1,296 CN and 913 non-CN
subjects for the first study, whereas 1,649 CN, 453
MCI, and 107 AD patients for the second one.

This same assessment but referred to as the “Rey
Osterrieth Complex Figure” was used by Cheah et al.
[122]. In order to keep the dataset class balanced, only
30 CN subjects were used for the CN-AD classifica-
tion problem. The delayed recall task discriminated
the different classes of subjects better than the copy
or the immediate recall tasks.

Cross-sectional studies based on gait

Only private datasets were utilized by researchers
working with gait data, which may also explain
the low number of subjects included in each study
(Table 3). CNNs and MLPs (shallow or deep) were
the most optimal methods.

Artificial neural network approaches. In [123], of
the 35 AD subjects, 7 were early AD; 18, middle-
stage AD; and 10, late-stage AD, all of them from
a daycare center. Gait was captured via Android
smartphones’ accelerometers. Although categorizing
different severity levels of AD is a rather difficult
classification task, their system performed well.

Deep neural network approaches. As with shallow
ANN:gS, private datasets were the most frequent when
gait data was required [124—126]. In the first work,
built-in sensors of cell phones were utilized to obtain
the gait data whereas different in-home sensors were
preferred in the latter two works.

Accelerometers from Android devices were uti-
lized to monitor the gait of 7 early AD, 18
middle-stage AD and 10 late-stage AD in a daycare
center in [124]. Although a CNN achieved the best
overall classification results, an MLP surpassed it for
early and middle stages.

“TraMiner” is a novel trajectory mining system to
be used in smart homes where sensor infrastructures
exist [125]. Both trajectory and speed images were
analyzed, and several time intervals between consec-
utive sensor activations were proved (from 30s to
180 s). Combining both trajectory and speed images
with an interval of 120 s was considered optimal.

The lack of proper data induced Oliveiraetal. [126]
to fabricate the wandering and normal movement
paths required for their research, which simulate the
real world. In a future work these authors will validate
their system with data collected from real patients.

Cross-sectional studies based on blood
biomarkers and genes

Compared to neuroimaging and neuropsycholog-
ical tests, the usage of blood biomarkers can be
considered a novel approach in the AD field. Genes
from blood samples provided good results in differ-
ent articles (Table 3). For example, in [127] a SVM
trained with data obtained from genes from blood
samples was marginally better than a MLP, yet they
both yielded the same AUC. Among the datasets uti-
lized by the selected articles within this group, the
GEO one was the most popular.



Table 3

Summary of the selected cross-sectional studies whose method was based on shallow or deep ANNs and only used data not related to neuropsychological scales, cognitive tasks, or demographics
(according to the studies selected in this work, that means gait, blood, genes, eye, transcripts, and speech). When a comparison between different methods is conducted, only results for the best
method (in bold) are indicated. Modular methods are indicated with “+” symbols between their modules in the “Methods” column

Reference Dataset Features Methods Results
Based on Artificial Neural Networks
CN-AD
[128] Private: 23 CN, 14 non-AD dementia, 33 AD Blood BPN; NB 0.86 ac, 0.83 se, 0.88 sp
[130] GEO: 248 CN, 293 AD Blood RF + ANN 0.86 AUC
[131] GEO: 359 CN, 305 AD Blood RF+ANN 0.85 AUC
CN-MCI-AD
[129] GEO: 238 CN, 189 MCI, 284 AD Blood SVM; Adaboost; RF; MLP 0.92 ac
nonAD-AD
[127] GEO: 90 AD, 90 non-AD Blood MLP; LR; LDA; DT; NB; kNN; RF; SVM 0.89 ac, 0.95 se, 0.93 AUC, 0.90 F1, 0.86 pr
AD
[123] Private: 7 early AD, 18 middle AD, 10 late Gait MLP; DT; SVM; RF 0.83 ac
AD
Based on Deep Neural Networks
CN-AD
[130] Pitt Corpus: 99 CN, 99 AD Transcripts DNNLM; D2NNLM 0.83 AUC
[128] EMIF-AD: 242 CN, 115 AD Blood DL; XGBoost; RF 0.88 AUC
[129] GEO: 74 CN, 87 AD Gene expressions AE +IDBN mRmR-WPSO-AE +IDBN: 0.97 ac, 0.95 se,
0.96 sp, 0.95 F1
[120] Private: 100 CN, 100 AD Gait CNN 0.6 se, 0.75 F1, 1 pr
[133] Private: 102 CN, 108 AD Eye CNN + FCN + FCN; kNN; SVM; VGG; 0.85 ac, 0.89 se, 0.98 AUC, 0.88 F1, 0.87 pr
ResNet
CN-MCI
[130] Pitt Corpus: 19 CN, 19 MCI Transcripts DNNLM; D2NNLM 0.8 AUC
[131] Private: 30 CN, 25 MCI Speech Multilayer network; Deep multilayer 0.75 ac, 0.49 se, 0.65 F1, 1 pr
network
CN-MCI-AD
[119] Private: 80 CN, 54 MCI, 19 AD Gait MLP DNN; CNN CN-MCI-AD 0.86 se, 0.87 F1, 0.88 pr
AD
[118] Private: 7 early AD, 18 middle AD, 10 late Gait CNN; MLP; SVM, RF; RT 0.91 ac (total)
AD
MCI-AD
[134] AMYPRED: 71 CN, 62 nonCN Speech ParaBLEU MCI-mildAD 0.65 se, 0.95 sp, 0.85 AUC
nonAD-AD
[132] ADReSS: 78 AD, 78 non-AD Speech VGGish + DemCNN; VGGish + SVM; 0.63 ac, 0.63 se, 0.63 F1, 0.63 pr
VGGish + kNN; VGGish + MLP;
VGGish + Perceptron
nonCN-CN
[127] ADNI-1-GWAS: 280 CN, 528 non-CN Gene array genotyping VAE +SVM + RNN; VAE + SVM + DNN; 0.6 AUC

data

VAE +SVM + CNN; VAE+SVM +LR;
VAE + SVM + SVM; VAE + SVM + RF
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Artificial neural network approaches. Blood serum
molecules have been researched when looking for a
reliable biomarker [128]. A Backpropagation Net-
work (BPN) of 15 and 13 neurons in their first
and second hidden layers, respectively, was the opti-
mal ANN: 0.71 accuracy, 0.83 sensitivity and 0.63
specificity. However, a Naive Bayes (NB) outper-
formed it: 0.86 accuracy, 0.83 sensitivity and 0.88
specificity. Despite the small dataset, it included non-
AD dementia, which was infrequent in the selected
literature.

Sh et al. [129] extracted individualized blood mes-
senger ribonucleic acid (mRNA) expression data
from the GEO database. These data were analyzed
with the xCell webtool, which can be found at
https://comp health.ucsf.edu/app/xcell, to get blood
cell composition and quantitative data. They discov-
ered that 355 out of 5,625 mRNA features were
optimal. These authors concluded, first, that one of
the reasons for AD might be the homeostasis of
granulocyte macrophage progenitor, and second, that
there might be a relation between AD and the home-
ostasis of natural killer T cell.

Three articles included in this review utilized a RF
for feature selection and an ANN with only 5 hidden
neurons for classification [130-132]. According to
the descriptions and figures with the ANN diagrams
in those articles and after checking the documentation
of the R package that they used for ML, either those
figures were incorrect, or those authors have erro-
neously used the word “layers” instead of “neurons”.
He et al. [130] concluded that, after screening seven
hub genes from AD-related differentially expressed
genes, hub genes are key in the immune microen-
vironment. The RF in [131] was able to screen six
important genes, critical for separating AD and nor-
mal samples. The article by Wang et al. [132] will be
described in subsection Cross-sectional studies based
on multimodal data as multimodal data were used.

Deep neural network approaches. The genome-
wide association study (GWAS) of the ADNI dataset
has hardly ever been used in the selected literature.
Maj etal. [133] did use it in order to study multi-tissue
imputed transcriptomic profiles. A combination of a
VAE and a SVM was used for feature selection: the
activations of the hidden layer of the VAEs were the
input to 42 SVMs, one per tissue. Each SVM pre-
dicted whether the sample input to the VAE belonged
to a specific tissue. A RNN, built with 2 LSTM and
a dense layer, was better than 2 CNNs and 2 Dense
Neural Networks. Other ML algorithms were also
tested but obtained inferior classification results.

The European Medical Information Framework for
AD (EMIF-AD) dataset was used in [134]. Unfortu-
nately, no design nor parameters of the classifiers—a
DNN, a XGBoost and a RF—were indicated in this
short report. These authors found out that using
plasma metabolites not only gave better performance
than using CSF measures of A3, p-tau and t-tau, but
also it is less invasive.

An Improved Deep Belief Network (IDBN) was
developed and yielded good performance in [135].
The most relevant features were selected by com-
bining the minimum Redundancy and maximum
Relevance (mRmR) method, a Wrapper-based Par-
ticle Swarm Optimization (WPSO), and an AE.

Cross-sectional studies based on other modalities

In Table 3, several studies that could not be grouped
in previous modalities are shown. That is, among the
articles selected for inclusion in this review, those that
only made use of data from speech, speech transcripts
or eye tracking while performing a visual task. These
studies were based on DL methods as no works based
on shallow ANNs were found in the literature. Con-
versely, several works based on both neural families
were found where some of these modalities were used
in combination with others. These studies, as they are
based on multimodal data, are analyzed in subsection
Cross-sectional studies based on multimodal data.

Deep neural network approaches. Orimaye et al.
[136] analyzed the effectiveness of two DNNs: the
Deep Neural Networks Language Model (DNNLM),
a deeper version of the NNLM with more than
one hidden layer with nonlinear activations, and
the Deep-Deep Neural Networks Language Models
(D2NNLM), that combines higher order n-grams and
the DNNLM. Only the transcripts of verbal inter-
views and not the speech version were utilized. In
order to keep the datasets class-balanced, 198 sub-
jects were selected for CN-AD, whereas 38 for the
CN-MCI classification problem (that is, an under-
sampling method was applied to the CN class).

Between 1 and 10 hidden layers had the MLP used
by Themistocleous et al. [137] in their speech-based
diagnostic system. Models with 6 and more hidden
layers performed better and more stable, especially
when crossvalidation and not a training-testing data
partition was used.

Also working with speech data were Chlasta et al.
[138], who tested several combinations of “VGGish”,
a pretrained model based on VGG that was used as a
feature extractor, and different families of classifiers.
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The winner classifier, DemCNN, was a custom raw-
waveform-based CNN.

Fristed et al. [139] developed a mobile app that
made use of the Automatic Story Recall Task (ASRT),
a remotely self-administered task about recalling
a short story (that is, recorded speech analysis).
Patients were obtained from the Amyloid Prediction
in Early-Stage Alzheimer’s Disease From Acous-
tic and Linguistic Patterns of Speech (AMYPRED).
Both short and long ASRT triplets were used as input
and immediate and delayed recalls were analyzed.
Similar results were yielded with both long and short
ASRT triplets by the “edit encoder” of the ParaBLEU
model, a DNN of the transformers family, that they
utilized.

Proposed in [140], the “NeAE-Eye” model con-
sisted of three main modules: an “inner autoencoder”
(built with a shallow convolutional network with
8-layers), an “outer autoencoder” (with a fully con-
nected neural network, FCN), and a ‘“classifier”
(3-layers fully connected network). Using eye-
tracking data, this nested AE model surpassed the
other methods on a 3D Visual Paired Comparison
task.

Cross-sectional studies based on multimodal
data

There are differences between the modalities uti-
lized in the articles where a shallow ANN was used
and those in the DL ones (Table 4). Almost all works
from the latter group made use of speech and tran-
scripts derived from speech, whereas in the first group
the modalities were more diverse.

Artificial neural network approaches. A multi-
modal approach where different mixtures of blood
measurements, patient’s history and demographic
data were tested was found [141]. Using just
scores of activities of daily living, creatinine, 5-
hydroxytryptamine, age, dopamine and aluminum
allowed a BPN to yield the best performance results.

Staal et al. concluded that the proposed eye-
hand coordination task may assess well the patient’s
visuomotor performance, which has the potential to
become a helpful approach to distinguish CN from
MCI or early AD [142].

On the other hand, speech was much less used
with shallow ANN s than with their deep counterparts.
Voice commands for Alexa, Amazon’s virtual assis-
tant, were preprocessed, and features were extracted
and fed to different families of classifiers [143]. Their
2-layer ANN was third, 0.78 classification accuracy,

after DT and RF, which obtained values of up to 0.9
and 0.8, respectively, although with different combi-
nation of features. These authors concluded that using
Voice-Assistant Systems might be helpful for future
home-based cognitive assessments.

In Teh et al.’s work [144], a Fuzzy Adaptive Reso-
nance Associative Memory (Fuzzy ARAM) was used
to classify CN and MCI patients via in-home motion
sensors, contact sensors and wearable sensors for
measuring gait and behavior. These behavior features
included heart rate, sleep duration, TV daily usage,
frequency of forgetting keys, wallet and medicine,
steps, number of outings and time away from home.
Fuzzy ARAM is a variant of ARAM, a predic-
tive self-organizing neural network, that is able to
deal with missing values. It is built as a pair of
overlapping Adaptive Resonance Theory (ART) net-
works which share a single category field. Rules
were extracted from the Fuzzy ARAM network,
and several rule pruning techniques were compared.
Antecedent pruning was the best, both with and with-
out missing values (49 and 25 subjects, respectively).
As expected, missing values degraded the perfor-
mance: 0.67 versus 0.8 accuracy, 0.57 versus 0.8
sensitivity, 0.75 versus 0.8 specificity, 0.6 versus 0.76
F1, and 0.63 versus 0.73 precision.

Combining a RF for feature selection and an ANN
with 5 hidden neurons (as already mentioned in sub-
section Blood biomarkers and genes for other articles,
the authors used the word “layers” instead of “neu-
rons” or the figures were incorrect) for classification,
Wang et al. [132] identified 12 ferroptosis-related
genes and built a new diagnostic model of high pre-
dictive value for AD. Although only patients from
the GEO database were utilized, genes indicated
by the FerrDB database, which includes ferroptosis
regulators and ferroptosis-disease associations, were
extracted and analyzed.

Deep neural network approaches. Ntracha et al.
[145] utilized a private dataset that combined both
linguistic features and keystroke dynamics in order
to perform an analysis of data related to fine motor
impairment and spontaneous written speech. Fea-
tures for spontaneous written speech were extracted
through NLP, and measured the lexical diversity,
richness, and syntactical complexity of the texts.
Keystroke dynamics were associated with bradyki-
nesia, rigidity, and alternate finger tapping.

The “Cookie Theft Picture” from the ADReSS
Challenge from the Pitt Corpus was the most pop-
ular dataset among the group of works where data
from speech were used [138, 146-149] (Tables 3 and



Summary of the selected cross-sectional studies whose method was based on shallow or deep ANNs and used multimodal input data. When a comparison between different methods is conducted,
only results for the best method (in bold) are indicated. Modular methods are indicated with “+” symbols between their modules in the “Methods” column

Table 4

Reference Dataset Features Methods Results
Based on Artificial Neural Networks
CN-AD
[141] Private: 60 CN, 60 AD Blood, 1 scale, 1 BPN 0.93 ac, 0.90 se, 0.95 sp, 0.93 AUC
demographic
[142] Private: 37 CN, 22 MCI, 37 AD Gait, Eye SVM,; DT; MLP 0.78 ac, 0.71 se, 0.84 sp, 0.78 AUC
[132] GEO: 302 CN, 323 AD Blood, Genes RF+ANN 1 AUC
CN-MCI
[142] Private: 37 CN, 22 MCI, 37 AD Gait, Eye SVM; DT; ML 0.77 ac, 0.57 se, 0.9 sp, 0.74 AUC
[143] Private: 18 CN, 22 MCI Speech, Transcripts MLP; DT; SVM; RF 0.9 ac
[144] Private: 28 CN, 21 MCI Gait, Behavior Fuzzy ARAM; SVM,; DT; MLP; 0.80 ac, 0.80 se, 0.80 sp, 0.76 F1,
CNN; LSTM 0.73 pr
MCI-AD
[142] Private: 37 CN, 22 MCI, 37 AD Eye, Hand SVM; DT; MLP 0.61 ac, 0.39 se, 0.75 sp, 0.66 AUC
Based on Deep Neural Networks
CN-AD
[150] Pitt Corpus: 243 CN, 307 AD Speech, Transcripts Siamese BERT + SVM; Siamese 0.78 ac, 0.79 se, 0.76 F1, 0.73 pr
BERT + MLP; Siamese BERT + RF;
Siamese BERT + kNN
CN-MCI
[145] Private: 12 CN, 11 MCI Transcripts, Keystrokes CNN +LR; CNN + RF; CNN + kNN 0.80 ac, 0.60 se, 0.90 sp, 0.75 AUC
nonAD-AD
[146] ADReSS: 78 AD, 78 non-AD Speech, Transcripts LDA; kNN; DT; SVM; RF; LSTM; 0.85 ac
CNN
[147] ADReSS: 82 AD, 82 non-AD Speech, Transcripts CNN+LSTM 0.73 ac
[148] ADReSS: 78 AD, 78 non-AD Speech, Transcripts MobileNet; YAMNet; Mockingjay; Audio: 0.66 ac; Text: 0.82 ac;
BERT Audio + Text: 0.83 ac
[149] ADReSS: 78 AD, 78 non-AD Speech, Transcripts BERT + ViT + Co-attention 0.9 ac, 0.89 se, 0.91 sp, 0.9 F1, 0.91

pr
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4). Both the speech and the transcripts were gener-
ally exploited. Differences between those works are
mostly related to the method used, where the usage
of transformers was common.

Something uncommon happened in Haulcy et al.
[146], where both ML approaches outperformed the
DNNE.

Zhu et al. [148] analyzed different families of trans-
fer learning models depending on the domain of the
initial input data that were used for pre-training:
MobileNet (image), YAMNet (audio), Mockingjay
(speech), and BERT (text). The models were later
fine-tuned with speech and transcripts data. Fusing
text and audio features yielded slightly improved
performance results. These authors also found that
applying transfer learning was beneficial for most
models’ performances.

Ilias et al. [149] combined a BERT with a ViT
and Co-attention to successfully fulfill an AD-nonAD
classification task.

Longitudinal studies

Compared to cross-sectional studies, significantly
fewer articles related to prognosis, conversion or lon-
gitudinal data were found in the selected literature
(Table 5). For this reason, longitudinal studies were
not separated by modality into different subsections
as previously done with the cross-sectional ones.

Only supervised methods were found, and none of
the articles were based on shallow ANNs. Models
from the LSTM family were the most common.

A varied set of databases were used in the selected
prognosis and longitudinal articles. ADNI was the
most common by a small margin.

Fouladvand et al. [151] extracted their longitudi-
nal input data from Electronic Health Records, for a
period of 5 years and each separated 15 months. These
records were related to participants from the Mayo
Clinic Study of Aging (MCSA) database. Among
others, diverse demographic and clinical data and
Activities of Daily Living (ADL) were used in their
comparison between different methods for CN to
MCI progression prediction. A Denoising AE was
used for representing the patient data. Applying over-
sampling techniques was beneficial, especially for the
winner method, an LSTM. The RF was more affected
by the class imbalance of the input data.

The National Health Insurance Service-Health
Screening Cohort (NHIS-HEALS) dataset, built from
different databases so it is extremely huge in terms of
sample size, clinical variables, and time-series data,

was utilized by Kim et al. [152] for their AD and
dementia prediction studies. Patients in this database
had different duration of the follow-up and number of
periodic health examinations. In this article they dif-
ferentiated between the concepts of AD and all-cause
dementia. Two statistical methods, Cox proportional
hazards regression models whether with baseline data
or repeated measurements, could not outperform the
DL approach with repeated measurements.

Two types of conversions, CN to MCI and MCI to
AD, were studied in [153]. As ADNI is originally
partitioned in different subsets, currently ADNI-1,
ADNI GO, ADNI-2, and ADNI-3, these authors
trained their model with one of these subsets while
validated or tested it with another one. These authors
proposed two AE-like models: the Multi-Task Convo-
lutional AutoEncoder (MT-CAE) and the Multi-Task
Long Short-Term Memory AutoEncoder (MTLST-
MAE). Both consist of an encoder and a decoder.
The goal of the encoder was to learn the compressed
feature representation that captures the spatial and
temporal information from the temporal DNA methy-
lation profiles. On the other hand, the decoder aimed
to reconstruct the temporal DNA methylation pro-
files based on the compressed feature representation.
This feature representation was also utilized as the
model input for a classifier to predict AD progression.
MT-CAE and MT-LSTMAE were the best models in
each conversion task dealt with, which these authors
attributed to the multi-task learning characteristic:
simultaneously learn the compressed feature repre-
sentation and use it for the prediction. Best results
were yielded when beta values, which were used to
measure the DNA methylation level, were unscaled.

Mukherji et al. [154] utilized longitudinal data
from the baseline, months 6, 12, 24, 36, 48, 60, and
72 to train a combination of cascaded LSTMs (one
per scale) and a MLP. Input for each LSTM was data
from the current time point and the output from the
previous LSTM. The MLP later combined the out-
puts from all the last LSTMs. Their combined model
had more accuracy predicting cognitive abnormal-
ity in the next 4 years than in 2 (0.83 versus 0.79),
whereas the opposite happened when predicting cog-
nitive normality (0.83 versus 0.87). In diagnosis, the
model at month 48 achieved better accuracy values
than at 72:0.79 versus 0.78.

Zheng et al. [155] investigated if the prediction
of cognition improved or not after 3 or 6 months.
Unlike other works, only demographic data, clini-
cal features, and time dependent neuropsychological
scales were used with their modular models. Two ver-



Summary of the selected prognosis or longitudinal studies whose method was based on DNNs and did not use neuroimaging data (monomodality or multimodality). When a comparison between

Table 5

different methods is conducted, only results for the best method (in bold) are indicated. Modular methods are indicated with “+” symbols between their modules in the “Methods” column

Reference Dataset Features Methods Results
CN-AD
[152] NHIS-HEALS: 452565 CN, 12516 3 past medical history, 46 LSTM; Cox proportional hazards CN-AD 0.79 ac, 0.88 se, 0.79 sp,
AD, 27280 dementia psychiatric disorder, 39 0.91 AUC
neurological disorders, 9
demographic
[152] NHIS-HEALS: 452565 CN, 12516 3 past medical history, 46 LSTM; Cox proportional hazards CN-dementia 0.8 ac, 0.84 se, 0.8 sp,
AD, 27280 dementia psychiatric disorder, 39 0.9 AUC
neurological disorders, 9
demographic
nonCN-CN
[154] ADNI-1, ADNI GO, ADNI-2: 36 5 scales LSTM + MLP 0.79 ac
CN, 30 nonCN
Prognosis or conversion prediction
[151] MCSA: 2707 CN, 558 MCI 8 diseases, 11 LSTM; RF CN to MCI conversion 0.71 ac, 0.76
neuropsychiatric symptoms, 9 se, 0.75 AUC, 0.46 F1, 0.33 pr
ADL, 3 demographic, 6
others
[153] ADNI GO, ADNI-2:221 CN, 334 Blood MT-CAE; MT-LSTMAE; CNN; CN to MCI conversion 1 AUC
MCI, 94 AD LSTM; Bi-LSTM; CNN + LSTM;
AE+LSTM
[153] ADNI GO, ADNI-2:221 CN, 334 Blood MT-CAE; MT-LSTMAE; CNN; MCI to AD conversion 0.79 AUC
MCI, 94 AD LSTM; Bi-LSTM; CNN + LSTM;
AE+LSTM
Conversion time prediction
[154] ADNI-1, ADNI GO, ADNI-2:36 5 scales LSTM + MLP Prediction at month 72 0.83 ac
CN, 30 nonCN
[155] Private: 135 AD, 89 MCI Scales, demographic CNN+LSTM Prediction at month 6 0.85 AUC
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sions, both built with a CNN followed by a LSTM,
were tested, one of them with a “withdrawal proce-
dure” that simulated a missing follow-up. Impact of
the withdrawal of data on the AUC was moderate.
At 6 months the mean AUC was far superior to at 3
months: 0.85 versus 0.74.

DISCUSSION

After collating, summarizing, and analyzing all the
bibliography that met our selection criteria, several
considerations and recommendations arise, which
will be discussed below. Similarly, some possible
future research directions could be inferred from our
investigation. Several conclusions and future works
are indicated at the end of this section.

Type of study

Cross-sectional studies were five times more com-
mon than longitudinal ones: 41 versus 8.

The number of cross-sectional studies found in the
selected articles drastically increased in the last two
years (Fig. 2).

Neural computation methods

Except with the “Other modalities” group, where
only DL approaches were found, the number of
cross-sectional studies based on ANNs or DNNs was
generally similar, even year after year.

Conversely, only longitudinal studies based on
DNNSs were discovered in the selected articles, where
the most common method was the RNN family.

Usage of transformers was much more common in
these works not based in neuroimaging due to their
ample popularity in studies based on textual informa-
tion and Natural Language Processing.

The CNN family was not as popular as when uti-
lizing data obtained with neuroimaging techniques.
However, it was frequently found in this review in
combination with other methods (modular methods),
or when neuropsychological scales or gait data were
utilized.

Computational costs and neural network optimiza-
tion. Transfer learning. Compared to most ANNs, DL
methods suffer from extremely high computational
costs, mainly due to the greater number of layers,
the quantity of neurons per layer and the numerous
variables that each neuron or synapse come with.
Moreover, these characteristics increase the complex-
ity of DNNs, complicating their configuration so that

they perform optimally in the desired task. “Trans-
fer learning” is a method whose main purpose is to
reduce the training times by using the weights of a
DNN pretrained on a dataset and for a task as the
initial weights of another DNN aimed to work in a
different yet related task. Parameter tuning and better
performance results are common when using trans-
fer learning. The main risk of this method is wrongly
considering both tasks as similar.

Regarding computational costs, network optimiza-
tion and transfer learning, authors in this review rarely
reported the training time and number of parame-
ters of their models. Mentions to transfer learning
were scarce too, probably on account of the reduced
usage of CNNs, compared to what happens when
neuroimaging data are used.

Clinical criteria. Multimodality

Clinical criteria utilized in the selected arti-
cles were heterogeneous. Neuropsychological scales
were used in all but two longitudinal articles.
Multimodality was the most common approach in
cross-sectional ones. The most frequent one was com-
bining speech with transcripts.

Novel approaches were also found, such as those
based on human gait, speech, and blood biomarkers.
Indeed, in this review blood and genes-based studies
were frequent. Several gait studies, whether alone or
combined with other modalities (eye or behavior),
were discovered in the selected literature. These and
other novel criteria will certainly be further explored
in the future so that other non-expensive, easy to use
and useful criteria are found.

Classification tasks

Binary classification problems have been much
more prevalent than multiclass ones in the selected
literature. The variety in the former was quite wide,
from the easiest and also the most common classifi-
cation task, CN-AD, to a difficult and infrequent one,
severity of AD.

CN-AD was the most popular classification
problem, followed by CN-MCI and nonAD-AD. CN-
MCI-AD was the most popular multiclass task.

Characteristics of the dataset

Research works are extremely dependent on the
used dataset as it enables or hampers the tasks to be
done. When shallow ANNS are used, several prepro-
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cessing stages are almost always required to become
useful. Some characteristics of the datasets that inves-
tigators must consider are indicated below.

Database. Above 51% of the cross-sectional stud-
ies made use of data from a private database, 14.63%
used the Gene Expression Omnibus database; 12.2%),
the ADReSS one; 7.32%, ADNI or the Pitt Corpus;
and 2.44%, ADNI-1-GWAS, AMYPRED, or EMIF-
AD.

Half of the longitudinal studies made use of data
from ADNI; 25%, NHIS-HEALS; and 12.5% private
or MCSA.

GEO was very popular in studies within the “blood
and genes” group.

Similarly, the ADReSS challenge database was
common in speech and transcripts-based studies.

ADNI was the most utilized database when shallow
ANNSs and neuropsychological tests were used. On
the contrary, in that modality private ones were the
most frequent in articles related to DNNs.

Class distribution. Class balancing methods. In
order to avoid that a classifier focuses on the major-
ity class (that with the most samples) and ignores
the minority and underrepresented classes, class bal-
ancing techniques are usually applied. This way,
the ratio between all the classes nears 1:1. These
methods can be divided into oversampling and under-
sampling, whether they increase the minority class
or reduce the majority one, respectively. Exam-
ples of oversampling techniques are SMOTE [108]
and Sanger Network-Based Extended Oversampling
Method (SNEOM), a neural-based one [156].

In this review most of the studies were character-
ized by highly class unbalanced datasets. Although
in the majority of articles the unbalanced classes
problem was not tackled, several of them utilized
undersampling techniques, especially when more
than one study was done in an article.

Size of the dataset. Data augmentation techniques.
As we have observed, the size of the dataset—in our
case, the total number of patients in a study—have
been quite variable: from a few dozens to thousands.
Private datasets are almost always much smaller than
some of the most popular multisite databases. As it
happens in other areas, the more samples the dataset
used has, not only the higher quality the research
should be but also the more generalist their findings
and conclusions should be.

Unlike what is common when using neuroimaging
data, there was no usage of data augmentation tech-
niques in the selected articles. The purpose of such
methods is to fabricate new input data by introducing

changes in the original samples. They increase data
diversity and, at the same time, decrease overfitting
too due to the big differences between the number of
parameters of the model and the quantity of samples.

Missing values. Imputation methodologies. Miss-
ing values, more often than not, hamper many
preprocessing, classification, regression and clus-
tering methodologies. Therefore, this is a delicate
issue that researchers should tackle. Many imputa-
tion methods can be found in the literature [157, 158],
being the simplest one to just ignore any sample with
missing values, which may have an important neg-
ative impact in the final number of samples that are
usable, key in clinical research.

Authors of the selected articles rarely mentioned
the existence of missing values in the used datasets.
Two reasons might explain this: or the problem did
not exist in the original dataset or samples with miss-
ing values were simply ignored and, hence, probably
not reported by those authors. A few articles uti-
lized imputation methods based on substituting with
a meaningful value for the class of the sample with
missing values.

Performance metrics

Using accuracy as the evaluation metric is prob-
lematic, especially with unbalanced data, a quite
frequent situation in clinical studies. Accuracy tends
to be over-optimistic in such cases. Consequently,
we recommend choosing AUC, or the combination
of sensitivity—also known as true positive rate or
recall—with either specificity or precision, as they
allow direct comparisons between the performance
results of different research. If classes are imbalanced
another interesting metric is the “balanced accuracy”,
which also works with multiclass classification and,
unlike F-score, does consider the quantity of true
negatives.

Most research works included in this review
published their results in two or more of these per-
formance measurements, as we have shown in most
tables throughout this article.

Unlike with what has been frequently found when
neuroimaging was used, no clear advantage of DNNs
over ANNSs in terms of performance metrics’ values
has been found.

Limitations of the selected studies

In general, the selected studies are characterized
by several limitations, affecting the reproducibility of
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their experiments: using private databases (occurred
in more than half of the selected studies), the spe-
cific development environment (such as software
versions) is sometimes not mentioned, few articles
did not indicate the values of the ANN hyperparam-
eters that were utilized, and some of them only made
use of one performance metric (even sometimes using
not the most appropriate one due to working with
class unbalanced datasets).

Conclusions and future works

For this review we have collected and studied the
modalities that have been used in the last years for the
diagnosis and prognosis of AD and its early stages,
principally MCI. Forty-two cross-sectional and lon-
gitudinal articles complied with our selection criteria.
The final number of studies included in this sys-
tematic review increased to 49 when the different
classification tasks tackled in each of the articles
were used to separate them so that fairer comparisons
between similar ones could be carried out. Works
from January 2012 to the end of 2022 were selected
in order to check if the introduction of CNNs com-
bined with neuroimaging data, which happened in
that period and became the state-of-the-art, had a neg-
ative impact on the usage of modalities different to
medical imaging. We found that such situation did
not happen because, especially in the last 2 years, the
quantity of articles increased, and even other modali-
ties popularized or began being utilized. The number
of studies based on shallow ANNs was similar to
that of DNNs. Almost 32% of the cross-sectional
studies utilized multimodal data, being more com-
mon in binary classification problems or with shallow
ANNs. Usage of data from gait and eye move-
ments explains the ample use of private databases in
cross-sectional studies. As in longitudinal ones these
modalities were not used, non-private databases were
more common. Almost 54% of the cross-sectional
studies included in this review focused on separating
AD patients from healthy ones or the latter from MCI
subjects.

There are two major limitations of our review
process that could be addressed in future works.
First, in this review only the PubMed database was
used, whereas only a limited manual citation search-
ing in other databases was done. Second, discarding
non-English works probably reduced the number of
studies to be analyzed. A solution for both limita-
tions is to use less restrictive exclusion criteria on
more databases.

Researchers from many fields will continue inves-
tigating AD and other dementia, even after their
cures are found. Future works will find new Al tech-
niques more convenient than current DNNs, even
though some of them have yielded superb results
when combined with neuroimaging data. Works with
the previous characteristics will become even more
common than nowadays are. RNNs and transform-
ers will increase their popularity and effectiveness
in the future works based on speech and longitu-
dinal data. Modular approaches and ensembles will
provide a big increase in performance, possibly due
to some of their components being based on DL.
Approaches based on ontogenetic ANNs will again
demonstrate that good performance results can be
yielded in complex classification tasks despite using
non-neuroimaging data. Although works with modal-
ities different to medical imaging are currently not
as popular as the latter, the usage of multimodality
will spread, probably combining both neuroimaging
and non-neuroimaging data. This will be especially
interesting with the appearance of novel biomarkers,
which should be characterized by not being inva-
sive nor expensive while providing good diagnostic
power. On the other hand, efforts will be made to
build an international and multisite database, which
will include multimodal data from cognitively normal
subjects and patients with different AD severity lev-
els including prodromal stages. This huge database
will be non-private, and all participating sites will
use the same protocols. This database will boost and
have a positive impact on AD research, especially
in terms of easier access to medical data and bet-
ter reproducibility. Finally, future works should be
focused on determining a biological and cognitive
signature of AD that would increase the prognostic
and diagnostic ease of this pathology, using methods
based on self-organizing systems for the detection of
patterns leading to the discovery of the sought-after
signature.
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